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ABSTRACT
This study presents a case study of the School Bus Routing Problem (SBRP), focus-
ing on improving the quality of student transportation services. Although numerous
studies have addressed the SBRP, this study tackles a new variant driven by a nega-
tive impact policy to limit the number of continuing students facing extended travel
times. We present this variant and propose a mathematical formulation along with
a hybrid metaheuristic approach for it. Furthermore, we conduct comprehensive
experiments to evaluate algorithms’ performance and various configurations of the
negative impact policy on both artificial and real instances. Computational results
confirm the effectiveness of our hybrid algorithm.
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1. Introduction

The School Bus Routing Problem (SBRP) involves establishing a reliable, safe, and cost-
effective transportation system that transports students to and from schools every day.
According to [18], this critical real-world problem impacts millions of families worldwide.
Therefore, the SBRP has received ever-increasing attention from academic researchers,
industry and the public sector for almost 50 years.

Our case study is motivated by the recent implementation of a new requirement for
school bus systems in Vietnamese private schools. In addition to offering exceptional
educational and extracurricular experiences, these private schools prioritise high-quality
service to maintain their reputation, justify tuition fees, and meet parental expectations.
Typically, each of these schools manages its own bus system. Buses follow planned routes
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with designated stops for picking up students and ensure that students are transported
to school.

At the end of each academic semester, the school will create a new bus schedule for
transporting students in the next semester. Some students newly register to use the
school bus, while others stop using it, resulting in changes to the bus routes compared
to the current semester. While adjusting bus schedules to meet operational rules, the
school must also address concerns from parents about their children potentially having
much longer bus travel times compared to the previous semester. This highlights two
key issues. First, if some students now have significantly longer commutes, it could
directly affect their physical comfort and emotional well-being. Second, if other students
have shorter commutes, it could result in an unfair experience, causing those with
longer travel times to feel disadvantaged. To address this, the school has introduced a
new requirement to reduce the number of students experiencing these longer bus rides,
referred to as “negative impacts”.

The objective of this study is to develop minimum-cost routes for a single school bus
system that not only satisfy existing constraints but also align with the new requirement.
These existing constraints include bus capacity, the maximum travel time (or riding
time) of each student on a bus, the maximum route duration, and the maximum number
of stops per route.

The SBRP encompasses five distinct sub-problems: bus stop selection, bus route gen-
eration, bus route scheduling, school bell time adjustment, and strategic transportation
policy [18]. As our case study specifically focuses on generating bus routes, it falls under
the category of the Bus Route Generation Sub-problem (BRGP), a specific variant of
the Capacitated Vehicle Routing Problem (CVRP).

The contributions of this paper are summarised as follows. Firstly, we introduce a
new BRGP variant called the Service-Oriented BRGP (SOBRGP), which distinguishes
itself from other BRGPs by placing greater emphasis on service, incorporating multiple
measures to prioritise student comfort and safety. This variant also marks a pioneering
effort within the literature on the SBGP, using previous semester’s solutions to estab-
lish constraints for the next semester’s problem. Secondly, we devise a mathematical
formulation for the SOBRGP and a hybrid metaheuristic to potentially solve large-size
instances. The additional constraints, which require the mathematical model to include
new variables and constraints tracking the number of students negatively affected, in-
crease the model’s size and complexity compared to simpler BRPs. We emphasise that,
as we mention later, the newly introduced constraints pose significant challenges for
adapting existing heuristic approaches in the CVRP literature. For example, the best
metaheuristic algorithms for solving the CVRPs over the past two decades have been
based on representing solutions as a giant tour visiting all customers [48, 47, 30]. A
splitting procedure, developed using dynamic programming, optimally partitions this
giant tour into smaller tours, each corresponding to a vehicle’s route. To apply this
approach to SOGRGP, an additional dimension must be incorporated into the dynamic
programming algorithm of the split procedure to handle constraints related to negative
impact. This modification is not trivial and increases the algorithm’s complexity. Simi-
larly, the local search phase, a critial component of the state-of-the-art metaheuristics,
becomes more computationally intensive due to these new constraints, as verifying each
move can no longer be done in O(1) as in classical CVRPs. Finally, we present extensive
computational results on both real and artificial instances. We believe that our artificial
instances and solutions can serve as a reference for future research on this variant.

The remainder of the paper is organised as follows. Section 2 contains a literature
review. Section 3 describes the SOBRGP, parameters, and notation. Sections 4 and 5
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present the Mixed Integer Linear Programming (MILP) formulation and the hybrid
metaheuristic, respectively. Section 6 presents the computational results. Finally, Sec-
tion 7 contains some concluding remarks.

2. Literature review

The literature on the SBRP is vast. While some studies focus on solving a single sub-
problem, others simultaneously tackle multiple sub-problems. For a more detailed de-
scription and classification of sub-problems and solution approaches, the reader is re-
ferred to the surveys [18] and [44]. For the sake of brevity, we will only review papers
of direct relevance.

2.1. The bus route generation sub-problem

The BRGP was initially proposed by Newton and Thomas [40], with two constraints:
the maximum travel time of students and the bus capacity. A constructive heuristic was
developed for the problem using a “route-first, cluster-second” approach [5, 6]. The idea
is to construct a single “giant tour” that visits all the bus stops, which is then split into
routes that can be travelled by a single bus. While the giant tour is constructed using
a heuristic, the splitting is done optimally through a series of shortest-path problems.
Hou et al. [29] presented a selection hyper-heuristic for the same problem that uses
a reinforcement learning algorithm to select suitable low-level heuristics to iteratively
improve the solution. More heuristics were provided in [2, 12, 31, 52] for the same
problem but with different objective functions.

To our knowledge, Dulac et al. [16] were the first to consider a variant of the BRGP
with maximum route duration constraints, or BRGPD for short. The authors developed
several constructive heuristics based on “cluster-first, route-second” [24, 27]. The idea is
to group bus stops into clusters and then determine feasible routes within each cluster.
Local search operators were then applied to further improve the solutions. This method
was later adopted by Chapleau et al. [9] for a different BRGPD variant with additional
constraints on the maximum number of stops per route, and by Bowerman et al. [7] for
another multi-objective BRGPD variant.

There have been many studies on the BRGP with capacity constraints as the sole con-
straint. Li and Fu [35] presented a heuristic algorithm based on the Hungarian algorithm
and two shortest route algorithms. Corberán et al. [10] proposed constructive methods
and further improved obtained solutions by a scatter search algorithm. Later, Pacheco
and Mart́ı [43] developed a different constructive heuristics based on [10] and a Tabu
Search (TS) with path relinking. Alabas-Uslu [1] developed a self-tuning local search
heuristic that outperforms the algorithms in [10] and [43]. More metaheuristics were
proposed later, including Ant Colony Optimisation (ACO) [3, 19], genetic algorithms
[15], and TS [41, 42].

A few authors have considered hybrid algorithms for BRGP. Eldrandaly and Abdallah
[17] proposed a hybrid algorithm combining the ACO metaheuristic with the iterated
Lin–Kernighan local improvement heuristic. Euchi and Mraihi [20] developed a hybrid
algorithm based on ACO and variable neighborhood local search. Minocha and Tripathi
[39] introduced a hybrid algorithm combining the genetic algorithm with local search
methods.
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2.2. Other relevant SBGPs

Bus Rescheduling Problem (BRP) is a dynamic version of SBGP [34]. It involves adjust-
ing initial bus routes in response to disruption scenarios, such as delays or breakdowns.
The goal is to determine a minimum-cost reschedule for the bus fleet while ensuring ser-
vice coverage for all customers affected by the disruption. To some extent, the BRP is
closely linked to the School Bus Operational Rescheduling Graph Problem (SOBRGP),
which uses the planned bus schedule (the previous solution of SBGP) as an input and
includes servicing extra passengers from disrupted trips.

Most studies on the Bus Rescheduling Problem (BRP) focus on minimising the devi-
ation from the planned schedules or the overall passenger waiting time [13, 33, 53, 54].
In contrast, our new requirement policy only measures the deviation from the previous
semester’s schedule for students who used the school bus system and continue to use it
in the current semester if the deviation exceeds a threshold. (The last semester’s travel
times for new students enrolled this semester do not exist.) Moreover, literature on the
BRP focuses on public bus transportation rather than the school bus system. As a re-
sult, the specific constraints related to students’ safety and comfort that are crucial to
our study have not been addressed in existing BRP literature.

To some extent, the SBGP can be considered a special case of the CVRP, which is one
of the most extensively studied variants of the Vehicle Routing Problem. The CVRP
involves designing a set of routes for a fleet of vehicles that start from a depot, visit a
number of customers, and then return to the depot, subject to the vehicle capacity. The
main difference between the SBGP and the CVRP is that, after reaching the school, the
buses do not necessarily have to return to their starting point. Consequently, the bus
routes are viewed as paths rather than closed tours in the CVRP. Therefore, the SBGP
is classified as the Open CVRP variant. For algorithms addressing the Open CVRPs,
we refer the reader to the following articles [8, 11, 14, 19, 25, 26, 32, 36, 45, 49, 55].

