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 Abstract—The sensorless control of internal permanent magnet 

synchronous motor (IPMSM) based on the conventional linear 

extended state observer (LESO) does not have sufficient capability 

to eliminate the steady-state position estimation error. To solve 

this issue, a frequency adaptive LESO (FA-LESO) is proposed to 

estimate the back electromotive force (BEMF) accurately. The 

gains of the proposed observer are designed according to the pre-

designed transfer function of a second-order complex-coefficient 

filter, whose stability is guaranteed by the generalized Routh 

criterion. The linearized model of the proposed FA-LESO is 

established and the design guideline of the observer gains is 

presented. Compared with the conventional LESO, the proposed 

FA-LESO can eliminate the steady-state position estimation error 

without any phase compensation. Meanwhile, it exhibits better 

high-frequency noise immunity without additional filters being 

required. The feasibility and effectiveness of the proposed FA-

LESO are verified by the comparative experiments on a dual 

three-phase IPMSM platform. 

 
Index Terms—Dual three-phase interior permanent 

magnet synchronous machine (DTP-IPMSM), frequency 
adaptive, linear extended state observer (LESO), transfer 
function design. 

I. INTRODUCTION 

N recent years, the multi-phase permanent magnet 

synchronous motor (PMSM) drive system has been widely 

studied due to its extra superiorities [1]. For example, since 

the power of each phase winding decreases as the number of 

phases increases, the multi-phase PMSM drive system is 

suitable for high-power applications with low-voltage 

switching devices, and the lowest order of torque ripple 

frequency is higher [2]. In addition, as its control degree of 

freedom is higher than that of its counterpart single three-phase 

machine, it can continue to operate when one or more phases 

fail [3]. Based on the aforementioned advantages, multi-phase 

PMSMs have been widely employed in various applications [4]. 

Dual three-phase interior PMSM (DTP-IPMSM) is an 

outstanding candidate for multi-phase machines. Typically, a 

position sensor is required to obtain accurate rotor position 

information in vector space decoupling (VSD) control [5], [6] 

of DTP-IPMSM. To improve the system reliability and reduce 

the size of the drive system, sensorless control has been 

extensively studied. The sensorless control can be divided into 

two categories. The first category is based on high-frequency 

injection and is mainly employed in the zero- and low-speed 

 
 

ranges, which utilizes the magnetic anisotropy of the rotor [7]. 

The second category is based on the fundamental model and 

commonly employed in medium- and high-speed ranges, which 

relies on the estimation of flux linkage or back electromotive 

force (BEMF) [8]. 

In recent years, the extended state observer (ESO) [9]-[12] 

has shown great prospects in sensorless control due to its high 

estimation accuracy, anti-interference capability and robustness 

to parameter variations [9]. The ESO can be divided into linear 

ESO (LESO) and nonlinear ESO [13]. Currently, LESO is more 

widely used than nonlinear ESO due to the convenience of 

parameter design and stability analysis [14]. However, the 

transfer function of the conventional LESO (C-LESO) exhibits 

a second-order low-pass characteristic, which results in the 

estimated BEMF phase lagging the actual BEMF phase [10]. 

Although a high bandwidth can mitigate the phase delay, the 

ability of high-frequency noise suppression is also decreased. 

To accurately estimate the BEMF of PMSM, many improved 

LESOs have been proposed based on the back EMF model in 

the stationary reference frame or rotating reference frame. In 

[9], the C-LESO is employed to estimate the BEMFs of IPMSM 

in the estimated synchronous rotating frame. The speed 

chattering and phase delay in the sliding mode observer can be 

mitigated. In [10], and [15], two LESOs in the estimated 

synchronous frame are used to estimate the BEMF and internal 

disturbances, respectively. Although the phase delay can be 

avoided, the LESO in the synchronous rotating frame will be 

influenced by both speed and position estimation errors due to 

the unknown rotor position [16]. 

The LESOs in the stationary reference system have been 

extensively investigated, which is only affected by speed 

estimation error. In [11], the bandwidth of LESO is adaptively 

adjusted according to the motor running frequency to enhance 

the dynamic performance of the observer, and the phase error 

in the estimated position is compensated by online calculations. 

In [12], a LESO with third-order low-pass characteristics was 

proposed for flux and speed estimation by defining the 

derivative term of the disturbance as a new state variable. As 

the bandwidth of the observer is enhanced, the phase delay in 

the estimated BEMF can be reduced to some extent. However, 

the fifth and seventh harmonics are dominant in the BEMFs and 

need to be filtered out by an additional notch filter [17], which 

leads to increased computational and reduced dynamic 

performance. In addition, the position estimation error is still 
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inevitable due to the phase delay of the estimated BEMF. In 

[18] and [19], a second-order generalized integrator or reduced-

order quasi-resonant controller is planted into the internal 

model of the LESO to reduce the phase error of the estimated 

BEMF. However, although the phase error can be reduced at 

relatively low bandwidth, the observer's orders are high due to 

the addition of an implanted integrator, and the tunning of the 

parameters is complicated. 

