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Glossary  24 

Non-native invasive species: Some plant species when introduced into novel ranges away from 25 

their native range become far more abundant and expand their range compared to when present 26 

in their native range. Invasive plants commonly experience biogeographic-evolutionary 27 

advantages in terms of mutualistic associations, plant-soil feedbacks, production of 28 

allelochemicals and escape from herbivores and pathogens in the novel ranges. 29 

Arbuscular mycorrhizal (AM) fungi: Symbiotic fungi, mainly Glomeromycota, forming an 30 

intracellular symbiotic interface in the cortical cells of the roots of a host plant, facilitating the 31 

uptake of nutrients and tolerance to abiotic and biotic stresses. 32 

Chitin: Polymer of N-acetylglucosamine comprising the exoskeleton of insects and cell walls of 33 

fungi.  The second most abundant polysaccharide in nature, after cellulose. Tannin can bind 34 

chitin to form tannin-organic N complexes. 35 

Ecto- (EcM) and or ericoid (ErM) mycorrhizal fungi: EcM fungi colonize and encase the fine 36 

roots of their host plant and form a Hartig net, a mycelial structure that surrounds root cortical 37 

cells. Roots of ErM plants, mostly shrubs, are thin and narrow in diameter and lack root hairs, 38 

and ErM fungi penetrate into single-layered epidermal cells of the root.  39 

Hyphosphere: The zone of soil under direct influence of fungal hyphae where the physical-40 

chemical and biological properties different from the bulk or rhizosphere soil due to the influence 41 

of hyphal exudates and nutrient uptake. Fungi release hyphal compounds like sugars, amino 42 

acids, carboxylates, polysaccharides, proteins, flavonoids, and other secondary metabolites.  43 

Plant-soil feedbacks (PSFs): Plants modify the abiotic and biotic properties of soil, with 44 

consequent effects on the establishment and growth of plants, and plant community dynamics. 45 

Saprotrophic fungi: Fungi that grow on dead organic matter and have enzymatic (white rot 46 

fungi) or non-enzymatic (brown rot fungi) capacities to decompose soil organic matter (SOM) 47 

and participate in N-cycling.  48 

Tannins: High molecular weight plant polyphenols that precipitate proteins. Both condensed 49 

and hydrolysable tannins or their mixtures are present in most dicots, but monocots and 50 

gymnosperms mainly produce condensed tannins (Box 1). 51 

Tannin-organic N complex: Tannins that enter soil form complexes with soil organic N such 52 

as protein and chitin.  Such persistent organic N is not directly accessible to plants. 53 
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Tanniferous plants: Include boreal and temperate tree species and ericaceous shrubs that 54 

produce significant amounts of tannins.  The soil environment near these plants is often tannin-55 

rich.  56 
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Abstract  57 

Tannins in forest soils bind organic nitrogen into long-lasting complexes, affecting nutrient 58 

cycling and ecosystem productivity. Mycorrhizal fungi, especially ectomycorrhizal and ericoid 59 

types, can degrade these complexes, releasing nitrogen for plant uptake and influencing 60 

community composition. Further, there could be a potential role of arbuscular mycorrhizal fungi 61 

in acquiring organic nitrogen from persistent organic nitrogen complexes, albeit largely via 62 

interactions with free living bacteria. Understanding how tannins and fungi cooperate or compete 63 

to control organic nitrogen availability provides new insights into forest ecology, plant invasions, 64 

and biogeochemical cycles. These interactions are crucial in tannin-rich environments like 65 

temperate and boreal forests. We propose a conceptual framework to explore the feedback loops 66 

between plant chemistry, soil microbes, and ecosystem processes. Such knowledge is vital for 67 

predicting how forest communities will respond to climate change, land use, and invasive 68 

species, informing sustainable forest management strategies. 69 

 70 

Plant tannin: key mediator of the organic nitrogen cycle in temperate and boreal 71 

ecosystems  72 

Our understanding of the underlying processes that mediate ecosystem nitrogen (N) cycling has 73 

improved tremendously over the last two decades [1-3]. Soil N occurs in a variety of chemical 74 

forms, ranging from simple inorganic to complex organic forms, which vary as a function of soil 75 

abiotic conditions, plant and soil community composition, litter chemistry, and rates and 76 

pathways of decomposition [4-7]. However, most studies to date have focused on inorganic N 77 

forms, largely ignoring organic N compounds that typically dominate N pool of temperate and 78 

boreal forest soils. However, focusing solely on inorganic N dynamics does not adequately 79 

explain ecosystem functioning, especially for those with organic N rich, but inorganic N poor 80 

soils [4, 8].  81 

A new paradigm in ecosystem N cycling has emerged that identifies depolymerization of 82 

