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Abstract

Accurate demand forecasts are imperative for organisations to make strategic long-term

decisions. Demand forecasting for the long-term is challenging and further complica-

tions can arise when a demand series has periods where no demand is observed. Mo-

tivated by operational decisions made at an automotive manufacturer, we contribute

novel methodology to determine long-term forecasts for spare parts.

We first introduce a stochastic demand forecasting model for products in the final

phase of the life cycle when demand is in decline. Theoretical results on the bias

and variance of the parameter estimates motivate an extension which uses the demand

history of parts with the same declining pattern. In experiments on real data, we

demonstrate that our extension reduces the mean absolute percentage error, achieves a

higher fill rate and incurs less leftover inventory.

We then outline an approach for long-term demand forecasting throughout the prod-

uct life cycle. We extend our model by pooling the incomplete demand histories of

products with similar life cycle behaviour to estimate joint model parameters. We vali-

date our approach on 175 automotive spare parts and find that our extension improves

forecast accuracy even for cases when the peak of demand is yet to be observed.

As a third contribution, we develop material to communicate forecasting and mod-

elling topics to wider audiences. We design outreach content based on core principles

and consider aims to address recruitment shortages and gender disparity in the math-

ematical sciences. We reflect on our impact using teacher feedback.
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Chapter 1

Introduction

Managerial decisions made for the long term have high stakes and include the strate-

gic planning of resources, stock and finances. These decisions are often made under

uncertainty, and hence, the decision-makers require forecasts to better anticipate fu-

ture demand. Long-term forecasts are made for planning horizons of several years and

must incorporate long-standing patterns in demand. Unreliable demand forecasts often

result in poor decisions, potentially causing significant financial losses or environmen-

tal consequences. Although crucial, long-term forecasting is inherently more difficult

than near-future forecasting due to the unknown information during the long planning

horizon (Simon et al., 2005; Dombi et al., 2018).

Motivated by the strategic decisions faced by an automotive manufacturer, we focus

on demand forecasts required for long-term decisions related to the management of

spare parts. In this application, inaccurate forecasts may result in inadequate decision-

making, causing product shortages, customer dissatisfaction or production of excess

stock. While existing approaches focus on short-term decisions (Croston, 1972; Syntetos

et al., 2005; Snyder et al., 2012; Sarlo et al., 2023), accurate long-term demand forecasts

are essential for strategic planning and generate important benefits both financially and

environmentally for a wide range of organisations and application areas. This thesis

1
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concerns the role of forecasting and modelling in overcoming long-term challenges.

We first focus on demand forecasting to support long-term operational decision-

making for spare parts in the final phase of the life cycle, known as the end-of-life

(EOL) phase. This is a relevant task across many industries that operate aftermarkets,

including the automotive, aerospace, home appliance, medical, telecommunication and

electronic sectors (Durugbo, 2020). Forecasting in the EOL phase is challenging due

to a sustained declining pattern in demand. Demand for spare parts can also be very

small and intermittent, where in some periods no demand is observed. As a result of

the decline in demand, this can be the case even for products that are high volume at

the beginning of the EOL phase.

Demand forecasts for spare parts that incorporate the long-term declining pattern

are necessary for many important managerial decisions. For example, an inventory

decision commonly made for aftermarket items is a final order, also known as a ‘last

time buy’ (LTB), which is intended to cover anticipated demand over a planning horizon

of several years. LTB decisions are often prompted by suppliers ceasing the production

of parts. This can be a result of technological advancements or, usually if demand

has entered the EOL phase, the reluctance of suppliers to fulfil smaller order quantities

(Behfard et al., 2018). As a final purchase, LTB decisions are critical. An LTB quantity

too low results in unmet service level requirements which can damage a company’s

reputation. On the other hand, an LTB that is larger than demand produces industrial

waste which is harmful to the environment and causes unnecessary production, storage

and disposal costs.

A large body of the literature on forecasting the demand for products in the EOL

phases has investigated using external factors to model demand (Ritchie and Wilcox,

1977; Hong et al., 2008; Dekker et al., 2013; Chou et al., 2016; Kim et al., 2017; Van der

Auweraer and Boute, 2019). Implementation of causal models can bring about new

complications for manufacturers in determining relevant explanatory variables. In some
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cases, relevant information may be spread across different systems or not recorded at

all (Syntetos et al., 2016). A different approach is to use historical data to infer the

patterns of demand. While some research on time-series models has been undertaken

(Moore, 1971; Fortuin, 1980), the literature on time-series approaches to determine

long-term forecasts for spare parts in the EOL phase is limited.

As a first contribution of this thesis, we develop forecasting methodology to support

long-term decision-making occurring in the latter part of the product life cycle, where

demand is in decline. We introduce a stochastic demand forecasting model which

incorporates a decline in demand values, in line with products in the end-of-life phase.

The model assumes that demand is independently distributed according to the Poisson

distribution and that the mean of the demand declines geometrically over time. The

model has two parameters, a rate of decline and an initial mean demand size, which

corresponds to the mean demand level at the start of the EOL phase and before decline

occurs. Maximum likelihood estimation is used to estimate the parameters. We obtain

theoretical insights into the bias and variance of the model parameters which indicate

how the characteristics of the demand series influence the performance of the model.

In particular, we show that more accurate forecasts can be determined for series with

higher initial mean demand, corresponding to faster-moving products. This motivates

an extension to improve forecast performance across slower-moving products. The

model extension pools the demand history from multiple SKUs with the same decline

rate to improve the estimation of the model parameters.

We assess the performance of our approach using simulated data across a range of

parameter values. Later, we apply our model and its extension to automotive spare

parts. We test the efficacy of our approaches with respect to both forecast accuracy

and inventory performance. To calculate LTB quantities, we assume a base stock

policy and find order quantities for a 95% fill rate using the Poisson loss function.

We calculate the percentage error, absolute percentage error, achieved fill rate and
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percentage of leftover inventory for the total demand over the planning horizon. Overall,

our approaches perform well on the spare parts from the automotive manufacturer. We

discover that more accurate forecasts are determined for faster-moving products with

higher initial demand volumes. On average, we find that forecasts determined using our

model extension are more accurate than forecasts determined using our initial approach.

Further, forecast accuracy improves as the number of series used to determine the model

parameters increases. The results of the experiments echo our theoretical findings.

Our forecasting methodology is of high practical value and has motivated developing

a novel decision support system at the automotive manufacturer. The new system is

based on the forecast methodology and is currently being piloted to facilitate long-

term inventory decision-making. Results from the implementation show that forecast

accuracy has improved notably, resulting in less inventory waste, lower purchase and

inventory holding costs, as well as increased process efficiency.

The decline in demand that occurs in the EOL phase is not the only pattern that

needs to be reflected in forecasts to facilitate effective long-term decision-making. Prior

to the final phase, the spare part life cycle is comprised of two other phases which can

each last a number of years (Fortuin, 1980; Dekker et al., 2013). In the first phase,

demand has an increasing pattern. In the second phase, demand flattens and reaches a

peak level. Forecasting demand over the product’s life cycle is frequently made difficult

due to an absence of historical demand. Demand may have only been observed in the

early phases of the life cycle where a declining pattern is yet to be seen and, in some

cases, even prior to demand reaching a peak level. Nonetheless, decision-makers may

need to determine a forecast that covers the remainder of the product’s life.

Observing demand over a fraction of the life cycle can incur inaccurately estimated

model parameters which lead to poor forecasts (Srinivasan and Mason, 1986; Van den

Bulte and Lilien, 1997; Putsis Jr and Srinfvasan, 2000; Meade and Islam, 2006). There-

fore, many current approaches forecast the demand for products with insufficient de-
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mand history using the full demand histories of similar discontinued products (Ismail

and Abu, 2013; Ganjeizadeh et al., 2017; Dombi et al., 2018; Hu et al., 2019; Li et al.,

2021). However, this is not always possible in practice. Spare part life cycles can span

over a decade (Koopman, 2011) meaning that current systems may not hold complete

records for former products. Another challenge arises when products have periods of

zero demand, as is common for spare parts. Forecasting approaches for series with

intermittent demand have thus far focused on stationary or declining demand patterns

(Moore, 1971; Croston, 1972; Fortuin, 1980; Syntetos and Boylan, 2005).

Our second contribution is methodology to determine long-term forecasts for prod-

ucts throughout the life cycle. We model demand throughout the life cycle as a Poisson

process with a non-stationary intensity function. We adopt an established product

life cycle curve, the Bass curve (Bass, 1969), to represent the intensity function of the

Poisson process. We extend our model using a data pooling approach using the like-

ness between life cycle patterns of multiple products to improve forecast accuracy. In

doing so, we utilise the incomplete demand history of multiple products to determine

common model parameters. We test the methodology in a controlled setting to as-

sess the impact of volume size, length of demand history and values of parameters on

forecast performance. Thereafter, we conduct a real data experiment using monthly

demand information for 175 automotive products. We determine the percentage error

and the absolute percentage error for the total demand over the planning horizon to

reflect decisions that require a forecast of the aggregated demand over time, such as the

LTB. Further, we evaluate performance using a scale-independent metric designed for

demand series with zero demand periods, the root mean squared scaled error (Makri-

dakis et al., 2022). Our findings show that our model extension improves the accuracy

of forecasts even in cases when the demand history is restricted to the early phases of

the life cycle.

The applicability of forecasting and modelling techniques to real-world problems
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necessitates effective dissemination. Professionals must effectively communicate with

stakeholders to ensure the development and implementation of methodology. More

widely, operational research (OR) problem settings have relevance to people’s everyday

lives. A smooth transfer of knowledge helps foster understanding between professionals

and the general public. Effectual dissemination of mathematical ideas is also crucial in

recruiting future generations of statistical professionals. There is currently a shortage

of individuals with the skills necessary to combat challenges of a mathematical and

scientific nature facing the UK (Royal Society, 2021; Campaign for Science and Engi-

neering (CaSE), 2023). Moreover, the mathematical community experiences unequal

representation of particular demographics. In the UK, women hold only a fraction of

roles within science, technology, engineering and mathematics (STEM) sectors (Science

and Technology Committee, 2023). In order to ensure the continuation of methodology

to solve problems of prosperity related to society, the environment and the economy,

the effective promotion of statistical and OR methodology is paramount.

As the final contribution of this thesis, we introduce forecasting and modelling-

related content designed for outreach activity. Based on core design principles, we

introduce magazine articles and content for outreach talks and workshops aimed at

secondary school students. We analyse contributing factors to the shortages and un-

derrepresentation of women in the wider STEM workforce and incorporate themes that

address stereotypes related to the competence and identity of professionals within the

mathematical sciences. Through a reflection of feedback, we find that the content in-

troduced contributes to the aims of outreach and has a positive impact on student

retention. Furthermore, we argue that designing outreach content to target barriers to

belonging is impactful toward the aim of achieving equal representation and diversity

across mathematical disciplines.

The remainder of this thesis is comprised of four chapters.

Chapter 2 focuses on forecasting challenges related to products in the end-of-life
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phase of the life cycle. A novel stochastic forecasting model is introduced and theoretical

properties of the estimators of the model parameters are derived. A model extension

is derived and an evaluation of performance is conducted on both simulated and real

data.

In Chapter 3, we consider cases where forecasts may be determined throughout the

lifecycle of a product. We introduce a long-term stochastic forecasting methodology for

decision-making throughout the life cycle and extend our model using a data pooling

approach. Our approach works well using monthly demand data for automotive spare

parts.