2.3. Greedy randomised adaptive search procedure and iterated local
search

The Greedy Randomised Adaptive Search Procedure (GRASP) is a multi-start algo-
rithm which was first introduced by Feo and Resende [21]. Each iteration consists of a
construction phase, where a feasible solution is generated by a randomised greedy algo-
rithm, followed by an improvement phase, where the solution is further improved using
local search operators. This process repeats multiple times, with each iteration being
independent, until a stopping condition is met. The final solution is the best solution
found across all iterations. Despite its simplicity and ease of implementation, GRASP
remains an effective metaheuristic that can generate the best-known solutions for nu-
merous combinatorial optimisation problems. For further details, the reader is referred
to the surveys [22, 23, 46, 50].

The Iterated Local Search (ILS) was first proposed by Lourenço et al. [37]. It begins
by generating an initial solution, which is then improved by local search operators to
converge to a local optimum. To escape local optima and explore a wider search space,
ILS applies perturbation procedure to the current solution to create new initial solutions
for further local searches. This perturbation and local search procedures are repeated
iteratively until a stopping condition is met. Similar to GRASP, ILS has been widely
applied to various combinatorial optimisation problems. For further information on ILS,
the readers are referred to the survey by [38].
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3. Problem description and notation

In this section, we provide a detailed description of the SOBRGP. We begin by present-
ing the problem in Subsection 3.1, followed by an introduction to the parameters and
notation in Subsection 3.2.

3.1. Problem narrative

Every day, a fleet of heterogeneous school buses picks up students from specific bus stops
and transports them to school. Each bus type is associated with a daily fixed cost, such
as the driver’s salary and bus rental cost. Buses with larger capacities can transport more
students but have higher fixed costs, such as higher wages for more experienced drivers
and higher rental prices. The salary of a monitor, who is responsible for supervising
students during the ride, is also included in the fixed cost of each bus used.

Each semester, school bus routes need to be redesigned to accommodate newly en-
rolled students who have recently registered to use the buses, as well as continuing
students who used the service in the previous semester and plan to continue using it in
the current semester. Whenever possible, continuing students are assigned to the same
bus stops they used in the previous semester. However, a few new bus stops may be
introduced to accommodate newly enrolled students who are far away from existing
bus stops. We note that this paper does not discuss the allocation of students to bus
stops or the selection of locations for new bus stops. Instead, it focuses on designing the
bus routes for picking up students and dropping them off at school. Therefore, all the
following data such as the set of bus stops to be visited, the number of students at each
stop, and the travel times among stops and between stops and the school are already
known.

Moreover, the travel time from the bus’s departure point to the first stop is consid-
ered a fixed factor and excluded from the route’s duration and cost, as it is typically
accounted for separately for administrative convenience. The focus of route design is
primarily on the time spent from the first stop onward.

Students are expected to walk from their homes to their assigned bus stops before
the bus arrives and then board the bus at these stops to travel to school. Each bus stop
must be visited only once by a single bus to ensure that every student is picked up and
dropped off at school. Partial pick-ups are not allowed.

Recently, many parents of continuing students have expressed concerns about in-
creased travel times to school for their children compared to last semester. While parents
and students are willing to accept the increase that do not exceed γ times the previ-
ous duration, such increases in travel time are sometimes unavoidable. In response, the
school has introduced a negative impact policy to ensure that the proportion of stu-
dents experiencing travel time increases exceeding γ times the duration of the previous
semester remains below the threshold β. A lower β value indicates that fewer students
experience a negative impact, meaning most will have travel times similar to or shorter
than their previous duration (not exceeding γ times their past travel time). This leads
to greater satisfaction among students and parents but results in higher expenditure
for the school. Negotiations between the school and parents determine the value of β to
achieve a mutual agreement.

Students facing such travel time increases are considered negatively impacted. We
note that newly enrolled students assigned to new stops have their previous semester’s
riding time set to infinity, indicating that the negative impact policy does not apply to
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them. However, to address concerns that excessively long riding times might discourage
parents from choosing school buses, the constraint that the riding time for each student,
including both new and continuing students, must be less than α times the direct travel
time from their assigned bus stop to the school is imposed.

Our study places greater emphasis on student services compared to BRGPs discussed
in the literature. It not only addresses the negative impact constraint, the maximum
riding time for students compared to the direct travel time, but also incorporates addi-
tional constraints to enhance students’ safety, comfort, and punctuality in arriving at
school, as follows: (1) Each bus must spend a sufficient amount of time at each stop to
allow students to board and be seated safely before departing; (2) The number of stops
that each bus can visit is limited, and (3) each bus has a maximum allowable driving
time. We remark that both the second and third rules are necessary. Constraint (2)
helps to keep bus routes manageable and prevents excessive stops that could make rides
uncomfortable for students. Constraint (3) ensures that students arrive on time and
that no student spends more than a limited duration on the bus. These private school
policies set this limit at 1 hour. Moreover, the rule simplifies fixed cost calculations since
drivers are paid in hourly increments.

The task is to determine the composition of the school bus fleet and the daily routes
for each bus, beginning at one bus stop and ending at the school, while satisfying the
above-mentioned constraints, with the objective of minimising the total cost. This total
cost includes both the daily fixed costs of operating the buses and the travel expenses.

The introduction of negative impact constraints has not been studied in the liter-
ature and is worth considering for three reasons. First, significantly longer commutes
than in the previous semester may harm students’ well-being, affecting their focus and
engagement in school. Second, if some students have shorter commutes while others face
longer ones, it may create a sense of unfairness. Third, while the proportion of students
experiencing negative impacts is capped, the specific students affected are only revealed
after a solution is generated. This makes applying existing CVRP heuristics challenging
or likely to produce suboptimal solutions.

Figure 1 illustrates the solutions for a SOGRGP instance, where circular nodes repre-
sent student pickup points (bus stops), and square nodes represent schools. The numbers
outside the parentheses indicate the ID of the pickup points, while the numbers inside
the parentheses represent the number of students to be picked up at that location.
Node 16 is a newly introduced bus stop in the next period due to newly registered
students who will be picked up at this location. The red nodes in the solutions for the
next academic period indicate that students picked up at these points will experience
negative effects, meaning their travel time on the bus exceeds the permissible threshold
compared to the current period. It is evident that the routes in the three scenarios dif-
fer significantly. Notably, the optimal solution for the next period in both cases, where
β = 30% and β = 100%, results in a reduction of one bus compared to the current
period’s solution. The solution in the case of β = 100% (where the constraint on neg-
ative impact is relaxed) still differs fundamentally from the current period’s solution
due to changes in the number of students at pickup points. As β increases from 30% to
100%, the routes tend to shift towards prioritizing lower operational costs. For instance,
when β = 30%, bus stop 16 is visited before bus stop 14 to ensure that students at bus
stop 14 are not negatively affected. However, when β = 100%, the bus follows a shorter
route by visiting bus stop 14 before bus stop 16, but as a result, students at bus stop
14 experience negative effects.
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(a) Solution of current semester

(b) SOGRGP with β = 30% (c) SOGRGP with β = 100%

Figure 1.: Solutions for a SOGRGP instance in three scenarios: current semester’s routes
(a); Optimal SOGRGP routes for next semester with β = 30% (b) and 100% (c)
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3.2. Parameters and notation

We are given a complete directed graph with node set V = {0, 1, . . . , n} and arc set A.
Node 0 represents the school. We define VS as V \ {0}, the set of bus stops. For v ∈ VS ,
we exclude (0, v) from A since the bus starts from a bus stop and performs a single
route, ending at the school. We assume that the travel costs are asymmetric, with the
time of traversing arc (u, v) denoted as τuv. It is important to note that our approach
can be easily adapted in the case of symmetric costs. Let τmax represent the longest
traveling time between any two bus stops.

The set M represents the types of vehicles within a school bus fleet. Each type
of bus m ∈ M has unlimited availability, a capacity of Qm, a fixed cost of Cf

m, and
a travel cost per distance unit of Cd

m. Let ψ denote the average speed of the bus,
irrespective of the type of bus. We define the maximum capacity of a bus in the fleet as
Qmax = maxm∈M{Qm}. Furthermore, each bus can visit up to L stops, each incurring
a loading time w. Let T represent the maximum duration of any route.

The school has a total of N students to be picked up. Each bus stop v ∈ VS has a
known (positive integer) number of students dv awaiting boarding, d′

v and t′v represents
the number and the travel time of students assigned to stop v last semester, including
loading time at that stop.

If a bus of type m is used, its route is denoted as the sequence Rm = {0, v1, v2, . . . , vl},
where the bus departs from stop vl to pick up dvl

students, and then travels to stop
vl−1 to pick up dvl−1 students and so forth, until it has picked up dv1 students at
stop v1. Finally, it drops off all students at the school at node 0. For i ∈ {1.2, . . . , l},
the travel time and travel distance of students waiting at stop vi on the route Rm is
tvi = τvivi−1 + . . .+ τv10 +w× i and evi = ψ(τvivi−1 + . . .+ τv10). The travel cost of route
Rm is computed by multiplying the route length with the travel cost per distance unit
of the bus type m (i.e., Cd

mevl
). The total cost of route Rm is computed by summing its

travel cost and the fixed cost of the bus type m.