N-containing polymers as a critical point in the N cycle [8, 9], whereby the enzymatic 83 

transformation of polymers into monomers (amino acids, amino sugars etc.) makes organic N 84 

available to plants and soil microbes. One of the major polymeric persistent forms of organic N 85 

in temperate and boreal forests dominated by tanniferous plants are tannin-organic N 86 

complexes (see Glossary) (including proteins, peptides and chitin derived from plant and 87 

microbial residues) [10-11]. Tannins, which enter the soil from decaying roots, leaves/needles, 88 

bark and seeds (nuts) of tanniferous plants, are chemically and biosynthetically diverse 89 

molecules that are distinguished from other phenolics by their ability to precipitate proteins and 90 
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chitin to form tannin-organic N complexes that have long residence times in soils [10, 12-15]. 91 

Plant litter, from both roots and above-ground plant tissues, provide a significant input of N to 92 

soil. Though plants resorb N before their tissues are shed, this resorption reaches only about 50% 93 

in leaves [16] and between 18 to 58% for fine roots [17]. Thus, the magnitude of N transfer to 94 

forest soil from fine roots (< 2 mm) may be equal to, or exceed, that from above-ground litterfall 95 

[18]. Moreover, there is large inter-specific variability in foliar nutrient resorption [19]. Thus, 96 

significant amounts of organic N derived from decomposing plant litter and roots may interact 97 

with tannins in soil to form persistent complexes. Moreover, tannin-organic N complexes are 98 

immobile and stay in the immediate vicinity of tannin-producing plants [13], which minimizes 99 

N losses [20]. As tannins form complexes with proteins, tannins are also interacting with 100 

enzymes, further affecting the rate of soil organic matter (SOM) decomposition [21-23]. 101 

However, the underlying mechanisms involved in the cycling of tannin-organic N complexes 102 

remain poorly understood. 103 

Trees and shrubs in temperate and boreal ecosystems have association with 104 

ectomycorrhizal (EcM), ericoid mycorrhizal (ErM) fungi, and arbuscular mycorrhizal 105 

(AM) fungi. A positive relationship has been observed between community-level biomass of 106 

EcM plants and soil carbon stocks [24], and it has been proposed that mycorrhizal type shapes 107 

the nutrient economy: EcM plant dominated stands that occur in high-latitude ecosystems, have 108 

an organic N nutrient economy, characterised by slow rates of C and N turnover, whereas AM 109 

plant dominated stands, which occur in low-latitude ecosystems, have an inorganic nutrient 110 

economy with rapid rates of nutrient cycling and a dependency on saprotrophic fungi to 111 

mineralize SOM [19, 25]. Some EcM and ErM fungi can oxidize tannins and thus degrade 112 

persistent organic N forms into simpler forms that can then be taken up by EcM and ErM host 113 

plants. However, our understanding of the potential ecological role of tannin-organic N 114 

complexes is still developing. For example, the processes involved in the transformation of 115 

tannin-organic N complexes to simpler organic N forms for plant uptake in tannin-rich soil 116 

remains unclear. In addition, the potential role of AM fungi in degradation of complex organic 117 

matter or, in acquiring organic N from tannin-organic nitrogen complexes, is unknown, although 118 

there is evidence to suggest that AM fungi can access organic N, chitin, via interactions with 119 

free living bacteria [26]. It also remains unclear whether and how tannins and their interactions 120 

with soil organic N affect plant community dynamics by triggering positive plant-soil feedbacks 121 

(PSFs) to tannin-producing EcM and ErM plants, whereby mycorrhizal fungi associated with 122 

tannin-producing plants absorb N from tannin-protein complexes [13]. Similarly, while 123 

conceptual models have been proposed to consider plant-microbe linkages and loss and retention 124 
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of N and depolymerization of organic N [27, 28], these models do not consider the mechanisms 125 

regulating N release from tannin-based complexes in ecosystems dominated by tanniferous 126 

plants.  127 

Here, we discuss recent advances in our understanding of the interplay between tannins, 128 

tannin-organic N complexes, and mycorrhizal fungi (EcM and ErM), in the organic N cycle of 129 

temperate and boreal forests. We also discuss the potential role of AM fungi in acquiring organic 130 

N from persistent tannin-organic N complexes via interactions with free living bacteria. First, 131 

we explore the role of EcM and ErM fungi as mediators of the organic N cycle and positive PSFs 132 

for tanniferous plants via the formation of persistent tannin-organic N complexes in soil, and 133 

consider how EcM, and ErM fungi mediate plant access to N from these tannin-organic N 134 

complexes. We then propose a conceptual framework for linking EcM and ErM fungi to tannin-135 

organic N complexes in temperate and boreal forests, highlighting the interplay between tannins, 136 

ecosystem properties, and processes of organic N cycling. Finally, we propose future research 137 

priorities to unravel the complex roles of tannin-organic N complexes and EcM and ErM fungi 138 

as drivers of community dynamics and the invasion of tanniferous trees in forest ecosystems. 139 