In Chapter 4, we consider forecasting and modelling in a broader context as a

vehicle for engagement and outreach. We present a portfolio of work that is used to

communicate forecasting and modelling methodology to lay audiences and discuss the

incorporation of themes related to belonging to maximise impact.

Chapter 5 summarises the key contributions of each chapter and discusses possible

topics for further research.



Chapter 2

Forecasting Declining Demand in

the End-of-Life Phase

2.1 Introduction

Accurate demand forecasts are crucial for making long-term inventory decisions required

for parts that have reached the end-of-life phase. However, demand forecasting at

the latter phase of the product life cycle is a particularly challenging task because

demand for the majority of items is declining. Due to the decline, demand during the

end-of-life phase can become very small with periods of zero demand even in cases

with high initial values. Standard time-series methods, including those for intermittent

demand (Croston, 1972; Syntetos et al., 2005; Snyder et al., 2012; Sarlo et al., 2023),

are unbefitting for products in the EOL phase as they are not designed to capture a

long-term declining pattern.

Demand forecasts for products with declining demand patterns are relevant for sev-

eral important business decisions. For example, inventory and warehouse decisions for

spare parts in aftermarket industries (e.g., automotive, aerospace and consumer elec-

tronics (Durugbo, 2020)) are often regulated by requirements from warranty and service

8
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level agreements. Being able to obtain spare parts is also crucial from a customer’s

point of view and impacts a company’s reputation. Therefore, it is of great interest

to develop stochastic forecasting models that accurately incorporate the presence of a

declining trend expected of EOL products. Inderfurth and Kleber (2013) emphasise

the substantial repercussions forecast errors can have for spare part procurement over

a long service period.

Companies make so-called ‘last time buy’ decisions, where they place a last (often

very large) order that is supposed to satisfy anticipated demand over a planning horizon

spanning many years. If they purchase too little, they are not able to meet service level

requirements, which can incur high penalties. If they purchase too much, they have to

pay excess production, inventory and holding costs as well as discard the items, which

is a waste of natural resources. Consequently, LTB decisions to determine inventory

levels and warehouse space requirements for many years ahead are high-stake - both

financially and environmentally - and require reliable demand forecasts for the total

demand over a planning horizon of several years. Methods for obtaining LTB quantities

have been developed by Teunter and Haneveld (1998); Teunter and Fortuin (1999);

Van der Heijden and Iskandar (2013); Behfard et al. (2015) and Behfard et al. (2018).

We consider the example of an automotive manufacturer that sells both standard

and luxury vehicles. Examples of spare parts in the EOL phase are presented in Figure

2.1.1. Each example stock-keeping unit (SKU) shows demand observed over a nine-year

period. Representative of EOL inventories, we show some SKUs for which demand

is slower-moving and some which are faster-moving. In these examples, we notice a

sustained decline and periods of zero demand. Observing intermittent demands is also

in line with the literature on forecasting demand and regular replenishments for spare

parts (Van der Auweraer and Boute, 2019; Van der Auweraer et al., 2019; Boylan and

Syntetos, 2021).

To model this demand pattern, we propose a forecasting algorithm that estimates
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(a) Apron (b) Latch

(c) Brake (d) Shock Absorber

Figure 2.1.1: Demand for SKUs Belonging to an Automotive Manufacturer

the peak demand and the decline rate. We account for the stochastic nature of sales

by adopting the representation of demand in each period as an independent Poisson

random variable. Trend is incorporated geometrically using a constant decline rate.

We suggest that commonality across series of EOL SKUs can be exploited to improve

estimates of the parameters, on the assumption that within inventories there exist

products which have the same pattern of decline in mean demand size over time.

Our contribution is a stochastic forecasting model for demand that incorporates

a decline in demand values befitting of products in the end-of-life phase. We derive

theoretical results that show that the performance of the model varies depending on



CHAPTER 2. FORECASTING DECLINING DEMAND 11

characteristics of the demand series. This motivates a multiple series extension based on

the assumption of homogenous decline rates, in which demand observations from other

series are utilised to estimate the model parameters. We show numerically that our

model extension improves forecast accuracy whereby parameter estimates are obtained

using maximum likelihood estimation. Our model performs well on real demand data of

spare parts from an automotive manufacturer and our multiple series extension achieves

superior forecast accuracy and inventory performance than the benchmark method.

2.2 Literature Review

A large body of the literature on demand forecasting for items in the EOL phase has

considered the relationship between exogenous variables and demand. Central to causal

models for spare parts, common EOL items, is the idea of the installed base, defined as

the number of whole products in use in the population. Dekker et al. (2013) champion

employing installed base information to make better demand forecasts for spare parts.

Emphasising the intuition behind installed base models, Van der Auweraer et al. (2019)

argue for the benefits of incorporating ‘real drivers’ of demand in forecasting models

for practitioners. An early model by Ritchie and Wilcox (1977) utilises concepts from

renewal theory, based on the assumption that the decline in the demand for parts is

argued to occur due to a lack of customer incentive to replace a failed part as time

goes on, opting instead to scrap or replace products. Hong et al. (2008) encapsulate

this idea by incorporating a replacement probability into an installed base model. A

regression forecasting approach presented by Chou et al. (2016) uses installed base

information to estimate demand. Their regression on failure probability provides more

accurate forecasts than on their regression on historical sales data. Kim et al. (2017)

also present regression-based concepts, incorporating product age as well as the installed

base factor. Van der Auweraer and Boute (2019) integrate preventative measures such
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as scheduled maintenance in their installed base approach.

Other authors have focused on time-series approaches, using demand history to

identify patterns and forecast future demand. Moore (1971) is among the first to

address demand decline in the latter part of the life cycle. This approach involves the

application of deterioration curves to sales data on a logarithmic scale. Fortuin (1980)

analyse the LTB problem in the context of consumer electronics. For long-term service

periods, they consider that demand follows a non-stationary and uncorrelated Gaussian

process with a mean that decays exponentially over time.

Mehringer and Menden (2019) propose a nested workflow of methods, notably clus-

tering, classification and functional approximation to overcome the challenge of fore-

casting with incomplete historical demand data. The aim is to use similar SKUs, for

which more historical data exists, to forecast the demand for the item of interest. How-

ever, this clustering and classification framework for intermittent items is still in its

infancy.

The seminal approach for forecasting the demand of intermittent items with sta-

tionary demand is Croston’s method (Croston, 1972), later modified by (Syntetos and

Boylan, 2005). Simple exponential smoothing is used to update estimates for non-zero

demand sizes and intervals between demand arrivals separately, with the ratio of non-

zero demand sizes over intervals giving the demand estimate per period. Others have

aimed to tackle the issue of SKUs becoming obsolete over time. Aggregating demand

to determine forecasts for products with an increased risk of obsolescence is suggested

by Sanguri et al. (2024). Teunter et al. (2011) propose a method, where the forecast

declines exponentially in long periods where no demand is observed. A method by

Prestwich et al. (2014) propose a forecast that declines hyperbolically in periods of sus-

tained zeroes. Prestwich et al. (2021) adopt linear decay to resolve the issue of a product

suddenly becoming obsolete. The decline in these forecasts is incorporated based on no

demand being observed. The decline in observed values expected in the EOL phase is
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not considered in these methods. These approaches are advantageous when regularly

monitoring whether or not to replenish stock over concerns of obsolescence. Forecasting

procedures for final orders do not fit within this context.

Motivated by the gap in the literature for forecasting spare parts with trend, Al-

tay et al. (2008) utilise the Wright Modified Holt method based on Wright (1986) for

forecasting irregularly spaced data. This adaptation aims to fit a linear function to

the demand data, using simple exponential smoothing to update slope and intercept

estimates. The approach produces only one-step ahead forecasts and is not intended

for long-term purchase decisions. Linearity constrains the method’s application to de-

mand series with a downward trend, as demand forecasts may result in negative values.

Despite intervals between non-zero demands being incorporated into the method in a

Croston style approach, estimates are not updated in periods with zero demand in this

approach.

The current literature has limitations. Although causal models have been shown to

be useful in many cases to forecast demand for spare parts, they can only be imple-

mented if companies can determine relevant information, which can be difficult due to

technical restrictions (e.g., some information may be unrecorded or only available in

different systems), and may pose additional challenges such as deciding which explana-

tory variables should be selected (Syntetos et al., 2016). An alternative is to use only

data on historical demand patterns. However, the literature on time-series forecasting

approaches for EOL products is not extensive. The early work by Fortuin (1980) as-

sumes demand is Gaussian but EOL products can have small demand quantities for

which a discrete distribution would be more appropriate. Additionally, the demand

level at the start of the EOL phases is specified using data from only one period. The

method developed by Moore (1971) is likely to be unsuitable if there is only a small

amount of available sales data after the peak of demand is observed. Additionally, the

method relies on the representation of demand history on a logarithmic scale rendering
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it unsuitable for items with zero demand periods. Well-established forecasting meth-

ods for intermittent items (Croston, 1972; Syntetos and Boylan, 2005) have thus far

overlooked the decline in demand necessary for LTB scenarios. Where trend has been

considered (Teunter et al., 2011; Prestwich et al., 2014, 2021), methodology is driven

by short-term risks of obsolescence opposed to long-term inventory decision-making.

2.3 Demand Forecasting

In this section, we introduce a stochastic forecasting model for products in the EOL

phase. Our model assumes that products are in the declining phase of demand and that

demand observations are independent of one another. We represent demand per period

as Poisson, following a common representation of spare part demand in the literature

(Teunter and Haneveld, 1998; Syntetos et al., 2012; Boylan and Syntetos, 2021). We

first present an approach that uses only the previous sales history of a single series to

estimate the model parameters. We then extend the model to incorporate the sales

history of multiple series to aid the estimation of the parameters for a single series.

This is done under the assumption of homogeneous decline rates across series.

2.3.1 Single Series Model

The model we present stipulates that for an SKU in the end-of-life phase, a demand

size in period t, Yt, is an independent Poisson random variable with mean λt, where λt

declines geometrically. We write

Yt ∼ Poisson(λt), where λt = λt−1ρ = λ0ρ
t.

Here, ρ is a rate of decline and λ0 is the initial mean when the demand decline

begins, such that 0 < ρ < 1 and λ0 > 0. Hence, in period t = 1, demand follows a

Poisson distribution with mean λ1 = ρλ0. In period t = 2 the mean of the Poisson
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distribution becomes λ2 = ρ2λ0 and so on. This means, that all demand originates in

the initial mean λ0, which is when the peak of the demand occurred and subsequently

declines further with every period that has passed.

Estimates from a sample of size n (ρ̂n and λ̂0,n) of the parameters (ρ and λ0) are

obtained by applying maximum likelihood estimation on historical demand data. For

n independent demand observations, y1, ..., yn, the likelihood function is

L(λ0, ρ; y1, ..., yn) =
n∏

t=1

(λ0ρ
t)yte−(λ0ρt)

yt!

and the log-likelihood function is

ℓ(λ0, ρ; y1, ..., yn) =
n∑

t=1

[
yt ln(λ0ρ

t)− λ0ρ
t − ln(yt!)