In this paper, a frequency adaptive LESO (FA-LESO) is 

proposed for the sensorless control of the DTP-IPMSM. The 

proposed observer itself has an ideal frequency adaptive 

bandpass characteristic, and the phase and amplitude errors in 

the estimated BEMF can be eliminated without any phase 

compensation. The high-frequency noise can be effectively 

suppressed without additional digital filters. Meanwhile, the 

proposed observer exhibits a simple structure and low order. 

This paper is organized as follows: In Section II, the FA-

LESO is proposed based on the idea of time-varying gain. In 

Section III, a comprehensive evaluation of the proposed FA-

LESO is presented. In Section IV, the overall sensorless control 

of DTP-IPMSM based on the FA-LESO is given and the 

parameter design guideline is presented of the proposed 

observer based on a linearized model. In Section V, 

performance comparisons among the C-LESO, GI-LESO, and 

proposed FA-LESO are performed on a DTP-IPMSM 

experimental platform. The paper is concluded in Section VI. 

II. PROPOSED FA-LESO 

In this section, the FA-LESO is proposed based on the idea 

of gain function backstepping design. The design procedure of 

FA-LESO is described as follows. Step 1: The unified transfer 

function of the LESO with time-varying gains is established. 

Step 2: The transfer function of a second-order complex-

coefficient filter is pre-designed based on the desired frequency 

adaptive characteristic. Step 3: The stability of the pre-designed 

transfer function is guaranteed based on the generalized Routh 

array. Step 4: The gains of the proposed observer are configured 

based on the transfer function in Step 2. 

A. Introduction of LESO With Time-Varying-Gains 

A typical first-order single input single output system can be 

expressed as 

0 0( , ) ( )px f x t d t b u= + +  (1) 

where p is differential operator, x is the state variable, f(x, t) is 

known interference, d(t) is unknown interference, u0 is the 

system input, b0 is the coefficient of system input u0. 

If the unknown interference d(t) is extended to a new state, 

i.e., x2=d(t), then the original system is equal to the following 

second-order system: 
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where x1=x. Unlike the C-LESO based on constant gain [9]-[18], 

if the gains of the LESO are considered time-varying, then the 

LESO can be established as follows: 
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where the symbol ‘*’ denotes convolution operation, and the 

circumflex (ˆ) denotes the estimated value. l1(t) and l2(t) 

represent the gain functions of the LESO. ε1 represents the 

estimation error of x1. 

B. LESO with Time-Varying-Gains for BEMF Estimation 

According to the well-known VSD model as detailed in [5], 

[6], the equivalent BEMF model of DTP-IPMSM in the αβ-

frame can be expressed as [20] 

sR L p   = + +qu i i e  (4) 

with 
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where uαβ, iαβ, and eαβ are the vectors of stator voltage, stator 

current, and equivalent BEMF, respectively. Rs is the stator 

resistance, Ld and Lq are dq-axis inductances, p is the 

differential operator, ωe is the rotor electrical speed, ψf is the 

amplitude of fundamental PM flux linkage, id is d-axis current, 

θe is the rotor position angle. 

According to (4), the dynamics of DTP-IPMSM in the αβ-

frame can be rewritten as follows: 
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The system input vector u0, known interference vector f, the 

state vector x1, and unknown interference vector x2 in (6) can 

be defined as 
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where x1 = [x1α x 1β], x2 = [x 2α x2β], b0=1/Lq, u0 = uαβ, μ=Rs/Lq. 

Then, (6) can be rearranged as 

01 1 2p b  = − +ux x x  (8) 

According to (3), the αβ-axis LESOs can be established as 

follows: 
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where l1(t) and l2(t) are the gain functions of αβ-axis LESOs. 

When the LESOs become stable, the estimated equivalent 

BEMF vector can be obtained as follows: 

2
ˆˆ

qL = −e x  (10) 

By subtracting (8) from (9), the estimated current error 

dynamics can be obtained as 
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where ε2 =x̂2−x2. 

According to the convolution theorem of the Laplace 

transform, (11) can be transformed into the frequency domain 

as 
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where L1(s) and L2(s) are the Laplace transform of l1(t) and l2(t) 

respectively, and ε1(s) = x̂1(s) − x1(s), ε2(s) =x̂2(s) − x2(s). 

The first equation of (12) can be further simplified as 
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According to (10), and by substituting (13) into the second 

equation of (12), the transfer function from eαβ (s) to �̂�𝛼𝛽(𝑠) can 

be derived as 
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In the C-LESO, when the gains of 𝑙1(𝑡) and 𝑙2(𝑡) in (3) are 

constant, the (14) can be simplified as 
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If the two poles of the characteristic equation of (15) are 

placed at the same point on the left real axis of the complex 

plane, i.e. l1 and l2 of are designed as [9]: 
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where ω0 is the bandwidth of the C-LESO, then the transfer 

function of the C-LESO can be re-obtained as 
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According to (17), the C-LESO exhibits a second-order low-

pass characteristic, the phase delay and amplitude error of the 

estimated BEMF increase with the fundamental frequency [11]. 

