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Abstract—Extensive cloud contamination severely hinders the 

interpretation of optical remote sensing images. Existing cloud 

removal methods focus primarily on the reconstruction of 

individual cloudy images, with few studies addressing the 

reconstruction of cloudy time-series images. Furthermore, current 

methods tend to prioritize using cloud-free auxiliary images while 

overlooking valuable information present in the cloudy auxiliary 

images that are temporally closer to the target cloudy image. In 

this paper, we proposed a deep network called Res-cLSTM to 

reconstruct cloudy time-series images. Res-cLSTM processes 

time-series images sequentially using convolutional LSTM, 

synthesizing long- and short-term memory streams to match the 

complex temporal relationships amongst them. Then, Res-cLSTM 

further decodes the feature maps using a refined residual module 

with skip connections, resulting in the final output. Simulated and 

real cloud removal experiments on Landsat 8 OLI time-series data 

across five different regions demonstrated that Res-cLSTM is an 

effective cloud removal method, which can produce more accurate 

predictions than three benchmark approaches. For example, for 

reconstruction of the cloudy time-series of three simulated cloudy 

areas, the average CC of the Res-cLSTM prediction is about 0.01, 

0.04 and 0.04 larger than that of the second most accurate method 

(i.e., autoencoder (AE)). As a lightweight network, Res-cLSTM 

does not require global sampling of training data and can fully 

exploit the valuable information in the non-cloud regions of cloudy 

time-series images to facilitate cloud removal. Moreover, 

Res-cLSTM demonstrates robustness to thin cloud omission and 

exhibits a faster convergence rate, thus, holds great potential for 

practical applications requiring real-time processing. 

 

Index Terms—Time-series, cloud removal, thick clouds, deep 

learning, Landsat 8. 

I. INTRODUCTION 

Optical remote sensing images provide important data 

support for continuous land surface monitoring [1-4], and 

provide unprecedented opportunities for exploring natural [5-8] 

and anthropogenically-affected processes [9-13]. However, the 

number of effective optical satellite sensor images available is 

considerably less than the number of images measured 

according to the satellite's stated nominal revisit frequency. The 

main reason for the data gap is that clouds (and their shadows) 

obscure the observation scene. Studies have shown that clouds 

obscure an average of 67% of the Earth's surface at any one time 

[14]. Cloud detection is often used as a pre-process to identify 
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cloud regions in the image, commonly leading to the generation 

of cloud masks to aid subsequent reconstruction [15-19]. In 

reality, clouds vary in thickness, from thin to thick. Thin cloud 

can be removed with reference to partially visible information 

under the cloud [20-24]. Thick clouds, however, block the 

propagation of light across all bands, resulting in a complete loss 

of land surface information and a greater challenge to recover 

the information below. This paper focuses on thick cloud 

removal, and reconstruction of the information under thick 

clouds based on defined cloud masks. 

Due to the mobility of clouds, images acquired on other dates 

at the same location may contain valid information about the 

target cloud region, and such images are called auxiliary images. 

Current mainstream methods for cloud removal often employ 

temporally auxiliary images, which can be categorized into two 

groups: those based on a single auxiliary image and those based 

on multiple temporal auxiliary images [25-28]. The two groups 

of methods can be further classified into methods utilizing 

homologous auxiliary data and methods employing 

heterogeneous auxiliary data. Given the temporal dependence as 

well as temporal variation, the auxiliary images need to be 

sufficiently close to the target cloudy image temporally. 

The single auxiliary image-based methods construct the 

mapping relationship between the auxiliary image and the target 

cloudy image based on the common non-cloud data between 

them, and utilize the valid data in the auxiliary image to 

reconstruct the target cloud region [29]. The auxiliary data can 

be classified into homologous and heterologous sources. The 

homologous data refer to the temporally close data from the 

same sensor or satellite series. Considering the complexity of 

the mapping relationship between the auxiliary image and the 

target cloudy image, machine learning-based methods have 

been increasingly investigated for cloud removal [30]. For 

example, Melak et al. [31] employed an autoencoder (AE) 

neural network to remove clouds, which consists of fully 

connected layers and ReLU functions, for training and 

prediction based on individual pixels or patches. Gao et al. [32] 

proposed a deep code regression (DCR) model, combined with 

an autoregressive structure, to reconstruct the target cloud 

region. In Zi et al. [33], an auxiliary image was initially 

employed to derive preliminary predictions of the target cloud 

region using linear regression, which were subsequently refined 

using a convolutional neural network to achieve the final 

predictions. Tao et al. [34] sorted the training samples based on 

texture complexity and used self-paced learning to train a 

generative adversarial network for cloud removal. The 

aforementioned methods based on homologous auxiliary image 

capitalize on the spectral consistency. However, frequent cloud 

occlusion and inherent satellite revisit periods often render the 

available homologous auxiliary images temporally distant from 

the target cloudy image. Consequently, researchers have 
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explored the use of Synthetic Aperture Radar (SAR) images, 

which can penetrate clouds, as a source of auxiliary images (i.e., 

heterologous auxiliary data) [35-39]. Deep learning methods 

have demonstrated competent performance in establishing 

cross-spectral mapping between SAR and optical images. For 

example, Xiang et al. [40] proposed a two-step cloud removal 

method that first converts the SAR image into the corresponding 

optical image, and subsequently refines the cloud region of the 

optical image using a cloud-guided fusion network to achieve 

the final predictions. For methods that utilize only SAR images 

as auxiliary information, it remains a great challenge to mitigate 

the effects of severe speckle noise while effectively extracting 

relevant information from the original data [41-42]. Overall, 

single auxiliary image-based methods are generally simple to 

implement as they do not necessitate the collection of extensive 

training datasets. 