]
. (2.3.1)

The model parameters λ0 and ρ that maximize the likelihood function over the space

λ0 > 0 and 0 < ρ < 1 are given by solving equations (2.3.2) and (2.3.3), respectively,

λ̂0,n =
(1− ρ̂n)

∑n
t=1 yt

ρ̂n(1− ρ̂nn)
(2.3.2)

1

1− ρ̂n
− nρ̂n

n

1− ρ̂nn
−
∑n

t=1 tyt∑n
t=1 yt

= 0. (2.3.3)

For the derivation of (2.3.2) and (2.3.3), see Appendix 2.A.

2.3.2 Theoretical Properties

Products in EOL inventories can vary greatly in demand volume. In some cases, demand

for some SKUs can be very small, posing additional challenges for forecasting. It is

therefore important to understand how the performance of models designed for EOL

SKUs are affected by demand volume.

As n → ∞, the middle term on the left-hand side of (2.3.3) tends to zero. Hence,



CHAPTER 2. FORECASTING DECLINING DEMAND 16

a closed form approximation for the maximum likelihood estimator can be determined.

Denoting this approximate value by ρ̂An we have

ρ̂An = 1−
∑n

t=1 yt∑n
t=1 tyt

and correspondingly the approximate maximum likelihood estimator λ̂A
0,n is

λ̂A
0,n =

(1− ρ̂An )
∑n

t=1 yt
ρ̂An

.

When n → ∞, ρ̂n → ρ̂ and ρ̂An → ρ̂A with both limits ρ̂ and ρ̂A being the same

value. Similarly, when n → ∞, λ̂0,n → λ̂0 and λ̂A
0,n → λ̂A

0 with λ̂0 = λ̂A
0 . The limit for

the estimator for the rate of decline is

ρ̂ = ρ̂A = 1−
∑∞

t=1 yt∑∞
t=1 tyt

(2.3.4)

and the limit for the estimator for the initial mean demand size is

λ̂0 = λ̂A
0 =

(1− ρ̂)
∑∞

t=1 yt
ρ̂

. (2.3.5)

We derive theoretical insights about the behaviour of the model dependent on the

characteristics of the demand series by investigating the bias and variance of the limiting

estimators (2.3.4) and (2.3.5). We obtain insights for finite n in the simulation in Section

2.5.

We cannot use the standard asymptotic results of normality for maximum likeli-

hood estimators (Pawitan, 2001) to study the behaviour of the maximum likelihood

estimators for this inference problem. This is true even in the limit case when n → ∞.

The reasons for this are as follows. We represent demand as non-identically distributed

Poisson variables but critically as n → ∞ the mean and the variance of these variables

tends to zero and the Fisher Information tends to a finite limit, see Appendix 2.B.
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Hence, after some finite value of n all subsequent realisations of the variables will be

zero. As a consequence of this property, the key central limit result behind the stan-

dard asymptotic normality results will not hold. Crucially, this means that even when

n → ∞ we only obtain a finite set of information about ρ and λ0 and therefore there

is no guarantee that the bias of ρ̂n or ρ̂An or of λ̂0,n or λ̂A
0,n will tend to zero as n → ∞.

Similarly, the variances of these estimators will also not tend to zero as n → ∞.

To study the behaviour of the limiting estimator ρ̂ we consider

ρ̂ = 1−
∑∞

t=1 Yt∑∞
t=1 tYt

where Yt ∼ Poisson(λ0ρ
t) for all t ∈ N. We employ approximations for the mean

and variance of ρ̂ and λ̂0 using results on the behaviour of a ratio of random variables

using second-order Taylor series expansion (Stuart and Ord, 1998; Elandt-Johnson and

Johnson, 1980) to find expressions for the bias and variance of (2.3.4) and (2.3.5). The

following propositions show how characteristics of the demand series affect the accuracy

of the parameter estimates of a model.

Proposition 1: For independently distributed Poisson demand with a geometri-

cally declining mean, the bias and variance of the limiting maximum likelihood estimate

for the rate of decline can be obtained. The second order Taylor series expansion of the

expectation and variance of a ratio gives

Bias(ρ̂) = −(1− ρ)2

λ0

, Var(ρ̂) =
(1− ρ)3

λ0

.

The proof of Proposition 1 is given in Appendix 2.C. Proposition 1 leads to the following

corollary:

Corollary 1: For a single series with initial mean demand size λ0 and rate of decline

ρ, the Bias(ρ̂) → 0 and Var(ρ̂) → 0 as λ0 → ∞.
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To study the behaviour of the limiting estimator λ̂0 we consider

λ̂0 =
(1− ρ̂)

∑∞
t=1 Yt

ρ̂
.

where Yt ∼ Poisson(λ0ρ
t) for all t ∈ N.

Proposition 2: For independently distributed Poisson demand with a geometri-

cally declining mean, the bias and variance of the limiting maximum likelihood estimate

for the initial mean demand size can be obtained. The second order Taylor series ex-

pansion of the expectation and variance of a ratio gives

Bias(λ̂0) =
(1− ρ)2

ρ3λ0

+
1− ρ

ρ2
, Var(λ̂0) = φ1 (λ0, ρ) .

The proof of Proposition 2 and the functional form of φ1 are given in Appendix 2.D.

Corollary 2: For a single series with initial mean demand size λ0 and rate of decline

ρ, the Bias(λ̂0) and Var(λ̂0) do not tend to 0 as λ0 → ∞.

We find that the bias and variance of the limiting parameter estimates are functions

of the true initial mean demand and decline rate of the demand series. The bias

and variance of the decline rate estimate reduces as the true initial mean demand

size increases. The variance of estimate for the initial mean demand size increases

in line with volume size. The bias of λ̂0 decreases as the true initial mean demand

size increases. However, a small bias remains for this parameter. The remaining bias,

(1 − ρ)/ρ2, decreases with respect to the decline rate, whereby slower decline (higher

values of ρ) incurs a smaller bias, and tends to 0 as ρ approaches 1. Assuming ρ is not

less than 0.9, then the remaining bias is small i.e., less than or equal to 0.13. We note

that rates of decline are usually high and a rate of 0.9 is lower than those we observe

in the real data example in Section 2.6.

We gain important insights from this analysis. Firstly, we observe that high decline
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rates reduce the bias of the initial mean demand size estimate. Therefore, demand series

with slow decline patterns will produce better estimates of this parameter than demand

series that decline rapidly. More notably, the bias and variance of the approximate

decline rate estimate and the bias of the approximate initial mean demand size estimate

reduce as the true initial mean demand size increases. Consequently, forecasts will be

more accurate for demand series with larger initial mean volume sizes and less accurate

for demand series of low volume.

The theoretical properties of our model show that the performance of our model

is not equal across all products in EOL inventories. In particular, we find that de-

mand forecasts for slower-moving products are especially hard to determine. As EOL

inventories can hold large quantities of slower-moving SKUs, our findings motivate an

extension to our model.

2.3.3 Multiple Series Extension

As evidenced by the work in Section 2.3.1, the accuracy of the parameter estimates of

our model depends on attributes of the demand series. Most notably, demand volume

was found to be related to the accuracy of parameter estimates. Given the prevalence

of slower-moving products in the EOL inventories, we propose a model extension to

increase the accuracy of parameter estimates. Based on the vast nature of spare part

inventories, we assume there exist common rates of decline in demand amongst SKUs,

notwithstanding a difference in volume sizes. Sales history of SKUs with homogeneous

rates of decline can be used to estimate the parameters for a single series.

Consider m different SKU demand series each with record length n, where for series

i, where i = 1, ...,m, the initial mean demand is denoted by λ0,i and ρ is the shared

rate of decline across a group of series, the demand for series i in period t= 1, ..., n is

given by
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Yt,i ∼ Poisson(λt,i), where λt,i = λt−1,iρ = λ0,iρ
t.

Estimates from a sample size n (ρ̂n and λ̂0,i,n) of the parameters (ρ and λ0,i) are ob-

tained by applying maximum likelihood estimation on historical demand data. For

independent demand observations, y1,1, ..., yn,1, ..., y1,m, ..., yn,m, belonging to the m se-

ries i= 1, ...,m we have the likelihood function

L(λ0,1, ..., λ0,m, ρ; y1,1, ..., yn1,1, ..., y1,m, ..., yn,m) =
m∏
i=1

n∏
t=1

(λ0,iρ
t)yt,ie−(λ0,iρ

t)

yt,i!

and log-likelihood function

ℓ(λ0,1, ..., λ0,m, ρ; y1,1, ..., yn1,1, ..., y1,m, ..., yn,m)

=
m∑
i=1

n∑
t=1

[
yt,i ln(λ0,iρ

t)− λ0,iρ
t − ln(yt,i!)

]
. (2.3.6)

The likelihood equations are

1

ρ̂n

m∑
i=1

n∑
t=1

tyt,i =
1− ρ̂n

ρ̂n(1− ρ̂nn)

(
1− ρ̂nn

(1− ρ̂n)2
− nρ̂nn

1− ρ̂n

) m∑
i=1

n∑
t=1

yt,i

and

λ̂0,i =
(1− ρ̂n)

∑n
t=1 yt,i

ρ̂n(1− ρ̂nn)

for i = 1, ...,m.

The closed form approximation (when n is large) for the maximum likelihood esti-

mator for the common rate of decline is

ρ̂An = 1−
∑m

i=1

∑n
t=1 yt,i∑m

i=1

∑n
t=1 tyt,i
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and correpsondingly the approximate maximum likelihood estimator for λ̂0,i,n is

λ̂A
0,i,n =

(1− ρ̂An )
∑n

t=1 yt,i
ρ̂An

.

When n → ∞, ρ̂n and ρ̂An tend to the same limit, denoted by ρ̂. Similarly, λ̂0,i,n and

λ̂A
0,i,n also tend to the same limit, denoted by λ̂0,i. The limit for the common rate of

decline is

ρ̂ = 1−
∑m

i=1

∑∞
t=1 yt,i∑m

i=1

∑∞
t=1 tyt,i

and the limit for the estimator for the initial mean demand size is

λ̂0,i =
(1− ρ̂)

∑∞
t=1 yt,i

ρ̂

for i = 1, ...,m.

To study the behaviour of the limiting estimator of the common rate of decline, ρ̂,

we consider

ρ̂ = 1−
∑m

i=1

∑∞
t=1 Yt,i∑m

i=1

∑∞
t=1 tYt,i

where Yt,i ∼ Poisson(λt,i) for i = 1, ...,m and all t ∈ N. We employ approximations

for the mean and variance of ρ̂ using results on the behaviour of a ratio of random

variables using Taylor series expansion. The second order approximation is a function

of the combined initial mean demand sizes. To consider the effect of using identically

declining series with both similar and differing volume sizes, we obtain a third-order

approximation.

Proposition 3: For independently distributed Poisson demand with a geometri-

cally declining mean, the bias and variance of the limiting maximum likelihood estimate

for the common rate of decline across series can be obtained. The third-order Taylor
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series expansion of the bias and variance of a ratio gives

Bias(ρ̂) = φ2

(
ρ,

m∑
i=1

λ2
0,i,

1

(
∑m

i=1 λ0,i)3

)
− φ3

(
ρ,

1∑m
i=1 λ0,i

)
,

Var(ρ̂) = φ4

(
ρ,

m∑
i=1

λ2
0,i,

m∑
i=1

λ3
0,i,

m∑
i=1

λ4
0,i,

m∑
i=1

m∑
l=1
l ̸=i

λ0,iλ0,l,
m∑
i=1

m∑
l=1
l ̸=i

λ2
0,iλ0,l,

m∑
i=1

m∑
l=1
l ̸=i

λ3
0,iλ0,l

m∑
i=1

m∑
l=1
l ̸=i

m∑
r=1
r ̸=i,l

λ0,iλ0,lλ0,r,
1∑m

i=1 λ0,i

)
,

with the functional forms of φ2, φ3 and φ4 as given in Appendix 2.E.

