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ABSTRACT. A countable, bounded degree graph is almost finite if it has
a tiling with isomorphic copies of finitely many Fglner sets, and we call it
strongly almost finite, if the tiling can be randomized so that the probabil-
ity that a vertex is on the boundary of a tile is uniformly small. We give
various equivalents for strong almost finiteness. In particular, we prove
that Property A together with the Fglner property is equivalent to strong
almost finiteness. Using these characterizations, we show that graphs of
subexponential growth and Schreier graphs of amenable groups are always
strongly almost finite, generalizing the celebrated result of Downarowicz,
Huczek and Zhang about amenable Cayley graphs, based on graph theo-
retic rather than group theoretic principles. We give various equivalents to
Property A for graphs, and show that if a sequence of graphs of Property A
(in a uniform sense) converges to a graph G in the neighborhood distance
(a purely combinatorial analogue of the classical Benjamini-Schramm dis-
tance), then their Laplacian spectra converge to the Laplacian spectrum
of G in the Hausdorff distance. We apply the previous theory to construct
a new and rich class of classifiable C*-algebras. Namely, we show that
for any minimal strong almost finite graph G there are naturally associ-
ated simple, nuclear, stably finite C*-algebras that are classifiable by their
Elliott invariants.
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1. INTRODUCTION

1.1. Motivations. Amenability was first introduced by John von Neumann
in 1929 [48] in the setting of discrete groups. A group is called amenable if
it admits an invariant mean. In graph theoretic terms this is equivalent to
the existence of Folner sets (sets of arbitrarily small relative boundary) in its
Cayley graph [28]. Amenable groups play an important role in both the theory
of von Neumann algebras and measurable equivalence relations. The concept
of amenability was also developed for von Neumann algebras, where the ana-
logue of the invariant mean is given by the conditional expectation onto the
algebra. The group von Neumann algebra turned out to be amenable if and
only if the group itself is amenable. Similarly, the measurable equivalence re-
lation associated to a free probability measure-preserving (p.m.p.) action of a
group is measurably amenable if and only if the group is amenable. A concept
of finite approximability, later referred to as hyperfiniteness, was introduced
for von Neumann algebras in 1943 by Murray and von Neumann [47]. One of
the major breakthroughs of the 1970’s was Connes’ result [13] showing that
for von Neumann algebras with separable preduals, amenability is equivalent
to hyperfiniteness. Almost at the same time Connes, Feldman and Weiss
[14] proved a very similar result for the measurale equivalence relation asso-
ciated to probability measure preserving (p.m.p) group actions: measurable
amenability is equivalent to measurable hyperfiniteness, where measurable hy-
perfiniteness means that the equivalence relation associated to the action can
be approximated in measure by finite equivalence relations, as introduced by
Dye. Weiss conjectured that amenability and hyperfiniteness are also equiva-
lent in the Borel setting. However, this conjecture remains open; in particular,
it is still unknown whether free Borel actions of amenable groups are hyperfi-
nite—that is, whether the associated Borel equivalence relation is hyperfinite.

The topological setting (when the group is acting on a compact metric space
instead of a probability space) is more subtle. Any free, continuous action of
an amenable group on a compact metric space is topologically amenable and
admits an invariant probability measure. Moreover, only amenable groups
can admit such actions. However, the class of countable groups that have
a free, topologically amenable action on a compact metric space, i.e. the
so-called Property A (or exact) groups, also contains nonamenable groups.
Thus in the topological setting, amenability appears in two forms: classical
amenability and Property A. The first example of a group that is not Property
A was constructed only in 2003 by Gromov [32] (see also [50]). The notion
was introduced by Yu [62], who proved that the Novikov conjecture holds
for compact manifolds with fundamental group of Property A. It was soon
proved that amenable groups, hyperbolic groups [53], linear groups [33] are of
Property A. Ozawa [51] proved that Property A is equivalent to the exactness
of the reduced C*-algebras of the group. If the group is amenable then the
reduced C*-algebra is even nuclear (that is, amenable [34]).
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What is the topological analogue of hyperfiniteness? Suppose a countable
group acts continuously on the Cantor set, with the property that the fixed
point set of each group element is clopen (as in the case of free actions). For
such topological actions (or more precisely, for the associated étale Cantor
groupoid), Matui introduced the notion of almost finiteness [45]. If a group
acts continuously on the Cantor set and the stabilizer map is also continuous,
then the resulting groupoid is an ample étale groupoid. This perspective
forms the basis for how we approach ample étale groupoids in our paper. As
a matter of fact, all the groupoids in our paper are constructed in such a
way. In particular, we can talk about their topological amenability through
the respective definition for actions. Almost finiteness for these groupoids
means that the Cantor set has a tiling by clopen sets that are Fglner in each
orbit graph, making this property a good candidate for hyperfiniteness in
the topological context. This perspective is further supported by two queries
posed in (Remark 3.7, [57]) of Suzuki, which suggest that such clopen Fglner
tilings could indicate a form of amenability:

e [s every minimal, almost finite, étale Cantor groupoid topologically
amenable?

e [s every minimal, topologically amenable, étale Cantor groupoid that
admits an invariant measure necessarily almost finite?

For groupoids arising from actions of amenable groups, the answer to the first
question is affirmative; however, the first author provided a counterexample in
the more general setting [23]. Tt was later observed that a slight strengthening
of almost finiteness does, in fact, imply amenability. Specifically, suppose a
groupoid is not only almost finite, but also satisfies the following condition:
for every € > 0, there exists a collection of almost finite tilings equipped with
a probability distribution such that, for each point = in the Cantor set, the
probability that x lies on the boundary of a tile is less than €. Under this
strengthened version, which we call strong almost finiteness, the groupoid is
topologically amenable. The second question by Suzuki is still open.

One of the main motivations of our paper is to provide further evidence that
strong almost finiteness is, in fact, the appropriate continuous analogue of
hyperfiniteness. Here a concept of almost finiteness for infinite graphs will
become important.

Let us assume that an étale Cantor groupoid arises from an action of a finitely
generated group. If the groupoid is almost finite, then its orbit graphs must
also exhibit almost finiteness in the sense of tileability by Falner sets, as de-
fined in the influential paper of Downarowicz, Huczek, and Zhang [16], where
they established the almost finiteness of Cayley graphs for countable amenable
groups. Similarly, if the minimal groupoid is topologically amenable, then its
orbit graphs possesses a graph theoretical version of Property A (which is
equivalent to the group theoretical definition in case of Cayley graphs, and
was defined by Higson and Roe [35]). These are straightforward consequences
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of the definitions and the theorem by Connes, Feldman and Weiss [14]. More-
over, if the groupoid admits an invariant measure, the graphs should contain
Falner sets in a ubiquitous fashion—an idea previously explored by Ma under
the term ubiquitous amenability [43]. Hence, in light of Suzuki’s questions,
it is reasonable to expect that Property A and the ubiquitous presence of
Folner sets together are equivalent to strong almost finiteness in the context
of bounded degree graphs. We will prove that this equivalence indeed holds,
establishing the equivalence of the suitably defined concepts of amenability
and hyperfiniteness for bounded degree graphs. Furthermore, we characterize
the relationship among other reasonable candidates for the definition of these
concepts in this setup.

An additional motivation for our work was the result of Ma and Wu ([44],
Corollary 9.11) that the reduced C*-algebra of an almost finite and amenable
ample étale Cantor minimal groupoid is a simple, nuclear, unital, separable
Z-stable and quasidiagonal C*-algebra (that satisfies the Universal Coefficient
Theorem by a theorem of Tu [59]). Hence, by the seminal result of Tikuisis,
White and Winter [58], these C*-algebras can be classified by their Elliott
invariants. Consequently, our results enable the construction of numerous
new examples of classifiable, simple, nuclear C*-algebras arising built from
strongly almost finite Schreier graphs.

1.2. Around amenability. The key concepts of the paper. Below, Gr,
will denote the set of all countable (not necessarily connected) graphs of vertex
degree bound d.

(0) Let G € Grq be a graph, and let F' be a subset of its vertex set V' (G).
We denote by O(F') the set of vertices in F' that are adjacent to a vertex

that is not in F'. If % < e then F'is called an e-Fglner set. We call

the graph G € Gr; amenable if it contains a Fglner sequence, that is,
a sequence of finite subsets {£,}>°, such that % — 0. Amenable
graphs were studied already in the eighties (see e.g. [15], earlier work
of Kesten [40] is frequently viewed as the first instance where purely
graph theoretical properties were used in the context of amenability)
and various characterizations of amenability for graphs, similar to the
one of von Neumann, were given in the eighties and nineties (see e.g.
6], [10][15], [19] or [37] for a survey).

(1) The graph G is Fglner if for any € > 0 there exists an r such that
any r-ball BY(z) of radius r centered around x contains an e-Fglner
subset with respect to G. It is quite clear that the Cayley graphs of
amenable groups are Fglner graphs. Amenable, but non-Fglner graphs
can easily be constructed by attaching longer and longer paths to the
vertices of a tree, or just taking the disjoint union of a 3-regular tree

and an infinite path.
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A graph G € Gry is setwise Fglner if for any € > 0 there is an r > 1
such that inside the r-neighborhood B,.(L) of any finite set L C V(G)
there exists an e-Fglner set with respect to G that contains L. As far
as we know, this definition is new.

A graph G € Gry is uniformly locally amenable if for any € > 0
there exists k > 0 satisfying the following condition: For any finite
subset L C V(G) there exists a subset M C L such that M is e-Fglner
with respect to L (so M is not necessarily e-Fglner in the graph G)
and | M| < k. The notion of uniform local amenability was introduced
in [7].

Building on Dye’s definition for measure-preserving actions ([18], see
also [38]), the first author extended the concept of hyperfiniteness to
classes of finite graphs with bounded degree [20] in the following man-
ner. A family of finite graphs G C Gry is said to be hyperfinite if for
every € > 0, there exists an integer £ > 0 such that for every G € G,
there exists a subset L C V(G) with |L| < ¢|V(G)|, such that remov-
ing L along with all incident edges results in a graph whose connected
components each have at most k vertices. Note that the class of pla-
nar graphs, as well as any class of graphs with uniform subexponential
growth, is hyperfinite. The notion of local hyperfiniteness was intro-
duced in [24]. A graph G € Gry is locally hyperfinite, if the family
of all its finite induced subgraphs is hyperfinite.

A graph G € Gr, is weighted hyperfinite if for any € > 0 there ex-
ists k > 0 satisfying the following condition: For any finitely supported
non-negative function w : V(G) — R there exists a subset L C V(G)
of total weight w(L) that is at most ew(V(G)), such that if we delete
L with all the adjacent edges then the size of the the remaining com-
ponents are at most k. The notion of weighted hyperfiniteness was
introduced by the authors of this paper in [21].

A subset Y € V(G) is a k-separator of the graph G € Gry if deleting
Y (with all the adjacent edges) the remaining components have size
at most k. A graph G € Gry is strongly hyperfinite if for any € > 0
there exists k > 0 and a probability measure p on the compact set of
k-separators (with the compact subset topology on V(G)) such that
for all = € V(G),

p{Y |z eY}) <e.

The notion of strong hyperfiniteness appeared first in [54] in a some-
what restricted context.

An (e, r)-packing of a graph G € Gry is a family of disjoint e-Fglner
sets of diameter at most r. A graph G € Gry is strongly Fglner
hyperfinite if for any ¢ > 0 there exists » > 0 and a probability
measure v on the compact set of (e,7)-Folner packings P(e,r) (we
give the precise definition of the topology on (e, r)-Fglner packings in
Section 5) such that for all z € V(G),

v({P|z e P}) >1—c¢,
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where P denotes the set of vertices contained in the elements of the
packing P. The notion of strong Fglner hyperfiniteness is a crucial
new notion of our paper.

A graph G is almost finite if for any ¢ > 0 there exists an r > 1
such that V(G) can be tiled by e-Folner sets of diameter at most r,
in other words, there exists an (e, )-packing P such that P = V(G).
As we mentioned earlier, Downarowicz, Huczek and Zhang [16] de-
fined almost finiteness (under the name of ”tileability”) for groups
and showed that the Cayley graph of a finitely generated amenable
group is almost finite. Their work was motivated by the monotileabil-
ity problem studied by Weiss [61]. The notion of almost finiteness (in
the case of free continuous actions of amenable groups) and its relation
to C*-algebras was further developed in the important paper of Kerr
[39]. Almost finite graphs, as in our setup, were introduced by Ara et
al. [3].