 140 

Decomposition of tannin-organic N complexes, and interactions between SOM 141 

decomposers 142 

Polyphenol production has been proposed to be an adaptive trait to regulate the retention and 143 

uptake of soil organic N in forest ecosystems dominated by tanniferous plants [20]. This proposal 144 

was based in part on work demonstrating that seedlings of EcM plants (e.g., Pinus contorta, 145 

Betula pendula) can use organic forms of N when grown in the presence of EcM fungi [29, 30]. 146 

These studies, however, used bovine serum albumin (BSA)  for studying the uptake of organic 147 

N instead of tannins complexed with plant-derived proteins or fungal-derived chitin. Based on 148 

the literature, Northup et al. [20] further argued that mycorrhizal fungi, associated with pine 149 

(Pinus muricata) roots produce extracellular enzymes that release N from tannin-protein 150 

complexes and proposed that polyphenols (tannins) released from pine into soil form 151 

polyphenol-protein complexes. These authors hypothesized that polyphenol-protein complexes 152 

are decomposed by EcM fungi associated with pine roots, resulting in lowering N availability to 153 

local competitors, thereby giving pine a competitive advantage. However, there are concerns 154 

about their hypothesis because direct evidence supporting the notion that EcM fungi mediated 155 

degradation of persistent tannin-organic N complex into simple organic N was not provided [31]. 156 

However, several lines of evidence support the idea that both EcM and ErM fungi can access 157 

simpler forms of organic N released from persistent tannin-organic N complexes [11, 32]. 158 
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Free-living saprotrophic, and EcM, and ErM fungi that live in symbiosis with trees may 159 

decompose SOM [33, 34], however, they differ in their mode of decomposition and effectiveness 160 

in driving this process. Saprotrophic fungi and ErM fungi carry out the white-rot route of SOM 161 

degradation including effective degradation of lignin, while EcM mainly use the brown-rot route 162 

of degradation with no lignin digestion [35]. Moreover, ErM fungi may have a higher number 163 

of plant cell wall-degrading enzyme (PCWDE) coding genes than EcM fungi [34, 36, 37], 164 

underscoring their greater capacity to decompose SOM. The view that EcM fungi have a limited 165 

ability to decompose SOM [38] is also supported by genome studies showing that many EcM 166 

fungi have evolved to lose most of the genes encoding for lignocellulase-degrading enzymes that 167 

are present in their saprotrophic ancestors, likely due to increased dependence on host plant 168 

sugars [37, 39]. The extent that EcM fungi could use the PCWDEs and microbial cell wall-169 

degrading enzymes (MCWDE) to degrade SOM is poorly understood [37], although it has been 170 

hypothesised that due to lower number of PCWDEs, EcM fungi have limited saprotrophic 171 

abilities [40]. However, some EcM fungal species (e.g., Cortinarius) also use white-rot 172 

degradation  [34, 41], and the non-enzymatic route of oxidation (i.e., Fenton reaction) may be 173 

used during SOM decomposition by both EcM fungi [32, 42] and ErM fungi [43]. In contrast, 174 

AM fungi have a limited ability to degrade SOM compared to other fungi [25, 44]. 175 

Mycorrhizal fungi can restrict the activities of saprotrophic fungi and other 176 

microorganisms through competitive interactions [45]. The ‘Gadgil effect’ refers to this 177 

competitive suppression of free-living saprotrophs by EcM fungi, which ultimately slows down 178 

the decomposition rates of SOM [46-49]. Since EcM fungi largely depend on carbon allocated 179 

by their host in form of sugars, this enables EcM fungi to allocate more resources to explore 180 

nutrients (particularly N) in soil, they can suppresses the growth of saprotrophic fungi due to N-181 

limited conditions [50]. However, there is limited evidence to support the Gadgil effect with 182 

respect to EcM fungi because this effect depends upon soil moisture and litter quality [46, 48]. 183 

Moreover, Gadgil effect is not limited to competition between EcM and saprotrophic fungi [51], 184 

as there is also evidence for competition between AM fungi and soil bacteria with consequences 185 

for soil N cycling. For example, AM fungi compete with ammonia-oxidizing bacteria for soil N 186 

[52-54].  187 

Although saprotrophic fungi have the capabilities to degrade persistent organic N, they are 188 

suppressed when competing for water or nutrients with EcM or ErM fungi [45]. However, 189 

tannin-organic N complexes are largely present in the underlying organic layer of the soil where 190 