Proposition 3 leads to the following corollary.

Corollary 3: For multiple series with a common decline rate ρ and initial mean

demand sizes λ0,i, for i = 1, ..,m, the Bias(ρ̂) → 0 as
∑m

i=1 λ0,i → ∞.

Corollary 3 shows that the bias of the shared rate of decline reduces as the sum of

initial mean demand sizes across series becomes large. The variance expression is more

difficult to interpret. We therefore conduct a simulation study to evaluate the variance

of the shared decline parameter and explore the effect of volume size in Section 2.5.2.

2.3.4 Forecast Performance Metrics

To assess the performance of forecasts for final purchase decisions we are concerned with

total demand across all out-of-sample periods, n + 1, ..., N . Let ft,i be the forecasted

demand for series i in time period t and let Fi be the total forecasted demand across

the out-of-sample length, n + 1 to N , so that Fi =
∑N

t=n+1 ft,i. Similarly, where yt,i is

the demand for series i in time period t, let the total demand across the out-of-sample

period be Di where Di =
∑N

t=n+1 yt,i.

The Percentage Error (PE) and the Absolute Percentage Error (APE) across the
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out-of-sample period for demand series i are given as

PEi = 100%

(
Di − Fi

Di

)

and

APEi = 100%

∣∣∣∣Di − Fi

Di

∣∣∣∣ .

When aggregating error across groups of series with inconsistent total demand vol-

ume sizes, scale-independent metrics are required. The mean percentage error (MPE)

and mean absolute percentage error (MAPE) over M series for which performance is

measured are given as

MPE =
100%

M

M∑
i=1

(
Di − Fi

Di

)

and

MAPE =
100%

M

M∑
i=1

∣∣∣∣Di − Fi

Di

∣∣∣∣ .

2.4 Inventory Management

To calculate order quantities for a final purchase decision we assume a base stock policy

with fixed stock level Oi for SKU i. The loss function of a demand distribution, GL, is

defined as the expected number of demand units not satisfied. In the model introduced

in Section 2.3 the total demand across multiple periods is the sum of independent
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Poisson random variables. As such, the total demand across multiple periods is also a

Poisson random variable. The loss function for Poisson demand is

GL(Oi) = λig(Oi)− (Oi − λi)(1−G(Oi))

where λi is the mean demand for SKU i and G and g are the cumulative distribution

function and the probability mass function of the Poisson distribution, respectively

(Zipkin, 2000).

Let λ̂i be the forecasted demand across the out-of-sample period. We find the base

stock level Oi for a target fill rate γ% by selecting the smallest integer such that the

following inequality holds

λ̂ig(Oi)− (Oi − λ̂i)(1−G(Oi))− (1− γ/100)λ̂i ≤ 0.

For approaches to incorporate parameter estimation uncertainty from forecasting

into inventory we refer the reader to Prak et al. (2017) and Prak and Teunter (2019).

The achieved fill rate (AFR) for series i is calculated as

AFRi = 100%

(
1− (Di −Oi)

+

Di

)
.

To evaluate performance overM SKUs we define the mean achieved fill rate (MAFR)

as

MAFR =
1

M

M∑
i=1

AFRi.

If X is the set of M achieved fill rates ordered from smallest to largest, the median
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achieved fill rate (MdAFR) is given as

MdAFR =


X[M+1

2
], if M is odd

X[M
2
]+X[M

2
+1]

2
if M is even

 .

Furthermore, it is of interest to determine the impact of our decisions on leftover

inventory. As total demand volume across the out-of-sample period varies depending

on demand size, we select a percentage metric for the excess inventory. The excess

inventory percentage (EIP) for series i is

EIPi = 100%

(
(Oi −Di)

+

Di

)
.

The mean excess inventory percentage (MEIP) over M SKUs is

MEIP =
1

M

M∑
i=1

EIPi.

We note that relevant product-level information (e.g., price or cost of stockout)

could allow manufacturers to alternatively use weighted metrics to assess performance.

2.5 Simulation Study

In Section 2.3, we obtained theoretical results based on asymptotic properties which

show that the accuracy of the estimates for the parameters of our model are affected by

the characteristics of the demand series. In our model extension, the accuracy of the

shared decline rate parameter was found to be impacted by the demand size of the series

used in its estimation. We seek to assess the practical relevance of these insights. By

conducting a simulation study across a range of parameter values and estimating these
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parameters numerically, we analyse how demand volume and the declining pattern of

demand affect the performance of our model and investigate the impact of varying

lengths of demand history on performance. A simulation study allows us to quantify

forecast accuracy and inventory performance in a controlled setting. As such, results

may be optimistic, and hence, in Section 2.6, we test our model in an uncontrolled

setting that reflects the challenges companies face in practice.

Henceforth, we use the abbreviation ‘PD’ (representing Poisson Decline) for the

implementation of the model introduced in Section 2.3.1 and ‘PDm’ for the multiple

series extension to this model as given in Section 2.3.3, where the parameters of the

models are estimated by using the Nelder–Mead optimisation method to numerically

maximise the log-likelihood functions (2.3.1) and (2.3.6), respectively.

2.5.1 Experiment Design

We simulate data considering a range of different parameter values to showcase possible

demand patterns that might be observed in practice. The values of ρ considered in our

experiments are equal to 0.97, 0.98 and 0.99, in accordance with the long-term demand

forecasting task for SKUs in the EOL phase. When ρ is low, demand sizes advance

quickly to zero. This is particularly true for smaller values of λ0. We therefore exclude

low values of ρ from this study. We include three values for the initial mean demand

size, λ0, that capture the spectrum of monthly demand volume for SKUs with declining

demand, in-keeping with SKUs in the end-of-life phase: 10, 50 and 100.

For each combination of input parameters we draw 10,000 demand series from a

Poisson distribution with initial mean λ0 and decline rate ρ. The length of each demand

series is n+ 120 where n is the length of the in-sample. We note that the time period

over which performance is measured could differ in practice across products. Due to

the significant length of service periods in many applications, we use an out-of-sample

forecast horizon of 120 periods in this investigation. The sum of the forecasted demand
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found using the estimated parameter values and the true total demand across the out-

of-sample is used to calculate the forecast percentage error, absolute percentage error,

mean achieved fill rate and mean excess inventory percentage. Order quantities are

calculated as specified in Section 2.4.

We select a range of values for n. Considering monthly periods, it is less likely that

a company will have more than five years of historical data for which demand for a

part has been in decline and therefore we do not include values of n greater than 60. It

is possible that a company has a limited length of demand history or that a declining

pattern has only been observed for a short period of time. In some cases the history can

then be limited to only one or two years. Accordingly, we consider in-sample lengths

n = 12, n = 24 and n = 60.

Example demand series included in the simulation are given in Figure 2.5.1. In

Figure 2.5.1(a), we observe a demand series with low volume size and slow decline,

i.e., the first demand value is drawn from a Poisson distribution with a mean equal

to ρλ0 = 0.99 × 10 = 9.9. Subsequently, the second demand value is drawn from a

Poisson distribution with mean equal to ρ2λ0 = 0.992 × 10 = 9.8. Hence, we observe a

slowly declining demand pattern over time. In contrast, in Figure 2b, the decline rate

is lower, and therefore, demand declines more quickly. Figures 2.5.1(c) and 2.5.1(d)

display demand series with high volume size, where λ0 = 100. By looking at Figure

2.5.1(d), we note periods of zero demand for high volume series when decline is fast.

We also test the multiple series extension presented in Section 2.3.3. For each of the

10,000 series of random observations of length n+ 120, drawn for each combination of

parameters λ0 and ρ, we draw additional demand series of random observations of length

n with the same λ0 and ρ. The in-sample of each of the 10,000 generated demand series

as well as its additional series are then used to estimate the parameters by maximising

the log-likelihood function (2.3.6). As above, forecasts are determined for an out-of-

sample length of 120 periods. The total number of series used in the application of
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(a) Low Volume, Slow Decline (λ0 = 10, ρ =
0.99, n = 60)

(b) Low Volume, Fast Decline (λ0 = 10, ρ =
0.97, n = 60)

(c) High Volume, Slow Decline (λ0 = 100, ρ =
0.99, n = 60)

(d) High Volume, Fast Decline (λ0 = 100, ρ =
0.97, n = 60)

Figure 2.5.1: Simulated Series Included in Study

PDm is equal to 1 plus the number of additional series. We evaluate the impact of

increasing the total initial mean demand size included in the implementation of our

multiple series approach. As the initial mean demand sizes in our experimentation are

kept consistent this is directly proportional to the number of series used in the multiple

series extension to our model.
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2.5.2 Results

We give results on the forecast and inventory performance of our model and its exten-

sion. We first investigate the performance of using only the demand history from a

single series to estimate the parameters. We then evaluate the extension to our model

to incorporate information from multiple series with homogeneous decline rates.

Single Series

The best results are obtained when the in-sample length is long. When n = 60, the

mean percentage error and the mean absolute percentage error are very small. The re-

duction in mean absolute percentage error is consistent with an increase in the length of

the in-sample for all combinations of parameters. We observe that the mean achieved

fill rates get closer to the target and the amount of excess inventory reduces as the

length of the in-sample grows. An overview of forecast performance for different com-

binations of initial demand sizes and decline rates are given by Tables 2.5.1 and 2.5.2.

Inventory performance is considered in Tables 2.5.3, 2.5.4, 2.5.5. For each combination

of parameters, the mean, variance and bias of the parameter estimates over the 10,000

demand series are given in Appendix 2.F.

Table 2.5.1: Mean Percentage Error Using PD for Out-Of-Sample Length of 120 periods
(in %)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 -67.02 -22.30 -9.72 -43.30 -22.13 -12.81 -8.31 -10.30 -8.57
24 -19.24 -3.56 -1.87 -20.76 -4.59 -2.25 -11.74 -4.77 -2.25
60 -5.59 -1.18 -0.54 -3.92 -0.59 -0.39 -2.92 0.56 -0.28

Demand size impacts the performance of the model. For all lengths of history, we see

improvement in the the mean absolute percentage errors as the initial mean demand

size increases. The same pattern is clear in the inventory performance whereby the

mean achieved fill rate is closer to the target and the mean excess inventory percentage
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Table 2.5.2: Mean Absolute Percentage Error Using PD for Out-Of-Sample Length of
120 periods (in %)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 111.59 47.35 30.13 91.73 51.93 36.27 61.29 44.16 35.28
24 47.90 18.20 12.90 51.57 20.74 14.14 44.43 22.68 15.69
60 25.32 11.00 7.64 21.48 9.29 6.50 19.01 8.38 5.92

Table 2.5.3: Mean Achieved Fill Rate Using PD for Out-Of-Sample Length of 120
periods and a Target Fill Rate of 95% (in %)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 77.10 85.64 87.70 74.92 83.27 86.24 72.54 81.37 84.72
24 85.03 90.49 92.03 83.40 89.69 91.60 82.16 88.81 90.84
60 91.53 93.23 93.90 90.45 93.10 94.04 90.05 93.34 94.16

is smaller when the initial mean demand size is large.