A graph G is strongly almost finite if for any ¢ > 0 there exists r > 1
and a probability measure on the (e, r)-Fglner tilings such that for any
x € G the probability that x is on the boundary of the tile containing
it is less than e. This notion was introduced in a significantly weaker
form by the first author in [23].

For graphs (and even for more general metric spaces) Property A was
introduced in [35] (see also [7]): a graph G € Gry is of Property A if
for any € > 0 there exists 7 > 1 and a function © : V(G) — Prob(G)
satisfying the following conditions.
e For every x € V(G) the support of ©(z) is contained in the r-ball
around x.
e For every adjacent pair z,y € V(G) we have that

[©(z) —O(y)[1 <e€.

For a graph G the finitely supported non-negative (non-zero) function
f:V(G) = R is an e-Fglner function if

YD @ - fwl<e > fla).

z€V(Q) y,x~y zeV(G)

If > eve f(x) = 1 we call such functions e-Fglner probability mea-
sures. The role of e-Fglner functions will be crucial in our paper. Note
that in case of Cayley graphs of amenable groups the notions of Fglner
functions and Reiter functions (see e.g. Theorem 2.16 [37] for the defi-
nition of Reiter functions) are closely related. A graph G is of Fglner
Property A if it is of Property A and for all z , ©(z) can be chosen
as a e-Fglner function.

The graph G € Gr, is fractionally almost finite if for any € > 0
there exists r > 1 and a non-negative function F' : Fg(e,r) — R, from
the set of e-Fglner sets of diameter less than r such that that
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(a) For any = € V(G)

> FH)+e =1,

z€H,HEFg(e,r)

where 0 < ¢, < €.
(b) For any x € V(G)

> F(H) <e.

z€d(H),HeFg(er)

This definition is motivated by Lovasz’s notion of fractional partition [42].

1.3. The results. Some of the above properties have long been central in
group theory. When one goes beyond Cayley graphs, a more complex scene
emerges. We fully investigate the relationships between properties (1) — (12).
Figure 1 summarizes our results.

Theorem 1 (The Long Cycle Theorem). For graphs G € Gry: Property A,
Uniform Local Amenability, Local Hyperfiniteness, Weighted Hyperfiniteness
and Strong Hyperfiniteness are equivalent.

Using some results from [7] and [11], Sako [55] has already established the
equivalence between Property A and weighted hyperfiniteness. Building on
the results of [55], [7], and [54], the first author [24] has also shown that
uniform local amenability is equivalent to Property A, confirming a conjecture
proposed in [7]. Nonetheless, the proof of Theorem 1 is presented in a self-
contained manner.

Theorem 2. For any € > 0 there exists a 6 > 0 such that if G € Gryq and
p: V(G) = R is a §-Folner probability measure, then there exists an e-Folner
subset H C V(QG) inside the support of p such that p(H) > 1 — e.

Note (see Remark 1) that in the case of Cayley graphs this theorem is a
quantitative strenghtening of Theorem 2.16 in [37]. By the triangle inequality,
the finite sum of e-Fglner functions is always an e-Fglner function. So, they
behave much better with respect to summation than e-Fglner sets do with
respect to taking union. Using this advantage of the Fglner functions, we prove
that being a Fglner graph implies the setwise Fglner Property (Proposition
4.1).

Theorem 3 (The Short Cycle Theorem). For graphs G € Gry the follow-
ing properties are equivalent: Property A plus Setwise Folner, Strong Folner
Hyperfiniteness, Fractionally Almost Finiteness and Falner Property A.
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The properties in Theorem 1 are weaker than the ones in Theorem 3, since
Folner Property A trivially implies Property A. The remaining strict inclu-
sions are explained next, and are summarized on the diagram of Figure 1.
First, there exist Fglner graphs that are not almost finite (Proposition 4.3).

Example 1. The 3-regular tree is the simplest and earliest example of graphs
that have Property A, but are not amenable, let alone almost finite. To see
that it has Property A, pick an end and for each vertex take the averaged
indicator function of the path of length n from the vertex towards the end.

Example 2. Almost finiteness does not imply Property A. Let G € Gry be
a graph that is not of Property A, say it contains an embedded expander
sequence or it is the Cayley graph of a non-exact group. Attach infinite paths
to each vertex of GG. Then, the resulting graph H is clearly almost finite, but
it is not of Property A (see [3] or the unpublished result of the first author
[23]). Observe that H is a Fglner graph.

Theorem 4. Strong Folner Hyperfiniteness and Strong Almost Finiteness are
equivalent properties.

As we mentioned earlier, Downarowicz et al. [16] proved that the Cayley graph
of an amenable group is almost finite. The ingenious proof uses in a crucial way
the fact that such graphs are based on groups. Putting together Theorem 3
and Theorem 4, we extend this result to much larger graph classes: for Schreier
graphs of amenable groups (Proposition 7.4) and for graphs of subexponential
growth (Proposition 7.3).

Almost finite Setwise Folner
Property A Strong almost finite
Example 1 Example 2 Example in
Proposition 4.2
Lists of equivalent properties:

Property A Strongly almost finite Almost finite Falner
Uniform local amenable Prop. A & setwise Fglner Setwise Fglner
Local hyperfinite Strong Fglner hyperfinite Proposition 4.1.
Weighted hyperfinite Fractionally almost finite
Strong hyperfinite F@lner Property A
Theorem 1 Theorems 3 and 4

FIGURE 1. The relationships of the properties we study.
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We apply our results in spectral theory. Let G € Gry be a finite or infinite
graph and L : 2(V(G)) — I2(V(Q)) is its Laplacian. That is,

(1) Lo(f)(x) = deg(z)f(x) = > f(y).

T~y

It is well-known that Ls is a bounded, positive, self-adjoint operator and
Spec(Lg) C [0,2d] (see [46]). It is well-known (see [40], [15] or [46]) that a
graph G € Gry is amenable if and only if 0 is in the spectrum of G. Note that
the spectrum of Cayley graphs of amenable groups can be rather complicated
[30]. It is a well-studied question that if a sequence of finite graphs {G, }°,
converges to an infinite graph (or some other limit object) in some metric,
what sort of convergence we can guarantee for the spectra {Spec(Lg, )} ;. If
the graphs {G,,}°°; are equipped with distinguished roots {z, € V(G,)}>2,
and the sequence of rooted graphs {(Gy,x,)}%, is convergent (see Propo-
sition 8.4) then there exists a rooted graph (G, z) which is the limit of the
sequence and the KNS-measures on {Spec(Lg, )}, converge to the KNS-
measure of (G,z) in the weak topology (see [4]). Similar result is known
([1]) if {Spec(Lg, )}, is convergent in the sense of Benjamini and Schramm.
We will define neighborhood convergence (Section 8), a purely combinatorial
version of the Benjamini-Schramm convergence and we prove the following
theorem.

Theorem 5. Say that a countable collection of graphs has Property A if their
disjoint union is a graph with Property A. Let {G,}22, C Grq be a countable
set of graphs of Property A such that lim,,_,. G, — G in the neighborhood
distance. Then, Spec(Lg, ) — Spec(Lg) in the Hausdorff distance.

In the final section we establish a connection between our strong almost finite-
ness property and the Elliott Classification Program on simple, nuclear C*-
algebras. We will show that if a graph G € Gry is minimal (see Definition
10.1) and G is both of Property A and almost finite (that is G is strongly
almost finite) then some of the étale groupoids (see Section 10 for the defini-
tion) which are naturally associated to G are minimal, topologically amenable
and almost finite in the sense of Matui [45]. Consequently, by the results in
[44] we have the following theorem which we explain in Section 10.

Theorem 6. For every minimal, strongly almost finite graph M we can asso-
ciate a stable action Bg : I'ag ™~ E so that all the orbit graphs are neighborhood
equivalent to M and the simple, nuclear, tracial groupoid C*-algebra C(Gga,,)
is classifiable by its Elliott invariants.

These examples seem to be significantly different from the known ones.

Finally, we give a purely dynamical characterization of strong almost finiteness
(Proposition 10.11) in the case of minimal graphs.
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1.4. An overview of the paper. Let us finish the introduction with a short
overview of the coming sections. In Section 2 we prove the five equivalents of
Property A for bounded degree graphs, going along the “long cycle”. Section
3 establishes the quantitative connection between Folner functions and Folner
sets, while Section 4 proves that being a Fglner graph and being a setwise
Folner graph are the same. Property A together with the setwise Folner prop-
erty can be characterized in four different ways, as shown in Section 5, going
along the “short cycle”. These are also equivalent to strong almost finiteness,
as proved in Section 6. In Section 7 various classes of graphs are shown to be
strong almost finite. In Section 8 we define neighborhood equivalence and a
metric on the resulting equivalence classes of graphs, which will be the frame-
work for Section 9, where the pointwise convergence of the spectrum is shown
for convergent sequences of graphs in this topology. In Section 10, after the
necessary preparations, we associate an étale groupoid to minimal graphs, and
establish its topological amenability and almost finiteness under the assump-
tion that the graph was strongly almost finite. This gives rise to a new and
rich class of classifiable C*-algebras.

2. THE LoNG CYCLE THEOREM

The goal of this section is to prove Theorem 1. The way we prove the theorem
is showing that: Property A = Uniform local amenability = local hyperfinite-
ness = weighted hyperfiniteness = strong hyperfiniteness = Property A.

Proposition 2.1. Property A implies Uniform Local Amenability.

Proof. The proof is a simplified version of Lemma 7.2 in [26]. Let G € Gry
be a countably infinite graph of Property A. Pick a § > 0 in such a way
that we can find an e-Fglner set in the support of any dd-Fglner function
(:V(H) — R, where H is an arbitrary finite induced subgraph of G. Such a
choice is possible by Theorem 2. Since G is of Property A, there exists r > 1
and a function © : V(G) — Prob(G) satisfying the following conditions.

e For any 2 € V(G) the support of O(z) is contained in the r-ball around
the vertex x.
e For any adjacent pair z,y € V(G) we have that

10(z) — O(y)[lL < 6.

Now, let H be an arbitrary finite induced subgraph of G. For z € V(G),
pick 7(z) € V(H) in such a way that dg(x,7(z)) = dg(x, H). For x € V(H),
let Q(x)(2) = > 1,10, O(2)(¢). Note that 771(2) denotes the set of vertices
mapped to z by 7. Then by definition, Supp Q(z) C V(H) and for all z €
V(H), Q(x)(z) > 0. Also,

> @) = Y ewn =1,

2€V (H) teV(G)
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hence Q : V(H) — Prob(H). Also, if z,y € V(H) are adjacent vertices, then
192(2) = Q) < 6.

Indeed,
12(2) - Q)i = D 122)(z) — Ay)(2)| =
z€V(H)
=212 ewn- ) el
2€V(H) ter—1(z) ter—1(2)
Oy)(t)| =
z€V(H) ter—1(z )
Z O(x Oy) )| = [©(x) —O(y)l: < 0.

teV (G
Observe that

(2) Supp(Q()) € Bs,(x),

where BY. denotes the ball of radius 2r centered around z in the graph G.
Indeed, if Q(z)(z) # 0, then there exists t € 771(2) such that ©(z)(t) # 0.
Hence, dg(t,x) < r and also, dg(t,z) < r, since dg(t,z) < dg(t,z) by the
definition of 7. That is, dg(z,z) < 2r, so for any x € V(H) we have that (2)
holds.

The following lemma finishes the proof of our proposition.

Lemma 2.2. There exists a subset L C V(H) such that |0g(L)| < 2|L| and
|L| < Ry, where Ry, is the maximal size of the 2r-balls in G.

Proof. By the inequalities above,

S Y@ -owh < Y. di=

z€V(H) z~vy zeV (H)

= > dsl(x)lh

z€V(H)
where here and going forward the summand y is required to be in V(H).