4. The mathematical programming formulation

Our formulation for the SOBRGP uses the following variables:
• For each arc (u, v) ∈ A, the binary variable xuv indicates whether node v is

immediately followed by node u on the route.
• For each bus type m ∈ M and each node v ∈ VS , the binary variable ymv indicates

whether there is a bus of type m starting from stop v.
• For each node v ∈ VS , tv represents the travel time of students waiting at stop v.
• For each node v ∈ VS , ev denotes the distance traversed by students at stop v to

school.
• For each node v ∈ VS , the binary variable rv indicates whether the students at

stop v incur a negative impact.
• For each node v ∈ VS , lv represents the total number of stops remaining for a bus

to pass through on its designated route from stop v to the school, including stop
v.

• For each node v ∈ VS , sv represents the total number of students remaining for a
bus to pick up on its designated route from stop v to the school, including those
at stop v.
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The formulation is then as follows:

Minimise
∑

m∈M

∑
v∈VS

(Cd
mev + Cf

m)ymv (1)

s.t.
∑

u∈VS\{v}
xuv +

∑
m∈M

ymv = 1 (v ∈ VS) (2)

∑
v∈V \{u}

xuv = 1 (u ∈ VS) (3)

lv − lu ≤ L(1 − xuv) − 1 ((u, v) ∈ A) (4)
1 ≤ lv ≤ L (v ∈ VS) (5)
sv − su ≤ Qmax(1 − xuv) − du ((u, v) ∈ A) (6)
dv ≤ sv ≤ Qmax (v ∈ VS) (7)

sv ≤ Qmax − ymv(Qmax −Qm) (v ∈ VS ,m ∈ M) (8)
tv − tu + τuv + w ≤ (T + τmax)(1 − xuv) ((u, v) ∈ A) (9)

w + τv0 ≤ tv ≤ max{T, ατv0} (v ∈ VS) (10)
ev − eu + ψτuv ≤ ψ(T + τmax)(1 − xuv) ((u, v) ∈ A) (11)

tv − t′vγ ≤ Trv (v ∈ VS) (12)∑
v∈VS

d′
vrv ≤ Nβ (13)

t0 = l0 = s0 = e0 = 0 (14)
xuv ∈ {0, 1} ((u, v) ∈ A) (15)
ymv ∈ {0, 1} (v ∈ V, m ∈ M) (16)
rv ∈ {0, 1} (v ∈ VS) (17)
ev ∈ R+ (v ∈ VS) (18)

The objective function (1) minimises the total cost, which includes the fixed cost
for all buses in use and the travel cost. Constraints (2) and (3) force each bus stop to
be visited exactly once. Constraints (4), (6), (9) and (11) are known as Miller-Tucker-
Zemlin constraints and ensure that the routes are connected. Constraints (4-5) impose
the maximum number of stops per route. Constraints (6-7) impose the vehicle capacity
restrictions and constraints (8) ensure that each route is assigned the correct type of bus
based on its physical capacity. Constraints (9) and (10) impose the maximum riding
time for each student and, at the same time, the maximum travelling time for each
route. Constraints (11) define travel distance of students waiting at stop v.

Constraints (12) imply that if the riding time of students waiting at stop v is more
than γ times longer than before, these students will experience a negative impact.
Constraints (13) limit the total number of students who experience a negative impact.
Finally, constraints (14) to (18) simply describe the range of variables.

The objective function is non-linear because of the terms (Cd
mev +Cf

m)ymv, which are
the product of a continuous and a binary variables. By defining fmv as the total cost
incurred by a bus of type m starting from stop v, for each type m ∈ M and each node
v ∈ VS (i.e., fmv = (Cd

mev + Cf
m)ymv), and by adding the following constraints:

fmv ≥ Cd
mev + Cf

mymv + ψTCd
m(ymv − 1) (m ∈ M, v ∈ VS)

fmv ≥ 0 (m ∈ M, v ∈ VS)
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to the previous programming formulation, the objective function can be linearised as

Minimise
∑

m∈M

∑
v∈VS

fmv

The resulting formulation is called the MILP. We will conduct computational exper-
iments with this formulation, and the results are shown in Section 6.

5. Metaheuristic

Given that the instances which can be optimally solved using the previous MILP are
very small-scale, we propose a hybrid metaheuristic in this section capable of producing
good solutions for larger-scale instances. In particular, we have designed a Multi-Start
Iterated Local Search (MS-ILS) that combines two different metaheuristics: the Greedy
Randomised Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS). The
MS-ILS is outlined in Subsection 5.1, and its procedures are described in the following
subsections.

5.1. Multi-start iterated local search

Algorithm 1 describes our hybrid algorithm for the SOBRGP. S∗ is the best solution
found over ϕ iterations. Each of these iterations provides the inner loop (Lines 3-16)
with a different initial solution using the Construction procedure (Line 3), which is then
improved by Local Search operators (Line 4). Within the inner loop, each initial solution
(or current solution) S is transformed into a giant tour SG by concatenating all routes
and eliminating the copies of node 0 (Line 8). The obtained giant tour then undergoes
the Perturbation procedure before being transformed into a new feasible solution S′ for
the SOBRGP via the Split procedure (Lines 9-10). The solution is further improved
using Local Search operators (Line 11). The inner loop terminates after φ consecutive
iterations without improvement. In both the outer and inner loops, the new solution
is accepted if an improvement is found. Note that we define f(S) as the total cost of
solution S.

It can be seen that when φ is equal to 1, our metaheuristic becomes GRASP, while
when ϕ is equal to 1, our metaheuristic becomes ILS. Therefore, based on studies [48]
and [28], our hybrid algorithm is also called GRASP × ILS.

5.2. Construction procedure

To kick off the inner loop (or the ILS phase), we compute initial solutions using the well-
known Cheapest Insertion Heuristic (CIH). This heuristic was initially developed for the
Traveling Salesman Problem [51], but we have specially tailored it for our particular
problem. Additionally, to generate different initial solutions, we integrate randomisation
into the node selection process.

The CIH is outlined in Algorithm 2. First, it initialises a set of unvisited bus stops
V unvisited containing all bus stops, and a solution S consisting of a route containing only
node 0 (Line 1-2). Such a route is called “empty” as it contains no bus stops and the
node 0 is positioned first. The algorithm then computes insertion costs for each unvisited
stop at all feasible positions and stores them in the insertPattern list (Line 4-10). The
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Algorithm 1: The framework of the MS-ILS
1 Set f(S∗) to ∞;
2 for i = 1 to ϕ do
3 Let S be the solution obtained by the Construction procedure;
4 Execute the LocalSearch procedure on S;
5 Set j to 0 ;
6 while j < φ do
7 Set j to j + 1;
8 Merge all routes in S, removing duplicates of node 0, to form SG;
9 Execute the Perturbation procedure on SG;

10 Let S′ be the solution obtained by executing the Split procedure on SG;
11 Execute the LocalSearch procedure on S′;
12 if f(S′) < f(S) then
13 Set S to S′;
14 Set j to 0;

15 if f(S′) < f(S∗) then
16 Set S∗ to S′;

17 return S∗

insertion position is considered feasible if it satisfies all constraints of the problem, with
the vehicle capacity constraint replaced by ensuring that the total demand does not
exceed Qmax. When calculating the insertion cost, the bus type chosen is the smallest
one that can still meet the total demand of the route. Subsequently, the insertPattern
list is sorted in increasing order of insertion cost (Line 11). The algorithm selects a
tuple randomly from the sorted list based on a parameter λ (Line 12-14), inserts the
chosen unvisited node into the selected position (Line 15) and updates the set V unvisited

accordingly (Line 16). If S does not include an empty route, one is created (Lines 17-
18). This ensures there’s always at least one route into which unvisited nodes can be
inserted in the subsequent step. This process continues until the set V unvisited is empty.

5.3. Split procedure

The aim of the split procedure is to divide the giant tour into segments that are small
enough to be traversed by a single vehicle. This procedure is originally proposed by
Beasley [5] as part of the “route-first cluster-second” heuristic. Beasley showed that the
splitting is done optimally by solving a series of shortest-path problems in an auxiliary
directed acyclic graph. Prins [47] later presented a dynamic programming approach for
this splitting version without explicitly generating the auxiliary graph. We adapt Prins’s
version for our Split procedure.

The giant tour can be defined as a sequence of bus stops (v1, v2, · · · , vn) travelled in
the order. Each subsequence Rij = (vi, · · · , vj), where i ≤ j, corresponds to a route of
a single bus Rm

ij = {0, vi, · · · , vj}, in which the bus departs from stop vj , then go to
stop vj−1, and so on, until it reaches stop vi, and finally visits the school at node 0. The
smallest bus m that fits the total number of students on the route is chosen. The set of
subsequences corresponding to feasible routes is denoted by R.