The mean percentage errors are negative in all instances, indicating that the model

is over-forecasting. The bias reduces as the in-sample increases. We observe that the

rate of decline impacts the bias of the forecasts for longer in-sample lengths. When

n = 60, the mean percentage errors are closer to zero resulting in a reduced mean

excess inventory percentages for series with slower decline patterns than for series with

faster decline patterns. We report the mean of the achieved fill rate to demonstrate

that the fill rate is closer to the target as the in-sample length and initial mean demand

size increases. However, the mean achieved fill rate is sensitive to outlier series which

are under-forecasted and achieve low fill rates. Accordingly, we also include the median

achieved fill rate in our results. The median achieved fill rates are close to the target

Table 2.5.4: Median Achieved Fill Rate Forecast Using PD for Out-Of-Sample Length
of 120 periods and a Target Fill Rate of 95% (in %)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 95.97 96.72 95.36 94.41 94.45 94.92 95.40 95.36 95.16
24 97.41 95.81 95.40 96.00 95.42 95.34 96.02 94.83 94.97
60 100.00 96.28 95.43 98.39 95.14 95.08 95.74 95.14 95.00
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Table 2.5.5: Mean Excess Inventory Percentage Using PD for Out-Of-Sample Length
of 120 periods and a Target Fill Rate of 95% (in %)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 82.85 30.66 16.57 61.92 32.80 20.95 30.69 23.44 18.43
24 30.43 8.10 4.80 32.34 9.74 5.55 24.37 10.74 6.30
60 16.13 4.07 2.04 10.89 2.73 1.40 8.39 2.23 1.13

in every case.
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Multiple Series

We summarise the effect of our multiple series extension, PDm, where additional series

are used to estimate model parameters in order to determine the forecast for a single

series. We present two adverse parameter combinations, low volume and fast decline

(λ0 = 10 and ρ = 0.97) and high volume and slow decline (λ0 = 100 and ρ = 0.99).

Noticing that accurate forecasts are more difficult to achieve when historical demand

data is limited (as demonstrated in Section 2.5.2), we show results for demand series

with a short in-sample of length n = 12. Figures 2.5.2, 2.5.3 and 2.5.4 detail the

percentage errors, achieved fill rates and excess inventory percentages of the 10,000

forecasts determined for each parameter combination for differing total initial mean

demand sizes,
∑m

i=1 λ0,i.

(a) Low Volume, Fast Decline (λ0 = 10, ρ =
0.97, n = 12)

(b) High Volume, Slow Decline (λ0 = 100, ρ =
0.99, n = 12)

Figure 2.5.2: Percentage Errors with Increasing Total Initial Mean Demand Size

The multiple series approach improves forecast accuracy and inventory outcomes

for SKUs of various volume sizes. The leftmost violin plot in each Sub-Figure within

Figures 2.5.2, 2.5.3 and 2.5.4 demonstrates the outcome when using the single series

approach, PD. We notice an improvement across all metrics when using PDm over PD.

The larger the total initial mean demand size the more effective the approach is in
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(a) Low Volume, Fast Decline (λ0 = 10, ρ =
0.97, n = 12)

(b) High Volume, Slow Decline (λ0 = 100, ρ =
0.99, n = 12)

Figure 2.5.3: Achieved Fill Rates with Increasing Total Initial Mean Demand Size
(Target Fill Rate 95%)

improving performance. This insight is in accordance with the analysis in Section 2.3.3.

We observe a reduction in variance of the percentage errors, achieved fill rates and the

excess inventory percentages as the total initial mean demand size (and the number of

series) used to implement PDm increases. These patterns are consistent for low volume

and high volume series and series with both slow and fast decline.

(a) Low Volume, Fast Decline (λ0 = 10, ρ =
0.97, n = 12)

(b) High Volume, Slow Decline (λ0 = 100, ρ =
0.99, n = 12)

Figure 2.5.4: Excess Inventory with Increasing Total Initial Mean Demand Size (Target
Fill Rate 95%)
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2.6 Real Data

We conduct a study to show the applicability of our model and multiple series extension

using data obtained from an automotive manufacturer.

2.6.1 Overview of Company Data and Benchmark Method

The dataset consists of 9 years of monthly demand data for 400 spare parts over years

2014-2022. The SKUs included in the dataset are in the EOL phase of the life cycle

where a sustained decline in demand can be observed. Descriptive statistics of the

dataset are given in Table 2.6.1.

Table 2.6.1: Descriptive Statistics of Dataset Consisting of 400 Automotive SKUs

Mean
Standard
Deviation

Min
25th

Percentile
Median

75th
Percentile

Max

Total Demand 1867.12 3030.40 60 331.00 820.00 1996.25 19556

Number of Periods
with Zero Demand

12.81 16.51 0 0.00 4.50 21.00 74

To enable comparison, we include an existing approach in our study as a bench-

mark. Many existing forecasting approaches are not applicable to our problem setting.

Established methods by Holt (1957) and Wright (1986) consider trend in demand and

the latter method was adapted for intermittent demand by Altay et al. (2008). How-

ever, these approaches were not intended to support long-term decisions and produce

one-step ahead forecasts. Additionally, these methods assume a linear trend in demand,

contrary to the non-linear declining pattern observed in EOL SKUs, and are therefore

unsuitable choices for comparison. More recent forecasting methods suitable for spare

parts were proposed for instances were an SKU suddenly becomes obsolete (Teunter

et al., 2011; Prestwich et al., 2014, 2021). In these methods, decline in demand is

incorporated when a period of zero demand occurs. These methods are designed for

short-term forecasting opposed to long-term forecasting where a trend in observed val-
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ues is expected and produce a flat forecast over the horizon. The forecast procedure

outlined by Moore (1971) produces long-term forecasts designed for demand that has

a declining long-term forecasting in the EOL phase and considers non-linear patterns

of decline. However, this method transforms demand history to a logarithmic scale un-

suitable for the SKUs in our study, given that some monthly periods have zero demand.

The approach by Fortuin (1980) is designed for final order decision-making. To the

best of our knowledge, a more recent method designed for long-term decision-making

concerning SKUs that can have periods of zero demand does not exist. Therefore, we

include the approach by Fortuin (1980) in our study to facilitate comparison with our

methodology. Fortuin (1980) propose that demand for long-term service periods follows

a non-stationary and uncorrelated Gaussian process. They define two parameters, a

demand level and a regression factor. Where C, C > 1, is the demand level and

g, 0 < g < 1, the regression factor, the mean demand value in period t, µt, of the

Gaussian process decreases according to

µt = Cgt−1.

The parameter C is assumed to be known and given by the demand in the period

at the start of the EOL period. The regression factor, g, is estimated at 0.7 for the

yearly demand of consumer electronic spare parts. We use non-linear least squares to

numerically estimate g for the SKUs in our study using demand observations across the

in-sample length 1, ..., n.

In our experimentation, forecasts are evaluated for the total demand over the out-

of-sample period. Forecasts are constructed using monthly data over in-sample lengths

of 12 and 24 months (1 and 2 years) and evaluated over out-of-sample periods 84

and 96 months (7 and 8 years), respectively. For the implementation of PD, the model

introduced in Section 2.3.1, and PDm, our model extension, as given in Section 2.3.3, we
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estimate the parameters by using the Nelder–Mead optimisation method to numerically

maximise the log-likelihood functions (2.3.1) and (2.3.6), respectively. We evaluate

performance using the metrics outlined in Sections 2.3.4 and 2.4. We use a base stock

policy and a target fill rate of 95% for all approaches. Order quantities are calculated

using the loss function for Poisson demand as described in Section 2.4.

In the results presented in Sections 2.6.2 and 2.6.3 we implement PDm using the

in-sample data from all SKUs in the dataset to estimate the parameters of the model.

In Section 2.6.4 we investigate the effect of using different numbers of SKUs in our

multiple series approach.

2.6.2 Overall Performance and In-sample Lengths

Our methodology is effective for forecasting the demand of SKUs in the end-of-life phase.

Figure 2.6.1 shows the distribution in performance for all approaches when the in-sample

length is 24. The forecast errors, achieved fill rates and excess inventory percentages

are more concentrated around their targets for PD than Fortuin’s method and are

especially good for PDm. When the in-sample length is 24, PDm achieves a MAPE

that is 45% lower than Fortuin’s method and 35% lower than PD. The improvement

in forecast accuracy of our multiple series approach is consistent when the in-sample

length is especially short (n=12), in which case the MAPE for PDm is a 65% and

66% less than Fortuin’s method and PD, respectively. Table 2.6.2 reports forecast and

inventory performance metrics for all approaches. Example forecasts from the study

are given in Figure 2.6.2.

The increase in forecast accuracy of PDm leads to better inventory performance.

Compared to PD and Fortuin’s method, PDm achieves a mean fill rate closer to the

target whilst incurring less leftover inventory. When the in-sample length is 24, PDm

obtains a 10% and 24% increase in mean achieved fill rate for PD and Fortuin’s method,

respectively. In line with the results of our controlled study, the achieved fill rates for
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(a) Percentage Error (b) Absolute Percentage Error

(c) Achieved Fill Rate (d) Excess Inventory Percentage

Figure 2.6.1: Forecast and Inventory Performance for 400 Automotive SKUs with n =
24 and a Target Fill Rate of 95% (in %)

Table 2.6.2: Forecast and Inventory Performance for 400 Automotive SKUs with a
Target Fill Rate of 95% (in %)

MPE MAPE MAFR MdAFR MEIP

n = 12
PDm 9.96 22.10 81.72 83.50 4.68
PD -8.49 64.54 71.12 79.14 32.76
Fortuin 8.96 63.01 63.27 65.65 24.03

n = 24
PDm -17.28 28.43 93.06 100.00 19.47
PD -14.98 43.92 84.49 100.00 25.84
Fortuin -2.56 51.59 74.55 87.79 23.98
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all methods are closer to the target when the in-sample is 24 than when the in-sample

length is 12. The impact of our multiple series approach is realised with respect to both

forecast accuracy and inventory decision-making. This shows the benefit of utilising the

demand history across inventories when determining forecasts for a single product.

(a) Handle (b) Belt

(c) Caliper (d) Windscreen

Figure 2.6.2: Examples of Forecasts for SKUs Belonging to an Automotive Manufac-
turer (n = 24)

2.6.3 Slower-moving vs Faster-moving

We analyse the effect of demand size on the performance of our model for real data. As

demand for EOL products is non-stationary and declining, we consider the final year

of the out-of-sample to analyse forecast performance with respect to demand volume.
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An SKU with an annual demand less than or equal to 12 in the final year of the

out-of-sample is defined as a slower-moving SKU. Conversely, an SKU with an annual

demand of more than 12 in the final year of the out-of-sample is defined as a faster-

moving SKU. Using this criteria, 103 SKUs are found to be slower-moving and 297

SKUs are faster-moving.

In keeping with our theoretical findings and the outcomes reported in Section 2.5.2,

we find that PD works best for faster-moving SKUs. Table 2.6.3 shows a breakdown

of the results from Table 2.6.2 with regard to the demand size of the SKUs. The

relationship between demand size and forecast and inventory performance across the

SKUs is explored visually in Figure 2.6.3. For PD, the absolute percentage errors are

closer to 0 for faster-moving SKUs. The MAPE is lower for faster-moving SKUs than

slower-moving SKUs by 30% and 28% for in-sample lengths 12 and 24, respectively.