Hence,
> D D e Qy)(z) <ds > Y Qa)(2)

2€V(H) z€V (H) =~y 2€V (H) z€V (H)
Hence, there exists zo € V(H) such that
D> Q@) (20) — Q) (20)| < do Z Qz
xeV(H) x~y z€V(H

Thus, if we define the function ¢ : V(H) — R by C(x) = Q(x)(29), we have
that

(3) >N @) — <yl < ds Z C(x

z€V(H) z~vy zeV(H
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That is € is a dd-Fglner function on V(H). So, by our assumption on §, we can
find a e-Fglner set L C V(H) inside the support of ¢ (that is, inside BZ (z)).
Hence, |L| < Ry, thus our lemma follows. O

The proposition follows from the previous lemma right away. U

Proposition 2.3. Uniformly locally amenable graphs are locally hyperfinite.

Proof. First, let us remark that if G is uniformly locally amenable, then for
any € > 0 there exists £ > 0 such that all finite, induced subgraphs H C G
contain a connected induced subgraph L, |V (L)| < k such that

(4) 0u(V (L) < €lV(L)].

Indeed, if for a subset £ C H, |0u(E)| < €|E|, |E| < k, then at least one of
the induced graphs on the components of E satisfies (4).

So, let € > 0 and let k > 0 be as above. Set H; := H and let L; be a connected
subgraph of Hy such that |[V(L1)| < k and |0y, (V(L1))| < €|V (L1)|. Now let
H, be the induced graph on V(H;)\V(L;). We pick a connected subgraph
Ly C Hy such that |V(Lo)| < k and |0n,(V(La))| < €|V (Lg)| . Inductively, we
construct finite induced subgraphs H; D Hy D ... and connected subgraphs
L; C H; such that |V(L;)| < k and |0g,(V(L;))| < €|V (L;)| (of course, for
large enough ¢, H, and L, are empty graphs).

Now, let S := U2,0g,(V(L;)). Then, if remove S from H together with all
the incident edges, the remaining components have size at most k. U

Proposition 2.4. Locally hyperfinite graphs are weighted hyperfinite.

Proof. Our proof is based on the one of Lemma 8.1 [54]. We call a finite
graph H (0, k)-hyperfinite if one can delete not more than §|H| vertices of
H together with all the incident edges such that the sizes of the remaining
components are not greater than k. Also, we call a finite graph J (€, k)-
weighted hyperfinite, if for all positive weight function w : V(J) — R one can
delete a set of vertices S C V/(J) with total weight at most ew(V(J)) such
that that the sizes of the remaining components is at most k. It is enough
to prove that if G € Gry, then for any € > 0 there exists 6 > 0 such that
if all the finite induced subgraphs of G are (0, k)-hyperfinite than they are
(€, k)-weighted hyperfinite as well.

Fix € > 0 and let L be the smallest integer that is larger than % Now, assume
that the finite induced subgraphs of the countably infinite graph G € Gr4 are
(0, k)-hyperfinite, where

e\L-1e¢
5 5= (—) <
5) 3d 3
Let H be a finite induced subgraph of G. We partition the vertices of H into
subsets B;,i € Z such that

et ()" <wr < ()1
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For 0 < ¢ < L — 1 consider the subset
Dy = VUiezBir1q -
Since L > %7 there exists some 0 < m < L — 1 such that

(6) w(Dy) < gw(V(H)).

Now, for ¢ € Z set
L—1
C’i - Uq:1 BiL+m+q .

By our assumption, if x € C; and y € Cj}, i < j, then

(7) <3_€d> w(x) > w(y).

For ¢ < j let F; ; be the set of vertices y in C; such that there exists z € Cj,
x ~ y. By the vertex degree assumption, | U;<; F; ;| < d|C;]. Also, if y €
UicjFi; and 2 € C;, then ;w(x) > w(y) . Therefore, w(U;<; F ;) < sw(C;).
Consequently,

(®) w(F) < gw(V(H).

where F' = Ujez (Ui F ;). Let us delete the subsets F' and D,, from V(H)
together with all the incident edges. Then, each of the remaining components
are inside of the subsets C;. Let T be such a component. By our assumption,
T is (0, k)-hyperfinite, thus one can delete a subset S C V(T') so that |S| <
O|V(T)| in such a way that all the remaining components are of size at most

k. By the definition of C;, if y € V(T),

Hence,
w(s) <181 we) (X)) <auwvi) (X)) = fuwa.
By (6) and (8),
w(F U D) < %w(V(H)).

So, by deleting a set of vertices of weight less than €|V (H)|, we obtained a
graph that has components of size at most k. O

Proposition 2.5. If G € Gry is weighted hyperfinite then G is strongly hy-
perfinite.

Proof. First we prove the proposition for finite graphs. This part is based on
the proof of Lemma 4.1 in [24]. A finite graph G is (e, k)-strongly hyperfinite, if
there exists a probability measure p on Sep(G, k) such that for each x € V(G)

p{Y |z eY}) <e.

Lemma 2.6. If a finite graph G is (¢, k)-weighted hyperfinite, then it is (€, k)-
strongly hyperfinite as well.
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Proof. Assume that G is (e, k)-weighted hyperfinite and V(G) = n. Let m be
the number of k-separators. For a k-separator Y let {¢, : V(G) — {0,1}} €
R™ be its characteristic vector. We define the hull H of the k-separators as
the convex set of vectors z € R™ which can be written in the form

m
z= E Ticy, +y,
=1

where {z;}!", are non-negative real numbers, Y ", z; = 1 and y is a non-
negative vector. Now, let v = {€,¢,...,e}. We have two cases.

Case 1. v € H. Then, there exist non-negative real numbers {x;}",
Y x; = 1 such that all the absolute values of the coordinates of the vector
Y i1 wicy. are less than or equal to e. That is, if the probability measure p
on the k-separators is given by u(Y;) = x;, the (e, k)-strong hyperfiniteness
follows.

Case 2. v ¢ H. Since H is a closed convex set, there must exist a hyperplane
H C R” containing v such that H is entirely on one side of the hyperplane
H. That is, there exists a vector w € R™ such that for any ¢ € H we have
(w,v) <(w,c).
Clearly, for any 1 < i < n, w; > 0, since the i-th coordinate of ¢, can be
increased arbitrarily, while keeping the other coordinates fixed. We can also
assume that >  w; = 1. So,
€ < <w7 QY)

holds for any k-separator Y, that is, G is not (e, k)-weighted hyperfinite,
leading to a contradiction. U

Lemma 2.7. Let G be a countably infinite graph of vertex degree d. Suppose
that for any € > 0 there exists k > 0 such that all the finite subgraphs of G
are (€, k)-strongly hyperfinite. Then, G is strongly hyperfinite.

Proof. Let {H,,}>°_; be finite induced subgraphs in G such that V(H;) C
V(Hy) C ... and U2_,V(H,) = V(G). Let v, be a probability measure on
Sep(H,, k) such that for all x € V(H,,) we have

v,({Y € Sep(H,, k) |z €Y}) <e.
For all n > 1 we have an injective map
n : Sep(Hn, k) — Sep(G, k)

mapping the k-separator Y, to Y =Y, U (V(G)\V(H,,)). Now, let u, =
(on)x(vn) . Let p,, — p be a weakly convergent subsequence. For all z €
V(G), let U, C Sep(G, k) be the set of k-separators containing x. Clearly, U,
is a closed-open subset of Sep(G, k). By our assumptions, for large enough k,
pin, (Uz) < €. Therefore, u(U,) < e. Hence, our lemma follows. O

This finishes the proof of our proposition. O
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Proposition 2.8. If G € Gry is strongly hyperfinite, then G is of
Property A.

Proof. Let € > 0. Since G is strongly hyperfinite, there exists £k > 0 and a
probability measure p on Sep(G, k) such that for all z € V(G)

(9) py |zey)< 7.

We define a non-negative function F : Ig(k) — R, where I (k) is the set of
induced, connected subgraphs of G having at most k vertices, in the following
way. Let F'(H) be defined as the p-measure of the set of k-separators Y such
that H is a component in G\Y.

Now, let py be the uniform probability measure on H. Then, let
O, = > F(Hpy+culs,
Helg(k),xeH
where .
=1- < -
Helg(k),weH
Then, for all z € V(G), ||©.]|; = 1 and Supp(©.) C B ().

Now, let x ~ y be adjacent vertices. Then,

10, = Oylh <cote,+ Y. FH)+ > F(H)<e.
H,xeH,y¢H H,x¢HyeH
Therefore, GG is of Property A. O

Now, by Propositions 2.1, 2.3, 2.4, 2.5 and 2.8, the Long Cycle Theorem
follows. O

3. FOLNER FUNCTIONS
The goal of this section is to prove Theorem 2.

Proof. We will prove the existence of § for a fixed graph G € Gry. However,
this is enough to prove our theorem. Indeed, assume that for some ¢ > 0
there is a sequence of graphs {G,,}°°; such that the largest §’s satisfying the
condition of our theorem tend to zero. Then, for the disjoint union U G,
one could not pick a ¢ that satisfies the condition of our theorem. So, we fix
G € Gryg and € > 0. As follows, let ¢ be the smallest integer that is greater
than 1—2 . Let p > 0 be such that (1 + p)?? = 1.1. Let us begin the proof with
a technical lemma.

Lemma 3.1. Let p be a probability measure on the finite set {z;}?_, C V(G)
such that for any 1 <i < n we have 0 < p(z;) < % . Then there exist positive
real numbers ay < as < - -+ < a,, satisfying the following conditions:

2
(1) a; < Ton-
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(2) Forany 1 <i<m—1, a;41 = 2a;.

(3) X p(Mi) > 1—
where M; = {z;| (1 + p)a; < p(z;) < (14 p)tai41}.

Proof. Let s < 5 be a positive real number such that for all non-negative
integers k.1, 7, 2’“ (1 p)? # p(x;). Let m be the largest integer such that
§2M < 1 . We define the disjoint subsets 17,75, ..., Ty by

U 2Z 1 1+p 2] 2 2Z 1 (1+p)2] 1) (2i8(1+p)2j_3,2i8(1+p)2j_2)

So, there exists 1 <[ < ¢ such that

1 €2

16 '

Set a; := s(1+ p)!~! < {5, and define a; := 20715(1 4 p)i=t as in (2) of the
lemma. Observe that >, . p(z;) < {5, hence we have that

p(T) <

L

m—1 2

€
E p(M;) > 1 —p(Tq) — E pzi) >1— e U
=1 ilp(zi)<ar

We define the constant ¢ in the following lemma.

Lemma 3.2. Let § = ‘/ﬁ Y and let p: V(G) — R be a §-Folner function,
such that 3, cy @) p(x ) = 1 Define B(G) C V(G) as the set of vertices x in
the support of p such that there exists y ~ x, so that y is not in the support
of p or there exists y ~ x, such that either Zg; > /T+p or % > 1+ p.
Then,

(10) 3 ) < %

[\V]

Proof. If pz V1+ p, then
Ip(x) — p(y)| > (1 -

If % > /1+ p, then
Ip(z) —p(y)| > (V1+p—1)p(z).

If y is not in the support of p, then we also have that

Ip(z) = p(y)| = p(x) > (V1+p—1)p(z).

Hence, we have that

S YV m < S S )~ ply)l <6

z€B(G) z€B(G) =~y

1 V1 —1
vV1i+p
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Therefore, our lemma follows. O

Now let us consider our d-Fglner probability measure p and let n be the size
of support of p. We may assume that all the values of p are smaller than
:. Pick the numbers {a;}7, to satisfy the conditions of Lemma 3.1. For

1<i<m-—1,let by =1+ pa;, c; = (\/T+ p) a1 . Finally, let
Si={z; | bi <p(x;) < i}
Lemma 3.3. Let Q = U S;. Then, p(Q) <

i| S; 18 not e-Folner 5
Proof. Observe that

62

(11) p (U5'0(S))) < T
Indeed,

urto(s;) ¢ LU B(G),
where L is the complement of U*;'M; from Lemma 3.1 and B(G) is the set
defined in Lemma 3.2. So, (11) follows from Lemma 3.1 and Lemma 3.2.