Methods based on multi-temporal auxiliary images also 

involve the use of either homologous or heterologous auxiliary 

images. Zhu et al. [43] developed a reconstruction model by 

using the Julian day of the time-series acquisition date as the 

independent variables and the corresponding pixel values as the 

dependent variable, enabling the reconstruction of cloud pixels 

for any given date. To characterize the complex mapping 

relationship between the time-series, deep learning 

based-methods have also been developed. Conventional 

methods focus on fitting explicit relationships based on known 

information to construct prediction models, making them 

difficult to handle complex mapping relationships in large-scale 

cloud-contaminated scenes and time-series data [44-45]. 

Therefore, deep learning-based methods have been developed 

rapidly. Chen et al. [46] developed a spatiotemporal 

information-based neural network known as STnet, which 

effectively reconstructs a target cloudy image by leveraging 

spatiotemporal feature fusion modules for spatiotemporal 

information learning. In addition, deep learning techniques have 

also been used as post-processing to further optimize the results 

of tensor completion algorithms. Zhang et al. [47] combined 

model-driven and data-driven approaches by employing 

third-order tensor singular value decomposition along with 3D 

convolutional neural networks (CNNs) to reconstruct 

time-series cloudy images. Zheng et al. [48] introduced tensor 

network decomposition and integrated the initial known mask 

iteration into the optimization process to refine the cloud mask 

further while using multi-temporal data for cloudy image 

reconstruction. With respect to the use of heterologous auxiliary 

data, the powerful learning ability of deep learning models 

facilitates the fusion of SAR and optical auxiliary images [49]. 

Specifically, time-series optical images and SAR images can be 

explored simultaneously for cloud removal of temporally 

neighboring cloudy images [49]. For cloud removal from 

Landsat series data, Li et al. [50] first applied a spatiotemporal 

nonlocal filtering model to fuse a homologous auxiliary image 

with coarse-resolution time-series images (i.e., MODIS) to 

obtain a cloud-free image. Then, the cloud-contaminated areas 

in the target cloudy image were removed using the cloud-free 

image through nonnegative matrix factorization. 

Despite the above progress, existing cloud removal methods 

exhibit several limitations. Specifically, single auxiliary 

image-based methods typically do not require a large number of 

training data, but often necessitate the use of cloud-free 

auxiliary images [29, 31-32]. For the methods based on single 

auxiliary images, the accuracy of the final prediction hinges on 

the validity of the cloud-free auxiliary images temporally closest 

to the target cloudy image [51]. However, clouds remain 

prevalent. Due to the limited temporal resolution of satellite 

sensors, there can be substantial time gaps (sometimes 

exceeding a year) between the available cloud-free auxiliary 

images and the target cloudy images. In such cases, a cloudy 

auxiliary image that is temporally closer to the target cloudy 

image may provide more valuable information. Moreover, since 

the cloud-contaminated areas in the auxiliary image are likely to 

overlap with the target cloud regions, utilizing multi-temporal 

cloudy auxiliary images could be an effective approach. 

However, cloud removal methods that rely on time-series 

images typically require extensive data for model training, 

creating high demands for both the quantity and quality of 

training datasets. Without sufficient training data, the models 

may struggle with generalization [52-54]. Additionally, current 

research in cloud removal focuses largely on reconstructing 

individual cloudy images, with comparatively few methods 

addressing the reconstruction of time-series cloudy images 

jointly. Yet, time-series data contain critical information 

regarding temporal changes [55]. By reconstructing time-series 

images, dynamic phenomena such as landscape alterations, 

plant growth and urban expansion can be more comprehensively 

monitored and analyzed [56-57], which cannot be achieved 

using a single remote sensing image. 

In light of the limitations discussed, this paper proposed a 

Residual block-enhanced convolutional Long Short-Term 

Memory network (Res-cLSTM) for reconstructing time-series 

cloudy images. Originally designed for precipitation prediction, 

convolutional LSTM [58] excels at capturing complex temporal 

relationships within time-series data. Res-cLSTM operates by 

sequentially inputting cloudy time-series images into the 

convolutional LSTM module, which decodes them while fitting 

the intricate temporal change relationships based on both 

long-term and short-term memory flows. In the Res-cLSTM 

model, convolution operations are employed to integrate spatial 

information. Moreover, the short-circuit connections of the 

residual module can enhance the generalization ability, reduce 

the risk of overfitting and stabilize the optimization process 

[59]. Taking this into consideration, Res-cLSTM then uses a 

residual module with a short-circuit connection to further refine 

the description of the feature map and output the final result. 

When using cloudy auxiliary images, the cloud areas may 

overlap with the target cloud areas. In such cases, methods based 

on single auxiliary image need to combine reconstruction results 

from multiple auxiliary images in turn to achieve a complete 

prediction. This accumulates the uncertainty and computational 

cost step by step. Methods that utilize time-series auxiliary 

images typically input the data simultaneously into the network, 

limiting their ability to fully learn the inherent temporal 

variations. In contrast, Res-cLSTM processes time-series 

auxiliary images sequentially in chronological order, thereby 

enhancing its ability to learn temporal variations. Moreover, 

when time-series are cloudy, the integration of long-term and 

short-term memory in Res-cLSTM effectively facilitates the 

complementarity of valuable information in non-cloud areas 

across the time-series.  
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In summary, the Res-cLSTM network offers several 

advantages: 

1) Different from traditional cloud removal methods that 

focus solely on reconstructing individual cloudy images, 

Res-cLSTM aims to reconstruct the entire cloudy 

time-series. 

2) Res-cLSTM is a lightweight network with a relatively 

small number of parameters, allowing it to be trained solely 

on non-cloud data from cloudy time-series images. Thus, 

Res-cLSTM eliminates the need for extensive training 

datasets, significantly reducing training time compared to 

existing models that require a large number of training 

data. 

The remainder of the paper is structured as follows. The 

proposed Res-cLSTM is detailed in Section II. In Section III, 

experiments based on simulated and real clouds are conducted 

to demonstrate the effectiveness of the proposed Res-cLSTM. 