However, according to (14), the frequency characteristic of the 

proposed LESO can be improved by a proper design of the gain 

functions L1(s) and L2(s). 

C. Design of the Desired Observer Transfer Function  

The desired observer should have sufficient immunity to 

harmonics and no phase lag at the fundamental frequency. 

Based on the requirement, the desired observer transfer function 

should have similar characteristics to a bandpass filter with the 

unit gain and zero phase error at the fundamental frequency and 

deep attenuation outside the fundamental frequency. The 

transfer function of the observer can be pre-designed, and the 

gain functions L1(s) and L2(s) in (14) should be appropriately 

configured based on the pre-designed transfer function, which 

is a reverse design process. 

The complex-coefficient filters have been extensively 

employed for the extraction of the fundamental positive and 

negative sequences in power grids [21] and current harmonics 

suppression in PMSM drive systems [22]. The uniform transfer 

function of the filter is [23] 
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where N(s) and D(s) can be designed flexibly. 

The response of (18) at the estimated fundamental frequency 

�̂�e can be calculated as 
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According to (19), the desired signal at the estimated 

fundamental frequency �̂�e can be extracted without amplitude 

and phase errors. 

The transfer functions (14) and (18) are very similar if N(s) 

and D(s) are set as 
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Then, the transfer function of the second-order complex-

coefficient-filter can be obtained as 
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Fig. 1 shows the frequency characteristic of GCCF(s) with 

different k1, where the estimated speed �̂�𝑒 = 50 Hz and k2 = 100 

π. Fig. 2 shows the frequency characteristic of GCCF(s) with 

different k2, where the estimated speed �̂�𝑒 = 50 Hz and k1 = 10 

π. k2 is positively correlated with the filtering effect of the 

designed transfer function. 

 

 
Fig. 1. Bode diagram of the designed transfer function with different k1, 

where the estimated speed ˆe = 50 Hz and k2 =100 π. 

 

 
Fig. 2. Bode diagram of the designed transfer function with different k2, 

where the estimated speed ˆe = 50 Hz and k1 = 10 π. 

 

The stability of the designed transfer function GCCF(s) should 

be guaranteed. The characteristic polynomial of (21) is 

2
2

1( )) ˆ( eks s j s k = − ++  (22) 

According to [24], the generalized Routh array for (22) is 

given in TABLE I. 
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TABLE I 
GENERALIZED ROUTH ARRAY FOR SECOND ORDER COMPLEX 

COEFFICIENT POLYNOMIAL 
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The stability condition of GCCF(s) is 
(2)

0 1 20, 0, 0a a a    (24) 

When k1>0 and k2>0, the stability condition in (24) is 

satisfied. 

D. Introduction of Proposed FA-LESO 

In this section, a novel FA-LESO is proposed, whose transfer 

function is configured to be the same as GCCF(s) in (21).  The 

gain functions L1(s) and L2(s) in (14) can be designed as 
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Thus, the transfer function of the proposed FA-LESO can be 

derived as 
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According to (9) and (25), the α-axis FA-LESO can be 

derived in the frequency domain as follows: 
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Similarly, the β-axis FA-LESO can be derived in the 

frequency domain as follows: 
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According to (27) and (28), the control block diagram of the 

proposed FA-LESO for the αβ-axis can be obtained as shown 

in Fig. 3. The reference voltages u
∗ 
α  and u

∗ 

β , the sampled currents 

iα and iβ, and the estimated angular velocity �̂�𝑒 are employed as 

the inputs of the FA-LESO. The outputs of the FA-LESO are 

the estimated equivalent BEMFs. 

The low-speed limit depends on the noise of the estimated 

speed and rotor position error resulting from the parameters 

mismatch, nonlinearity of the inverter, and non-sinusoidal 

BEMF. In the proposed observer, the voltage command is used 

as input; however, it is not equal to the actual output voltage 

due to the nonlinearity of the inverter, which will inevitably 

affect the estimated rotor position based on ESOs for BEMF, 

especially at the low speed where the BEMF is relatively small 

[25]. Meanwhile, accurate stator resistance is also critical for 

low-speed operation. To extend the low-speed operation limit, 

the methods of reducing the speed loop bandwidth [25], 

dedicated inverter nonlinearity compensation [26] or directly 

measuring the output voltage [27] can be employed. However, 

this will not be the focus of this paper. 

 
Fig. 3. Structure diagram of the proposed FA-LESO for αβ-axis. 

III. EVALUATION OF FA-LESO 

In this section, the frequency characteristics, complexity, and 

robustness of parameter mismatches of the proposed FA-LESO 

are evaluated by comparison with the C-LESO and the GI-

LESO. The transfer functions and parameters settings of the C-

LESO, the GI-LESO and the FA-LESO are listed in TABLE II. 