Now, if S; is not e-Folner, then we have that

e |0(S;)| > €|S;].
e a;|0(5;)| < p(9(Si)) < 2a;]0(S;)|.
[ (IZ|SZ| < p(SJ < 2a2|Sl|

Thus, p(9(S;)) > a:|S;| > 5p(S;). Hence,

2¢ €
E )< —— < —. O
p(S)_€4<2

il S;is not e-Fglner

That is,
m—1
oo p(S)>1—( > p(S)) — (1= p(M;)) > 1—e.
i| S;is e-Fglner il S;is not e-Fglner =1
Therefore, if we set H = Uil s, is e-F@lnerSiv our theorem follows. U

Remark 1. In the case of Cayley graphs, Theorem 2.16 of [37] entails the
existence of an e-Fglner set F in the support of a J-Fglner probability measure
p, without any control on the measure of F.

4. FOLNER GRAPHS ARE SETWISE F@LNER
Proposition 4.1. Fglner Graphs are Setwise Fglner.
Proof. Assume that there exists a Fglner graph GG that is not setwise Fglner.

That is, there exists € > 0 such that for any £ > 1 there is a finite subset
L C V(G) so that there is no e-Folner set in By (L) that contains L.
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Given € > 0, let 0 = 6(5) be as in Theorem 2. So, for each §-Fglner function
J there exists an $-Folner subset H inside the support of f so that

dof@)>(1-3) Y fla).
xeH zeV(G)

Let 7 be a natural number such that for any z € V(G) the ball BS(z) contains
a %-F@lner set. Now, for all £ > 1 we choose a natural number T}, satisfying
the inequality

T In(1 + 2) > 2In(k),
that is,

(12) (1+ g)Tk > k2

By our assumptions, for every large enough k£ > 1 there exists a finite subset
Ly C V(G) such that there is no e-Fglner set Hj, so that

Ly, C Hy, C Bp4r(Lg) -
Lemma 4.2. If k is large enough then we have
(13) |Br, (Li)| > kR,| L],
where R, s the size of the largest ball of radius r in the graph G.

Proof. For k > 1 we consider the subsets
Ly, C By(Ly) C By(Lg) C --- C By (Ly) .
By our assumptions, for 0 < i < T}, B;(T}) is not an e-Fglner set, hence
|Biy1(Li)| > (1 + 5)|Bi(Ly)|, that is
[Br (L)l > (1+ 5)™ L
Hence by (12), for large enough k& we have that
|Br, (Li)| > kR,| L],

so our lemma follows. O

Now, for each y € By, (Ly) consider the uniform probability measure p, of a
g—FQ)lner set inside BY(y). Clearly, p, is a §-Fglner function. Therefore, g =
Zye Br, (L) Py is a 0-Fglner function as well, supported in the set Br, . (Lg).

So by our assumption, there exists an $-Fglner subset Hy C By 4. (Ly) such

that .
So=0-5 Y e

zE€H}, ZGBTk+r(Lk)

By definition, for any z € V(G), g(z) < R,. That is,
€

HR > (1=2) > g(2) > (1= DkR|L|.

ZEBTk+r(Lk)
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So, the inequality |Hy| > %|Ly| holds provided that k is large enough. There-
fore, for large k values the subset H; U L is an e-Fglner set inside the subset
Br, (L) containing Ly, leading to a contradiction. O

Proposition 4.3. For sufficiently large d, there exist Folner graphs in Gry
that are not almost finite.

Proof. Let us pick a c-expander sequence of finite connected graphs {G,}5°;.
That is, for some 0 < ¢ < 1 the following condition holds. If n > 1, L,, C
V(G,) and |L,| < 3|V(G,)|, then |8(L,)| > c|L,|. We also assume that the
diameter of G, is at least n. Now fix a sequence of integers {a, }°°; such that

(14) n2"t < a,,.

Now we pick pairs of vertices xy, yx, de, (Tr, yx) = n and for each k connect yy
and xj1 by a new edge. Let GG be the resulting connected graph. Now for any
n > 1 pick a maximal subset X,, of V(G) satisfying the following conditions.

o If x # y are elements of X, then dg(z,y) > 2a,.

o Ifa, > %7 then G N X, is empty.

Now for each n > 1 attach a path of length n to all elements of X,,. If a
vertex belongs to more than one set X,,, we attach only one path to it - the
longest among them. Note that, by our conditions, a vertex can belong to
only finitely many of the sets X,,. The resulting graph G° is Fglner, since
every vertex is at bounded distance from one of the attached paths of length
n. For each k > 1, let Y}, be the set of vertices in V(G°)\V(G) that are in a
path that is attached to a vertex of G. Also, let X* := V(Gy) N X,,.

Lemma 4.4. For eachn > 1 and k > 1, we have that
(15) an| X5 < [V(GR)] .

Proof. By our condition, the balls of radius a,, centered around the elements
of X,, are disjoint. If X* = (), then diam(G}) > 3a, by definition of X*. Also,
if z € X then |BS (z) NV(Gy)| > a,. Indeed, let z be one of the elements in
G, that is farthest from x. Then, the shortest path in G, from x to z contains
at least a, elements contained in BS (z). Therefore, a,|X}| < [V(Gy)|. O

Hence by (14) and (15), we have that n|X¥| < 5:1=|V(Gy)|. That is, we have
that

(16) il < 3V (Gl

Assume that G° is almost finite. Then, we have a tiling of V(G°) by &-Folner
sets {T;}>°, such that diam(7;) < r for some integer r. Clearly, if k is large
enough there exists a tile 7; such that 7; N V(G) = S is fully contained in

V(Gy) and |T; NYy| < @ Then |0S| > ¢|T;| > §|S], in contradiction with
the fact that T; is a {5-Felner set. O
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5. THE SHORT CYCLE THEOREM

The goal of this section is to prove Theorem 3. The way we prove the theorem
is showing that: Property A + Setwise Fglner = Strong Fglner hyperfiniteness
= Fractional almost finiteness = Folner Property A = Property A + Setwise
Fglner.

First, let us define a compact metric space structure on the space Pg(e,r) of
(e, 7)-Folner packings (see Introduction) in G. These packings P are special
equivalence relations on V(G). If z,y € V(G) are in the same elements of P,
then x =p y. The vertices that are not covered by the elements of P form
classes of size 1. Let us enumerate the vertices of G, {x1, z2,x3,...}. Let the
distance of two (¢, r)-Folner packings P; and Py be 27" if

e For 1 <4,7 <n —1 we have that z; =p, z; if and only if x; =p, ;.
e For some 1 <i<n-—1, z; =p, x, and x; £p, x, Or T; Zp, T, and
T =py Ty-

It is not hard to see that Pg(e,r) a compact space with respect to the above
metric.

We call the graph G strongly Fglner hyperfinite if for any ¢ > 0 there
exist 7 > 1 and a Borel probability measure v on the compact space Pg(e, 1)
such that for any vertex z € V(G)

v({P € Psle,r) | 2 ¢ P}) <e,

where P denotes the set of vertices contained in the elements of the packing

P.

Proposition 5.1. If the graph G € Gry is of Property A and is setwise Folner,
then G is strongly Folner hyperfinite.

Proof. Fix e > 0. Let k > 0 be an integer such that for any finite set L C V(G)
there exists an e-Fglner set H such that L C H C By(L). Also, let Rg,1 be
the size of the largest k + 1-ball in V(G). By Theorem 1, we have an integer
[ > 0 such that there exists a Borel probability measure g on the compact
space Sep(G, 1) of I-separators such that for any x € V(G):

(17) u{Y |zev)) <

€

Ry

Then, for any =z € V(G):

(1) Y | Bia (@)Y £0}) < e
We define the map O : Sep(G, 1) — Sep(G, 1) by O(Y) = B41(Y). Clearly, ©
is continuous. Now, let Y be an [-separator such that if we delete Y together

with all the incident edges, the remaining components are {J¥ }2°, |V (JY)] <
l.

Then, if we delete ©(Y") from V(@) the remaining vertices are in the disjoint
union U, AY | where AY =V (JY)\ By (Y).
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Now, for each 1 < i < oo we pick the smallest e-Fglner set H; such that
AY C HY C Byp(AY) c V(JY) in the following way. We enumerate the
vertices of V(G) and if there are more than one e-Fglner sets of the smallest
size in By(AY), then we pick the first one in the lexicographic ordering. Note
that for every i, diamg(H;) < r, where r = 2k + [.

Therefore, we have a continuous map
O : Sep(G,l) — Pg(e,r).
If Bi1(z) NY = 0 then x is in some of the element of the packing ®(Y).

Hence if v is the push-forward measure ®,(Sep(G, 1)), then by (18) for any
x € V(G) we have that

v({P € Psle,r) | © ¢ P}) <e.
Hence, G is strongly Fglner hyperfinite. U

Proposition 5.2. If G is strongly Folner hyperfinite then G is fractionally
almost finite as well.

Proof. Fix € > 0. Then there exists » > 1 and a Borel probability measure p
of Pg(e,r) such that for every x € V(G)
(19) w({P |y € Pfor ally such thatdg(z,y) <1}) > 1 —e.

For any (e, r)-Folner set H let F(H) be defined as the p-measure of all (e, 7)-
Folner packings P such that H € P. Then, F clearly satisfies the two condi-
tions above. U

Proposition 5.3. If the graph G € Gry s fractionally almost finite then G
is of Folner Property A.

Proof. For ¢ > 0, let r > 0 be an integer and F' : Fg(e,r) — R, ¢, be as
in the definition of fractional hyperfiniteness. Since H is an e-Fglner set, the

uniform probability measure py defined on H is a 2de-Fglner function. Now,
for x € V(G), let

P, = Z F(H)py + c0; .
c€H,HEFg(e,r)

Then, P, is a 2ed-Fglner function. If y ~ x is an adjacent vertex then we have
the following inequality:.

IP, — Pylly < o+ ¢y + > F(H) + > F(H) < 4e.
z€0(H),HEFa(e,r) yeI(H),HeFg(e,r)
Therefore, G has Fglner Property A. O

By Theorem 2 and Proposition 4.1, we immediately have the following result.

Proposition 5.4. If G is of Folner Property A, then G is of Property A and
it is setwise Folner.
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By Propositions 5.1, 5.2, 5.3 and 5.4 the Short Cycle Theorem follows. O

6. STRONG F@LNER HYPERFINITENESS IMPLIES STRONG ALMOST
FINITENESS

In this section we establish one more equivalent of Strong Fglner Hyperfinite-
ness. First let us give a precise definition for strong almost finiteness.

Definition 6.1. The graph G € Gry is strongly almost finite if for any € > 0
there exists r > 1 and a probability measure v on the space Pg(e,r) of (¢,r)-
Folner packings satisfying the following two conditions.

e 1 is concentrated on tilings, that is, on packings P that fully covers
V(G).

e For each z € V(G) the v-measure of tilings such that z in on the
boundary of the tile containg x is less than e.

The goal of this section is to prove Theorem 4.

Proof. The “if” part follows from the definition, we need to focus on the “only
if” part. So, let G € Gry be a strongly Fglner hyperfinite graph. The next
proposition has analogues in Ornstein-Weiss theory, but the assumption of
strong Fglner hyperfiniteness in the present setting makes the proof simpler.

Proposition 6.2. For any € > 0 there exists 6 > 0, r > 1 and an (¢, r)-Folner
packing P = {H;}2, such that for any 6-Folner set T C V(G), the subsets
H; that are contained in T cover at least (1 — €)|T| vertices of T.

Proof. Let r > 1 and v be a Borel probability measure on the space
Pg(e,r) of (e,7)-Folner packings such that for any vertex z € V(G)

~ €
v({P |z ¢ P}) < e
Pick 6 > 0 in such a way that if 7" is a 0-Fglner set in V(G) then
e
T 10°

where

T :={yeT|dsy,d(T)) > 2r}.
Observe that if z € 7" for some §-Fglner set T, then BS _(z) C T. Hence,
we have the following lemma.

Lemma 6.3. If H; and Hy are both (e,r)-Folner sets, Hy intersects T' and
Hy intersects the complement of T', then Hy and Hs are disjoint sets.

Now, for z € T" let w, be arandom variable on the probability space (Pg(e,r),v)
such that w,(P) =0ifz € P, w,(P) = 1if 2 ¢ P. Then we have the following
inequality for the expected value.