Section IV further discusses the effectiveness of Res-cLSTM, 

along with its potential capabilities and limitations. Section V 

concludes the paper. 

II. METHODS 

A.  Overview of the network design of Res-cLSTM 

In this paper, we proposed Res-cLSTM for reconstructing 

cloud occlusion data in time-series cloudy images. The effective 

non-cloud data in time-series cloudy images contain valuable 

information of temporal variation and also spatial structure. 

Res-cLSTM utilizes valid non-cloud data from time-series 

cloudy images to train the models, thereby eliminating the need 

for extensive training datasets. As illustrated in Fig. 1, 

Res-cLSTM is an end-to-end model composed primarily of two 

modules: the multi-temporal decoding convolutional LSTM 

module and the refining residual module. The convolutional 

LSTM module processes multi-temporal data by inputting them 

sequentially and capturing the complex temporal relationships 

amongst them through the integration of long- and short-term 

memory. The refining residual module serves to further refine 

the feature maps for the final predictions. This research focuses 

on six bands of Landsat 8 OLI imagery: blue, green, red, 

near-infrared (NIR), shortwave infrared 1 (SWIR 1) and 

shortwave infrared 2 (SWIR 2). Each Landsat 8 OLI image fed 

into the network includes these six bands. In Fig. 1, T1, T2, …, 

Tp-1, Tp+1, …, Tn-1, Tn represent the input time-series auxiliary 

cloudy images, while Tp denotes the target cloudy image to be 

predicted. n is the number of images in the time-series, including 

the target cloudy image itself. Res-cLSTM reconstructs the 

cloudy images at successive time points, ultimately generating a 

series of reconstructed cloud-free images. The components and 

functionalities of each Res-cLSTM module are detailed in 

Sections II-B and II-C. 

 
Fig. 1. Overview of the proposed Res-cLSTM. 

 

B. Multi-temporal decoding module 

Shi et al. [58] proposed the convolutional LSTM structure 

based on the fully connected layer-based LSTM, and converted 

the precipitation prediction problem into the spatiotemporal 

series prediction problem from the perspective of machine 

learning. The original LSTM, based on fully connected layers, is 

a type of neural network characterized by memory capabilities 

and was designed primarily for processing one-dimensional 

time-series. However, it struggles to effectively capture spatial 

features. On this basis, the convolutional LSTM ingeniously 

replaces the fully connected layers with convolutional layers, 

enabling it to capture additional spatial structural information 

from the input data. 

Given the satisfactory performance of convolutional LSTM 

in predicting time-series data, we proposed to utilize it to 

reconstruct multi-spectral time-series cloudy images. The first 

component of Res-cLSTM is the convolutional LSTM module, 

which consists of n-1 convolutional LSTM cells for the n-1 

auxiliary time-series images. In this paper, n was set to 5 (i.e., 4 

auxiliary images were used). The time-series data are input into 

the convolutional LSTM module sequentially in chronological 

order. The number of channels in the hidden layer is configured 

to match the number of channels in the input layer, denoted as b. 

In this article, six bands of data were utilized (i.e., blue, green, 

red, NIR, SWIR 1 and SWIR 2) and, thus b was set to six. 

Unlike LSTM, which employs fully connected layers, 

convolutional LSTM utilizes convolutional kernels, enhancing 

the model’s ability to extract spatial information. This 

modification greatly increases the operational efficiency of the 

network and significantly reduces computational time. 

Moreover, by retaining long-term memory and integrating it 

with short-term memory for each new input, the convolutional 
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LSTM module effectively captures temporal-varying 

relationships within the time-series data. 

C. Refining residual module 

The residual structure was first proposed in [59], which 

contains a short-circuit connection. Short-circuit connections 

can facilitate the effective reuse of features extracted from 

previous layers. By simplifying the optimization process, 

short-circuit connections often enable the network to converge 

more rapidly, resulting in more efficient training. Furthermore, 

short-circuit connections provide greater flexibility in adjusting 

the mapping between layers during the learning process, which 

improves the fitting capacity of network. Additionally, they can 

help mitigate the risk of overfitting, ultimately enhancing the 

model's generalization ability. 

After processing through the convolutional LSTM module, 

the spatiotemporal information of the time-series data is learned 

preliminarily. However, we expect the network to further refine 

the results. Considering the above advantages of the residual 

structure, we designed a post-processing module based on it, 

that is, the refining residual module. The output feature map is 

fed into the refining residual module to further decompose and 

learn the feature information of the target cloudy images. As 

illustrated in Fig. 1, the refining residual module comprises five 

convolutional layers, three of which are activated by the ReLU 

function. During the model training process, both the images 

and their corresponding masks are segmented into patches 

before being fed into the network. A loss function is formulated 

between the final output and the reference patches based on the 

L1 norm: 

    1 2 1 1 1
1

, ,..., , ,..., ,p p p n n pLoss f     1 Μ T T T T T T T

  (1) 

where f represents the proposed Res-cLSTM network, (T1, 

T2, …, Tp-1, Tp+1, …, Tn-1, Tn) and Tp represent the input 

time-series auxiliary images and the corresponding target 

cloudy image, respectively. Mp refers to the known cloud mask 

corresponding to the target cloudy image, presented as a binary 

matrix where 0 indicates non-cloud regions and 1 signifies cloud 

regions. 1 is an all-one matrix with the same dimensions as Mp. || 

||1 signifies the L1 norm, and  denotes the matrix dot product 

operation. The Res-cLSTM model was trained based on Eq. (1) 

to reconstruct sequentially the entire set of time-series cloudy 

images. In this paper, Res-cLSTM underwent training for 120 

epochs, starting with an initial learning rate of 0.01, which 

halved every 50 epochs.  