EcM fungi dominate [55]. The higher competitiveness of EcM fungi in response to nutrient 191 

deficiency helps them to expand to larger area at the expense of saprotrophic fungi [45, 56], 192 
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thereby making ErM or EcM fungi important in tannin-mediated organic N cycle. ErM and EcM 193 

plants may also compete for tannins. For example, Kalmia angustifolia, an understory heathland 194 

species, has been shown to adversely affect the regeneration of Picea marina (black spruce) in 195 

boreal forests due to binding abilities of tannins released by K. angustifolia, which reduces rates 196 

of N release [57]. Due to superior capabilities of K. angustifolia tannins over P. marina tannins 197 

to bind to proteins (BSA), K. angustifolia was suggested to have a competitive advantage over 198 

P. marina in competition for N [57]. These authors also reported that ErM fungi associated to K. 199 

angustifolia had superior abilities to grow on tannin-protein complex than EcM fungi associated 200 

to P. marina. EcM, brown rot, and ErM white rot fungi have capabilities to degrade persistent 201 

tannin-organic N complexes into simple forms of organic N [58-60]. 202 

There is also evidence to support the idea that tannin-rich ErM plants retain N in the soil 203 

by forming tannin-organic N complexes that are accessible to ErM fungi and its host, but not to 204 

EcM or AM fungi and their hosts [61]. ErM plants occur in approximately two-thirds of the 205 

global area of forested land, of which about 90% is dominated by EcM trees [58]. EcM trees in 206 

boreal forests typically have ericaceous understory shrubs (e.g., K. angustifolia, Calluna 207 

vulgaris) that can degrade tannin-organic N complex, releasing simple organic N, which can be 208 

used by both trees and shrubs. These findings support the notion that tannins mediate N 209 

acquisition by the host of ErM fungi and hinder N acquisition by mycorrhizal roots of 210 

neighboring plants. There is also a possibility that some mycorrhizal fungi "steal" nutrients 211 

released by exoenzymes of other mycorrhizal fungi, as shown for “cheater” microbes that exploit 212 

the catalytic activities of decomposers involved in organic matter turnover [59]. 213 

Although AM fungi have a limited ability to degrade tannin-organic N complexes 214 

compared to ErM and EcM fungi [25, 58], they could engage in synergistic interactions with 215 

rhizosphere bacteria, effective decomposers of tannins, to access N from complexes. This is 216 

consistent with mycorrhizal-associated nutrient economy (MANE) framework of Phillips et al. 217 

[25], which explains the inorganic and organic nutrient economies of AM and EcM fungi-218 

dominated forest stands, respectively. Here, high chemical quality of AM tree litter [62-64] 219 

mediates rapid transformation of organic N (protein, chitin or amino acids) into inorganic N 220 

(NO3-, NH3+), enabling AM fungi to utilize inorganic N released from AM tree litter [25]. In 221 

contrast, the MANE framework proposes an organic nutrient economy for EcM trees due to their 222 

low-quality litter compared to AM trees [25]. The ability of EcM and saprotrophic fungi to 223 

transform and utilize organic N under canopies of EcM trees enables them to acquire simpler 224 

forms of organic N [65]. Moreover, in mixed AM forests with patches of EcM trees and in mixed 225 
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conifer-broadleaf temperate forests, AM trees could efficiently use organic N that has been 226 

transformed to simpler forms by EcM trees [66, 67].  227 

The weaker ability of AM fungi to directly mobilize organic N compounds could also be 228 

compensated by the soil microbes present in the AM fungi hyphosphere, which produce 229 

enzymes that stimulate the mineralization of SOM [68, 69]. AM fungi hyphae attract distinct 230 

microbes into their hyphosphere, a narrow region of soil around the hyphae that have distinct 231 

soil properties than bulk or rhizosphere soil due to exudates from the AM fungal hyphae [69], 232 

but empirical evidence on the ability of hyphosphere microbial community to decompose tannin-233 

organic N complexes is lacking. Several bacterial (e.g., Enterobacter aerogenes, E. 234 

agglomerans, Cellulomonas, Arthobacter, Bacillus, Lactobacillus, Leuconostoc, Oenococcus, 235 

Pseudomonas or Staphylococcus) and fungal (Aspergillus niger and Penicillium) species are 236 

reported to degrade condensed tannins [70, 71]. Also, a synergistic relationship between the AM 237 

fungi Rhizophagus irregularis and free-living microbial communities was found to help in 238 

acquiring organic N from organic matter [72]. Yet, whether synergistic relationships between 239 

AM fungi and other microbial communities can help acquiring organic N from tannin-organic N 240 

complex remains unknown. Some Acacia species (e.g., Acacia tortilis, Acacia ehrenbergiana, 241 

and Acacia negrii) associate with AM fungi [73] and AM fungi, for example Glomus sp., can 242 

acquire organic N and transfer it to its host [74]. Although, there is evidence that AM fungi are 243 

negatively affected by EcM fungi due to competition for organic compounds of litter [75], future 244 

work is needed to elucidate the mechanisms that explain how EcM and ErM fungi may prevent 245 