(20) E(w,) < <



24 GABOR ELEK AND ADAM TIMAR

Lemma 6.4. For any 0-Folner set T there exist an (€,r)-Folner packing P
such that |T"| > (1 £)|T|, where T" is the set of points in T that are covered
by Folner-sets H in the packing P that intersects T".

Proof. By (20),
€

zeT’

Therefore, there exists a packing P € Pg(e,r) that covers at least (1 — 5)|7"]
vertices in 7”. Hence,

(21) T > (1= )1 = )IT] > (1= )T

g

Let us enumerate the §-Fglner sets {S7,Ss,...} in G. Let P, = {H'}2, be
an (e, 7)-Fglner packing such that it covers the maximal amount of vertices in
"5
=1~

Lemma 6.5. For each 1 < j < n, the set of H'’s that are contained in S,
covers at least (1 — €)|S;| vertices in S;.

Proof. Assume that there exists 1 < 7 < n that does not satisfy the covering
statement of the lemma. Let m be the number of vertices covered in Up_,S;
by P,. First, let us delete all the sets H;* from the packing P, that are in S;.
Now the number of vertices covered in U_,.S; remains at least m — (1 —¢)[S;|.
Using the previous lemma we can add (e, 7)-Fglner sets in such a way that

e We increase the number of vertices covered in U7_;5; by at least
(1 —5)I51.
e We still obtain an (e, 7)-Fglner packing by Lemma 6.3.

So the new packing covers more than m vertices in U}_;5; leading to a con-
tradiction. O

Now we can finish the proof of our proposition. Let k be the maximal size
of an (e,r)-Folner set in G. Let {P,,}°, be a convergent subsequence in the
compact space Pg(e,r) converging to P. By the definition of convergence and
the previous lemma, P will satisfy the condition of our proposition. Il

Proposition 6.6. If the graph G € Gry is strongly Folner hyperfinite, then
G is almost finite.

Proof. Fix 0 < € < % Let 0 < 0 < %, r > 0 so that by Proposition 6.2
there exists a (e, 7)-Folner packing P = {H,}°, so that for each d-Fglner set
T at least (1 — €)|T'| vertices of T are covered by some H; C T. Since G is
fractionally almost finite by Theorem 3, there exists £ > 0 and a non-negative
function F' on the space F¢ (0, k) of -Fglner sets of radius less than k, such
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that for any € V(G) we have that

z€T, TEF G (8,k)
with 0 < ¢, < 0. Pick a subset K; C H; such that 3e|H;| < |K;| < 4¢|H;|. Let
A; C V(G) be the set of vertices not covered by any H; and let Ay C V(G)
be the set of vertices that are in some K;. That is, for any J-Fglner set T we
have that

(23) )T N Ay| < 26|T| < 3e(1 — &)|T| < |TN Ay

Let us construct a weighted, directed, bipartite graph D(A;, As) in the follow-
ing way. For each (, k)-Folner set T so that F'(T') > 0 and for each x € TN A,
we draw two outgoing edges towards T'N As. One edge has weight F'(T"), the
other one has weight Cwi(_:;)' By (23), we can assume that for any 7' the end-
points of the drawn edges are different. Also by (22), for each vertex z € Ay,
the sum of the weights on the outgoing edges is 1 and for each vertex y € A,
the sum of the weights on the incoming edges is less than or equal to 1.

Therefore our directed graph satisfies the Hall condition, any finite subset M of
Aj has at least | M| adjacent vertices in Ay. So by the Marriage Theorem, using
a strategy somewhat similar to [16], there exists an injective map ® : A; — A
such that for any x € A;, dg(z,®(x)) < k. Now, for each 1 < i < oo set
SZ' = Hz U (I)_l(Hz) Then,

|0(S)] < [0(H;)| + |27 (Hy)| < 5e[Si]

Therefore, we have a partition V(G) = U2, S;, where each S; is a 5e-Fglner
set and
diamg(S;) < 2k +r.

Hence, G is almost finite. L.

Now let us finish the proof of our theorem. First fix € > 0. Since G is almost
finite by Proposition 6.6, we have a partition V(G) = U2, T;, where all the
T;’s are e-Fglner having diameter at most t. Let us pick 6 > 0, » > 0 and a
probability measure v on Pg(d,7) in such a way that

e For any (6,r)-Folner set F' the set F’ is e-Fglner whenever F” is the
union of F' and some of the sets T; intersecting F'.

e The measure v is concentrated on packings, where the distance of two
associated (0, r)-Folner sets is at least 3t.

e For any z € V(Q), v({P | z ¢ P}) < 6.

For each packing P = {Qf}}";l we construct a tiling 7p in the following way.
For 1 < j < oo let Rf be the union of Qf and all the sets T; intersecting
Q;-). Hence, by our condition R}D is e-Fglner. The remaining tiles in 7p are
the sets T;’s that are not intersecting any Q}D. By pushing-forward v, we
have a measure on the tilings 7p satisfying the definition of strong almost
finiteness. O
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7. EXAMPLES OF STRONGLY ALMOST FINITE GRAPHS

In this section using the Short Cycle Theorem and Theorem 4, we extend
the almost finiteness results of [16] about Cayley graphs to large classes of
general graphs, to graphs of subexponential growth and to Schreier graphs of
amenable groups.

First let us recall the definition of subexponential growth.

Definition 7.1. The graph G € Gry is of subexponential growth if

In(| B¢
lm s U@
T 2eV(Q) r

The following lemma is well-known, we provide the proof for completeness.

Lemma 7.2. If G € Gry is a graph of subexponential growth, then for any
€ > 0 there exists r > 0 such that for all x € V(G) there is an 1 < i <71 so0

that .
|B¢+1 (7)]

<l+e
|BE ()]

Proof. Suppose that the statement of the lemma does not hold. Then, there

exists an € > 0, a sequence of vertices {z,, € V(G)}>°, and an increasing
ln(‘ng(In” >

sequence of natural numbers {i,}22; such that for any n > 1,
In(1 + ¢€), in contradiction with the definition of subexponentiality. O

in

Proposition 7.3. Graphs G € Gry of subexponential growth are strongly
almost finite.

Proof. Let G € Grg be a graph of subexponential growth. By the Short Cycle
Theorem and Theorem 4, it is enough to prove that G is Fglner and it is
of Property A. Observe that being a Fglner graph follows immediately from
Lemma 7.2. It has already been proved in [59] (Theorem 6.1) that graphs of
subexponential growth are of Property A, nevertheless we give a very short
proof of this fact using the Long Cycle Theorem. Let H € Gry be the graph
obtained by taking the disjoint union of all induced subgraphs of G up to
isomorphism. Clearly, H has subexponential growth, so H is Fglner. However,
the the Fglnerness of H implies that G is uniformly locally amenable, hence
by the Long Cycle Theorem, G is of Property A. O

Now I' be a finitely generated group and X be a finite, symmetric generat-
ing set of I'. Let H C I' be a subgroup. Recall that the Schreier graph
Sch(I'/H, ) is defined as follows.

e The vertex set of Sch(I'/H, X)) consists of the the right cosets { Ha}qer-
e The coset Ha is adjacent to the coset Hb # Ha if Hb = Hao for some
oE .
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If H = e is the trivial subgroup, then the Cayley graph Cay(T',3) equals
Sch(I'/e, ¥2).

Proposition 7.4. For any amenable group I' and symmetric generating sys-
tem X, the graph Sch(I'/H, ) is strongly almost finite.

Proof Pick ¢ > 0. First, we will be working with Cay(I',X). Let F be a

2‘E| -Folner set in I' containing the unit element. By the amenability of T,

such subset exists. For x € I' let P,r be the uniform probability measure on
the translate xF'. By our condition on F'| if z ~ y we have that

(24) ltFAYF| < |[FA(x 'yFAyF)| + [yFAF| < €|F|.

Therefore, ||Pyr — Pyrlli < €. Also Supp(P,r) C Biifrf(rg)(z). Finally, we
have that

> Y 1Purl) - Parleo)] < 2l <

zell oe¥
That is, P, is an e-Fglner function. By (24), Cay(I', X)) is of Fglner Property
A. Net we will use the functions P,p to prove that Sch(I'/H,¥) is of Fglner
Property A as well.

Let f : I' — R be a finitely supported non-negative function. Let us define
fH:T/H — R by setting fH(Hz) =, ., [(2).

Lemma 7.5. We have that

(&) LA 1 = [1f ]
(b) If g : I' — R is another finitely supported non-negative function then

1A = g™l < [1f = glls-

SN 1M a) = fao) <D0 f(@) = flao)].

acl’/H c€X zel oex

Proof. First, we have that

=Y fMay= > > f@=> fl@)=Iflh-

a€l/H acT/H z€Ha zel
Then,
1A = g™l = 2/: [ (a) = g"(a)] = 2/: |(ZH: f@)) - (2}; g9(z))] <
<Y [f@) —gl@)|=If—glh-
Finally, .
Z/ ZZIfH(a)—fH(aa)lz Z/ ZE\(ZH f(%))—(ZH flao))| <

> D @)~ fxo)|. O

z€l' oeX
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Now, we finish the proof of our proposition. Let © : I'/H — Prob(I'/H) be
defined by ©(Hz) := PH.. Note that if Hx = Hy, then

(25) P = Pp,

so, © is well-defined. Clearly, if Supp(f) C By (), then Supp(f") C
BY"UHE) () Therefore, for every Hz € T'/H we have that Supp(©(Hz)) C
By TR (H ) where F € By (e).

By the previous lemma, for every Hz € I'/H, ©(Hz) is an e-Fglner probability
measure. Again, by the previous lemma, if Hy = Hox we have that

|©(Hz) — O(Hy)[1 <e.

Therefore, Sch(I'/H, X)) is of Fglner Property A. Hence, by the Short Cycle
Theorem and Theorem 4, our proposition follows. O

Remark 2. Note that if N is a normal subgroup in a free group I" and I'/N is
a nonexact group then the Cayley graph of I" is of Property A, but the Cayley
graph of I'/N is not of Property A. One might wonder, why Lemma 7.5 does
not imply that the Schreier graphs of Property A groups are of Property A
themselves. The reason is that we used amenability in the proof of Proposition
7.4 in a crucial way. The functions {P,r}ser form an automorphism invari-
ant system, that is why we have (25). If the group I' had such a canonical
system of functions for every € > 0, then all of the continuous actions of I' on
the Cantor set would be topologically amenable (see Subsection 10.6), hence
the group I' would have to be amenable. Indeed, free continuous actions of
nonamenable groups admitting invariant probability measures are never topo-
logically amenable (see Proposition 10.11). Note that every countable group
has free, minimal, continuous actions on the Cantor set that admit invariant
probability measures [25].

Let I' be an amenable group equipped with a generating system >, H C I’
be a subgroup and let 7y : I' — I'/H be the factor map, mapping z into
Hzx. Then it is not true that for any € > 0 there is some 6 > 0 such that the
image of a -Fglner set is always an e-Fglner set. Indeed, let I' = Z x Z and
H be the first Z-factor. Let F,, = [0,n%] x [0,n]. Now let J, be a set of n
elements in I' such that the second coordinates of these elements are positive
integers greater than n? and their pairwise difference is at least 2. For large n
values both G,, = F,,UJ,, and F,, are )-Fglner sets with very small ¢, however,
7y (G,) is not even %-F@lner set. By removing J, from G,,, we obtain a set
such that its image is "very” Fglner. The following proposition shows that
this is always the case.

Proposition 7.6. Let I' be an amenable group with a symmetric generating
set . Then, for any € > 0 there is some § = 0(¢) > 0 as in Theorem 2 such
that if H C T is a subgroup and @Q is a §-Folner set in Cay(I'/H, ), then we
have a subset J, |J| < €|Q| so that the subset Ty (Q\J) is an e-Folner set in
Sch(I'/H, ).
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Proof. Fix € > 0 and let 6 = d(¢) > 0 be as in Theorem 2 so that if p
is a 0-Fglner probability measure on the vertex set a graph G € Gry, then
there exists an e-Folner set T inside the support of p so that the p-measure
of Supp(p)\T is less than e. Let @ be a 2-Fglner set in Cay(I', ). Then
the uniform probability measure pg is a 0-Fglner function. By Lemma 7.5,
the function Q is a §-Fglner function supported on 75 (Q) C Sch(I'/H,X).
So by our condition, we have an e-Fglner set E inside 7y (Q) such that the
measure of 7 (Q)\F with respect to the probability measure Q¥ is less than
€. That is,
7 (e (Q\E)| < Q.