The GI-LESO transfer function can be expressed as 
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where G(s) is the generalized integrator that expressed as 
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where Kr and ωc are the gain and attenuation coefficients of the 

integrator, respectively. 
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SUMMARIZATION OF TRANSFER FUNCTION 

Observers Transfer Function Parameters 
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ê

x̂ 

+

ˆ
e



 

A. Evaluation of Frequency Characteristics and 
Complexity 

Fig. 4 shows the bode diagrams of the C-LESO, the GI-

LESO, and the proposed FA-LESO. According to Fig. 4, the C-

LESO exhibits a second-order lowpass characteristic, which 

leads to an increase in the steady-state position error with the 

motor running frequency. The high bandwidth can reduce the 

phase error; however, the suppression effect on the noise will 

be weakened. In the GI-LESO, although the high gain of the 

generalized integrator can help reduce the steady-state phase 

error to some extent, which may lead to instability of the control 

algorithm [11]. Fortunately, the proposed observer exhibits a 

frequency adaptive bandpass characteristic, ensuring that the 

proposed FA-LESO can eliminate the steady-state position 

error. In addition, it exhibits better noise immunity than the C-

LESO and GI-LESO. 

As far as the complexity is concerned, the order of the C-

LESO and the proposed observer is 2. In contrast, the order of 

the GI-LESO is 4 due to the additional implanted integrator. 

Therefore, the proposed observer has a lower order than the GI-

LESO. Moreover, if the suppression of low-frequency noise is 

not considered, only the parameter k2 related to high-frequency 

noise suppression needs to be tuned in the proposed observer. 

However, the parameters ω0, ωc, and Kr in the GI-LESO need 

to be adjusted to satisfy the stability. Therefore, the parameters 

of the proposed observer are more easily tuned than the GI-

LESO. 

 

 
Fig. 4. Bode diagrams of the C-LESO, GI-LESO, and proposed FA-LESO. 

B. Evaluation of Parameter Mismatches 

The estimated nominal BEMF can be derived as 
nom nomˆ ( () () )BEMF ss G s = ee  (31) 

where the symbol ‘nom’ denotes nominal value, and GBEMF(s) 

represents the transfer function of the BEMF observer. The 

estimated equivalent nominal BEMF is determined by GBEMF(s) 

and the nominal BEMF 𝑒𝛼𝛽
𝑛𝑜𝑚. The GBEMF(s) could be any one of 

the transfer functions in TABLE II and the nominal BEMF 

𝑒𝛼𝛽
𝑛𝑜𝑚 can be obtained by 

nom nom

nom nom nom

1 1 1
s

q q q

Rp
L L L

   = − −i u i e  (32) 

Then, the resulting BEMF error ∆𝒆𝛼𝛽 can be calculated by 

subtracting (32) from (6) as 
nom ( )sq pL R    = − = −  + e e e i  (33) 

where ΔLq=Lq-L
nom 

q , ΔRs=Rs-R
nom 

s  . L
nom 

q  and R
nom 

s  are the nominal 

parameters, while Lq and Rs are the real parameters. 

The ∆𝒆𝛼𝛽 can be transformed into the frequency domain as 

nom( ) ( ) ( ) ( ) ( )q sLs s s s R s    = − = −  + e e e i  (34) 

According to (31), the estimated equivalent BEMF error 

Δ�̂�𝛼𝛽(𝑠) can be expressed as 
nomˆ ˆ ˆ( ) ( ) ( ) ( ( ))BEMFs s s G s s   = − =e ee e  (35) 

As shown in TABLE II, the bandwidth ω0 of C-LESO is 

usually much larger than the fundamental frequency �̂�e, and the 

amplitude of C-LESO at the fundamental frequency is 

ˆ( ) 1C LESO eG j−   (36) 

According to (30), since ˆ( )eG j → + , the amplitude of 

the GI-LESO in (29) at the fundamental frequency is 

ˆ( ) 1GI LESO eG j−   (37) 

According to (26), the amplitude of FA-LESO at the 

fundamental frequency is 

ˆ( ) 1FA LESO eG j− =  (38) 

According to (36) - (38), Δ�̂�𝛼𝛽(𝑠)  caused by parameter 

mismatches are almost the same in the three observers. For the 

proposed FA-LESO, Δ�̂�𝛼𝛽(𝑠) can be calculated by substituting 

(34) and (38) into (35) as 

(ˆ )q sL p R  = −  +  ie  (39) 

Then, (39) can be transformed into the estimated 

synchronous coordinate system as 

ˆ ˆˆ ˆ
dq s dq q e dqLR j  = − − e i i  (40) 

The position estimation error caused by the parameter 

mismatches can be deduced as 

arctan( )d
par

ex q

e

E e



 =

+ 
 (41) 

where Eex is the amplitude of equivalent BEMF. 