D. Model training and predicting 

Let Tp be the target cloudy image, Mp be its cloud mask, and 

(T1, T2, …, Tp-1, Tp+1, …, Tn-1, Tn) be the corresponding 

time-series auxiliary data. The implementation of the proposed 

Res-cLSTM method is outlined as follows: 

(1) Training: 

1) Partitioning Tp, Mp and (T1, T2, …, Tp-1, Tp+1, …, Tn-1, Tn) 

into m×m patches: tj
m×m×b

, mj
m×m×1

 and (t1
m×m×b

, t2
m×m×b

, ..., 

tp-1
m×m×b

, tp+1
m×m×b

, …, tn-1
m×m×b

, tn
m×m×b

)j. Here, b represents the 

number of spectral bands in each image, and j = 1, 2, ..., J, where 

J is the total number of patches resulting from the segmentation 

of each image. 

2) Inputting the patches of time-series auxiliary data (t1
m×m×b

, 

t2
m×m×b

, ..., tp-1
m×m×b

, tp+1
m×m×b

, …, tn-1
m×m×b

, tn
m×m×b

)j into the 

Res-cLSTM network. Firstly, the convolutional LSTM module 

processes the time-series data sequentially in chronological 

order, yielding an intermediate result hj
m×m×b

. This intermediate 

output is then fed into the residual module to generate the final 

output pj
m×m×b

 of Res-cLSTM. The loss is computed using 

pj
m×m×b

, tj
m×m×b

 and mj
m×m×1

 based on Eq. (1) to guide network 

training. 

(2) Predicting: 

Using the trained Res-cLSTM model f obtained from the 

training steps, the time-series data (T1, T2, …, Tp-1, Tp+1, …, Tn-1, 

Tn) are fed to derive the prediction Pp. Finally, the non-cloud 

areas of Tp are concatenated with the reconstructed cloud area 

from Pp to yield the final prediction. The whole process is 

repeated for each cloudy image to produce results (P1, …, Pn) in 

turn. 

III. EXPERIMENTS 

A. Data and experimental design 

This paper focuses on reconstructing the cloud occlusion 

areas in the cloudy time-series images. A total of 25 Landsat 8 

OLI images from five regions (five images for each region) were 

used for the experiments. Fig. 2 shows the geographical 

distribution of the five study regions. Fig. 3 shows all the images, 

each covered by 2000×2000 Landsat pixels, corresponding to an 

area of 60×60 km
2
. As shown in Fig. 3, Regions 1-3 are based on 

simulated thick clouds, and the real land surface information 

under cloud are originally known. Therefore, the real surface 

reflectance values under the simulated clouds can be used for 

both quantitative and qualitative evaluation of the 

reconstructions. Regions 4-5 in Fig. 3 are real cloudy regions, 

where the accuracy of the reconstructions can be assessed 

visually only. Regions 1-5 all contain different forms of 

farmland, mountains and water bodies, as well as urban areas. 

The types of ground objects are rich and diverse in Regions 1-5, 

especially the farmland with complex time changes, which 

poses a great challenge to accurate reconstruction of the 

time-series images. 

 
Fig. 2 Geographical locations of the study regions. 

B. Comparison with benchmark methods 

In this section, the proposed Res-cLSTM was compared with 

four benchmark methods, namely AE [31], STnet [41], DCR [32] 

and CR-former [50]. Amongst them, both Res-cLSTM and 

STnet used time-series data for training and prediction. The 

difference is that STnet inputs all the time-series auxiliary 
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images simultaneously, while Res-cLSTM uses the 

convolutional LSTM module to feed them into the network in 

chronological order. Notably, AE, DCR and CR-former require 

that the target cloud area corresponds to a completely cloudless 

region on the auxiliary images. Therefore, when there is overlap 

between the cloud area of the auxiliary images and the target 

image, we stitched the predictions from multiple auxiliary 

images to obtain the final reconstruction for these three methods. 

Consequently, the training and prediction time costs increase 

proportionally with the number of spliced scenes. The 

reconstructions of one image (with two subareas zoomed on the 

right) from each region (that is, L11, L25 and L31) is shown in 

Fig. 4. It can be seen that the five methods can generally produce 

predictions with good consistency, especially in Region 2. The 

more detailed reconstructions of each method can be seen from 

the zoomed subareas in each region, whose locations are marked 

by yellow and black boxes in Fig. 4. For L11, STnet and 

Res-cLSTM predicted the black objects in Subarea 1 and the 

green objects in Subarea 2 more accurately than AE and DCR 

that use only single auxiliary images. In the two subareas of L25, 

it can also be seen that Res-cLSTM and STnet reconstructed the 

distribution of red objects (i.e. vegetation) more accurately. This 

may be because the cloud region in the temporally closest 

auxiliary image overlaps with the target cloud region. As a result, 

AE and DCR must rely on a temporally further auxiliary image 

that does not contain overlapping cloud regions, significantly 

diminishing the effectiveness of the auxiliary image. In contrast, 

the method based on time-series auxiliary data can utilize 

temporally closer cloudy auxiliary images, which is conducive 

to obtaining more accurate predictions. For CR-former, the 

predictions exhibit tonal anomalies in the two subareas of L11, 

although it accurately predicts the green features in the second 

subarea. Moreover, CR-former fails to restore the red features in 

both subareas of L25. In contrast, for L31, the cloud region of 

the temporally closest auxiliary image does not overlap with its 

cloud region, and AE, DCR and CR-former can reconstruct the 

cloud-contaminated information more satisfactorily than STnet 

in this case. For L31, Res-cLSTM can reconstruct the texture 

details of ground objects most accurately and its prediction is the 

closest to the reference image in tone. Overall, amongst the five 

methods, the proposed Res-cLSTM consistently produces 

predictions that are the closest in tone and texture to the 

reference images. 
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Fig. 3. The simulated and real cloudy time-series images (each with a size of 2000×2000 Landsat pixels) in Regions 1-5. The images are arranged in chronological 

order from right to left. Above each image is its number and acquisition date (day/month/year). 
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Fig. 4. Cloud removal results of the five methods in Regions 1-3 (with two subareas shown on the right; NIR, red, and green bands as RGB). 
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Fig. 5. Accuracies of the five cloud removal methods in Regions 1-3. 