Therefore by choosing J = 7' (75 (Q)\E), our proposition follows. O

8. NEIGHBORHOOD CONVERGENCE

Definition 8.1. The graphs G, H € Gry are called neighborhood equiv-
alent, G = H if for any rooted ball BS(x) C G there exists a rooted ball
BH(y) C H that is rooted-isomorphic to B%(z) and conversely, for any
rooted ball BY(u) C H there exists a rooted ball BY(v) C G that is rooted-
isomorphic to B (u). So, if G denotes the set of all r-balls in G up to rooted
isomorphism, then G and H are neighborhood equivalent if and only if G=4H.

We call a graph property P C Gry a neighborhood equivalent property if for
graphs G = H, G € P if and only if H € P.

Proposition 8.2. Amenability, Property A, being a Folner graph, almost
finiteness, q-colorability and having a perfect matching are all neighborhood
equivalent properties.

Proof. Let us assume that G is g-colorable for some ¢ > 2 and o : V(G) —
{1,2,...,q} is a proper g-coloring. It is enough to prove that any component
of H is g-colorable. Let x € V(H) and forn > 1 3, : V(H) — {1,2,...,q}
be labelings that are proper colorings restricted on the ball BX(z). By neigh-
borhood equivalence, such labelings exist. Let (3,, — 7 be a convergent sub-
sequence. Then ~ is proper ¢-coloring of the component of H containing x.
Similarly, we can prove that having perfect matching or being almost finite is
neighborhood equivalent, since these properties can be described by colorings
satisfying some local constraints. It is straightforward to prove that amenabil-
ity, being a Fglner graph and Property A (that is local hyperfiniteness) are
neighborhood equivalent properties as well. U

Definition 8.3. Let By, Bs, ... be an enumeration of the finite rooted balls in
Grq. We define a pseudo-metric on Gry in the following way. Let diste,, (G, H)
2 "iffor1<i<n—1B;e(GNH)or B e (GNH), and B, € GAH. Tt
is easy to see that dist,, defines a metric on the neighborhood equivalence
classes of Grq. So, a sequence {Gy};2, is a Cauchy-sequence in Gry if for
any rooted ball B, either B € (,, for finitely many n’s or B € G,, for all but
finitely many n’s.
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Proposition 8.4. The space of neighborhood equivalence is compact, or in
other words, all Cauchy sequences are convergent.

Proof. First, let RGry be the set of all rooted, connected graphs of vertex
degree bound d up to rooted isomorphisms. Again, we can define a metric
distgar, on RGry by setting

diStRGT’d((G7 x)? (H7 y)) = 2_n )

where n is the largest integer for which the rooted n-balls around x resp. y
are rooted isomorphic. It is easy to see that RGr, is compact with respect
to this metric. Now, let {G,}°°,; C Gry be a Cauchy sequence. Consider the
set A of all rooted graphs (@, z) that are limits of sequences in the form of
{Gn, x,}52,, where z, € V(G,). Clearly, if (Q,z) € A, then all the rooted
balls in @) are rooted balls in all but finitely many G,’s. On the other hand,
if B is a rooted ball in all but finitely many G,,’s then there exists (Q,z) € A
so that B is a rooted ball in Q). Therefore, if {Q,}52,, is a countable dense
subset of A, then for the graph G having components {Q,}°°; we have that

n=1

lim,_,., G, =G. ]

We say that a countable set of graphs {G,,}22; possesses the graph property
P if for the graph B having components {G,}22,, B € P. The following
proposition’s proof is similar to the one of Proposition 8.2 and left to the
reader.

Proposition 8.5. Let lim, oo G, = G. Then, if the set {G,}>2, possesses
any of the properties listed in Proposition 8.2, except amenability, so does G.

By definition, all finite graphs are amenable, and limits of finite graphs can
easily be non-amenable, e.g the 3-regular tree is non-amenable and it is the
limit of large girth 3-regular graphs. However, we can define the amenability
of a countable set of graphs in the following way.

Definition 8.6. The countable set of graphs {G,,}°°, is amenable if for any
€ > 0 there exists r > 1 such that for any n > 1, the graph G,, contains an
e-Folner set of diameter at most r.

By the Long Cycle Theorem, any countable set of finite graphs having Prop-
erty A is amenable. Obviously, this statement does not hold for infinite graphs.

9. HAUSDORFF LIMITS OF GRAPH SPECTRA

Let G € Gry be a finite or infinite graph and Lg : *(V(G)) — 2(V(G)) be
the Laplacian operator on G as in the Introduction.

Proposition 9.1. If G and H are neighborhood equivalent, then

Spec(Lg) = Spec(Ly).

Proof. First, we need a lemma.
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Lemma 9.2. Let P be a real polynomial, then |P(Ls)| = || P(Ly)|-

Proof. Fixsome e > 0. Let f € [*(V(G)) such that || f|| = 1 and || P(Le)(f)]] >
(1 — o)||P(Lg)||. We can assume that f is supported on a ball BS(x) for
some s > 0 and x € V(G). Let t be the degree of P. Then, P(L¢s)(f) is
supported in the ball BS ,(z). Since G and H are equivalent, there exists
y € V(H) such that the ball BE,,(z) is rooted-isomorphic to the ball B ,(y)
under some rooted-isomorphism j. Then, |7.(f)|| = 1 and ||P(Le)(f)|| =
IP(L)Gu(F)], where 4. (F)(z) = f(i~' (), for = € BE(z). Therefore,
|P(Ly)| = (1 —¢€)||P(Ls)|| holds for any € > 0. Consequently, ||P(Lg)|| >
|P(Le)|. Similarly, || P(Lg)|| > ||P(Lx)||, thus our lemma follows. O

By Functional Calculus, we have that

(26) le(La)ll = lle(Ln)ll

holds for any real continuous function ¢. Observe that A € Spec(L¢) if and
only if for any n > 1 ||¢)(Le)|| # 0, where ¢} is a piecewise linear, continuous,
non-negative function such that

epr(r)=1lifA-L<a<A+1,

e ph(z)=0ifz>A+2o0orz<A—
e and defined linearly otherwise.

S

Y

Therefore, by (26) our proposition follows. O

The main goal of this section is to prove Theorem 5.

Proof. The following lemma shows how to test whether a certain value A is
near to the spectrum of the Laplacian.

Lemma 9.3. Fize > 0. Let py . be the following positive continuous function
on the real line.

ey (r)=0ifr < A—€eorxz>A+e.
e () =1ifA-5<a2< A+ 5.

® ). is linear on the intervals [\ — e, A — 5] and [A + 5, A + €.

Let Py be a real polynomial such that sup,c( a4 [9re(7) — Pre(2)] <€
If ||Pre(Lu)|| > € for some H € Gry, then there exists k € Spec(Ly) such
that |k — A <.

Proof. By Functional Calculus, we have that
lore(La)ll = [[Pre(La)ll — €.

Therefore, ||¢x(Ly)|| > 0. Again by Functional Calculus, we can conclude
that then there exists k € Spec(H) such that |k — A| <. d
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Proposition 9.4. Let lim, _,., G, = G for some convergent sequence
{G,.}5°, C Grq. Suppose that A € Spec(Lq) . Then, for any € > 0 there exists
N¢ > 1 such that if n > N, there exists \, € Spec(Lg, ) so that |A, — A| < e.

Proof. Let ¢y and Py, be as in Lemma 9.3. By Functional Calculus,
lore(La)|| = 1, so there exists a function f € I*(G), || f|| = 1 supported on
some ball BY(x) such that

(27) lone(La) (N > e
Let m be the degree of Py .. Then Py .(f) is supported on B, (). As in the

s+m
proof of Lemma 9.2, we can see that if distg,,(G, H) is small enough, then we

have some g € I2(H), ||g|| = 1 supported on B (y) such that
I1PA (L) (9] = [[Pre(La) (P > €.

Therefore || Py (Ln)|| > €, so our proposition follows from Lemma 9.3. O

Proposition 9.5. Let {G,}5°, C Gry be a countable set of graphs of Property
A converging to G € Gry. Suppose that for 0 < e < }1 and A\ > 0 there exists
N, > 0 so that if n > N, then

Spec(Le) N (A — g A+ g) £0.
Then, Spec(Lg) N (A — e, A +¢€) # 0.
Proof. First, fix € > 0. Denote by [ the degree of the polynomial P, .. By
Proposition 8.5, the graph G € Gr, whose components consist of {G,,}°°, and

G is of Property A. Therefore by the Long Cycle Theorem, there exists an
integer m and a probability measure p on Sep(G, m) satisfying the following

condition: For all z € V(G),
(28) n({Y € Sep(G,m) |z € BF(Y)}) <4,
1—€— 6\4/3 > €.

This condition can be fulfilled by the argument of the beginning of Proposition
5.1.

For f € I2(G),||f|> =1 and Y € Sep(G,m) we define fy by setting
o fy(z) = f(z)ifx ¢ BE(Y).

e fy = 0 otherwise.

Lemma 9.6.

p({Y € Sep(G,m) [ [Ify|* <1-V6}) <4,

Proof. By (28), we have that

> /S , )f%(m)du(Y)Z(l—a),

zeV(Q)
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So by the Monotone Convergence Theorem,
(29) [ inayy =1
Sep(G,m)

Let A={Y | ||fy]> <1 —+/d}. Then by (29), we have that
p(A) (L = VE) +1—p(4) =16
Thus, /0 > u(A). O

e P (Lol
|Psel(La)llo = sup T=27 2

g gl

where the supremum is taken for all nonzero functions g € I2(G) which are

supported on (BE(Y)) N H for some Y € Sep(G,m) and H C V(G) is the
vertex set of a component in Y¢. Note these functions do not form a vector
space, so || ||¢ is not a proper norm. Clearly, ||Py(Lc)|l¢ < [[Pre(La)||- Let

P
1Pre(La)lln = sup%
g

where the supremum is taken for all nonzero functions g € I*(G) such that
there exists V' € Sep(G,m) for which ¢ is supported on the complement of
BE(Y).

Lemma 9.7. ||P>\75(/;G)||<> = ||P)\7E(£G)|||j.

)

9

Proof. By definition, we have that ||P\(Lq)|lo < ||Pre(Le)llo. Now let
Y € Sep(G,m) and g € I?(G) such that g is supported on U,—; (B%(Y))*NH,,),
where {H,}2%, is an enumeration of the elements of the component of the
complement of Y. Let g, be the restriction of g onto (BF(Y))N H,. Clearly,

the functions {g,}72, are pairwise orthogonal. Since [ is the degree of P,

the function P, .(g,) is supported on H,. Indeed, the [-neigbourhood of
(BE(Y))e N H,) is inside H,. Hence, the functions {Py(g,)}32, are also
pairwise orthogonal. Therefore, | Py (La)|lo > || Pre(La)o- O

Similarly, we can define || Py (Le, )|l and || Pr(Le,)||o- Then, || Pr(La,)|lo =
[Py e(La,) o

Lemma 9.8.
(30) IPrc(L)]] = | Pre(Le)lo < 3V

Proof. Let f : V(G) — R be a function such that || f|| = 1 and || P\.(Lc)) f]| >
|Pre(La)|| — V6. Let fy be as above such that || fy > > (1 — v/3). Observe
that

L= 1" = A 17+ 1 = frI”
Therefore, ||f — fy| < v/8. By the triangle inequality,

[Pre(La)fyll = [[Pre(La) fll = [I1Pre(La)(f = )N



34 GABOR ELEK AND ADAM TIMAR
Since supg<;<oq | Pre(t)] < 1+ € <2 we have that
1Pre (L) fy || = 1Pye(La) FII=201f = fy | = [|Pre(Le) =28 > [|Pre(Le)||-3V/5 .