Therefore, by substituting (40) into (41), the position 

estimation errors caused by stator resistance or inductance 

mismatches can be calculated respectively as 

ˆ
arctan( )

ˆs

s d
R

ex s q

R i

E R i


−
 =

− 
 (42) 

 

ˆ
arctan( )

ˆˆ/q

q

L

q

q

ex e d

iL

LE i






 =

− 
 (43) 

As can be seen in (42), ΔθΔRs decreases as speed increases for 

a given stator resistance deviation and estimated d-axis current 

î𝑑. If î𝑑 is controlled to zero, the Δ𝜃𝑝𝑎𝑟  will be unaffected by 

the stator resistance deviation. However, if î𝑑 is not controlled 

to zero, the stator resistance deviation will inevitably lead to 

position estimation error. For the q-axis inductance deviation, 

as can be seen in (43), ΔθΔLq is independent of the speed while 

it is related to the estimated q-axis current. Under no-load 

conditions, it will be unaffected by the q-axis inductance 

deviation. However, it will inevitably lead to position 

estimation error under load conditions. 
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IV. SENSORLESS CONTROL STRATEGY FOR DTP-IPMSM 

BASED ON FA-LESO 

The parameter design of the observer is crucial to optimize 

the sensorless control performance. In this section, a sensorless 

control strategy based on the proposed FA-LESO for DTP-

IPMSM drives is presented, and a small-signal linearized model 

is established, which facilitates the parameter design of the 

proposed observer. 

A. Overall Sensorless Control Strategy 

The normalized quadrature phase-locked loop (QPLL) in 

Fig. 5 is usually used to estimate the rotor position and speed. 

The normalized �̂�𝛼  and �̂�𝛽  are as the inputs, kp and ki are 

parameters of the proportional-integral (PI) estimator, and the 

output of QPLL is the estimated rotor speed and position. The 

overall block diagram of the sensorless control for DTP-

IPMSM drives based on the proposed FA-LESO is shown in 

Fig. 6. 

 

 
Fig. 5. Block diagram of the QPLL. 

 

 
Fig. 6. Overall block diagram of the sensorless control for DTP-IPMSM 

drives based on the proposed FA-LESO. 

 

In Fig. 6, the DTP-IPMSM consists of two sets of three-phase 

windings with isolated neutral points, where the first set is 

phase-ABC and the second set is phase-XYZ. The dual space 

vector PWM (SVPWM) strategy is adopted for PWM 

generation, where the conventional SVPWM strategy is applied 

to each single three-phase voltage source inverter (VSI). The 

harmonic controller (HC) is employed to suppress the dominant 

5th and 7th current harmonics in the z1z2-frame [28]. The VSD 

matrix TVSD, the conventional Park matrix Tdq, and the matrix 

Tdqz are detailed in the [6]. By the matrix TVSD, the fundamental 

and 12k±1th ( k=1,2,3...) order harmonics in the ABC-XYZ-

frame are mapped into the αβ-frame, while 6k±1th ( k=1,3,5...) 

order harmonics are mapped into the z1z2-frame. Therefore, 

unlike the general three-phase IPMSM, the 11th and 13th 

harmonics are dominant in the αβ-frame for the DTP-IPMSM. 

In addition, if the DTP-IPMSM is treated as two individual 

single three-phase IPMSMs based on the double d-q model [6], 

the 5th and 7th harmonics will be dominant in the αβ-frame of 

each three-phase winding [29]. Therefore, the VSD control 

strategy is used to achieve BEMF estimation of DTP-IPMSM, 

which can naturally avoid the interference of the 5th and 7th 

BEMF harmonics. Nevertheless, the proposed observer has a 

strong immunity to the dominant 5th and 7th BEMF harmonics 

in general single three-phase IPMSMs, which will also be 

demonstrated in the experiments. 

B. Linearized Model and Parameter Design 

In the proposed observer in Fig. 6, the parameters k1 and k2 

in Fig. 3 and the parameters kp and ki in the QPLL in Fig. 5 need 

to be designed. These parameters will be designed based on the 

linearized model. 

The actual equivalent BEMF 𝒆𝛼𝛽 can be expressed as 

sin( ) cos( )eex ex ejE E  = − +e  (44) 

The estimated equivalent BEMF �̂�𝛼𝛽 can be expressed as 

ˆ ˆˆ sin( ) cˆ ˆ os( )kx e ke xE Ej  = − +e  (45) 

where �̂�𝑒𝑥  and �̂�𝑘  are the amplitude and phase of �̂�𝛼𝛽 , 

respectively. The phase �̂�𝑘 can be calculated as 
ˆ ˆ ˆarctan( )k e e  = −  (46) 

The first-order time differentiation of (46) will be 

2ˆ ˆ ˆ ˆ ˆ ˆ( )k exe e e Ee    = −  (47) 

The second-order time differentiation of (46) is 

2ˆˆ ˆ ˆ ˆ ˆ( ) ek xEe e e e    = −  (48) 

The �̂�𝛼𝛽 in the time domain can be calculated from (26) as 

2 1 1 2
ˆ ˆˆ ˆ( )ek j k k k   + − + = +e e ee e  (49) 

Substituting (49) into (48) and then (48) can be simplified as 

1 2 2
ˆ ˆ ˆ ˆsin( ) cos([

ˆ
)]k e k e

ex
e

e

k k

x

E
k

E
k k     = − + − −  (50) 

Under the condition 𝜃𝑒 − �̂�𝑘→ 0, Eex → �̂�𝑒𝑥 , by the small 

signal approximation theory, (50) can be re-derived as [30] 