For each subsequence Rij , we define a set of associated metrics for the corresponding
route:

• cij : the total cost.
• tij : the riding time of the students waiting at bus stop vi.
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Algorithm 2: Construction procedure
1 Set V unvisited to VS ;
2 Let S include a empty route;
3 while V unvisited is not empty do
4 Create an empty list insertPatterns;
5 for v ∈ V unvisited do
6 for R ∈ S do
7 for p = 2, . . . , len(R) + 1 do
8 if insertion of v at position p in route R is feasible then
9 Let c be the increase in cost by inserting v at position p in R;

10 Add (c, v, p, R) to insertPatterns;

11 Sort insertPatterns in increasing order of cost;
12 for (c, v, p, R) ∈ insertPatterns do
13 Let r be a random number in interval [0, 1];
14 if r < λ then
15 Insert node v at position p in route R ;
16 Remove v from V unvisited ;
17 if S does not include an empty route then
18 Create an empty route and add it to S;
19 break;

20 Remove empty routes from S;
21 return S

12



• lij : the number of bus stops.
• sij : the number of students picked up.
• ŝij : the number of students having the negative impacts.

Algorithm 3 shows how to efficiently generate the set R and evaluate the metrics for
each subsequence in R. One can verify that the computation of metrics for subsequence
Rij is derived in O(1) time from the metrics of Ri+1,j , rather than scanning the entire
subsequence.

We remark that we only consider subsequences corresponding to feasible routes. As
a result, if the subsequence Rij leads to an infeasible route, we no longer consider the
subsequences Ri′,j where i′ < i. A route is considered feasible if it satisfies the following
constraints: (1) the maximum number of stops per route (lij ≤ L); (2) the maximum
duration of each route (tij ≤ T ); (3) the maximum riding time of students at stop i
(tij ≤ ατi0), and (4) the capacity constraint (sij ≤ Qmax). Route feasibility can be
checked in constant time (O(1)). Consequently, each subsequence Rij is processed in
O(|M|), resulting in an overall worst-case complexity of O(nL|M|) for Algorithm 3.

Algorithm 3: Computing associated metrics for all subsequences
1 for j = 1, . . . , n do
2 Set i to j;
3 Set lij to 1;
4 Set tij to τvj0 + w;
5 Set sij to dvj ;
6 Set ŝij to 0;
7 while Rij corresponds to an feasible route do
8 Let m be a bus such that Qm = min{Cf

m : Qm′ ≥ sij ,m
′ ∈ M};

9 Set cij to Cf
m + Cd

m(tij − lij ∗ w)ψ;
10 Add a subsequence Rij to R;
11 if i > 1 then
12 Set i to i− 1;
13 Set lij to li+1,j + 1;
14 Set tij to ti+1,j + τvi+1vi + w − τvi+10 + τvi0;
15 Set sij to si+1,j + dvi ;
16 if tij > γt′i then
17 Set ŝij to ŝi+1,j + dvi ;
18 else
19 Set ŝij to ŝi+1,j ;

20 return R

Algorithm 4 demonstrates how to compute solutions for the SOBRGP. We define
f(j, ŝ) as the minimum cost when partitioning the first j bus stops into feasible routes
with exactly ŝ negatively impacted students, where 0 ≤ ŝ ≤ Nβ and 0 ≤ j ≤ n. The
f(j, ŝ) values are computed recursively (Line 1-13). The cost of the optimal splitting is
the minimum value of f(n, ŝ), where 0 ≤ ŝ ≤ Nβ (Line 14-18). The predecessors Pjŝ

and Qjŝ enable us to reconstruct the set of feasible routes back to bus stop v1 (Line
19-23). One can check that the algorithm runs in O(nLNβ) time.
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Algorithm 4: Split procedure
1 for j = 0 to n do
2 for ŝ = 0 to Nβ do
3 Set f(j, ŝ) to +∞;

4 Set f(0.0) to 0;
5 for j = 1 to n do
6 for ŝ = 0 to Nβ do
7 Set i to j;
8 while (Rij ∈ R) and (ŝij ≤ ŝ) and (i ≥ 1) do
9 if f(j, ŝ) > f(i− 1, ŝ− ŝij) + cij then

10 Set Pjŝ to i− 1;
11 Set Qjŝ to ŝ− ŝij ;
12 f(j, ŝ) = f(i− 1, ŝ− ŝij) + cij ;
13 Set i to i− 1;

14 Set f∗ to +∞ and ŝ∗ to 0;
15 for ŝ = 0 to Nβ do
16 if f(n, ŝ) < f∗ then
17 Set f∗ to f(n, ŝ);
18 Set ŝ∗ to ŝ;

19 Set j to n, ŝ to ŝ∗, and S to ∅;
20 while j > 0 do
21 Set i to Pjŝ + 1;
22 Add the corresponding route of the subsequence Rij to S;
23 Set j to i− 1 and ŝ to Qjŝ;
24 return S and its cost f∗.
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5.4. Local search

Our local search uses classical neighborhood moves known as “Cross String”, which
involves swapping two strings between the same or different routes, as shown in Figure
2. (In the online version, the blue lines show the string segments chosen from one route
for swapping. The red lines show the other segments involved in the swap, which may
come from the same or a different route. The black dots mark the end nodes of each
string.) The length of a string is limited to ⌊L

2 ⌋, although the swapped strings may have
different lengths. Note that the Cross String neighborhood includes the “Relocation”
move as a special case, illustrated in Figure 2b, where the relocation of one string is
caused by another string having a length of 0. (A string of zero length indicates that
its endpoints coincide.) We do not consider scenarios where both strings have lengths
of 0, as the routes remain unchanged. We use the first improvement strategy, where
upon finding an improved solution, it replaces the current solution. The pseudocode is
described in Algorithm 5.

After creating a new solution, we need to check its feasibility and determine whether
there is a reduction in total cost. While the latter is straightforward, the former requires
a more efficient approach due to the numerous constraints involved. To manage this,
we categorise these constraints into groups that can be evaluated simultaneously and
examine them sequentially based on their computational complexity. If one constraint
is found to be violated, the checking process is terminated. The first group contains a
single constraint on the maximum number of stops per route, which can be verified in
O(1) time. The second group includes constraints on the maximum route duration and
vehicle capacity. This evaluation is conducted alongside the checking of cost savings.
The third group consists of constraints on the maximum riding time of students and
the maximum number of negatively impacted students. The checks for the second and
third groups can be completed in O(L) time.

Algorithm 5: Local search
Input : Solution S

1 Set Lls to ⌊L
2 ⌋;

2 Set stop to False;
3 while stop == False do
4 Set stop to True;
5 for route Rm1 in S do
6 for route Rm2 in S do
7 for i1 = 1 to len(Rm1) do
8 for len1 = 0 to min{Lls, len(Rm1) − i1} do
9 for i2 = 1 to len(Rm2) do

10 for len2 = 0 to min{Lls, len(Rm1) − i2} do
11 Let st1 be a string of length len1 on Rm1 ;
12 Let st2 be a string of length len2 on Rm1 ;
13 if swapping st1 and st2 is feasible and cost-saving is

positive then
14 Swap st1 and st2;
15 Set stop to False;

16 return Solution S
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st1 st2 st1 st2

a, General cases

st1 st2 st1 st2

b, Special cases

Figure 2.: Cross string moves

5.5. Perturbation procedure

The appropriate level of perturbation is critical for the performance of ILS phase [48].
Insufficient perturbation may not effectively escape local optima, while excessive per-
turbation can cause major changes in the solution, potentially slowing down the con-
vergence to the global optimum. Moreover, to explore different regions in the solution
space, perturbation moves should not be easily achieved by local search moves. After
conducting preliminary experiments, we opted to randomly swap between 1 to 3 pairs
of stops in the giant tour for perturbation procedure. Note that no constraints require
checking in this procedure.

6. Experimental results

In this section, we describe our experiments and present the findings. The real instances
and their parameters are introduced in Section 6.1. For comprehensive testing of the
algorithms’ performance, we generated artificial instances and discussed parameter set-
tings in subsection 6.2. Extensive computational results on a set of generated instances
and real instances are presented in Subsection 6.3 and Subsection 6.4, respectively, along
with a sensitivity analysis on some parameters from Subsections 6.5-6.7.

All experiments are coded in C++ and tested on a single thread of an AMD Ryzen
Threadripper PRO 5975WX Processor at 3.60 GHz with 32GB of RAM. To solve the
MILP, we use ILOG CPLEX 22.1.1 Solver with its default setting. A time limit of one
hour per instance was imposed. Based on our preliminary experiments, we set ϕ to 5
and φ to 12000 for the MS-ILS framework, and λ to 0.9 for the construction procedure.
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For each instance, we run the MS-ILS algorithm 10 times with difference random seeds
and record the best and average solutions.

6.1. Real instances

We are given two real instances. The first instance, V41-N185-real, involves 40 stops
and 185 students, while the second instance, V69-N324-real, involves 68 stops and
324 students. The number of students at each stop and the travel time of continuing
students from current semester are provided and used to generate the schedule for the
next semester. However, due to confidentiality reasons, we cannot disclose the specifics
of this information. Other parameters are as follows:

• The maximum number of stops per route L is 7.
• The maximum route duration T is fixed at 60 minutes.
• The loading time at each stop w is (estimated to be) 2 minutes.
• The value of α is 2.0, meaning a student’s riding time is capped at twice the direct

travel time from their bus stop to school. The value of γ is 1.05, meaning students
are considered to experience a negative impact if their riding time increases by
more than 1.05 times their travel duration from the previous semester.