 

 

 
Fig. 6. CCs (averages of the six bands) of the five cloud removal methods using cloudy or cloud-free time-series auxiliary images in Regions 1-3. 
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In this paper, the root mean square error (RMSE), correlation 

coefficient (CC) and universal image quality index (UIQI) were 

used to evaluate quantitatively the prediction of each method. 

The average accuracy of each prediction in six bands is shown in 

Fig. 5, which shows that the proposed Res-cLSTM generally 

produces the most accurate predictions. For example, for L11, 

the average RMSE of Res-cLSTM prediction is 0.0009, 0.0063, 

0.0033 and 0.0028 smaller than that of the AE, STnet, DCR and 

CR-former predictions, respectively, the average CC is 0.0170, 

0.0878, 0.0469 and 0.0461 larger, and the average UIQI is 

0.0182, 0.1026, 0.0488 and 0.0506 larger, respectively. In most 

cases, the AE predictions are second only to that of the 

Res-cLSTM predictions. Taking Region 2 as an example, the 

average CCs of the Res-cLSTM predictions of five temporal 

images were 0.0276, 0.0678, 0.0239, 0.0109 and 0.0290 greater 

than that of AE predictions, respectively. The results of 

quantitative evaluation show that Res-cLSTM can stably 

produce the most accurate predictions. 

C. Influence of thick cloud in the auxiliary time-series 

Cloud occlusion on the auxiliary image will reduce the 

available valid data and may affect the accuracies of the final 

predictions. This section aims to test the effect of cloud data in 

the auxiliary image on the performance of each method. 

Specifically, we reconstructed the same target cloudy image 

using the simulated cloudy auxiliary time-series images (the 

same as in Section III-B) and their corresponding original 

cloud-free data, respectively, and compared the prediction 

accuracies in the two cases. 

Fig. 6 shows the average CC of all predictions across six 

bands, from which it can be seen that the cloud-contaminated 

data in the auxiliary time-series images generally reduced 

prediction accuracy noticeably. For STnet, the clouds 

significantly affect the performances in most cases (e.g., the 

predictions of L11, L13 and L23 in Fig. 6). The reason may be 

that STnet input time-series images simultaneously for model 

training and prediction, which fails to fully utilize the temporal 

variation information. In contrast, Res-cLSTM processes the 

time-series data sequentially in chronological order and is 

capable of transmitting the valid information of the previous 

image to the next image. The mode of combining long-term and 

short-term memory enables Res-cLSTM to effectively 

complement the effective information in the non-cloud areas of 

different auxiliary images. Thus, Res-cLSTM is relatively less 

affected by time-series cloud contamination than STnet. In 

Region 1, the accuracies of DCR predictions are significantly 

reduced when cloudy time-series images are used in most cases. 

This may be due to the drastic temporal changes in this region, 

and the cloud region in the temporally closest auxiliary image 

overlaps with the target cloud region, resulting in the use of a 

temporally further auxiliary image. The prediction accuracy of 

CR-former also shows obvious decreases in some results, such 

as L13 and L33. In contrast, AE shows relatively stable 

performance, especially in Region 3, since the cloud region of 

the temporally closest auxiliary image does not overlap with the 

target cloud region. Meanwhile, Res-cLSTM is also relatively 

less affected by clouds in the time-series images and 

consistently achieves the greatest performance. This leads to the 

conclusion that Res-cLSTM is more robust to cloud 

contamination in auxiliary time-series images than the four 

benchmark methods. 

D. Influence of cloud overlap rate 

For cloudy time-series images, the accuracy of predictions 

may be affected when their cloud area overlaps with the target 

cloud area. In the cloud overlap area, some cloud removal 

methods may even fail completely (e.g., the method based on 

single auxiliary image). The purpose of this section is to explore 

the effect of the overlap rate between the auxiliary image cloud 

region and the target cloud region. As shown in Fig. 7, different 

cloud overlap rates were obtained by simultaneously moving a 

fixed-size simulated cloud region in the direction indicated by 

the blue arrows. Amongst them, masks 1-4 are the cloud masks 

(500×500 Landsat pixel) of the four time-series images, 

respectively, and mask-target is the cloud mask (1000×1000 

Landsat pixel) of the target cloudy image. For methods using 

single auxiliary images (i.e. AE and DCR), the auxiliary images 

acquired on two different dates were used to reconstruct the 

same target cloudy image, and then the two results were spliced 

to obtain the final predictions, to avoid complete failure zones. 

In this section, the cloud overlap rates were calculated based on 

all auxiliary time-series images. For example, when the overlap 

rate is 80%, the proportion of cloud overlap area in each 

auxiliary image is 20% of the target cloud area. For DCR and 

AE, they only use the predictions of two auxiliary images to 

concatenate, and the cloud overlap rate on them is only 40%. 

 

 
Fig. 7. Schematic diagram of cloud mask position under different cloud overlap 
rates. The fixed-size masks 1-4 (corresponding to the four auxiliary temporal 

images) move in the direction indicated by the blue arrow to obtain different 

overlap rates with the mask of target cloudy image (mask-target). 

 

The results for the first image in each region (i.e., L11, L21 

and L31) are shown in Fig. 8. It can be seen that the prediction 

accuracies of the five methods generally decrease as the cloud 

overlap rate increases. Amongst them, the accuracies of the 

STnet predictions fluctuate greatly in all three regions, and 

decrease significantly in general, which may be because all 

auxiliary time-series images are inputted simultaneously to 

reconstruct the target cloud region. The influence of the cloud 

overlap areas on the DCR predictions in Regions 1 and 3 is 

relatively small, which may be due to the relatively smooth 

temporal changes in the two regions. However, in Region 2, the 

obvious decreases in the DCR prediction accuracies may be due 

to the large land cover changes in the temporally further 

auxiliary images. In contrast, AE and Res-cLSTM are less 

affected by cloud overlap areas, and the changes in the 

prediction accuracies are relatively stable in the three regions. 