1 2 2
ˆ ˆ ˆ( )k e k e kk k k    = − + −  (51) 

Therefore, the transfer function from θe to �̂�𝑘 is 

1

2

2 1

2
ˆ ( )

( )

k

e

s k

s

k s

sks k





+

++
=  (52) 

In addition, the position error signal f(Δθe) in QPLL in Fig. 5 

can be obtained as 

2 2 2 2

ˆ
cos

ˆ ˆ si ˆ( ) ( ) ( )
ˆ ˆ ˆ ˆ

( )

n

sin

e e e

e

e
f

e

e

e e e







  

  



 = − −
+ +

= 

 (53) 

where Δθe = �̂�𝑘 − �̂�𝑒 . Therefore, the closed-loop transfer 

function from ˆ
k  to �̂�𝑒 can be obtained as 

2

ˆ ( )

ˆ +( )

i pe

p ik

k k ss

s k s ks





+
=

+
 (54) 

According to (52) and (54), the overall linearized model of 
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the rotor position estimator based on the proposed FA-LESO 

and the cascaded QPLL can be illustrated in Fig. 7. 

 

 
Fig. 7. Overall small-signal linearized model of rotor position estimator 

based on the proposed observer and the cascaded QPLL. 

 

According to (52) and (54), the closed-loop transfer function 

from θe to ˆ
e  can be obtained as 

1 2

22

2 1

ˆ ( )

( ) +

i pe

e p is k

k k ss k k s

s s s k s kk





++
=

++ +
 (55) 

Furthermore, (55) can be rewritten as 

1 2

2

ˆ ( )

( ) ( )( ) +

i pe

e p is a

k k ss k k s

s s k s ks b





++
=

++ +
 (56) 

where 

1

2

ab k

a b k

=


+ =

 (57) 

Define b=ki/kp, and apply the zero-pole elimination principle 

to simplify (56) to a third-order system as 

1 2

2

ˆ ( )

( ) ( ) +

pe

e p i

ks k k s

s s a s k s k





+
=

+ +
 (58) 

The characteristic polynomial of (58) can be configured as  
22( ) ( 2( ) ) nn np s s s s  + += +  (59) 

where ζ is the damping ratio and ωn is the natural oscillation 

frequency, ρ is the coefficient of the system. 

Comparing (58) and (59), it leads to 
22

(2

,

),

np n i

n n

k k

a b

 

  

 = =

= =





 (60) 

According to (57) and (60), k1 and k2 can be obtained as 
2

1

2

/ 2

/ (2 )

n

n n

k

k



 





 =


= +

 (61) 

The characteristic polynomial (59) has three poles, which are 

2

1,2 3(1 ),n n ns j s   = −  − = −  (62) 

If ζ >0, ωn >0, and ρ>0, the real parts of the three poles are 

negative, the stability of the observer and the QPLL can be 

guaranteed. The dominant pole approximation method is used 

to approximate the third-order system as a second-order system 

[31]. The real part of the pole s3 should be at least five times 

larger than the real part of poles s1,2, e.g. ρ ≥ 5. In this paper, ρ 

is chosen as 5. The bode diagram of (58) with different ωn is 

shown in Fig. 8, where ζ is usually chosen as 0707. As can be 

seen that the bandwidth of the observer increases when the 

natural frequency ωn increases; however, the filtering capability 

decreases. To achieve a well-damped dynamic response and 

damped effect, ωn is chosen as 100 π rad/s in this paper. 

 

 
Fig. 8. Bode diagram of the linearized model of Fig. 7. 

V. EXPERIMENTAL RESULTS 

Fig. 9 shows the DTP-IPMSM test platform based on TI's 

DSP processor TMS320F28335. The inverter consists of two 

single three-phase VSIs with the same common DC bus. With 

the aid of accurate rotor position information from an encoder, 

the accuracy of the position estimate is verified. In this paper, 

the encoder is used to obtain the actual rotor position, and the 

driver starts the DTP-IPMSM and switches to sensorless 

operation at the target speed. The inverter-Ⅰ is used to drive the 

prototype DTP-IPMSM, while the inverter-Ⅱ is used to drive 

the load machine. For simplicity, the current control method 

with i
* 

d  = 0 is employed in this paper. The parameters of the 

prototype DTP-IPMSM are listed in TABLE III. The 

parameters of the C-LESO and the GI-LESO are selected as 

described in Section III. (A). The parameters of the proposed 

FA-LESO are selected as described in Section III. (A). For 

fairness, the same QPLL parameters and current loop 

parameters are employed in the experimental tests, and there are 

no phase compensation measures or additional digital filters. 

 

 
Fig. 9. Experimental setup for prototype DTP-IPMSM drive system. 