Faster-moving SKUs also achieve fill rates closer to the target. The mean achieved fill

rate is 5% closer to the target for faster-moving SKUs than slower-moving SKUs for

in-sample length 12 and 2% closer to the target when the in-sample length is 24.

Our multiple series extension improves forecast and inventory performance for both

slower-moving SKUs and faster-moving SKUs. In MAPE we see a 75% decrease for

slower-moving SKUs and a 61% decrease for faster-moving SKUs when the in-sample

length is short (n=12). When the in-sample length is 24 we observe a 32% decrease for

slower-moving SKUs and 37% decrease for faster-moving SKUs in MAPE. In Figure

2.6.3c we observe that PDm is effective in improving the achieved fill rates, where the

largest benefit is seen with respect to slower-moving SKUs.
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Table 2.6.3: Forecast and Inventory Performance for 400 Automotive SKUs Separated
into Slow and Fast Moving with a Target Fill Rate of 95% (in %)

n = 12 n = 24
MPE MAPE MAFR MEIP MPE MAPE MAFR MEIP

103 slow-moving SKUs 103 slow-moving SKUs
PDm -3.52 20.87 90.44 10.19 -33.91 37.51 97.96 32.29
PD -19.62 83.16 68.46 47.34 -20.93 55.25 82.93 34.90
Fortuin 7.94 73.79 59.28 30.28 1.98 61.58 68.68 27.30

297 fast-moving SKUs 297 fast-moving SKUs
PDm 14.63 22.52 78.69 2.77 -11.51 25.28 91.36 15.02
PD -4.63 58.08 72.05 27.70 -12.92 40.00 85.03 22.69
Fortuin 9.31 59.28 64.65 21.87 -4.13 48.13 76.58 22.82

(a) Percentage Error (b) Absolute Percentage Error

(c) Achieved Fill Rate (d) Excess Inventory Percentage

Figure 2.6.3: Forecast and Inventory Performance for (103) Slow-moving SKUs and
(297) Fast-moving SKUs In-Sample Length n = 24 and a Target Fill Rate of 95%
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2.6.4 Number of SKUs in Multiple Series Extension

We use random sampling to enhance the testing of our multiple series approach. For

each of the 400 SKUs we randomly select a sample of additional SKUs from the dataset

and implement PDm using the SKU’s own in-sample demand and the in-sample demand

of the additional SKUs from the sample (not the in-sample demand of all SKUs in the

dataset) by numerically maximising (2.3.6). We record the percentage error, absolute

percentage error, achieved fill rate and excess inventory percentage of the total demand

forecast for each SKU. For each of the 400 SKUs, we consider sample sizes of 9, 49,

99 and 199 of randomly selected additional SKUs. The total number of SKUs used to

estimate the parameters of the model (m) is then 10, 50, 100 and 200. An evaluation

of performance over the 400 SKUs is given in Table 2.6.4.

Table 2.6.4: Forecast and Inventory Performance of Multiple Series Extension (PDm)
over 400 Automotive SKUs with a Target Fill Rate of 95% Using Randomly Selected
SKUs (in %)

n = 12 n = 24
m MPE MAPE MAFR MEIP MPE MAPE MAFR MEIP

10 4.92 37.83 76.90 14.27 -16.08 31.57 90.94 20.44
50 8.70 25.83 80.57 7.02 -16.53 28.99 92.46 19.35
100 9.92 23.36 81.07 5.36 -17.06 28.86 92.73 19.58
200 9.73 22.57 81.55 5.07 -17.13 28.56 92.89 19.50

The number of SKUs considered in the multiple series approach affects forecast ac-

curacy. The MAPE reduces as the number of SKUs in each group increases. Increasing

the total number of SKUs used to estimate the model parameters from 10 to 200 incurs

a reduction in MAPE of 40% and 10% for in-sample lengths 12 and 24, respectively.

The mean achieved fill rate also increases consistently as more SKUs are used in the im-

plementation of PDm. These results support the theoretical insights derived in Section

2.3.3 and highlight the advantage of our multiple series approach.
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2.7 Conclusion

We have presented a long-term forecasting model for demand that has a declining trend

and that can become intermittent, in line with aftermarket SKUs in the end-of-life phase

of the life cycle. We model demand as independent Poisson random variables with a

mean that declines geometrically over time. We extend our model to a multiple series

scenario, based on the assumption of homogenous decline rates where the demand

history of other SKUs is exploited in order to improve estimates and forecasts for a

single series.

The parameters of our model are determined via maximum likelihood estimation.

Investigation into the bias and variance of the estimates of our model parameters was

performed using approximate expressions for the bias and variance of a ratio. We found

that demand size was a key factor in the bias and variance of our estimates, where series

with larger initial mean demand sizes produced less biased and variable estimates. Our

analysis of the bias and variance of approximate estimates of parameters belonging to

the extension of our model highlighted the advantage of the sum of initial mean demand

across series being large. Numerical results show that estimates and forecasts obtained

using the multiple series extension to our model improve upon those made using our

single series approach.

We applied the model to a dataset belonging to an automotive manufacturer and

found that our approaches work well with respect to forecast accuracy and inventory

implications. The single series model performs better for faster-moving than slower-

moving SKUs. The multiple series extension to the model is effective in improving

forecasts and far outperforms the benchmark, reflected in a lower mean absolute per-

centage error, a higher mean achieved fill rate and reduced excess inventory.

Our approach can be used to aid other long-term managerial decisions with impor-

tant environmental and financial implications. Applying the multiple series extension
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yields more accurate forecasts that better reflect the declining nature of demand, which

is particularly relevant for the manufacturer when it comes to long-term planning. Ex-

amples at the manufacturer include: calculating the required storage space at any time

period over the next ten years to determine whether the existing warehouse space is

sufficient or whether a new warehouse is required; reducing CO2 emissions by having

fewer parts manufactured and transported to the respective distribution centres; ob-

taining more accurate long-term demand forecasts that demand planners can use for

their financial projections. The model is also applicable to other industries, e.g., retail-

ing, where irregular structures with decline and periods of zero demand can be observed

in practice (Sarlo et al., 2023).

In inventories with different decline patterns time-series clustering approaches could

be adopted prior to using the multiple series approach. Measures which recognise tem-

poral distortion when finding similarities between series, such as Dynamic Time Warp-

ing (Bellman and Kalaba, 1959; Kruskal, 1983; Senin, 2008), could be useful to identify

series with similar overall declining patterns when there is variation in demand observa-

tions. Alternatively, product information could be useful for grouping parts when they

exhibit different declining patterns. Product-specific details held on inventory systems

commonly include characteristics such as inventory turnover, the time since a prod-

uct was introduced to the market and the cost code. The selection of useful grouping

attributes is dependent on the industry-or-company-specific context of the application

and would require careful consideration by the decision-makers involved.

The focus of this work is on the EOL phase of the life cycle where demand for a part

is already in decline. However, it is possible that an LTB decision is required before a

declining pattern has been observed. Decline in demand is also assumed to be occurring

at a constant rate although in real-life instances the rate of decline may change over

time. This work uses the commonly assumed Poisson representation of spare part

demand but alternative distributions could be beneficial in the formation of models
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designed for this problem. For instance, compound Poisson distributions could be

utilised to incorporate the variance of non-zero demand sizes. Furthermore, exploring

dependence between demand observations could yield further interesting insights, in

particular, for practical applications. Another potential area for future research is

integrating data from different sources and databases so that causal forecasting methods

could be explored. For the example of an automotive manufacturer, this could include

bill-of-material information, the number and timing of vehicles sold and the average

life spans of different car models. We highlight these aspects as a worthy next steps for

research in this area.

2.A Derivation of Maximum Likelihood Equations

For n independent demand observations, y1, ..., yn, the likelihood function is

L(λ0, ρ; y1, ..., yn) =
n∏

t=1

(λ0ρ
t)yte−(λ0ρt)

yt!

and the log-likelihood function is

ℓ(λ0, ρ; y1, ..., yn) =
n∑

t=1

[
yt ln(λ0ρ

t)− λ0ρ
t − ln(yt!)

]
.

The partial derivative of the log-likelihood function with respect to λ0 is

∂ℓ

∂λ0

=
n∑

t=1

[
yt
λ0

− ρt
]

(2.A.1)

and the partial derivative of the log-likelihood function with respect to ρ is

∂ℓ

∂ρ
=

1

ρ

n∑
t=1

[tyt]− λ0

n∑
t=1

tρt−1. (2.A.2)
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By setting (2.A.1) and (2.A.2) equal to zero and rearranging, we have

λ̂0,n =

∑n
t=1 yt∑n
t=1 ρ̂

t
n

(2.A.3)

and

n∑
t=1

tρ̂tn =
1

λ̂0,n

n∑
t=1

tyt. (2.A.4)

As
∑n

t=1 ρ
t = ρ(1−ρn)

1−ρ
, we can write (2.A.3) as

λ̂0,n =
(1− ρ̂n)

∑n
t=1 yt

ρ̂n(1− ρ̂n
n)

and (2.A.4) as

n∑
t=1

tρ̂tn =
ρ̂n(1− ρ̂nn)

∑n
t=1 tyt

(1− ρ̂n)
∑n

t=1 yt
. (2.A.5)

Noticing that

n∑
t=1

tρt =
ρ (1− ρn)

(1− ρ)2
− nρn+1

(1− ρ)

(2.A.5) becomes

ρ̂n (1− ρ̂nn)

(1− ρ̂n)
2 − nρ̂n+1

n

(1− ρ̂n)
=

ρ̂n(1− ρ̂nn)
∑n

t=1 tyt
(1− ρ̂n)

∑n
t=1 yt

.

By simplifying and moving all terms to the left-hand side, we obtain

1

1− ρ̂n
− nρ̂nn

1− ρ̂nn
−
∑n

t=1 tyt∑n
t=1 yt

= 0.

For a sample of size n, the maximum likelihood estimates are therefore given by solving
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λ̂0,n =
(1− ρ̂n)

∑n
t=1 yt

ρ̂n(1− ρ̂nn)

and

1

1− ρ̂n
− nρ̂n

n

1− ρ̂nn
−
∑n

t=1 tyt∑n
t=1 yt

= 0.

2.B Limit of Fisher Information

For a sample size n, the second partial derivatives of the log-likelihood function ℓ,

denoted here by ℓn to emphasise its dependence on n, with respect to parameters λ0

and ρ are given by

∂2ℓn
∂λ2

0

= − 1

λ2
0

n∑
t=1

yt,

∂2ℓn
∂ρ2

= − 1

ρ2

n∑
t=1

tyt − λ0

n∑
t=2

t(t− 1)ρt−2,

and

∂2ℓn
∂λ0∂ρ

= −
n∑

t=1

tρt−1.

The elements of the Fisher Information matrix are

E
(
−∂2ℓn

∂λ2
0

)
=

ρ(1− ρn)

λ0(1− ρ)
,

E
(
−∂2ℓn

∂ρ2

)
=

λ0

ρ

(
ρ (1− ρn)

(1− ρ)2
+

1− (n+ 1)ρn

(1− ρ)

)
+ λ0

(
−(n+ 1)nρn−1

(1− ρ)
+

2(1− (n+ 1))ρn

(1− ρ)2
+

2ρ(1− ρn)

(1− ρ)3

)
,
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and

E
(
− ∂2ℓn
∂λ0∂ρ

)
=

1− (n+ 1)ρn

1− ρ
+

ρ(1− ρn)

(1− ρ)2
.