AM fungi uptake of decomposition byproducts of tannin-organic N complexes (simple forms of 246 

organic N). 247 

A framework for organic N cycling in tannin-rich ecosystems 248 

As discussed above, there appear to be linkages between plant chemistry, soil biota and root-249 

associated mycorrhizal fungi that mediate organic N cycling [76]. Here we propose a framework 250 

that highlights steps to depict the multilayered interactions between tannins, ecosystem factors 251 

and processes in tannin-rich soils dominated by EcM and ErM plants (Figure 1). In our model, 252 

mycorrhizal fungi (EcM and ErM) are key players in the integration of tannin-organic N 253 

complexes into the N cycle and forest ecology. In the first step, tannins released from litter of 254 

roots and above-ground plant parts, form complexes with organic N forms such as proteins, 255 

peptides, and chitin (Figure 1, Step 1), slowing down organic N decomposition. Tannins may 256 

reduce decomposition of organic N compounds via forming persistent complexes with organic 257 

N compounds or directly interact with enzymes inhibiting their activities [55]. The second step 258 
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relates to the capacity of ErM and EcM fungi, which have enzymatic and Fenton reaction 259 

oxidative capacities to oxidize tannins, thus enhancing access of organic N to fungi and plants 260 

(Figure 1, Step 2). The next step is the hydrolysis of polymeric organic N forms by proteases, 261 

peptidases and glucosaminidases produced both by free-living microbes and mycorrhizal fungi 262 

to release simple forms of organic N, such as peptides, amino acids and amino sugars (Figure 1, 263 

Step 3). In the following step, a substantial fraction of the N released is immobilized due to 264 

development of extensive microbial biomass (Figure 1, Step 4). N immobilization leads to a 265 

strong N limitation of plants, resulting in a significant increase in plant investments to below-266 

ground parts (Figure 1, Steps 5 and 6). Plant dependence on mycorrhizal fungi for accessing N 267 

from tannin-organic N complexes comes at a cost in term of C supplied to mycorrhizal fungi 268 

(Figure 1, Step 7). The resulting plant phenotype may be characterized by a high root mass 269 

fraction and extensive C transport to their mycorrhizal fungi. As a result, the N cycle would 270 

become constrained with a dominance of organic N over inorganic N, effectively reducing the 271 

competitiveness of AM plants and non-mycorrhizal plants of their lack of abilities to degrade 272 

persistent organic N-tannin complexes and increasing dominance of EcM and ErM plants over 273 

AM plants (Figure 1, Steps 1-6).  274 

The relationships depicted above suggests coevolutionary feedbacks between tannins and 275 

ErM and EcM fungi that can degrade complex organic N [13; Figure 2A]. Our framework can 276 

also be employed to understand the role of tannins in modifying the organic N cycle in forested 277 

habitats invaded by tanniferous invasive species (Figure 3). Some non-native invasive species 278 

produce tannins, for example Acacia dealbata in South Africa, southern Europe, and South 279 

America [77], or A. dealbata and A. mearnsii in the Western Ghats of India. 280 

Invasive plants may alter their surrounding environment, including their rhizosphere 281 

microbial communities, to benefit themselves [78, 79]. There is little information available about 282 

the mycorrhizal associations that invasive trees such as Acacias might have and whether they 283 

employ tannin-mediated organic N as a strategy to gain invasion success. However, there is some 284 

evidence that tannins produced by the invasive species such as Polygonum cuspidatum can 285 

suppress rates of soil N mineralization, thereby reducing inorganic N availability to native plants 286 

[80]. Further studies are needed to assess the roles of tannins and mycorrhizal fungi in facilitating 287 

the success of non-native invasive species via manipulating the organic N cycle (Figure 3) and 288 

of tannin-mycorrhizal fungi mediated organic N cycling on the native range of Acacias. 289 

Tannin-mediated interactions have multiscale implications, starting from the molecular 290 

scale, including chemical structure (Box 1), through the rhizosphere scale (Figure 1, steps 1-7), 291 

regional scale (effect of mycorrhizal fungi on the growth performance of the host i.e., positive 292 
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PSFs, Figure 2), and biogeographic (negative effect of soil biota on the host species in native 293 

range of the species, and neutral to positive effect on the host species in non-native ranges, Figure 294 

3). 295 

 296 

Future research to study the role of tannins in plant community dynamics and plant 297 

invasions 298 

Species-specific plant-soil feedback (PSF) mediates the performance of conspecifics and 299 

heterospecifics, and plant community dynamics (see Glossary). Evidence suggests that 300 

mycorrhizal type regulates plant community structure in temperate forests: EcM trees experience 301 

positive PSFs, while AM trees experience negative PSFs [81-84]. Moreover, tannin-mediated 302 

formation of persistent organic N complexes, combined with the ability of EcM fungi to degrade 303 

tannin-organic N complexes, could help explain why EcM trees experience positive PSFs, while 304 