 
TABLE III 

PARAMETERS OF PROTOTYPE DTP-IPMSM 

Parameters Value Parameters Value 

Resistance(Ω) 0.15 d-axis inductance(mH) 4.336 

Flux linkage (Wb) 0.0785 q-axis inductance(mH) 5.841 

Pole pairs 5 Rated power(W) 1200 

Rated current (A) 12 Rated speed (r/min) 600 

DC link voltage (V)  80 PWM frequency (Hz) 10 k 

 

A. Steady-State Test Under No Load 

In this section, the steady-state performance of the C-LESO, 

the GI-LESO, and the proposed FA-LESO are compared. The 

prototype DTP-IPMSM runs in speed control mode under no 

load. Fig. 10, Fig. 11, and Fig. 12 show the actual and estimated 
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rotor positions and position estimation errors of the C-LESO, 

GI-LESO, and FA-LESO at 300 r/min, 600 r/min, and 840 

r/min, respectively. The field-weakening control is engaged for 

d-axis current reference generation [32]. The corresponding 

operating frequencies are 25 Hz, 50 Hz, and 70 Hz, 

respectively. In Fig. 10 (a), Fig. 11 (a) and Fig. 12 (a), the rotor 

position estimation error increases as speed increases in the C-

LESO; the mean value of the position estimation errors at 300 

r/min, 600 r/min, and 840 r/min are 14.0 deg, 23.0 deg, and 34.0 

deg, respectively. In Fig. 10 (b), Fig. 11 (b) and Fig. 12 (b), the 

mean value of the position estimation error with the GI-LESO 

are 7 deg, 10 deg, and 12 deg, respectively. This shows that the 

rotor position estimation error is reduced to some extent in the 

GI-LESO if compared with C-LESO, which is consistent with 

the analysis of the Bode diagram in Section III. (A). However, 

according to Fig. 10 (c), Fig. 11 (c), and Fig. 12 (c), the mean 

values of the position estimation errors with the proposed FA-

LESO are all nearly to 0 rad, and the fluctuation of the errors 

are within 2.3 deg. Therefore, compared with the C-LESO and 

the GI-LESO, the proposed FA-LESO can accurately estimate 

the equivalent BEMF without phase delay.

 

   
(a) (b) (c) 

Fig. 10. Steady-state experimental results for no load at 300 r/min (25 Hz). (a) C-LESO. (b) GI-LESO. (c) FA-LESO. 

   
(a) (b) (c) 

Fig. 11. Steady-state experimental results for no load at 600 r/min (50 Hz). (a) C-LESO. (b) GI-LESO. (c) FA-LESO. 

   
(a) (b) (c) 

Fig. 12. Steady-state experimental results for no load at 840 r/min (70 Hz). (a) C-LESO. (b) GI-LESO. (c) FA-LESO. 

 

B. Steady-State Test Under Full-Load 

In this section, Fig. 13 - Fig. 15 demonstrate the estimated 

equivalent BEMFs, actual and estimated position, and position 

estimation error at different speeds under full load. The 

proposed FA-LESO shows better performance than C-LESO 

and GI-LESO, which is similar to the results in the steady-state 

test under no load. Therefore, it will not be introduced in detail 

for simplicity. In addition, the harmonic analysis of the α-axis 

estimated equivalent BEMF and the harmonics attenuation of 

the C-LESO, the GI-LESO, and the proposed FA-LESO will 

also be included and compared. 

Due to the relatively low levels of the 11th and 13th BEMF 

harmonics in the DTP-IPMSM, to adequately demonstrate the 

harmonics attenuation of the proposed observer FA-LESO, the 

DTP-IPMSM is treated as two individual sets of single three-

phase PMSMs [6] and the LESOs are only applied to the first 

set, where the 5th and 7th BEMF harmonics are dominant. 

Fig. 13 shows the test results of the first set of windings at 

300 r/min under a half-rated load. The estimated equivalent 

BEMFs with the C-LESO in Fig. 13 (a) and GI-LESO in Fig. 

13 (b) are seriously deteriorated due to the dominant 5th and 

7th BEMF harmonics, which lead to the 6th harmonic in the 

estimated position. The 5th and 7th harmonics with the C-

LESO are 5.4 % and 5.9 % respectively, and the 5th and 7th 

harmonics with the GI-LESO are 3.6 % and 4.0 % respectively. 

Compared with the C-LESO and GI-LESO, the 5th and 7th 

harmonics with the proposed FA-LESO are reduced to 0.8 % 

and 0.7 % in Fig. 13 (c), respectively. 

According to Fig. 11 (a), the C-LESO has a large position 

estimation error at 600 r/min; therefore, the half-rated load test 

cannot be completed. To continue the comparison among the 

C-LESO, GI-LESO and the proposed FA-LESO, the load is 

reduced to 40% of the rated value at 600 r/min and the test 

results are shown in Fig. 14. In Fig. 14 (a) and Fig. 14 (b), the 

5th and 7th harmonics are still not sufficiently attenuated by 

C-LESO and GI-LESO, where the 5th and 7th harmonics with 

the C-LESO are 4.1% and 4.5%, respectively, the 5th and 7th 

harmonics with the GI-LESO are 2.7% and 2.9%, respectively. 

However, the 5th and 7th harmonics with the proposed 

observer are significantly reduced to 0.6 % and 0.7 % in Fig. 