As n → ∞,

E
(
−∂2ℓn

∂λ2
0

)
→ ρ

λ0(1− ρ)
,

E
(
−∂2ℓn

∂ρ2

)
→ λ0

ρ

(
1

(1− ρ)2

)
+ λ0

(
2

(1− ρ)3

)
=

λ0(1 + ρ)

ρ(1− ρ)3
,

and

E
(
− ∂2ℓn
∂λ0∂ρ

)
→ 1

(1− ρ)2
.

We observe that, as n → ∞, the elements of the Fisher Information matrix tend to

finite limits.

2.C Proof of Proposition 1

The Taylor series approximation for the expectation of a ratio truncated at the second

term is

E
(
Q

R

)
≈ E(Q)

E(R)

(
1− Cov(Q,R)

E(Q)E(R)
+

Var(R)

E(R)2

)
.

The expression for the expectation of the limiting estimator for the rate of decline,

ρ̂, is given by

E(ρ̂) = 1− E
( ∑∞

t=1 Y t∑∞
t=1 tY t

)
.

We calculate the necessary components:
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E (
∑∞

t=1 Y t)

E (
∑∞

t=1 tY t)
= 1− ρ,

Cov (
∑∞

t=1 Y t,
∑∞

t=1 tY t)

E (
∑∞

t=1 Y t)E (
∑∞

t=1 tY t)
=

1− ρ

λ0ρ
,

Var(
∑∞

t=1 tY t)

E (
∑∞

t=1 tY t)
2 =

(ρ+ ρ2)(1− ρ)

λ0ρ2
.

The approximate expectation of ρ̂ is

E(ρ̂) ≈ 1−
(
1− ρ+

(1− ρ)2

λ0

)
.

It is easy to see that the approximate expression for the bias of ρ̂ can be written as

Bias(ρ̂) ≈ −(1− ρ)2

λ0

.

The Taylor series approximation for the variance of a ratio truncated at the second

term is given by

Var

(
Q

R

)
≈ E(Q)2

E(R)2

(
Var(Q)

E(Q)2
− 2Cov(Q,R)

E(Q)E(R)
+

Var(R)

E(R)2

)
.

The variance of ρ̂ is given as

Var(ρ̂) = Var

(
1−

∑∞
t=1 Y t∑∞
t=1 tY t

)
= Var

( ∑∞
t=1 Y t∑∞
t=1 tY t

)
.

We write

Var(
∑∞

t=1 Y t)

E(
∑∞

t=1 Y t)2
=

1− ρ

λ0ρ
,
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E(
∑∞

t=1 Y t)
2

E(
∑∞

t=1 tY t)2
= (1− ρ)2,

−2Cov(
∑∞

t=1 Y t,
∑∞

t=1 tY t)

E(
∑∞

t=1 Yt)E(
∑∞

t=1 tYt)
= −2(1− ρ)

λ0ρ
,

Var(
∑∞

t=1 tYt)

E(
∑∞

t=1 tYt)2
=

1− ρ2

λ0ρ
.

The approximate expression for the variance of ρ̂ can therefore be written as

Var(ρ̂) ≈ (1− ρ)3

λ0

.

2.D Proof of Proposition 2

The Taylor series approximation for the expectation of a ratio truncated at the second

term is

E
(
Q

R

)
≈ E(Q)

E(R)

(
1− Cov(Q,R)

E(Q)E(R)
+

Var(R)

E(R)2

)
.

The expectation of the limiting estimator for the initial mean demand size, λ̂0, is

given by

E(λ̂0) = E
(

(
∑∞

t=1 Yt)
2∑∞

t=1 tYt −
∑∞

t=1 Yt

)
.

We obtain

E

(
∞∑
t=1

Yt

)2

=
λ0ρ

1− ρ
+

λ2
0ρ

2

(1− ρ)2
,
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E

(
∞∑
t=1

tYt −
∞∑
t=1

Yt

)
=

λ0ρ

(1− ρ)2
− λ0ρ

1− ρ
,

Cov

( ∞∑
t=1

Yt

)2

,

∞∑
t=1

tYt −
∞∑
t=1

Yt

 =
2λ2

0ρ
2

(1− ρ)3
− λ2

0ρ
2

(1− ρ)2
− λ0ρ

1− ρ
,

Var

(
∞∑
t=1

tYt −
∞∑
t=1

Yt

)
=

λ0(ρ+ ρ2)

(1− ρ)3
+− 2λ0ρ

(1− ρ)2
+

λ0ρ

1− ρ
,

Var

(
∞∑
t=1

tYt −
∞∑
t=1

Yt

)
= Var

(
∞∑
t=1

(t− 1)Yt

)
=

λ0(ρ+ ρ2)

(1− ρ)3
+− 2λ0ρ

(1− ρ)2
+

λ0ρ

1− ρ
,

E (
∑∞

t=1 Yt)
2

E (
∑∞

t=1 tYt −
∑∞

t=1 Yt)
= λ0 +

1− ρ

ρ
,

E

(
∞∑
t=1

Yt

)2

E

(
∞∑
t=1

tYt −
∞∑
t=1

Yt

)
=

ρ3λ2
0(1 + λ0ρ− ρ)

(1− ρ)4
,

Var(
∑∞

t=1 tYt −
∑∞

t=1 Yt)

E(
∑∞

t=1 tYt −
∑∞

t=1 Yt)2
=

1− ρ2

λ0ρ2
,

Cov ((
∑∞

t=1 Yt)
2,
∑∞

t=1 tYt −
∑∞

t=1 Yt)

E (
∑∞

t=1 Yt)
2 E (

∑∞
t=1 tYt −

∑∞
t=1 Yt)

=
(1− 2λ0ρ)(1− ρ)2 + (1− ρ)2λ0ρ− (1− ρ)3

ρ2λ0(1 + λ0ρ− ρ)
.

The approximate expression for the bias of λ̂0 is denoted by

Bias(λ̂0) ≈
(1− ρ)2

ρ3λ0

+
1− ρ

ρ2
.
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The Taylor series approximation for the variance of a ratio truncated at the second

term is given by

Var

(
Q

R

)
≈ E(Q)2

E(R)2

(
Var(Q)

E(R)2
− 2Cov(Q,R)

E(Q)E(R)
+

Var(R)

E(R)2

)
.

The variance of λ̂0 is given by

V ar(λ̂0) = V ar

(
(
∑∞

t=1 Yt)
2∑∞

t=1 tYt −
∑∞

t=1 Yt

)
.

We obtain

E

( ∞∑
t=1

Yt

)2
2

=
λ2
0ρ

2(λ0ρ− ρ+ 1)2

(1− ρ)4
,

E

(
∞∑
t=1

tYt −
∞∑
t=1

Yt

)2

=
λ2
0ρ

4

(1− ρ)4
,

Var

( ∞∑
t=1

Yt

)2
 =

λ4
0ρ

4

1− ρ4
+

6λ3
0ρ

3

1− ρ3
+

7λ2
0ρ

2

1− ρ2
+

λ0ρ

1− ρ
+

8λ4
0ρ

5

(1− ρ4)(1− ρ)

+
48λ3

0ρ
4

(1− ρ3)(1− ρ)
+

20λ2
0ρ

3

(1− ρ)(1− ρ2)
+

12λ4
0ρ

6

(1− ρ2)(1− ρ4)

+
36λ4

0ρ
7

(1− ρ)(1− ρ2)(1− ρ4)
+

36λ3
0ρ

6

(1− ρ)(1− ρ2)(1− ρ3)

+
96λ4

0ρ
10

(1− ρ)(1− ρ2)(1− ρ3)(1− ρ4)

− λ2
0ρ

2(λ0ρ− ρ+ 1)2

(1− ρ)4
,

E
(
(
∑∞

t=1 Yt)
2
)2

E(
∑∞

t=1 tYt −
∑∞

t=1 Yt)2
=

(λ0ρ− ρ+ 1)2

ρ2
,
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Var

((
(
∑∞

t=1 Yt)
2
)2)

E(
∑∞

t=1 tYt −
∑∞

t=1 Yt)2
=

(1− ρ)4

ρ4

(
λ2
0ρ

4

1− ρ4
+

6λ0ρ
3

1− ρ3
+

7ρ2

1− ρ2
+

ρ

λ0(1− ρ)

+
8λ2

0ρ
5

(1− ρ4)(1− ρ)
+

48λ0ρ
4

(1− ρ3)(1− ρ)
+

20ρ3

(1− ρ)(1− ρ2)

+
12λ2

0ρ
6

(1− ρ2)(1− ρ4)
+

36λ2
0ρ

7

(1− ρ)(1− ρ2)(1− ρ4)

+
36λ0ρ

6

(1− ρ)(1− ρ2)(1− ρ3)
+

96λ2
0ρ

10

(1− ρ)(1− ρ2)(1− ρ3)(1− ρ4)

− ρ2(λ0ρ− ρ+ 1)2

(1− ρ)4

)
,

(2.D.1)

E

( ∞∑
t=1

Yt

)2
E

(
∞∑
t=1

tYt −
∞∑
t=1

Yt

)
=

ρ3λ2
0(1 + λ0ρ− ρ)

(1− ρ)4
,

−2Cov
(
(
∑∞

t=1 Yt)
2
,
∑∞

t=1 tYt −
∑∞

t=1 Yt

)
E
(
(
∑∞

t=1 Yt)
2
)
E (
∑∞

t=1 tYt −
∑∞

t=1 Yt)
=

−4λ0ρ(1− ρ) + 2λ0ρ(1− ρ)2 + (1− ρ)3

ρ2λ0(1 + λ0ρ− ρ)
,

V ar(
∑∞

t=1 tYt −
∑∞

t=1 Yt)

E(
∑∞

t=1 tYt −
∑∞

t=1 Yt)2
=

(ρ+ ρ2)(1− ρ)− 2ρ(1− ρ)2 + ρ(1− ρ)3

λ0ρ4
,

−2Cov((
∑∞

t=1 Yt)
2
,
∑∞

t=1 tYt −
∑∞

t=1 Yt)E((
∑∞

t=1 Yt)
2
)

E(
∑∞

t=1 tYt −
∑∞

t=1 Yt)3

=
(λ0ρ− ρ+ 1)2(−4λ0ρ(1− ρ) + 2λ0ρ(1− ρ)2 + (1− ρ)3)

ρ4λ0(1 + λ0ρ− ρ)
, (2.D.2)
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E
(
(
∑∞

t=1 Yt)
2
)2

V ar (
∑∞

t=1 tYt −
∑∞

t=1 Yt)

E (
∑∞

t=1 tYt −
∑∞

t=1 Yt)
4

=
(λ0ρ− ρ+ 1)2((ρ+ ρ2)(1− ρ)− 2ρ(1− ρ)2 + ρ(1− ρ)3)

λ0ρ6
. (2.D.3)

The approximate expression for the variance of λ̂0 is given as the sum of (2.D.1),

(2.D.2) and (2.D.3).