• Three types of buses are available, with capacities of 16, 29, and 45 seats. They
can accommodate up to 15, 28, and 44 students, respectively.

• The distance between two stops is calculated using the OpenStreetMap API, and
the average bus speed is set to 20 km/h to account for urban settings.

According the operations manager of the school, the current schedule was manually
made. And due to human computational limitations, they could not ensure 100% com-
pliance with all constraints, including those related to negative impacts. Recently, nu-
merous complaints from parents have compelled them to seek a more scientific approach
to solving the problem. We were also informed that, in the next semester, approximately
20% of students would discontinue using the bus stop system and be replaced by roughly
the same number of newly enrolled students. There is also a possibility that up to 5%
of new bus stops could be introduced.

The fixed cost per day Cf
m and travel cost per kilometer Cd

m of a bus type are provided
in Table 1, with the costs in thousands of Vietnamese dong.

Bus capacity (Qm) Fixed cost per day (Cf
m) Travel cost per km (Cd

m)
15 950 8
28 1200 10
44 1700 15

Table 1: Fixed and travel costs for each of bus type

6.2. Artificially generated instances

Since the SOBRGP has not been addressed in the literature, we generated test instances
to evaluate the performance of our algorithms. The main idea is to generate instances
that imitate real scenarios. In particular, we used benchmark instances for the CVRP
created by Augerat [4], with the number of nodes varying between 16 and 101. Nodes
represent the bus stops, the depot represents the school, and the demand at each node
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represents the number of students waiting at the corresponding bus stop. The coordi-
nates of nodes are provided, enabling us to calculate the travel time between two stops
by dividing the Euclidean distance by the average bus speed. We use minutes as the
unit for travel time. It is important to mention that we adjust the coordinates of the
graph nodes to fit within a 20x20 km grid, which represents the operational area of a
bus system in an actual urban environment.

In previous semesters, the school manually generated bus routes based on the sched-
uler’s experience, using a process similar to a greedy heuristic with nearest insertion to
create the routes. We also adapted a heuristic approach to generate the last semester’s
schedule for continuing students in our test instances. In particular, we used our con-
struction procedure without the randomised factor to obtain an initial solution with
t′v = +∞ ∀v ∈ V (i.e., no student experiences negative impact), and then applied our
proposed local search procedure to improve it.

To generate data for newly enrolled students, we began by randomly removing 20%
of students from their assigned bus stops, rounding down to the nearest integer number.
Then, we randomly introduced up to 5% new bus stops within the existing graph. The
same number of students removed were then re-added as newly enrolled students, with
their assignments to bus stops made randomly. All removal and insertion operations
were applied uniformly across all stops. Table 2 shows the number of bus stops (VS)
and the average number of students (d) waiting at bus stops both before and after the
generation of newly enrolled student data for each instance. Our instances are labeled
Va-Nb, where a represents the number of bus stops and b represents the number of
students.

We assume the same three types of buses for all generated instances are used as
in the real instances. Other parameters T , L, w, γ, and α are also unchanged. For
each instance, we test different values of β = {0%, 10%, 30%, 50%, 100%} to assess the
impact of the negative impact threshold on our algorithms. Note that a β value of 100%
indicates no restrictions on the number of students experiencing a negative impact,
meaning the negative impact policy is not implemented. We also remark that, due to
instance creation, setting β = 100% effectively means β is around 80%, as roughly 20%
of the students are classified as new. These students are not subject to this constraint,
and their proportion varies slightly across instances due to rounding. Full details of all
instances are made available at ORLab Data Repository1.

6.3. Computational results for artificial instances

Table 3 presents the results obtained with the MILP formulation. The first column shows
the instance names, while the second presents the value of β, the maximum proportion
of students experiencing negative impacts (i.e., those who travel time increases exceed
γ times their travel duration from the previous semester). The next three columns
display the total cost (Column “Obj”), the fixed cost (Column “Cf ”), and the travel
cost (Column “Cd”) of the best found solution, respectively. We note that the total cost
in this study refers to the operating cost, which includes daily fixed costs such as driver
wages, bus rentals, and other expenses, in addition to the travel cost. The sixth column
reports the percentage gap between the upper and lower bounds obtained with the
default branch-and-cut algorithm of CPLEX. The seventh column provides the running
time of the algorithm in seconds. The last column shows the proportion of negatively
impacted students in the current best solution.

1http://orlab.com.vn/home/download
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Instance Current semester Next semester
VS d VS d

V17-N108 15 7.20 16 6.75
V19-N114 19 6.00 18 6.33
V21-N108 21 5.14 20 5.40
V22-N139 20 6.95 21 6.62
V23-N126 20 6.30 22 5.73
V24-N154 22 7.00 23 6.70
V24-N96 23 4.17 23 4.17
V40-N269 40 6.73 39 6.90
V46-N192 46 4.17 45 4.27
V50-N270 50 5.40 49 5.51
V51-N234 49 4.78 50 4.68
V51-N283 50 5.66 50 5.66
V54-N321 52 6.17 53 6.06
V55-N318 57 5.58 54 5.89
V57-N336 55 6.11 56 6.00
V57-N341 55 6.20 56 6.09
V57-N347 56 6.20 56 6.20
V60-N281 63 4.46 59 4.76
V61-N337 60 5.62 60 5.62
V66-N321 65 4.94 65 4.94
V72-N381 72 5.29 71 5.37
V77-N409 76 5.38 76 5.38
V78-N391 74 5.28 77 5.08
V106-N495 101 4.90 105 4.71

Table 2: Summary of test instances
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Data β(%) Obj Cf Cd Gap T(s) ŝ Data β(%) Obj Cf Cd Gap T(s) ŝ

V17-N108

0 6410 6000 410 0.0 0 0.0

V54-N321

0 17350 15800 1550 17.5 3600 0.0
10 6146 5750 396 0.0 2 3.4 10 17334 15800 1534 43.5 3600 8.9
30 5800 5300 500 0.0 72 29.9 30 16986 15350 1636 63.7 3600 28.4
50 5760 5300 460 0.0 94 44.8 50 16239 14650 1589 71.4 3600 41.6
100 5760 5300 460 0.0 62 48.3 100 16907 15150 1757 70.4 3600 40.9

V19-N114

0 6266 5750 516 0.0 4 0.0

V55-N318

0 17823 16300 1523 15.0 3600 0.0
10 5850 5300 550 0.0 77 7.6 10 17060 15600 1460 50.2 3600 9.8
30 5840 5300 540 0.0 437 19.6 30 17185 15600 1585 82.3 3600 24.7
50 5840 5300 540 0.0 306 19.6 50 17351 15800 1551 82.6 3600 28.6
100 5600 5050 550 0.0 253 51.1 100 16385 14900 1485 76.9 3600 27.8

V21-N108

0 6290 5750 540 0.0 6 0.0

V57-N336

0 17835 16300 1535 14.7 3600 0.0
10 6020 5500 520 0.0 90 8.0 10 18212 16750 1462 62.3 3600 7.1
30 5845 5300 545 0.0 1338 23.0 30 17814 16300 1514 93.0 3600 26.8
50 5845 5300 545 0.0 652 17.2 50 17851 16300 1551 80.9 3600 29.7
100 5625 5050 575 0.0 595 54.0 100 18322 16600 1722 85.4 3600 36.8

V22-N139

0 7782 7200 582 0.0 1 0.0

V57-N341

0 18524 17000 1524 22.9 3600 0.0
10 7472 6950 522 0.0 436 8.9 10 18476 16800 1676 64.4 3600 8.8
30 7080 6500 580 21.2 3600 29.5 30 18656 17000 1656 77.9 3600 17.6
50 7080 6500 580 24.2 3600 30.4 50 18535 16800 1735 78.8 3600 30.4
100 6858 6250 608 16.9 3600 68.8 100 18149 16350 1799 78.2 3600 41.8

V23-N126

0 7349 6700 649 0.0 200 0.0

V57-N347

0 18371 16800 1571 21.7 3600 0.0
10 6994 6450 544 16.6 3600 9.9 10 18611 16850 1761 73.9 3600 9.7
30 6574 6000 574 27.6 3600 21.8 30 18310 16600 1710 89.3 3600 23.4
50 6820 6250 570 27.1 3600 29.7 50 18796 17050 1746 84.4 3600 36.0
100 6574 6000 574 25.8 3600 19.8 100 17872 16100 1772 89.0 3600 37.4

V24-N154

0 8484 7900 584 0.0 6 0.0

V60-N281

0 16826 15300 1526 24.0 3600 0.0
10 7800 7200 600 0.0 3195 8.9 10 16687 15100 1587 63.1 3600 9.3
30 7610 7000 610 24.8 3600 29.8 30 15405 13900 1505 74.5 3600 16.9
50 7411 6750 661 24.7 3600 50.0 50 15711 14150 1561 74.9 3600 27.1
100 7190 6500 690 22.4 3600 54.8 100 16492 15050 1442 76.0 3600 20.4