14 (c), respectively. 

Fig. 15 shows the test results of the DTP-IPMSM with VSD 

control strategy at 600 r/min under 80 % of the rated load. 

According to Fig. 15 (a) - Fig. 15 (c), the 5th and 7th harmonics 

with the three observers are negligible, which is consistent 

with the VSD control theory where the 5th and 7th harmonics 
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are all mapped to harmonic sub-plane [5]. It is noteworthy that 

the estimated BEMF harmonics with the FA-LESO are lower 

than the other two methods. Therefore, the proposed observer 

is superior to the C- ESO and GI-LESO in terms of harmonics 

attenuation. 

   

   
(a) (b) (c) 

Fig. 13. The steady-state test results of the first set of windings at 300 r/min (25 Hz) under half-rated load. (a) C-LESO. (b) GI-LESO. (c) FA-LESO. 

   

   
(a) (b) (c) 

Fig. 14. The steady-state test results of the first set of windings at 40% of rated load and 600 r/min (50 Hz). (a) C-LESO. (b) GI-LESO. (c) FA-LESO. 

   

   
(a) (b) (c) 

Fig. 15. The steady-state test results of the DTP-IPMSM with VSD control strategy at 80% of rated load and 600 r/min (50 Hz). (a) C-LESO. (b) GI-LESO. (c) 
FA-LESO. 

C. Transient Test 

The transient performance of the C-LESO, the GI-LESO, 

and the proposed FA-LESO are compared by the speed ramp 

test and the load step test in this section. 

In the speed ramp test, the DTP-IPMSM runs at no-load and 

the speed command changes in the sequence of 300-600-840-

600-300 r/min. The actual and estimated speeds, speed 
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 ê ê
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estimation error, and position estimation error are presented. 

In Fig. 16 (a) - Fig. 16 (c), the speed estimation performance 

is well achieved, and the largest speed estimation errors are 13 

r/min. In the C-LESO and the GI-LESO, the position 

estimation errors include steady-state and dynamic errors 

during acceleration and deceleration, while in the FA-LESO, 

only dynamic errors appear during acceleration and 

deceleration, and the maximum position estimation error is 

only about 4.5°. 

In the load step test, the DTP-IPMSM runs at 600 r/min, and 

the load command changes from no-load to 80% of the rated 

load, and then back to no-load. The test results are shown in 

Fig. 17 (a) - Fig. 17 (c), the largest speed estimation errors are 

5 r/min. Again,  dynamic errors only appear in the FA-LESO 

during loading and unloading, and the maximum position 

estimation error is approximately 3.2°. 

   
(a) (b) (c) 

Fig. 16. Speed ramp test results at no-load and speed command changes as 300-600-840-600-300 r/min. (a) C-LESO. (b) GI-LESO. (c) FA-LESO. 

   

(a) (b) (c) 

Fig. 17. Load step test results at 600 r/min (50 Hz). (a) C-LESO. (b) GI-LESO. (c) FA-LESO. 

D. Robustness Test to Parameter Mismatches 

Fig. 18 shows the test results of stator resistance Rs and q-

axis inductance Lq mismatches at 300 r/min. The parameters 

change within the range of ± 0.5 p.u. According to (42) and 

(43), parameter mismatches do not affect position estimation 

error under no-load, therefore, the test under rated load is 

conducted. As can be seen in Fig. 18, the estimated equivalent 

BEMF of the α-axis hardly changes during the whole process. 

In addition, the position estimation error does not change 

during the overall period of stator resistance variation since the 

current control strategy i
* 

d =0 is applied. However, there is a 

significant position estimation error during the overall period 

of q-axis inductance variation. This is consistent with (43) in 

Section III. (B). Therefore, the experimental results show that 

the influence of stator resistance variation can be negligible 

with the control strategy i
* 

d =0; however, the inductance of q-

axis inductance variation should be compensated to improve 

the accuracy of the position estimation, such as online tuning 

of the PMSM parameters, which is another popular research 

topic for scholars. 

 
(a) 

 
(b) 

Fig. 18. Test results with parameter mismatches at 300 r/min (25 Hz) and 

rated load. (a) stator resistance mismatch. (b) q-axis inductance mismatch. 

VI. CONCLUSION 

This paper proposes a FA-LESO for the sensorless control 

of DTP-IPMSM, which is also suitable for general IPMSM. In 

the FA-LESO, the gains of the LESO are time-varying and a 
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design guideline is given for the gain function. The desired 

frequency characteristics of the observer can be obtained by a 

proper design of the gain function. The gains function is 

backstepping designed based on a pre-designed transfer 

function. The gains of the proposed observer are designed 

based on a linearized model. The comparative analysis with the 

C-LESO and the GI-LESO shows that the FA-LESO can 

eliminate the steady-state position error without any phase 

compensation. Meanwhile, it exhibits a better harmonics 

attenuation than the C-LESO and the GI-LESO. The steady-

state and transient experimental results from the prototype 

DTP-PMSM demonstrate the feasibility and effectiveness of 

the proposed FA-LESO. 
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