Moreover, in almost all cases, Res-cLSTM performs more 

satisfactorily than AE. Thus, it can be concluded that 

Res-cLSTM can produce more accurate predictions consistently 
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when there is varying degree of cloud overlap between the auxiliary images and the target cloudy image.

 

 

 
Fig. 8. Accuracies (averages of the six bands) of the five cloud removal methods with different cloud overlap ratio. 

 

E. The impact of thin cloud omission 

The previous experiments were all based on simulated cloud 

masks, which were known perfectly. Practically, cloud detection 

results commonly contain uncertainties, resulting in omission of 

thin clouds that are treated as cloud-free data during model 

training and prediction. In this section, we tested the influence of 

undetected thin cloud on the methods. Specifically, we used the 

method proposed by Guo et al. [60] to generate simulated thin 

clouds by mimicking the real situation of light penetrating 

clouds. Fig. 9 illustrates the distribution of simulated thin and 

thick clouds on L34, with the yellow coil indicating the 

simulated thin clouds. We incorporated varying proportions of 

these simulated thin clouds into 15 cloudy images across 

Regions 1-3 (as outlined in Section III-B). The percentages of 

thin clouds in total cloud cover ranging from 9.23% to 43.33%, 

as detailed in Table 1. 

Fig. 10 presents the accuracies of predictions with and 

without thin cloud omission for each method. The accuracies 

present a general decrease across all methods due to thin cloud 

omission, particularly for STnet, DCR, and CR-former. In 

contrast, AE and Res-LSTM demonstrated greater robustness 

against the effects of thin cloud omission. Overall, Res-cLSTM 

consistently achieved the greatest accuracy, maintaining a 

relatively low decrease in performance. This suggests that 

Res-cLSTM offers considerable promise for practical 

applications, remaining effective even in the presence of 

undetected thin clouds. 

 

 
Fig. 9 Distribution of the simulated thick and thin clouds (taking L34 as an 

example). The yellow line delineates the simulated thin cloud. 

 
Table 1 Ratio of thin clouds to the total cloud cover percentage (x represents the 

region number). 

 Lx1 Lx2 Lx3 Lx4 Lx5 

Region 1 9.63% 13.52% 12.69% 11.93% 9.23% 

Region 2 17.67% 43.33% 39.32% 25.43% 29.92% 

Region 3 9.84% 10.42% 13.69% 20.73% 14.75% 
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Fig. 10. CCs (averages of the six bands) of the five cloud removal methods based on images with or without thin cloud omission in Regions 1-3. 

 

F. Network convergence rate 

The convergence rate is a crucial metric for deep learning 

networks, as it influences directly their effectiveness in practical 

applications. In this section, we evaluated the convergence rates 

of the five methods by analyzing the increase in accuracy over 

time. The proposed Res-cLSTM was implemented using Python 

3.7 on a personal computer equipped with an Intel Core i9@3.70 

GHz and an NVIDIA GeForce RTX 3070. 

 

 
Fig. 11. Changes in CCs (averages of the six bands) of the five cloud removal 

methods over computing time. 

 

The results are presented in Fig. 11. Each curve begins with 

the accuracy achieved after training each network for one epoch 

and ends at the point where the increase in accuracy for each 

method significantly slows down. Notably, the prediction 

accuracy of AE reaches 95% of its final level after just one 

epoch. This can be attributed to its reliance on multi-band 

information from single pixels for model training and prediction, 

resulting in a relatively straightforward learning relationship 

and a limited maximum attainable accuracy. In contrast, DCR 

and CR-former features a deeper network structure, which 

restricts its learning rate and prolongs training time per epoch. 

Both Res-cLSTM and STnet demonstrate comparable and rapid 

operating speeds (approximately 5-6 seconds per epoch), with 

their prediction accuracies increasing quickly and significantly 

at the outset. However, Res-cLSTM ultimately achieves 

substantially greater prediction accuracy than STnet. These 

results indicate that Res-cLSTM exhibits a faster convergence 

rate and is capable of delivering more accurate predictions in a 

shorter timeframe. Consequently, Res-cLSTM shows 

considerable potential for development and real-world 

applications, with its rapid convergence facilitating real-time 

generation of up-to-date predictions. 

G. Experiments on real clouds 

In this section, real cloudy images in Regions 4 and 5 were 

employed to evaluate the performance of the five cloud removal 

methods. As illustrated in Fig. 3, L44 and L53 are cloud-free 

images, while the remaining images contain clouds. The 

predictions of the five methods are presented in Fig. 12. Notably, 

when the cloud-contaminated area of the target image is 

excessively large (for example, in L43 and L55, where both 

have cloud cover exceeding 70%), the DCR and CR-former 

predictions exhibit significant tonal anomalies. This 

phenomenon may be attributed to the limited availability of 

training data, which hampers the effective training of the DCR 

models. In contrast, predictions generated by Res-cLSTM, AE, 

and STnet show satisfactory tonal consistency. Fig. 13 presents 

a detailed view of a subarea from each reconstructed time-series, 

with their locations indicated by red boxes on the cloud masks in 

Fig. 12. The subareas for L42 and L54 are cloud-free. It is 

evident that predictions produced by STnet are somewhat blurry. 

Compared with STnet and DCR, Res-cLSTM and AE 
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effectively recover more texture details. In addition, 

Res-cLSTM can recover effective temporal variation, as 

characterized by the reconstructed time-series. 