V24-N96

0 7436 6900 536 0.0 1 0.0

V61-N337

0 19035 17250 1785 21.1 3600 0.0
10 6756 6200 556 0.0 156 5.2 10 19382 17700 1682 56.5 3600 10.0
30 6472 5950 522 0.0 1328 29.9 30 18686 17050 1636 76.9 3600 19.3
50 6464 5950 514 0.0 2155 40.3 50 19110 17250 1860 79.5 3600 25.2
100 6464 5950 514 0.0 1460 36.4 100 18211 16350 1861 94.7 3600 44.4

V40-N269

0 14184 12950 1234 0.0 980 0.0

V66-N321

0 19246 17450 1796 33.7 3600 0.0
10 13960 12700 1260 33.8 3600 7.9 10 20215 18400 1815 74.1 3600 7.8
30 13454 12050 1404 52.0 3600 22.2 30 19592 17700 1892 80.3 3600 24.1
50 13886 12700 1186 51.7 3600 25.0 50 20028 18150 1878 82.6 3600 29.2
100 13378 12050 1328 52.4 3600 19.4 100 19359 17450 1909 84.7 3600 30.0

V46-N192

0 12702 11450 1252 0.0 692 0.0

V72-N381

0 20764 18700 2064 25.7 3600 0.0
10 12656 11450 1206 28.9 3600 6.5 10 21915 19850 2065 69.8 3600 8.9
30 13122 11900 1222 59.2 3600 22.7 30 22119 19900 2219 82.4 3600 23.9
50 12394 11200 1194 55.7 3600 29.2 50 21849 19650 2199 95.7 3600 37.0
100 12388 11200 1188 55.7 3600 28.6 100 21850 19450 2400 82.2 3600 53.8

V50-N270

0 14252 12950 1302 19.9 3600 0.0

V77-N409

0 23092 21050 2042 37.0 3600 0.0
10 14873 13450 1423 66.2 3600 5.6 10 24148 21800 2348 74.7 3600 8.2
30 14680 13400 1280 72.5 3600 13.0 30 24672 22250 2422 84.4 3600 25.0
50 14291 12950 1341 79.0 3600 35.6 50 24157 21800 2357 86.0 3600 26.2
100 14916 13450 1466 79.4 3600 26.4 100 23779 21550 2229 85.7 3600 31.4

V51-N234

0 15334 14050 1284 15.1 3600 0.0

V78-N391

0 22232 20150 2082 38.2 3600 0.0
10 15648 14300 1348 55.6 3600 8.0 10 23917 21750 2167 71.6 3600 8.9
30 15155 13850 1305 80.1 3600 26.6 30 23923 21500 2423 83.7 3600 23.6
50 14242 12900 1342 72.0 3600 36.2 50 23581 21100 2481 83.6 3600 38.0
100 13650 12250 1400 78.0 3600 37.2 100 23065 20800 2265 83.1 3600 31.3

V51-N283

0 16288 14850 1438 19.2 3600 0.0

V106-N495

0 31826 28900 2926 97.0 3600 0.0
10 15613 14150 1463 61.9 3600 9.7 10 31982 28950 3032 98.6 3600 6.3
30 15852 14400 1452 80.7 3600 28.6 30 31593 28700 2893 100.0 3600 27.0
50 15376 13900 1476 77.8 3600 36.1 50 31475 28300 3175 100.0 3600 30.6
100 16113 14600 1513 80.8 3600 45.8 100 31142 28000 3142 100.0 3600 37.1

Table 3: Results of MILP model for artificially generated instances
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Data β(%) Obj Cf Cd Gap′ Gap T(s) ŝ Data β(%) Obj Cf Cd Gap′ Gap T(s) ŝ

V17-N108

0 6410 6000 410 0.0 0.0 20 0.0

V54-N321

0 17328 15800 1528 0.0 -0.1 263 0.0
10 6146 5750 396 0.0 0.0 17 3.4 10 16592 15100 1492 0.0 -4.3 314 7.4
30 5800 5300 500 0.0 0.0 17 29.9 30 15820 14200 1620 0.1 -6.9 234 29.6
50 5760 5300 460 0.0 0.0 15 48.3 50 15692 14150 1542 0.3 -3.4 292 40.5
100 5760 5300 460 0.0 0.0 15 48.3 100 15694 14150 1544 0.2 -7.2 217 50.6

V19-N114

0 6266 5750 516 0.0 0.0 21 0.0

V55-N318

0 17823 16300 1523 0.0 0.0 295 0.0
10 5850 5300 550 0.0 0.0 18 7.6 10 15860 14400 1460 0.2 -7.0 239 9.4
30 5840 5300 540 0.0 0.0 30 19.6 30 15140 13700 1440 1.9 -11.9 235 29.8
50 5840 5300 540 0.0 0.0 17 19.6 50 15025 13500 1525 0.6 -13.4 210 39.2
100 5600 5050 550 0.0 0.0 22 51.1 100 15030 13500 1530 1.8 -8.3 281 51.8

V21-N108

0 6290 5750 540 0.0 0.0 25 0.0

V57-N336

0 18210 16750 1460 0.0 2.1 444 0.0
10 6020 5500 520 0.0 0.0 25 8.0 10 16784 15350 1434 0.0 -7.8 369 8.9
30 5845 5300 545 0.0 0.0 21 17.2 30 16202 14650 1552 0.0 -9.0 248 27.5
50 5845 5300 545 0.0 0.0 21 17.2 50 15745 14200 1545 1.6 -11.8 366 43.1
100 5625 5050 575 0.0 0.0 22 54.0 100 15795 14200 1595 1.1 -13.8 242 47.6

V22-N139

0 7782 7200 582 0.0 0.0 36 0.0

V57-N341

0 17916 16350 1566 0.0 -3.3 270 0.0
10 7472 6950 522 0.0 0.0 39 8.9 10 16970 15400 1570 0.7 -8.2 257 9.5
30 7080 6500 580 0.0 0.0 28 27.7 30 16310 14700 1610 0.6 -12.6 305 28.2
50 6895 6250 645 0.0 -2.6 30 48.2 50 16215 14500 1715 0.2 -12.5 232 39.9
100 6858 6250 608 0.0 0.0 27 68.8 100 16215 14500 1715 0.2 -10.7 250 39.9

V23-N126

0 7349 6700 649 0.0 0.0 37 0.0

V57-N347

0 18324 16800 1524 0.9 -0.3 358 0.0
10 6850 6250 600 0.0 -2.1 30 9.9 10 16950 15400 1550 0.2 -8.9 296 8.6
30 6574 6000 574 0.0 0.0 28 21.8 30 16290 14700 1590 1.4 -11.0 241 28.8
50 6574 6000 574 0.0 -3.6 38 19.8 50 16245 14700 1545 0.1 -13.6 339 42.4
100 6570 6000 570 0.0 -0.1 31 55.4 100 16185 14500 1685 0.1 -9.4 213 46.8

V24-N154

0 8484 7900 584 0.0 0.0 53 0.0

V60-N281

0 16622 15050 1572 0.1 -1.2 306 0.0
10 7800 7200 600 0.0 0.0 39 9.7 10 15122 13650 1472 0.9 -9.4 276 9.8
30 7610 7000 610 0.0 0.0 34 29.8 30 14364 12950 1414 0.1 -6.8 231 28.4
50 7411 6750 661 0.0 0.0 34 48.4 50 14364 12950 1414 0.0 -8.6 252 27.1
100 7190 6500 690 1.8 0.0 31 54.8 100 14364 12950 1414 0.0 -12.9 279 27.1

V24-N96

0 7436 6900 536 0.0 0.0 41 0.0

V61-N337

0 18684 17000 1684 0.5 -1.8 428 0.0
10 6756 6200 556 0.0 0.0 33 5.2 10 17246 15600 1646 1.0 -11.0 302 10.0
30 6472 5950 522 0.0 0.0 32 29.9 30 16580 14900 1680 0.3 -11.3 329 29.3
50 6464 5950 514 0.0 0.0 35 36.4 50 16420 14700 1720 0.2 -14.1 396 46.3
100 6464 5950 514 0.0 0.0 55 40.3 100 16385 14700 1685 0.3 -10.0 240 51.5

V40-N269

0 14184 12950 1234 0.0 0.0 141 0.0

V66-N321

0 18008 16300 1708 0.2 -6.4 355 0.0
10 13468 12250 1218 0.0 -3.5 90 9.3 10 16728 15100 1628 0.2 -17.2 346 8.6
30 13035 11600 1435 0.1 -3.1 79 29.6 30 16070 14400 1670 0.1 -18.0 313 27.6
50 12883 11550 1333 0.5 -7.2 105 44.0 50 16039 14400 1639 0.5 -19.9 314 35.8
100 12883 11550 1333 0.6 -3.7 79 44.0 100 16039 14400 1639 0.7 -17.1 323 35.8

V46-N192

0 12702 11450 1252 0.0 0.0 128 0.0

V72-N381

0 20336 18450 1886 2.1 -2.1 454 0.0
10 12374 11200 1174 0.0 -2.2 129 9.7 10 19125 17300 1825 1.0 -12.7 433 9.8
30 11698 10500 1198 1.8 -10.9 102 27.9 30 18465 16600 1865 0.8 -16.5 364 29.2
50 11258 10050 1208 0.0 -9.2 96 50.0 50 18455 16600 1855 0.5 -15.5 464 33.4
100 11258 10050 1208 0.0 -9.1 98 44.8 100 18455 16600 1855 0.1 -15.5 319 34.1