Since || fy|| <1 and fy is supported on the union of the subsets
{(BE(Y))*n H,)}>, we have that

n=1
1P (L)l > [1Pe(La)l = 3V5.

Thus, our lemma follows from Lemma 9.7. Il

Similarly, we have that

(31) IPrc(La)ll = 11Pre(La)llo < 3V6.
Lemma 9.9. For large enough n, we have that
(32) 1Pre(La)ll = [ Pre(Le)]| < 6V,

1P (£c)gll
Tl _

is taken for all g’s such that g is supported on HN (B (H®)), where H C V(G)
is a set of diameter at most m and its induced subgraph is connected. Indeed,
He¢ is an m-separator. For these functions g, Py.(L¢s)g is supported on H.
Now, if n is large enough the set of induced subgraphs (up to isometry) on such
H’s are the same in G, and in G. Therefore, |P\(La,)llo = ||Pre(La)llo-
Hence, our lemma follows from the the inequalities (30) and (31). O

Proof. By definition, || Py (£Lg)l|« equals sup, , where the supremum

By our assumption on the spectra for large enough n, ||¢x(Le,)|| = 1. Hence,
1P e(Le)ll =1 —¢ so
[Pre(Le)ll > 1—€e—6V5.

Thus, by our assumption on  and by Lemma 9.3, our proposition follows. [

Now we finish the proof of Theorem 5. Suppose that the compact sets
Spec(Lg, ) do not converge to Spec(Lg) in the Hausdorff distance.

Case 1. There exists § > 0, a sequence of positive integers k; < ko < ... and
{\n}52, C Spec(Lg) such that infrespec(co, ) |k—An| > 20. Let A € Spec(Lg)
be a limit point of the sequence {A,}>2 ;. Then, we cannot have elements &,
in Spec(Lg,, ) such that for large enough n, |s, — A| < 4, in contradiction
with Proposition 9.4.

Case 2. There exists 6 > 0, a sequence of positive integers k; < ko < ...
and r, € Spec(Lg,, ) such that inficspec(ze) [Fn — Al > 26. Let & be a limit
point of the sequence {r,}°° . Then, for large enough n we have that

) )
Spec(Lg,,, ) N (kK — o + 5) #10.

However, Spec(Lg) N (k— 0, k+3d) = 0, in contradiction with Proposition 9.5.
Therefore, our theorem follows. Il
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Remark 3. Let lim,_,., G, = G, where {G,}22, is a large girth sequence
of finite 3-regular graphs and G is the 3-regular tree. Then for all n > 1,
0 € Spec(Lg, ) and 0 ¢ Spec(L¢). Also, if G is a large girth 3-regular expander
graph, then its second smallest eigenvalue is away from zero. However, if G is
a large girth 3-regular graph containing an e-Fglner set that is smaller than
3|V(G)], then the second smallest eigenvalue of G is very close to zero. That
is, in general it is not true that the convergence of a finite graph sequence
{G,}22, implies that {Spec(Ls,)}22, converges in the Hausdorff distance.

We finish this section with a purely combinatorial application of Theorem 5.

Proposition 9.10. For any positive integer d and € > 0 there exists r > 0
so that if the families of rooted r-balls (up to rooted-isomorphism) in two
finite planar graphs G, H € Gry coincide, then the Hausdorff distance of their
spectra 15 at most € > 0.

Proof. A set of finite graphs C C Gry is called monotone if it is closed under
taking induced subgraphs. By the Large Cycle Theorem, a monotone subset C
is of Property A if and only if it is hyperfinite. The class of finite planar graphs
(and the class of H-minor free graphs) are monotone hyperfinite ([5]), so they
are Property A as well. Assume that our proposition does not hold. Then
there exists some € > 0 and a sequence of pairs of planar graphs {(G,, H,)}>°,
so that the families of the rooted n-balls in G,, and H,, coincide and

(33) distygaus(Spec(Lg,, ), Spec(Ly,)) > €.

Let us pick a subsequence {G,, }32; such that lim; . G,, = G for some
infinite graph . By our conditions, we have that limj_,., H,, = G. So, by
Theorem 5 we have that Spec(Lg, ) — Spec(Lg) and Spec(Ly, ) — Spec(Lg)
in contradiction with (33). O

10. STRONGLY ALMOST FINITE GRAPHS AND CLASSIFIABLE C*-ALGEBRAS

Arguably, one of the greatest achievements of operator algebras is the following
result:

"Separable, unital, simple, nuclear, infinite dimensional C*-algebras with fi-
nite nuclear dimension that satisfy the UCT are classified by their Elliott
mvariants.”

The goal of this section is to show that starting from a minimal (see below),
strongly almost finite graph M € Gry one can always construct tracial, clas-
sifiable C"*-algebras in a natural and almost canonical way. The construction
is rather elementary and does not require any knowledge of C*-algebras.

Somewhat similarly to the classification of finite simple groups, the theorem
above was built on decades of work of C*-algebrists that culminated in the
paper [58]. A bit later it was proved [8], that for separable, unital, simple,
nuclear C*-algebras having finite nuclear dimension and being Z-stable are
equivalent. Many of the known classifiable C*-algebras that have traces are
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associated to minimal free actions of countable amenable groups on compact
metric spaces. Note that for a very large class of C*-algebras that are traceless
the classifiability had been proved in [41] more than twenty years ago. It is
conjectured that the so-called crossed product C*-algebras of free minimal
actions of countable amenable groups on the Cantor set are always classifiable
(see [17] and [12] for some interesting examples).

Our starting point is the following theorem:

Let G be a locally compact ample, minimal Cantor étale groupoid. Assume
that G is almost finite and topologically amenable. Then, the simple, unital
C*-algebra CF(G) is Z-stable ( Corollary 9.11 of [44], see also Corollary 5.8
of [9]). By the results of [60] and [8] C:(G) satisfies the UCT-condition and
has finite nuclear dimension. Hence by Corollary D. of [58], C(G) is
classified by its Elliott invariants.

The statement above looks a bit frightening, but the reader should look at
the bright side. Namely, the quoted result completely eliminates C*-algebras
from the picture, by reducing the problem to groupoids. In constructing such
groupoids, our strategy goes as follows.

e We introduce the notion of minimality for infinite graphs in a purely
combinatorial fashion.

e We explain the notion of étale Cantor groupoids (the "unit space” of
such a groupoid is the Cantor set) and show how very simple vertex
and edge labeling constructions on a minimal graph M € Gry yield
minimal étale Cantor groupoids.

e We recall the notion of topological amenability and almost finiteness
for étale Cantor groupoids and show that if the minimal graph M is
strongly almost finite, then appropriate labelings of M result in topo-
logically amenable and almost finite étale Cantor groupoids. Hence,
Corollary 9.11 of [44] can be invoked to conclude that our new C*-
algebras are classifiable.

10.1. Minimal graphs.

Definition 10.1. The connected graph M € Gr, is minimal if for every
rooted ball B = (BM(z),z) in M there exists a constant rp > 0 such that for
all y € V(M), the ball BM(y) contains a vertex z so that the rooted r-ball
around z is rooted isomorphic to B.

Observe that a minimal graph is either Fglner or nonamenable. Clearly, the
Cayley graphs of finitely generated groups are minimal. Nevertheless, minimal
graphs can be very different from Cayley graphs.

e For any a > 0 real number there exists a minimal graph with asymp-
totic volume growth « (see Section 5.2 of [22]). On the other hand,
the volume growth of a Cayley graph of polynomial growth is always
an integer [31].
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e A minimal graph might have n ends, where n is an arbitrary integer
(see Section 10. in [22] for a very general fractal-like construction).
Infinite Cayley graphs have 1, 2 or infinitely many ends.

e In fact, modifying somewhat the construction in [22] one can construct
a minimal graph M for any bounded degree graph G by attaching
suitable finite graphs to the vertices of G.

As we see soon, the notion of minimality is closely related to the concept of
minimality for continuous group actions on compact spaces. Recall that the
continuous action (that is, all elements are acting by homeomorphisms) of a
countable group I' on a compact metric space X, a : I' »~ X is minimal if
all the orbits of a are dense. Let G' € Gry be a connected graph. Then, one
can color the edges of G with colors {cj,ca, ..., coq} in such a way that if the
edges e # f have the same color then they do not have a joint vertex. This
coloring defines the Schreier graph of an action of the 2d-fold free product I'yy
of cyclic groups of order 2 generated by the elements {ci,ca,..., o} = Yoy
(Section 5.1 [22]). That is, every connected graph G € Gry is the underlying
graph of a Schreier graph of I'y;. Let RSchy denote the space of all rooted
Schreier graphs of I'yy with respect to the generating system 5 such that
the underlying graph G is in Gry. Similarly to the space RGry defined in the
proof of Proposition 8.4, RSch, is a compact metric space (Section 2.1 [22]),
also, RSchy is equipped with the natural, continuous (root-changing) action
B of the group I'yq.

Lemma 10.2. Let M be a closed, minimal I'yg-invariant subspace of RSchy.
Then, for all elements S of M the underlying graph M of S is a minimal
graph.

Proof. Let (T,y) € M, where y is the root. Suppose that the underlying
graph M of (T,y) is not minimal. Then, there is a rooted ball B in M
and there exist elements {g, € T'4}22; such that for n > 1 the rooted ball
of radius n around g,(y) does not contain balls that are rooted-isomorphic
to B. Take a subsequence of the sequence {5(g,)(T,y)}5, converging to
some element (S, z) € RSchy. Then, the underlying graph of (5, z) does not
contain a rooted ball isomorphic to B. Hence, the orbit closure of (.5, z) does
not contain (7', y), leading to a contradiction. O

It is not hard to see that the underlying graphs of the elements of M are
neighborhood equivalent to the graph M and any connected graph that is
neighborhood equivalent to M is the underlying graph of some elements in

M.

The idea above goes back to the paper of Glasner and Weiss [29]. They
defined the uniformly recurrent subgroups (URS) of a countable group I'
as the closed, minimal, invariant subspaces in Sub(I"), the compact space of
subgroups of I'. If H is an element of a URS, then the underlying graph of the
Schreier graph Sch(I'/H, ) (with respect to a symmetric generating system
Y)) is a minimal graph. Conversely, let M be a minimal graph and consider
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an arbitrary element 7' of RSchy with M as its underlying graph. Let 7 be
the orbit closure of T" and M be a closed, minimal I'ys-invariant subspace in
T. Then, M is I'yg-isomorphic to a uniformly recurrent subgroup. Indeed,
for each element of M consider the stabilizer of the root.

We extend the definition of minimality for Cantor-labeled rooted I'y4-Schreier
graphs with underlying graphs in Gry. A graph G € Gry is said to be Cantor-
labeled if there exists a labeling function ¢ : V(G) — C that assigns to each
vertex of GG a label from the Cantor set C. Denote the set of such graphs by
RCSchy. Let us identify the Cantor set C with the product set {0, 1}N. If
c € C and ¢ = {ay, as, ...} then we will refer to a; as the i-th coordinate of c.
Similarly to RGry and RSchy we have a natural compact metric structure on
RCSchy. Again, the group I'yy acts on RCSchy by changing the root. For a
rooted edge-colored, Cantor-labeled ball B, we denote by B the ball rooted-
colored isomorphic to B labeled with the finite set {0, 1}* in such a way that
for all vertex x in By, the label of = is m4(c), where c is the Cantor label in
B and m, : {0, 1} — {0, 1}* is the projection onto the first k coordinates.

Definition 10.3. The Cantor-labeled rooted Schreier graph S € RCSchy is
minimal if for all rooted labeled-colored ball B = (B (z)) in S there exists a
constant 75 > 0 such that for all y € V(S), the ball B} (y) contains a vertex
z so that (B2 (z)) ) is rooted labeled-colored isomorphic to Byy. Clearly, the
underlying graph of a minimal graph S € RCSchy is minimal in Gr,.

The following lemma can be proved in the same way as Lemma 10.2.

Lemma 10.4. Let M be a closed, minimal, I'sg-invariant subspace of RCSchy.
Then, every element S € M is minimal.

Lemma 10.5. Any minimal graph M € Gry can be edge-colored properly and
equipped with a Cantor-labeling in such a way that the resulting labeled-colored
graph is minimal in RCSchy.