IV. DISCUSSION 

A. Advantages of the proposed Res-cLSTM 

In this paper, we proposed a deep network model called 

Res-cLSTM for reconstructing missing data in time-series 

cloudy images. The effectiveness of Res-cLSTM was 

demonstrated in Section III, where it achieves more accurate 

cloudy time-series data reconstruction results compared to 

several benchmark methods. Unlike traditional methods that 

require cloud-free auxiliary images, Res-cLSTM effectively 

utilizes the available non-cloud data in cloudy time-series 

images. Moreover, while most existing methods focus on 

reconstructing single cloudy images, Res-cLSTM excels at 

efficiently reconstructing time-series cloudy images jointly, 

enabling more effective monitoring of dynamic land surface 

changes and offering greater practical significance. Furthermore, 

Res-cLSTM is a relatively lightweight network that can be 

trained solely using non-cloud data from time-series cloudy 

images, eliminating the need to gather extensive training 

datasets globally and greatly simplifying data collection. 

Additionally, compared with the three benchmark methods, 

Res-cLSTM exhibits faster convergence and provides more 

accurate predictions in a shorter time frame, showcasing 

significant practical application potential, particularly in 

scenarios that require real-time processing. 

B. Generalization ability of Res-cLSTM 

In this paper, the Res-cLSTM network leverages a known 

cloud mask to exclude cloud region data from the input cloudy 

images during the training process. Notably, Res-cLSTM has 

potential applicability in handling other types of missing data, 

such as quantitative remote sensing data. Employing the 

convolutional LSTM originally designed for precipitation 

prediction, Res-cLSTM is expected to reconstruct datasets with 

clear temporal relationships, including Land Surface 

Temperature (LST), Fractional Vegetation Cover (FVC) and 

nighttime lights. Given that Res-cLSTM was applied to 

multi-spectral time-series data in this research, the rich spectral 

information may also be a major reason to promote accurate 

predictions. For quantitative remote sensing data that may 

contain limited spectral information, integrating auxiliary data 

from other sources could be a more effective approach. For 

example, when reconstructing missing LST data, the 

incorporation of elevation and geographical information (such 

as latitude and longitude) could provide valuable context. 

However, how to optimally leverage this effective information 

requires further experimental investigation. Additionally, 

Res-cLSTM does not impose stringent requirements on data 

resolution, allowing for flexibility in its application. By utilizing 

the adaptable nature of convolution operations across different 

spatial scales, the Res-cLSTM model can be readily developed 

and employed to reconstruct data at various spatial resolutions. 
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Fig. 12. Cloud removal results of the five methods in Regions 4 and 5 (NIR, red, and green bands as RGB). 
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Fig. 13. Subareas of the predictions in Fig. 10 (NIR, red, and green bands as RGB). 

C. Differentiated removal of thick and thin clouds 

The proposed Res-cLSTM removes clouds from cloudy 

time-series images using known cloud masks for both simulated 

and real cloudy images, without differentiating between thick 

and thin clouds. However, thin clouds often allow some 

underlying land surface information to be visible, and treating 

them the same as thick clouds does not fully leverage this 

valuable information. In practical applications, cloud masks are 

generated using specialized cloud detection methods [61-62]. 

However, thick and thin clouds frequently coexist and can be 

difficult to distinguish. Given the powerful learning capabilities 

of neural networks, there is potential to develop models that can 

differentiate between thin and thick clouds during the removal 

process. For example, by utilizing the strong learning 

capabilities of deep networks, specific loss functions can be 

designed to guide the automatic learning of thick and thin cloud 

features within the network, enabling targeted reconstruction of 

both types simultaneously. 

D. Computational cost 

Fig. 14 illustrates the prediction accuracy and corresponding 

training time of the Res-cLSTM model for a target cloudy image 

with varying numbers of auxiliary images. The target cloudy 

images for the three regions are L11, L21, and L31. In Fig. 14, 

CC1-CC3 represent the average CC of the reconstructions for 

L11, L21 and L31 across six bands, while Time1-Time3 

indicate the corresponding time consumption. Notably, when 

the number of images exceeds 4, the time consumption increases 

sharply, but the prediction accuracy decreases in Regions 2 and 

3. In Region 1, the differences in prediction accuracy with 

varying numbers of auxiliary images are slight, likely due to the 

small temporal variations amongst the time-series images. 

Consequently, four auxiliary images were used in this paper. 

 

 
Fig. 14. Computational cost and accuracy of Res-cLSTM under different 

numbers of auxiliary images in Regions 1-3. 
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E. Uncertainty in Res-cLSTM 

The proposed Res-cLSTM reconstructs time-series cloudy 

images by modeling the temporal relationships between them. 

In practice, the acquisition dates of time-series data are random. 

In regions consistently covered by clouds, Res-cLSTM is 

constrained by the scarcity of auxiliary information. Moreover, 

when adjacent images are captured in different seasons, 

significant changes in land surface characteristics may occur, 

increasing the risk of model failure. Given that Res-cLSTM is 

flexible in the number of time-series data it utilizes, future 

implementations could incorporate embedding modules or 

formulae to assess the severity of the temporal changes. This 

enhancement may increase the accuracy of predictions for other 

time-series images by eliminating those with large temporal 

changes. Subsequently, the reconstructed time-series images 

could be used to target and reconstruct the eliminated cloudy 

images that exhibit large temporal changes. Moreover, since 

Res-cLSTM reconstructs time-series cloudy images based on 

known cloud masks, the accuracy of its outputs may be 

influenced by the precision of the mask in practical applications. 

Integrating interactive modules capable of learning and refining 

the cloud masks during Res-cLSTM training could provide an 

alternative approach to enhance predictions while reducing 

reliance on known cloud masks. Additionally, auxiliary images 

from other sensors (such as SAR) could be integrated to further 

optimize prediction. 