V50-N270

0 14010 12700 1310 0.0 -1.7 140 0.0

V77-N409

0 21190 19200 1990 0.6 -8.2 503 0.0
10 13861 12500 1361 0.0 -6.8 135 9.7 10 19870 18000 1870 1.2 -17.7 437 9.5
30 13515 12250 1265 0.1 -7.9 126 29.2 30 19555 17600 1955 0.2 -20.7 391 23.2
50 13515 12250 1265 0.1 -5.4 121 29.6 50 19311 17350 1961 0.5 -20.1 430 44.8
100 13515 12250 1265 0.1 -9.4 121 30.1 100 19530 17600 1930 0.1 -17.9 439 30.8

V51-N234

0 14912 13600 1312 0.0 -2.8 188 0.0

V78-N391

0 20630 18700 1930 1.1 -7.2 570 0.0
10 13218 11950 1268 2.0 -15.5 199 9.6 10 19614 17750 1864 1.1 -18.0 598 9.3
30 12424 11250 1174 0.0 -18.0 123 25.0 30 19045 17100 1945 0.3 -20.4 444 28.4
50 12424 11250 1174 0.0 -12.8 121 35.1 50 18819 16850 1969 0.9 -20.2 453 35.5
100 12424 11250 1174 0.0 -9.0 127 35.1 100 18827 16850 1977 0.4 -18.4 387 35.1

V51-N283

0 16239 14850 1389 0.0 -0.3 181 0.0

V106-N495

0 27038 24450 2588 0.5 -15.0 1239 0.0
10 14808 13450 1358 0.1 -5.2 153 9.3 10 25388 23000 2388 1.9 -20.6 1096 9.6
30 13880 12500 1380 0.7 -12.4 239 29.5 30 24233 21850 2383 1.0 -23.3 1092 29.3
50 13845 12500 1345 0.1 -10.0 132 37.9 50 23960 21600 2360 1.1 -23.9 956 38.4
100 13678 12250 1428 0.1 -15.1 133 55.9 100 23960 21600 2360 0.4 -23.1 780 40.2

Table 4: Results of meta-heuristic for artificially generated instances
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It can be observed that our exact algorithm can solve to optimality only 27 instances,
specifically those of smaller size with fewer than 46 bus stops. Its performance tends to
deteriorate as the number of bus stops and students increases. This behavior is easily
predicted as the size of the MILP formulation increases. The instances with β = 0 tends
to be the easier to solve. When β = 0, the MILP model can solve all datasets up to
the instance V46-N192. One possible reason is that the strict limitation on β results
in solutions for the next semester that are not significantly different from those of the
current semester, reducing the search space.

We now examine the performance of the MS-ILS algorithm in comparison to the exact
algorithm. Table 4 presents the results of the metaheuristic with the same metrics as
presented in 3, with two key differences: (1) Column “Gap′” represents the percentage
deviation of the metaheuristic solutions over 10 runs from the best solution found, and
(2) Column “Gap” now indicates the percentage gap between the solution obtained
by the MS-ILS algorithm and the best known solution from the MILP formulation.
The MS-ILS successfully matches the solutions in all 27 instances where the MILP
obtains the optimal solutions within the time limit. For the remaining 93 instances, the
solutions provided by MS-ILS are at least as good as the upper bounds obtained by the
exact algorithm, and better in 87 of these instances. This improvement is particularly
significant for instances with more than 60 bus stops, where the gap consistently exceeds
10%.

The small values in Columns “Gap′” (never exceeding 2.1%) demonstrate the stability
of our method over multiple runs. In terms of running times, the MS-ILS algorithm
runs in less than 21 minutes for all instances, which is significantly faster than the exact
method. Given that the SOBRGP is required to re-solve once a semester, these results
demonstrates that the hybrid algorithm is capable of providing solutions of very good
quality within a short computing time.

We now turn our attention to the impact of the parameter β. First, the objective
value of solutions obtained by MS-ILS generally decreases as the value of β increases.
This is because relaxing the constraint on the maximum number of negatively impacted
students provides more flexibility in assigning bus stops to each route. Secondly, the
solutions of the instances with β ≥ 50% are quite similar for almost all cases. Closer
inspection of the output revealed that the quantity ŝ plays a key role. If the solution for
the case β = 100% has fewer than 50% of the students experiencing a negative impact,
it is also a solution for the case where β = 50%.

6.4. Computational results for real instances

Since the exact formulation yields low-quality solutions for test instances with more than
40 bus stops, we decided to use the MS-ILS in this experiment. We also experiment with
different values of β, following a similar experimental design as with the test instances,
since the cost savings information for each β value can benefit the school in negotiations
with parents.

In addition to solving the scheduling problem for the next semester, the operations
manager of the school also wants to check the current manually arranged schedule to
consider the feasibility of using an automatically generated schedule as a replacement.
Therefore, we have conducted two scenarios. In the first scenario, we keep the number
of students at each bus stops and the locations of the bus stops unchanged, whereas
in the second scenario, we generate new data instances for the next semester based on
real instances, using a similar approach to artificially generated instances to account for
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(a) The scenario when the students and bus stops
are kept unchanged

(b) The scenario when the students and bus stops
are modified.

Figure 3.: Objective values when β varies.

fluctuations in student bus registrations.
Figure 3 presents the objective value for both scenarios with different values of β. One

can see that relaxing the negative impact constraints by increasing β from 0% to 30%
significantly reduces the total cost. However, further increases in β beyond 30% have
little effect until β reaches 50%, at which point no additional cost reduction is observed.
Therefore, from a cost-effectiveness perspective, the ideal β value falls between 50% and
100%. However, a β value of 30% appears to be a suitable compromise and is likely to
achieve a mutual agreement between parents and the school. More discussion on the
value of β is provided in Subsection 6.7.

We now turn our attention to the number of buses required, their composition and
travel cost. These results are summarised in Table 5 for the first scenario and Table 6
for the second scenario. The first and second columns show the instance names and β
values, respectively. Note that rows where β is denoted by a hyphen (-) represent the
current semester’s manually created schedule. The remaining columns display the fol-
lowing for each solution: the number of used buses by type (Columns “|M15|”, “|M28|”,
and “|M44|”), the total number of unoccupied seats (Column “Emp”), travel cost, the
proportion of students experiencing a negative impact, and the running time of MS-ILS
in seconds.

One can see that, for the V41-N185-real instance, the manual schedule incurs a lower
travel cost than our solution, even when the negative impact constraints are fully relaxed
(β = 100%). However, inefficient bus utilisation and suboptimal route design result in
a high number of empty seats. The reliance on higher-capacity buses further increases
fixed costs, leading to a higher overall cost. In contrast, for the V69-N324-real instance,
our solution yields both lower travel and total costs, regardless of how restrictive the
negative impact constraints are. A further investigation of the output revealed that the
current schedules violate constraints on the maximum number of bus stops per route
and maximum student riding time, highlighting the limitations of manual scheduling in
ensuring feasibility and solution quality.

When β is small, the negative impact constraints become highly restrictive, limiting
the flexibility of route planning. As a result, buses are often underutilised, leading to
more empty seats and higher travel cost. In contrast, as β increases, these constraints
become more relaxed, allowing for greater flexibility in designing routes that cover more
stops and serve more passengers, which can help reduce travel costs. Consequently, larger
buses are used more often, and the overall number of vehicles required is reduced.

However, one can see that buses with a capacity of 45 seats are rarely used. This

23



suggests that although covering more stops per route can yield cost savings, those
savings do not justify the high fixed costs associated with operating such large buses.
Additionally, a closer inspection on the output showed that when β exceeds 30%, the
maximum riding duration constraints become more influential than the negative impact
constraint in determining bus sizes and routes.

Lastly, the running time of the metaheuristic on the real instances is always under
11 minutes, demonstrating its practical applicability.