Proof. Let M be an arbitrary element of RCSchy such that its underlying
graph is isomorphic to M. Let £L C RCSchy be a closed, invariant, minimal
subspace in the orbit closure of M. Let z € V(M). By the minimality
of M, for any n > 1 there exists S, € £ such that B5"(root (S,)) is rooted
isomorphic to BM (). Therefore, if S is a limit point of the sequence {S,}°° ,,
the underlying graph of S is isomorphic to M. Thus, by Lemma 10.4, S is
minimal. U

10.2. Etale Cantor groupoids and infinite graphs. Let o : I ~ C be a
continuous action of a countable group I' on the Cantor set C. Assume that
the action is stable, that is, for every g € I' there exists r, > 0 such that if
z € C and a(g)(z) # x then diste(z,a(g)(x)) > r,. Here, diste is a metric
on C that metrizes the compact topology. Note that an action is stable if and
only if the stabilizer map Stab : C — Sub(I") (the space of subgroups of I,
[29]) is continuous. Of course, free continuous actions are always stable.
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Now we define an equivalence relation on C and the groupoid of a. We set
x =, y if for some g € I a(g)(x) = y. The groupoid [56] G, C C x C is the set
of pairs (x,y) such that z =, y. The product is given by (z,v)(y, 2) = (z, 2).
The range map is given by r : (x,y) — y and the source map is given by
s : (z,y) — x. The inverse map = is given by v : (z,y) = (y,2). The unit
space of the groupoid G° is the set of pairs (z,z),z € C. Then by the stability
of the action «,

e for every (z,y) € G, such that a(g)(z) = y for some g € I', there
exist clopen sets U,V in the Cantor set, x € U and y € V, such that
a(g) : U — V is a homeomorphism,

e and if also a(h)(x) = y, then there exists a clopen set x € W C C such
that

a(g) lw=alh) [w .

The topology on G, is defined in the following way. The base neighbourhoods
of the element (x,y) are in the form of (U,V, g, z,y), where a(g) : U — V as
above, and (a,b) € (U,V,g,z,y) if a € U and a(g)(a) = b. Now, we can easily
check that r : G2 — C is in fact a homeomorphism and for any pair (z,y) such
that a(g)(z) =y, r: (U,g,x,y) — U is a homeomorphism, that is, r is a local
homeomorphism. Consequently, G, is a locally compact Hausdorft étale
groupoid with unit space isomorphic to the Cantor set ([56]), as required in
Corollary 5.8 in [9]. The étale groupoid G, is called minimal if the action «
is minimal [56].

Now, let us consider the I'sg-action By : I'sy ™~ RCSchy. Recall that we connect
x #y € RCSchy with an edge if for some generator ¢; we have I'yy(¢;)(x) = y.
For © € RCSch,, the orbit graph of x is the connected component of the
graph above containing x, and the rooted orbit graph of z is the orbit
graph of z with root x. We have two minor problems to settle.

e The action Sy is not stable. Consider the rooted Cayley graph K of
I'yq generated by the elements ¢y, co, ..., coq such that all vertices of
K are labeled with the same element ¢t € C. Then, K is an element of
RCSchy fixed by all elements of I'y3. In every neighborhood U of K
there are graphs that are not fixed by any element of I'y,.

e We might expect that the rooted orbit graph of an element N €
RCSchy is rooted isomorphic to the underlying rooted graph of N.
Unfortunately, the rooted orbit graph of the above K is a graph of no
edges and has one single vertex.

We will put more restrictions on the Cantor labelings to get rid of these
inconveniences. Take an arbitrary rooted Schreier graph G € RSchy and label
the vertices of the underlying rooted graph by elements of C in the following
way: For any n > 1 there exists an € > 0 such that if 0 < dg(z,y) < n,
we have diste(I(z),l(y)) > €. Here, [ is the labeling function. These proper
labelings exist and the action of I's4 on the orbit closure of the labeled version
of GG is stable. Also, if K is an element of the orbit closure then the rooted
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orbit graph of K is rooted isomorphic to K (see [22], [25] for details). So, let
us start with a minimal graph M € Grq and equip it with a proper Cantor
vertex labeling and a proper Ys4-edge labeling to obtain M € RCSchy. Let
E C RCSchy be a minimal, closed invariant subspace in the orbit closure of
M. Then, F is a stable, minimal, closed invariant subspace E of RCSchy such
that each element of F is rooted isomorphic to its own rooted orbit graph and
the underlying graphs are neighborhood equivalent to M. Since the action on
E' is minimal, F cannot have isolated points, so £ is homeomorphic to C. If
BE is the restriction of 5; on such a space E, then we call Gg, the minimal
étale Cantor groupoid associated to E.

10.3. Topologically amenable and almost finite étale groupoids. Graph
properties such as almost finiteness, finite asymptotic dimension, paradoxical-
ity or Property A have been defined for free Cantor actions of finitely generated
groups. Informally speaking, the meaning in this context is that the property
holds for every orbit in a continuous way. This idea has already been extended
to étale Cantor groupoids as well.

The continuous version of Property A is called topological amenabil-
ity for historical reasons. It was introduced in [2] more than twenty years ago.
In the definition of Property A we have probability measures concentrated on
r-balls around vertices for certain values r. First note that for a fixed r and a
fixed set of colors there exist only finitely many rooted edge-colored r-balls (up
to rooted colored isomorphisms) in graphs in RSchy. Of course, for each such
ball B there exist uncountably many probability measures supported on the
vertices of B. Nevertheless, for any € > 0 there exists a finite set of probability
measures {]D;B’6 f\if’s) supported on B, such that for every probability measure
p supported on B there exists 1 < i < Nz such that ||p—p; ||, < 5. Hence,
we can suppose that in the definition of Property A, the functions O(z) are
all in the form of pf “, for some rooted edge-colored ball B and € > 0. So, we
have the following simple version of topological amenability in the case of our

groupoids Gg,, .

Definition 10.6 (Topological amenability). The groupoid Gz, is topolog-
ically amenable if for any € > 0 there exists » > 0 and a partition P of the
totally disconnected space E into finitely many clopen sets {Uy}rep,,, and
for each x € F there exists a probability measure p, on the orbit grapeh of x
supported on the r-ball around x such that

e if 2 € Uy, then the probability measure p, has type «, for some x € P, .
Here Pf,_ is the finite set of all probability measures in the form of pf ‘)
where B is a rooted edge-colored r-ball. We call the elements of Pf,
2 types77 .

e For any z € E and generator ¢; € Xag, ||[Pe — D)) |1 < €

Similar definition can be given for any stable action of a finitely generated
group with a given symmetric generating set.



STRONG ALMOST FINITENESS 41

Proposition 10.7. For every minimal graph M € Gry of Property A, we
have an invariant subspace E as above, so that the associated étale groupoid
Gp,, 1s topologically amenable.

Proof. Since M is of Property A, there exists r,, and for each x € V(M) a
probability measure ©(x) of type in Py such that if » and y are adjacent
vertices, then [[©(x) — ©(y)|| < e. Now let us denote by @, the set Py For
each n > 1 we have a vertex labeling by @,, of V (M), where the label of z is
the type of ©(z). Altogether, we have a labeling of V(M) by the product set
[1,2, @ that is isomorphic to the Cantor set. Also, we add edge-colors and
a Cantor labeling in the way described above to ensure stability. So, we have
a C x C-labeling of V(M), however, C x C is still homeomorphic to C. Add
an arbitrary root to the resulting graph to obtain a rooted colored-labeled
graph S € RCSchy. Now, find a closed, minimal invariant subspace E in its
orbit closure in RCSchy. Since the [, Q,-labelings encode the witnessing
of Property A for M, it also witnesses Property A for any other graph in
the orbit closure, that is E satisfies the conditions of Definition 10.6, so E' is
topologically amenable. U

The notion of almost finiteness for étale Cantor groupoids was defined
by Matui (Definition 6.2 [45]). We will need this concept only for the case of
étale groupoids associated to stable actions of I's;. One can check that the
following simple definition that is analogous to Definition 10.6 applies to the
case of our étale groupoids E, hence they are almost finite in the sense of
Matui.

Definition 10.8 (Almost finiteness for groupoids). The groupoid Gg,, is
almost finite if for any € > 0 there exists » > 0, K. and a partition of the
totally disconnected space F into finitely many clopen sets {W;}* ; such that

(1) if 2,y € E, a(g)(x) = y for some g € I', and z,y are in the same
clopen set, then either dg(z,y) < K, or dg(x,y) > 3K,, where dg is
the graph distance on the orbit graphs.

(2) For any = € E, the set H, is e-Folner, where

H, ={z € E,z, zare in the same clopen set Wy and dg(z, z) < K, }.

One should note that a definition of almost finiteness was given by Kerr [39]
for free actions of amenable groups on compact metric spaces. If the amenable
group I acts on the Cantor set freely then the almost finiteness of the associ-
ated étale groupoid in the sense of Matui is equivalent to the almost finiteness
of the free action in the sense of Kerr. The definition of Kerr was extended to
non-free actions by Joseph [36]. It is important to note that for such non-free
actions the almost finiteness of the associated étale groupoid in the sense of
Matui does not necessarily imply the almost finiteness of the action in the
sense of Joseph.

The following proposition can be proved in the same way as Proposition 10.7.
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Proposition 10.9. For any minimal almost finite graph M € Grg, we have
an invariant subspace E as above, so that the associated étale groupoid Gg,, is
almost finite.

Corollary 10.10. For every minimal strongly almost finite graph M € Gry
we have an invariant subspace E as above, so that the associated étale groupoid
Gsp 15 both topologically amenable and almost finite.

Proof. By Theorem 3 and Theorem 4, the graph M is Property A and almost
finite. Label the vertices of M by the product of the labelings in Proposition
10.7 (that encodes Property A) and the labelings in Proposition 10.9 (that
encodes almost finiteness). Let S be the new labeled graph. Now, find a min-
imal, closed invariant subspace E in the orbit closure of S. Putting together
Proposition 10.7 and Proposition 10.9, we obtain the corollary. Il

Question 1. Is it true that a minimal étale groupoid is almost finite if all of
its orbit graphs are strongly almost finite?

Note that if the answer for this question is yes, then the groupoids associated
to stable Cantor actions of amenable groups are always almost finite.

Remark 4. We could start with any finitely generated amenable group I'
(with some finite generating system ) and an element H of an arbitrary
uniformly recurrent subgroup of I'. By Proposition 7.4, the underlying graph
of Sch(I'/H,X) is a strongly almost finite minimal graph. Using this Schreier
graph, we can repeat the construction above to obtain a stable, minimal, I'-
action « such that all orbit graphs are isomorphic to S and the associated
étale groupoid is both topologically amenable and almost finite.

Now we are ready to prove the main result of this section.

Proof of Theorem 6. The algebras associated to the £’s in Corollary 10.10 are
always tracial (see Section 9 in [22]) due to the existence of invariant probabil-
ity measures on E. The existence of such invariant measures follows from the
amenability of the orbit graphs of E (a consequence of M being almost finite)
in the same way as one proves that continuous actions of amenable groups on
compact metric spaces always admit invariant probability measures (Theorem
6 [22]). Hence, by Corollary 9.11 in [44] cited at the beginning of the section,
we finish the proof of our theorem. O

We also obtain a dynamical characterization of strong almost finiteness in the
case of minimal graphs.

Proposition 10.11. A minimal graph M € Gry is strongly almost finite if
and only if there exists a stable action o : I' ~ C, for a finitely generated
group I with a finite generating set X with the following properties.

e All the orbit graphs of o are meighborhood equivalent to M.
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e The action « s topologically amenable, admitting an invariant proba-
bility measure.

Proof. As we have seen in the proof of Theorem 6, if M is strongly almost
finite, actions as above always exist. Now, assume that M is not strongly
almost finite. If M is not of Property A, then the required action cannot be
topologically amenable. If M is of Property A, but not strongly almost finite,
then by Theorem 3 and Theorem 4, M is not Fglner. Hence by minimality, M
must be nonamenable. If the action were topologically amenable, the action
would be hyperfinite with respect to any invariant probability measure pu,
and p-almost all of its orbit graphs would be amenable [38]. This leads to a
contradiction. O
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