AM trees experience negative PSFs. While we lack empirical evidence that ErM plants 305 

experience positive PSFs, it can be speculated that superior abilities of ErM fungi to degrade 306 

persistent organic N complex may exert positive PSFs to ErM plants. This idea is supported by 307 

ability of tannin-producing ErM species in temperate ecosystems to release tannins in soils to 308 

form persistent tannin-organic N complex.   309 

Recent insights gained from PSFs research can be utilized to test whether degradation of 310 

tannin-organic N complex by EcM and ErM fungi mediate PSFs in temperate and boreal forests 311 

(Figure 2 A, B). For example, studies using soil inocula and amendments of tannins could be 312 

designed to test the hypothesis that tannin-organic N complexes transformed by EcM/ErM fungi 313 

exert positive PSF to EcM trees. In field experiments, trenching could be employed as a 314 

technique to exclude the effects of EcM/ErM fungi [85]. Further, tannin-amended soil can be 315 

manipulated by tannin-binding agents like polyvinylpyrrolidone (PVPP) to deactivate tannins, 316 

which could help to establish the role of tannin-rich foliar leachate or root exudates of trees in 317 

making tannin-organic N complex in soil (Figure 2). Data on growth performance of EcM or 318 

AM plants grown in soil amended with or without PVPP could help to measure the direction and 319 

strength of PSFs experienced by EcM or AM trees (Figure 2).  320 

Our framework is useful to test the tannin-mediated plant invasion hypothesis, which 321 

predicts that multilayered interactions between tannin-mediated organic N and mycorrhizal 322 

(EcM and ErM) fungi facilitate invasion of tanniferous plants in novel ranges. Soil inocula (live 323 

versus sterile) prepared by using soil associated with the tannin-producing invasive species in its 324 

native and non-native ranges or resident species in non-native ranges can be helpful in evaluating 325 

tannin-mediated PSFs (Figure 3). The effects of soil biota in the rhizosphere of tanniferous 326 
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plants, native or non-native ranges or resident non-tanniferous plants in non-native ranges, on 327 

the growth performance of a species could help to evaluate biogeographic advantages 328 

experienced by species-specific soil biota (Figure 3). Further the manipulation of tannin-329 

amended soil with tannin-binding agents would help to establish the role of tannin-rich foliar 330 

leachate or root exudates of trees in making tannin-organic N complex in soil or suppression of 331 

N mineralization. Further data are needed on soil concentrations of amino acids, inorganic N and 332 

abundance and diversity of mycorrhizal fungi and soil pathogens. This could help establish the 333 

linkages between tannin-organic N complex, mycorrhiza type and under-canopy vegetation of 334 

tanniferous and native trees in native and introduced ranges (Figure 3).  335 

Future studies could also employ novel approaches, including soil zymography, in vitro 336 

cultures or isotopic tracing methods to better evaluate mechanistic aspects of tannin-mediated 337 

soil organic N cycling. Soil zymography or 2D mapping and visualization of enzymatic activities 338 

[86], could be a useful tool to understand the degradation of tannin-organic N complexes by 339 

EcM, ErM or saprotrophic fungi [86, 87]. Another technique that could be useful in 340 

understanding mechanisms underpinning tannin-mediated organic N cycling is to identify and 341 

track microbial degradation of N compounds using 15N isotope [88, 89], for example 15N chitin. 342 

There is, however, a need to consider processes that could possibly impact isotopic signatures of 343 

a compound [88]. Past studies have largely used N isotope approaches to investigate 344 

denitrification, nitrification, comammox or DNRA (dissimilatory nitrate reduction to ammonia), 345 

but information on the functional role of mycorrhizal fungi in N cycling can be gained by 346 

analyzing natural abundance of N isotope ratios [90]. Moreover, in vitro cultures of different 347 

types of mycorrhizal or saprotrophic fungi can be used for manipulative studies to test the 348 

degradation of tannin-organic N complexes. Another approach is the use of soil mesocosms with 349 

purified tannins coupled to “omics” approaches and high-resolution analytical tools to study 350 

abundance and functioning of ectomycorrhizal and saprotrophic fungi and mycorrhizal 351 

symbiosis [50, 91]. 352 

 353 

Concluding remarks and future challenges 354 

We hope that our framework will help in understanding the role of tannin-organic N complexes 355 

in forest N cycle. Few field-based studies have quantified the fraction of plant N-requirements 356 

that are met by organic sources, and tannin-organic N complexes are yet to be integrated into the 357 

terrestrial N cycle largely due to uncertainties concerning their formation, stability, and thus their 358 

fate have not been elucidated. Also, the measurement of soil tannins, which sorb tightly to soil 359 