F. Comparison with non-deep learning-based methods 

In this section, we compared the proposed Res-cLSTM with 

three traditional (i.e., non-deep learning-based) cloud removal 

methods that utilize time-series auxiliary data: (1) a modified 

neighborhood similar pixel interpolator approach for removing 

thick clouds based on Landsat time-series auxiliary data, 

abbreviated as multi-NSPI [44]; (2) a missing observation 

prediction based on spectral-temporal metrics (MOPSTM) 

gap-filling method [45]; (3) an algorithm for generating 

synthetic Landsat images based on all available Landsat data, 

referred to as AGSL [43]. We evaluated the performance of each 

method using both cloudy and cloud-free auxiliary images, with 

the results presented in Tables 2 and 3. 

As shown in Table 2, the predictions produced by 

Res-cLSTM exhibit obviously larger accuracy compared to the 

three non-deep learning methods. This discrepancy may stem 

from the reliance of Multi-NSPI and MOPSTM on the spatial 

neighborhood information of the target cloud pixels, which 

poses challenges for reconstructing large-scale missing areas, 

such as the extensive cloud occlusion present in the 2000×2000 

Landsat pixel experimental region here. Furthermore, our 

experiments utilized only four auxiliary temporal images, which 

falls short of the minimum recommended by AGSL (at least 

eight scenes). This limitation could be a significant factor 

affecting the accuracy of AGSL. Additionally, traditional 

approaches often emphasize establishing explicit relationships 

based on spatially and temporally adjacent information, which 

may lack sufficient descriptive power for addressing the 

complex mapping relationships in real-world scenarios. 

Moreover, as indicated in Table 3, the prediction accuracy of 

the three conventional methods declines sharply when the 

time-series auxiliary images are affected by clouds. This decline 

is primarily due to the further reduction in available effective 

data, which exacerbates the limitations mentioned above. In 

contrast, Res-cLSTM consistently delivers more accurate 

predictions, regardless of whether the time-series data are 

cloudy or cloud-free, demonstrating superior robustness against 

cloud occlusion in the auxiliary data. 

 
Table 2 Accuracies of the four cloud removal methods (Res-cLSTM and 

non-deep learning-based) produced using cloud-free auxiliary time-series data 

(Region 1 as an example; the value in bold means the most accurate result in 
each case) 

  Res-cLSTM Multi-NSPI MOPSTM AGSL 

L11 

RMSE 0.0131  0.0162  0.0420  0.0218  

CC 0.9349  0.8975  0.8702  0.8510  

UIQI 0.9337 0.8959  0.8131  0.8442  

L12 

RMSE 0.0149  0.0179  0.0557  0.0341  

CC 0.9089 0.8587  0.7116  0.7553  

UIQI 0.9076 0.8556  0.5999  0.7073  

L13 

RMSE 0.0170  0.0199  0.0294  0.0392  

CC 0.8971  0.8554  0.8137  0.8076  

UIQI 0.8958 0.8504  0.7855  0.7352  

L14 

RMSE 0.0176  0.0229  0.0388  0.0278  

CC 0.9435 0.9039  0.8921  0.8869  

UIQI 0.9408 0.9006  0.8255  0.8465  

L15 

RMSE 0.0162  0.0174  0.0381  0.0300  

CC 0.9230  0.9131  0.8604  0.8514  

UIQI 0.9216 0.9100  0.8279  0.8191  

 
Table 3 Accuracies of the four cloud removal methods (Res-cLSTM and 

non-deep learning-based) produced using cloudy auxiliary time-series data 

(Region 1 as an example; the value in bold means the most accurate result in 
each case) 

  Res-cLSTM Multi-NSPI MOPSTM AGSL 

L11 

RMSE 0.0137 0.0243  0.0244 0.0245  

CC 0.9328 0.8264  0.8100 0.8464  

UIQI 0.9309 0.8142  0.7772 0.8157  

L12 

RMSE 0.0177 0.0212  0.0297 0.0441  

CC 0.8762 0.7888  0.7008 0.4832  

UIQI 0.8742 0.7841  0.6676 0.4716  

L13 

RMSE 0.0174 0.0256  0.0384 0.0415  

CC 0.8887 0.7828  0.8227 0.7603  

UIQI 0.8876 0.7731  0.7560 0.6984  

L14 

RMSE 0.0186 0.0290  0.0311 0.0300  

CC 0.9389 0.8528  0.8874 0.8725  

UIQI 0.9300 0.8408  0.7487 0.8400  

L15 

RMSE 0.0155 0.0222  0.0228 0.0283  

CC 0.9295 0.8585  0.8377 0.8375  

UIQI 0.9287 0.8514  0.8131 0.8033  

V. CONCLUSION 

In this paper, a deep learning method (i.e., Res-cLSTM) was 

proposed for reconstructing cloudy time-series images. 

Res-cLSTM leverages effective data from the non-cloud regions 

of cloudy time-series images for reconstruction. First, 

Res-cLSTM employs a convolutional LSTM to sequentially 

encode the cloudy time-series images in their temporal order, 

effectively capturing the complex temporal changes through the 

integrated long- and short-term memory flow. Then, 

Res-cLSTM utilizes a refined residual module to further decode 

the feature map and generate the final predictions. Experiments 

were conducted using Landsat 8 OLI time-series data across five 

different regions, yielding the following conclusions: 

1) Compared to the four benchmark methods, Res-cLSTM 

produced more accurate predictions that are similar to the 

reference images, confirming its effectiveness for 

reconstructing cloudy time-series images. 
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2) Res-cLSTM can achieve the most accurate predictions 

even when the time-series auxiliary images contain clouds, 

showing resilience against the influence of cloud data in 

the auxiliary time-series. 

3) Under varying degrees of overlap (up to 80%) between the 

cloud regions in the auxiliary time-series images and the 

target cloud regions, Res-cLSTM consistently produced 

predictions with greater accuracies. 

4) Res-cLSTM demonstrates robustness against thin cloud 

omission and shows greater potential for practical 

implementations. 

5) Res-cLSTM is a relatively lightweight network boasting 

high computational efficiency and a convergence speed 

that significantly exceeds that of the four benchmark 

methods, showing significant potential for real-time 

processing in practical applications. 
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