Data β(%) |M15| |M28| |M44| Emp Cd ŝ T(s)

V41-N185-real

- 1 8 0 54 1078 - -
0 5 5 0 30 1596 0.0 88.6
10 6 4 0 17 1488 9.7 101.0
30 4 5 0 15 1494 29.7 91.7
50 4 5 0 15 1488 46.5 83.8
100 4 5 0 15 1486 46.5 96.6

V69-N324-real

- 3 11 1 73 1926 - -
0 14 6 0 54 1258 0.0 604.7
10 8 8 0 20 1128 9.0 497.0
30 3 11 0 29 1126 29.3 458.1
50 4 10 0 16 1090 43.8 417.4
100 4 10 0 16 1090 54.6 357.7

Table 5: Results for real instances when the students and bus stops are kept unchanged

Data β(%) |M15| |M28| |M44| Emp Cd ŝ T(s)

V41-N185-real

- 1 8 0 54 1078 - -
0 10 2 0 21 1556 0.0 184.8
10 7 3 0 4 1532 9.5 106.3
30 4 5 0 15 1537 27.0 126.3
50 4 5 0 15 1488 42.6 135.7
100 4 5 0 15 1475 47.3 131.0

V69-N324-real

- 3 11 1 73 1926 - -
0 12 7 0 52 1154 0.0 583.0
10 7 7 1 21 1164 10.0 499.4
30 4 7 2 20 1064 27.3 438.8
50 3 9 1 17 1044 39.6 436.4
100 5 6 2 7 1044 51.9 430.1

Table 6: Results for real instances when the students and bus stops are modified

6.5. Sensitivity analysis of α

As highlighted in Subsection 6.4, the maximum riding duration constraints relative to
direct travel time play a more significant role in bus route design than the negative
impact constraint when β exceeds 30% for real instances. These constraints limit a
student’s bus ride to at most α times their direct travel time from their bus stop to
school. To provide further insight, we now conduct a sensitivity analysis on α.
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Figure 4.: Solutions obtained by the meta-heuristic for real instances under varying α
parameters.
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Figure 4 presents total costs for two real instances across eight values of α ∈
{1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} and five values of β ∈ {0%, 10%, 30%, 50%, 100%}. We note
that we set β is set to 2 in our default experiment.

A significant decrease in total costs is observed as α increases from 1.5 to 2.5. This
confirms our previous observations for α = 2, where some students’ riding times reached
the upper limit of approximately α times their direct travel time in the obtained so-
lutions. Consequently, even a slight relaxation of this constraint led to a substantial
reduction in total costs.

When α ≥ 3 and β ≥ 30%, the total costs remain stable. A closer inspection of the
results revealed that, at these values, both the maximum riding duration constraints
and the negative impact constraint are no longer restrictive.

However, when β ≤ 30%, two sudden drops in total costs are observed. The first
occurs when β = 10% as α increases from 3.5 to 4, and the second when β = 0%
as α increases from 4 to 4.5. A closer inspection of data from the previous semester
indicates that four bus stops had students experiencing travel times between 4.6 and
5.8 times their direct travel time. Therefore, relaxing their maximum riding duration in
the next semester to a certain threshold would help reduce total costs. For β = 0%, this
relaxation could improve total costs without negatively impacting students. Similarly,
for β = 10%, this relaxation occurs without violating the negative impact constraint.

Remarkably, when β ∈ {0%, 10%}, the negative impact constraint has a slightly more
significant effect on total costs compared to the maximum riding duration constraints.
Closer inspection revealed that about half of the bus stops serve students whose travel
times in the previous semester were already below 1.5 times their direct travel time.

6.6. Sensitivity analysis of L and γ

For completeness, we conduct a sensitivity analysis on the values of L and γ across
different values of β ∈ {0%, 10%, 30%, 50%, 100%}. Figures 5 and 6 show the resulting
total costs on different values of L and γ, respectively.

Number of stops per route

In our default scenario, L = 7, meaning that each bus route can have at most seven
stops. We explore the effect of changing L to 4, 5, 6, 8, and 9.

The results show that total costs remain stable when L ≥ 7. A closer inspection
of the output suggests that the maximum number of stops per route is not a binding
constraint in the obtained solutions. In these solutions, most buses pass through only
3 to 5 stops, with only a few reaching 6 stops at most. A possible explanation is that
other constraints, such as the maximum riding duration relative to direct travel time,
the negative impact constraints, and the maximum bus route duration (fixed at 1 hour),
play a more significant role in limiting route length. Additionally, the high fixed cost of
a 45-seat bus may further discourage longer routes. The above observation also helps
explain why increasing L from 4 to 6 generally reduces total costs as some routes are
constrained by the limit on the number of stops.

A more significant drop in total costs is observed as the value of β increases. This
occurs because a relaxed negative impact constraint allows for greater flexibility in
redesigning routes.
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Figure 5.: Solutions obtained by the meta-heuristic for real instances with varying L
parameters.

Negative Impact Condition

In our default scenarios, γ = 1.05, which means if a student travel exceeds 1.05 times
their previous semester’s travel time, they are considered negatively impacted. We now
explore the effect of various different values for γ ∈ {1.01, 1.25, 1.45, 1.65, 1.85}.

When β ≥ 50% or γ ≥ 1.65, the total cost remains stable. This suggests that in-
creasing β beyond 50% or γ beyond 1.65 does not provide additional flexibility in bus
route design. In other words, the constraints are already non-restrictive at these values,
so further increases do not impact the total cost. A possible explanation is that other
constraints now more actively influence the solution, and the objective function already
keeps total costs as low as possible at these values.

In contrast, when both β and γ are smaller, total costs decrease as expected, with a
more significant reduction observed when γ is between 1.05 and 1.25. However, when γ
is between 1.01 and 1.05, total costs exhibit slight fluctuations. This suggests that such
small changes in γ may not provide enough flexibility to redesign routes efficiently. The
small increase in total cost when β = 30% for the V69-N324-real instance may be due
to a convergence issue of the metaheuristic.

6.7. Sensitivity analysis of β over time

To provide insight, we present the total cost for each β value from the set
{0%, 10%, 30%, 50%, 100%} over the next six semesters in Table 7, based on real-
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Figure 6.: Solutions obtained by the meta-heuristic for real instances under varying γ
parameters.
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world instances. Additionally, we calculate the percentage increase in cost for β values
0%, 10%, 30%, and 50% relative to β = 100% to examine how incremental costs incurred
for the school to meet certain levels of parents’ and students’ preferences stabilise over
time. This also helps assess whether β = 30% remains a good compromise between
cost-effectiveness and the restrictiveness of negative impact in the long run. Since the
composition of students and the locations of bus stops vary each semester in practice,
we focus solely on this scenario. The experimental results are presented in Table 7.

For β = 0% and β = 10%, the incremental cost percentage generally increases over
semesters. A possible explanation is that 80% of students are set to continue using the
bus system in the next semester, and a highly restrictive negative impact policy reduces
flexibility in bus route planning over time. This trend does not appear when β is at
least 30%, suggesting that higher β values allow for more adaptable solutions in later
semesters.

Among the tested values, β = 30% still remains the best compromise. Lower β values
result in considerable cost increases. Specifically, setting β = 0% leads to 17.2–20.6%
higher costs for V41-N185-real instance and 26.9–43.8% higher costs for V69-N324-real
instance compared to a scenario without a negative impact policy. Similarly, setting
β = 10% increases costs by 5.3–8.8% for V41-N185-real instance and 5.5–11.6% for
V69-N324-real instance. While β = 50% does reduce costs slightly, the savings are too
small to justify the reduction in parents and students’ satisfaction. Specifically, β = 50%
saves, on average, only 0.35% for V41-N185-real instance and 1.3% for V69-N324-real
instance compared to β = 30%.

Data β(%) 2nd 3rd 4th 5th 6th 7th
obj s(%) obj s(%) obj s(%) obj s(%) obj s(%) obj s(%)

V41-N185-real

0 13054 -20.4 12526 -17.2 12776 -20.1 12534 -19.9 12868 -20.2 13072 -20.6
10 11418 -5.3 11586 -8.4 11570 -8.8 11302 -8.1 11564 -8.1 11588 -6.9
30 10892 -0.4 10692 0.0 10634 0.0 10640 -1.8 10856 -1.4 10838 0.0
50 10844 0.0 10692 0.0 10634 0.0 10466 -0.1 10856 -1.4 10838 0.0
100 10844 - 10692 - 10634 - 10456 - 10702 - 10838 -

V69-N324-real

0 21356 -26.9 21836 -29.8 22382 -35.0 23754 -43.8 23414 -42.0 23452 -42.1
10 18326 -8.9 17734 -5.5 18501 -11.6 18167 -10.0 18138 -10.0 17854 -8.2
30 17253 -2.5 16873 -0.3 16806 -1.3 17088 -3.5 16487 0.0 16749 -1.5
50 16835 -0.1 16812 0.0 16789 -1.2 16508 0.1 16487 0.0 16514 -0.1
100 16825 - 16817 - 16584 - 16518 - 16487 - 16504 -

Table 7: Total costs and percentage incremental costs for different β values over 6
semesters.

7. Conclusion

In this study, we introduce a new variant of the BRGP that has not been previously
addressed in the literature. Our objective is to determine the composition of the school
bus fleet and routes for transporting students to school at minimal cost, subject to con-
straints including vehicle capacity, the maximum route duration, the maximum number
of stops per route, the maximum travel time for each student, and the maximum num-
ber of students experiencing negative impacts. This final constraint is inspired by a new
requirement implemented in transportation systems of several private high schools in
Vietnam. The problem is broadly defined, and we believe that similar challenges may
arise at schools globally when considering student experiences.

We presented a mathematical formulation for the problem and developed a hybrid
approach by combining the GRASP and ILS meta-heuristics. The effectiveness of the
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hybrid algorithm was demonstrated through extensive computational experiments on
artificially generated test instances, and its applicability was illustrated on two real
instances. A potential direction for future research is to explore the development of an
exact solution method aimed at generating improved solutions for medium-to-large-scale
instances.
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of Metaheuristics, pages 320–353. Springer US, Boston, MA, 2003.

[38] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Framework
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