[92], and tannin-organic N complexes, is challenging, which makes it difficult to assess their 360 
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formation and loss from soil [93] and to measure their turnover. Understanding of tannins in the 361 

N cycle is hampered by the widespread use of unpurified and poorly characterized tannin extracts 362 

in experiments because of difficulties in obtaining sufficient purified and well-characterized 363 

tannin [22]. The lack of detailed chemical information on the tannins used in most studies 364 

impedes the development of mechanistic descriptions of soil tannin-organic N complexes. Future 365 

research is needed to overcome these challenges, but also to better understand how the type and 366 

amount of tannin in soil regulates organic N cycling, and how their role in plant nutrition is 367 

moderated by soil physicochemical conditions. We propose that boreal forests dominated by 368 

tanniferous plants could be a promising ecosystem to test how persistent tannin-organic N 369 

complexes are degraded into simpler forms of organic N and then used by plants, mycorrhizal 370 

fungi or soil microbes. A greater integration of studies on soil organic N with those on plant 371 

traits is essential to develop such a general theory that would allow us to predict the feedbacks 372 

between plants and soils and thus community dynamics in temperate and boreal forests. 373 
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Box 1. Tannin chemistry and reactivity  633 

The high molecular weight plant natural products known as tannins are the most abundant group 634 

of plant polyphenols after lignin. Tannins are chemically and biosynthetically diverse molecules 635 

that are distinguished from other phenolics by their hallmark ability to precipitate proteins. Both 636 

condensed and hydrolysable tannins or mixtures are present in most dicots, but monocots and 637 

gymnosperms mainly produced condensed tannins [94]. The condensed tannins, or 638 

proanthocyanidins, are products of the flavonoid biosynthetic pathway, and range from 639 

oligomers to polymers with molecular weights as high as 20 kD (Figure I, Compound 1).  The 640 

hydrolysable tannins are based on a parent structure of shikimate-derived gallic acid residues 641 

esterified to a core polyol (pentagalloyl glucose; Figure I, Compound 3). The gallotannins are 642 

simple esters, while the ellagitannins have undergone further derivatization via oxidative 643 

crosslinking between galloyl groups (Figure I, Compound 4). Epigallocatechin gallate, an 644 

example of a “catechin tannin” abundant in tea (Camellia sinensis), has elements of both major 645 

classes of tannins, comprising a trihydroxylated flavonoid gallate ester (Figure I, Compound 2).  646 

The ability of a tannin to precipitate or bind protein cannot be predicted based on the type 647 

of tannin, condensed or hydrolysable.  For example, it has been claimed that condensed tannins 648 

may have higher protein-precipitating capacity than a mixture of hydrolysable tannins and 649 

condensed tannins, but the same study showed that mixed tannins have higher abilities to inhibit 650 

β-glucosidase and N-acetyl-glucosaminidase activities in gymnosperm-dominated soils  [95]. 651 

Attempts to develop structure-activity relationships based on plant extracts containing both 652 

condensed and hydrolysable tannins suggested that structural features of the tannin are important 653 

to protein precipitation, but no specific links to tannin class were revealed [71, 96]. Evidence on 654 

comparing a condensed tannin with a hydrolysable tannin showed that the polarity and water 655 

solubility of the tannin was a critical determinant of the interaction with protein, rather than the 656 

classification of the tannin. Like other macromolecules, tannins have secondary and tertiary 657 

structures that dictate their interaction with proteins and other biomolecules. The polarity of 658 

tannins can range from virtually water insoluble to freely water soluble, with representatives of 659 

both types of tannins across the entire range of partition constants (Kow values 2 x 10-4 to 1.3 x 660 

106) [97].  Thus, protein binding depends on the shape and specific chemistry of the tannin, not 661 

on its broad structural class or biosynthetic origin.   662 

Tannins are reported to have both negative and positive effects on organisms ranging 663 

from microbes to mammals [98].  Similar to chemical activity, bioactivity of tannins cannot be 664 

predicted based simply on the broad classification categories of condensed vs. hydrolysable 665 

tannins [96]. Condensed and/or hydrolysable tannins have been reported as toxic to some 666 
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microbes [96], and as deterrents to some herbivorous insects [99]. Nutritional consequences have 667 

been linked both to decreased digestibility of tannin-bound protein and to inhibition of key 668 

enzymes by tannins [100].  Taken together, all of these studies of tannin function in organisms 669 

show that the structural and functional diversity of tannins makes it essential to study individual, 670 

defined compounds in order to elucidate specific modes of action.   671 

 672 

 673 

Figure I: Tannin structures. 1, Condensed tannin trimer with one catechin and two epicatechin 674 

extenders. 2, Epigallocatechin gallate. 3, Pentagalloyl glucose, a gallotannin.  4, Eugeniin, an 675 

ellagitannin.  676 
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 677 

Figure 1. Framework depicting the multiple-layered interactions occurring in tannins-rich 678 

ecosystems. Tannins produced by tanniferous plants, including trees and ericaceous shrubs in 679 

temperate and boreal forests form complexes with soil organic N, to yield a persistent form of 680 

complex organic N that is not directly accessed by plants, mycorrhiza or saprotrophs (Step 1). 681 

ErM and EcM fungi oxidize tannins to degrade tannin-protein/chitin complex through white rot 682 

enzymatic degradation (enzymatic alteration) or brown-rot Fenton chemistry (non-enzymatic 683 

alteration) into simpler forms of organic N (Step 2 and 3). However, some EcM fungi retain 684 

white rot capabilities. This results in the immobilization of N due to significant N requirement 685 

of extensive fungal networks (Step 4). Dominance of organic N over inorganic N reduces the 686 

competitiveness of AM and non-mycorrhizal plants and increase the dominance of EcM and 687 

ErM plants (Step 5). Tanniferous plants invest more in the root carbon, P, N, tannins, specific 688 

root length, root biomass, mycorrhizal colonization (Step 6). The proposed framework identifies 689 

that the mycorrhizal fungal networks (ErM, or EcM fungi) dominate in the temperate and boreal 690 

forests due to their higher return on investment of oxidative enzymes compared to bacteria. There 691 

is preferential access to complex organic N for plant species that are associated to EcM and ErM 692 

fungi because they can degrade tannin-organic N complexes into simpler forms of organic N 693 
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(Step 7). The proposed framework identifies that the fungal networks (ErM, EcM or saprotrophs 694 

fungi) dominate in the temperate and boreal forests due to their higher return on investment of 695 

oxidative enzymes than bacteria.  696 

  697 
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Figure 2 698 

 699 

Figure 2. Mycorrhiza mediate plant-soil feedbacks (PSFs) experienced by EcM, ErM or AM 700 

trees in temperate forests. A, Tannins released by temperate tree species form complexes with 701 

soil organic N (e.g., proteins, chitin), creating persistent form of organic N. The positive PSFs 702 

experienced by EcM trees compared to negative PSFs experienced by AM trees could be due to 703 

limited ability of AM fungi to degrade tannin-organic N complexes into simple forms of N while 704 

ErM and EcM fungi can degrade the complex form of organic N. This aspect, however, needs 705 

experimental validation. B, Experimental design to study tannins-mycorrhiza-soil mediation of 706 

PSFs in temperate tree species. Conditioning sterile temperate forest soil:sand mix with live or 707 

sterile inocula from EcM, ErM or AM trees to test the PSFs. In soil manipulation experiments, 708 

tannin-binding agents (like PVPP, polivinylpyrrolidone) could be used to establish the effects of 709 

tannins. A comparison of tannins-amended soil in the presence or absence of tannin-binding 710 

agents would help to establish the role of tannin-rich foliar leachate or root exudates of trees in 711 

making tannin-protein complex in soil. Further, the degradation of the complex by ErM, EcM or 712 

AM fungi can be studied by quantifying simpler forms of organic N including amino acids. The 713 

measurement of soil pathogenic fungi would help to find the role of AM fungi in increasing the 714 

abundance and diversity of soil pathogens that may be linked to negative PSFs experienced by 715 
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AM trees. Data on growth performance (e.g., biomass, height) can be collected to measure the 716 

direction and strength of PSFs experienced by EcM or AM trees. Further, the degradation of the 717 

complex by ErM, EcM or AM fungi can be quantified by measuring simpler forms of organic N 718 

such as amino acids. Further, measurement of the abundance and diversity of mycorrhizal fungi 719 

and pathogens would help in establishing the linkages between tannin-organic N complex, 720 

mycorrhiza type and the direction and strength of PSFs. 721 

  722 
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Figure 3 723 

 724 

 725 

 726 

 727 
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 748 

Figure 3. Biogeographic and regional studies to examine tannins-mediated PSFs experienced by 749 

alien invasive tanniferous trees in temperate forests. Soil+sand mix can be amended with soil 750 

inocula (live versus sterile) prepared by using soil associated with the invasive species or native 751 

species (regional approach) and/or by taking soil from its native and non-native ranges and soil 752 

associated with native species (biogeographic approach). Further the manipulation of tannins-753 

amended soil with tannins-binding agents or fungicide would help to establish the role of tannin-754 

rich foliar leachate or root exudates of trees in making tannin-organic N complex in soil or 755 

suppression of N mineralization. Data on growth performance of non-native and native species, 756 
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abundance and diversity of mycorrhizal fungi and soil pathogens and soil levels of amino acids, 757 

inorganic N would establish any role of tannin-mediated organic cycle and associate mycorrhizal 758 

fungal type in the invasion success of non-native species in non-native ranges.   759 