2.E Proof of Proposition 3

The Taylor series approximations for the bias and variance of a ratio truncated at the

third term are

E
(
Q

R

)
≈ E(Q)

E(R)

(
1− Cov(Q,R)

E(Q)E(R)
+

Var(R)

E(R)2
+

Cov(Q,R2)

E(Q)E(R)2
− µ3(R)

E(R)3

)

and

V ar

(
Q

R

)
≈ E(Q)

E(R)

(
V ar(Q)

E(Q)E(R)
+

E(Q)V ar(R)

E(R)3
+

−2Cov(Q,R)

E(R)2
+

−2Cov(Q2, R)

E(Q)E(R)2

+
−2µ3(R)E(Q)

E(R)4
+

Cov(Q2, R2)

E(Q)E(R)3
+

−2Cov(Q,R3)

E(R)4
+

µ4(R)

2E(R)2

)

where µ3 and µ4 are the third and fourth central moment, respectively.

The expectation of the limiting estimator for the rate of decline, ρ̂, shared across m

series is given by

E(ρ̂) = E
(
1−

∑m
i=1

∑∞
t=1 Yt,i∑m

i=1

∑∞
t=1 tYt,i

)
= 1− E

( ∑m
i=1

∑∞
t=1 Yt,i∑m

i=1

∑∞
t=1 tYt,i

)
.

We obtain
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E(
∑m

i=1

∑∞
t=1 Yt,i)

E(
∑m

i=1

∑∞
t=1 tYt,i)

= 1− ρ,

−Cov(
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i=1

∑∞
t=1 Yt,i,

∑m
i=1

∑∞
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(E(
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∑∞
t=1 tYt,i))2

= − (1− ρ)2

ρ
∑m

i=1 λ0,i

,

Var(
∑m

i=1

∑∞
t=1 tYt,i)E(

∑m
i=1

∑∞
t=1 Yt,i)

(E(
∑m

i=1

∑∞
t=1 tYt,i))2

=
(1− ρ)(1− ρ2)

ρ
∑m

i=1 λ0,i

,

Cov
(∑m

i=1

∑∞
t=1 Yt,i, (

∑m
i=1

∑∞
t=1 tYt,i)

2
)

E(
∑m

i=1

∑∞
t=1 tYt,i)3

=
−2(1 + ρ2)(1− ρ)6

∑m
i=1 λ

2
0,i

ρ(1− ρ2)3(
∑m

i=1 λ0,i)3

+
(1 + ρ)(1− ρ)3

ρ2(
∑m

i=1 λ0,i)2
+

4(1− ρ)2

ρ(
∑m

i=1 λ0,i)
,

−E(
∑m

i=1

∑∞
t=1 Yt,i)µ3(

∑m
i=1

∑∞
t=1 tYt,i)

E(
∑m

i=1

∑∞
t=1 tYt,i)4

= −(1− ρ)3(ρ2 + 4ρ+ 1)

ρ2(
∑m

i=1 λ0,i)2
.

The approximate expression for the bias of ρ̂ in the multiple series setting is given

by

Bias(ρ̂) ≈ − (ρ− 1)2∑m
i=1 λ0,i

+
2(1 + ρ2)(1− ρ)6

∑m
i=1 λ

2
0,i

ρ(1− ρ2)3(
∑m

i=1 λ0,i)3
− (1− ρ)3(−ρ2 − 3ρ)

ρ2(
∑m

i=1 λ0,i)2

− 4(1− ρ)2

ρ(
∑m

i=1 λ0,i)
.

The approximate expression for the variance of ρ̂ common across m series is given

as
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Var(ρ̂A) = Var

(
1−

∑m
i=1

∑∞
t=1 Yt,i∑m

i=1

∑∞
t=1 tYt,i

)
= Var

( ∑m
i=1

∑∞
t=1 Yt,i∑m

i=1

∑∞
t=1 tYt,i

)
.

We obtain
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The approximate variance of ρ̂ in the multiple series setting is given as the sum of

(2.E.1), (2.E.2), (2.E.3), (2.E.4), (2.E.5), (2.E.6), (2.E.7) and (2.E.8).
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2.F Mean, Bias and Variance of Numerically Esti-

mated Parameters from the Simulation

Table 2.F.1: Mean of Estimates of λ0 Using PD (10,000 Simulated Demand Series for
each Combination of Parameters)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 10.247 50.144 100.152 10.324 50.186 100.049 10.471 50.495 100.407
24 10.036 50.017 100.024 10.034 50.049 100.094 10.110 50.022 99.939
60 10.021 50.013 100.014 10.021 50.007 100.008 10.022 50.017 99.967

Table 2.F.2: Bias of Estimates of λ0 Using PD (10,000 Simulated Demand Series for
each Combination of Parameters)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 0.247 0.144 0.152 0.324 0.186 0.049 0.471 0.495 0.407
24 0.036 0.017 0.024 0.034 0.049 0.094 0.110 0.022 -0.061
60 0.021 0.013 0.014 0.021 0.007 0.008 0.022 0.017 -0.033

Table 2.F.3: Variance of Estimates of λ0 Using PD (10,000 Simulated Demand Series
for each Combination of Parameters)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 3.765 20.406 42.538 3.244 19.574 39.734 2.733 15.082 33.267
24 2.156 10.661 21.091 1.949 9.946 19.718 1.630 9.189 18.681
60 1.059 5.263 10.321 0.944 4.507 9.182 0.802 3.858 7.852
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Table 2.F.4: Mean of Estimates of ρ Using PD (10,000 Simulated Demand Series for
each Combination of Parameters)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 0.9676 0.9699 0.9700 0.9761 0.9798 0.9801 0.9836 0.9887 0.9895
24 0.9700 0.9700 0.9700 0.9801 0.9800 0.9799 0.9893 0.9900 0.9901
60 0.9700 0.9700 0.9700 0.9800 0.9800 0.9800 0.9900 0.9900 0.9900

Table 2.F.5: Bias of Estimates of ρ Using PD (10,000 Simulated Demand Series for
each Combination of Parameters)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 -0.0024 -0.0001 0.0000 -0.0039 -0.0002 0.0001 -0.0064 -0.0013 -0.0005
24 0.0000 0.0000 0.0000 0.0001 0.0000 -0.0001 -0.0007 0.0000 0.0001
60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2.F.6: Variance of Estimates of ρ Using PD (10,000 Simulated Demand Series for
each Combination of Parameters)

ρ = 0.97 ρ = 0.98 ρ = 0.99
n λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100 λ0 = 10 λ0 = 50 λ0 = 100

12 0.0006 0.0002 0.0001 0.0005 0.0001 0.0001 0.0004 0.0001 0.0001
24 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000
60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



Chapter 3

Demand Forecasting at Every

Phase of the Life Cycle

3.1 Introduction

Demand forecasts are crucial for many strategic and operational decisions concern-

ing resources, logistics, manufacturing, financial planning and inventory throughout a

product’s life cycle. Demand patterns may change over the course of a product’s life

cycle, which is important to capture in forecasting. For example, in spare part manage-

ment, the product life cycle is typically divided into three phases: growth, maturity and

end-of-life (Fortuin, 1980; Dekker et al., 2013), where demand increases during growth,

stabilizes during maturity and then declines during the end-of-life phase.

One of the main challenges with forecasting demand over a product’s life cycle arises

when the decision maker can only observe demand at the early phases of the life cycle

and does not have any further information about demand later on. In some cases,

historical data is restricted to before a peak demand level or a declining pattern in

demand has been identified. This is particularly challenging in the case of long-term

strategic decision-making, where demand needs to be forecasted for many periods ahead

60
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and potentially cover the remainder of the life cycle. For example, an inventory decision

common to aftermarket industries is a final order, also known as a ‘last time buy’. LTB

decisions can be required at any point in the life cycle and must sustain demand over

the rest of the service period.

Another challenge may occur if demand is also intermittent, with periods where

no demand is recorded. For example, demand for spare parts in the aftermarket is

commonly irregular and intermittent (Hasni et al., 2019). Aftermarkets operate across

numerous sectors including automotive, consumer electronics and aviation industries

(Durugbo, 2020). However, intermittent demand is a more widespread phenomenon.

Sillanpää and Liesiö (2018) and Sarlo et al. (2023) highlight the practicality and rel-

evance of intermittent demand forecasting in retail contexts. Intermittent items, al-

though slow-moving, have high prevalence and in some cases can be attributed to 60%

of stock investment (Johnston et al., 2003). Much of the current intermittent demand

methodology focuses on stationary demand patterns (Croston, 1972; Syntetos and Boy-

lan, 2005). Where trend is considered, existing approaches focus on the final phase of

the life cycle where a decline in demand is present (Moore, 1971; Fortuin, 1980).

The research presented in this chapter is motivated by a real-world application from

an automotive manufacturer. The automotive manufacturer has to make operational

and strategic decisions at different phases of a product’s life cycle, for which they require

a reliable demand forecast. In Figure 3.1.1, we illustrate examples of monthly demands

for different spare parts where the automotive manufacturer was able to collect data

for several phases of each product’s life cycle over the last nine years. We observe that

demand is non-stationary and follows life cycle patterns. There is an initial rise in the

demand pattern before the average demand reaches a maximum level, after which we

see a sustained decline. We also observe some monthly periods where no demand is

recorded.

A common approach to modelling life cycle demand was developed by Bass (1969).
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(a) Exhaust Manifold (b) Bracket

(c) Cover (d) Crossmember

Figure 3.1.1: Demand for SKUs Belonging to an Automotive Manufacturer

Originally designed for demand forecasting of new products, the Bass model is char-

acterised by a bell-shaped curve and consists of a differential equation, explaining the

process of customers adopting a new product. Central to the formulation is the as-

sumption that the rate of sales is a linear function of previous sales. The model is

favoured for its simplicity whereby solely historical data is used to estimate the model

parameters. However, applying the Bass model with limited historical data is known

to incur parameter estimation issues (Van den Bulte and Lilien, 1997; Putsis Jr and

Srinfvasan, 2000; Meade and Islam, 2006). Implementing the model to forecast demand

for products with little or no demand history often relies on utilising sales data of a

similar product for which the whole life cycle has been observed.

As the full life cycle for aftermarket SKUs can be several years long, full demand data
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for similar products is not always available in practice. Manufacturers may not have

access to data records far enough into the past to be able to obtain the full demand

history of previously sold products. Additionally, technological advancements mean

that manufacturers may introduce new products that do not have historical product

counterparts. For instance, in the automotive sector, the production of electric vehicles

means manufacturers now hold large quantities of stock that do not service standard

vehicles.

In this chapter, we contribute methodology to determine long-term forecasts for

aftermarket SKUs. We model demand throughout the life cycle as a Poisson process,

adopting the Bass curve as a representation of the underlying intensity function. Ex-

ploiting the likeness between demand series, we provide a pooling approach to improve

forecast accuracy when limited demand history is available. This is done by using the

limited demand history for multiple active products to determine the model parameters.

Beneficially, we do not rely on complete historical demand series in our implementation.

We show that error can be significantly reduced using our multiple series technique for

forecasts determined at different phases of the life cycle, including before the height of

demand has occurred.

3.2 Literature Review

Life cycle forecasting aims at capturing the pattern of demand throughout all phases

of a product’s life. The central tenet of life cycle demand forecasting is the Bass

model, which has inspired a vast literature (Hauser et al., 2006; Meade and Islam,

2006; Chandrasekaran and Tellis, 2007; Peres et al., 2010; Li and Sui, 2011; Guidolin

and Manfredi, 2023). The model is characterised by a simple differential equation

which describes product adoption in a market population. By using sufficient sales

records of comparable products, Ismail and Abu (2013) apply the Bass model in a
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real-life example at an automotive company. Sales patterns with related features have

also been used when applying the Bass model to determine forecasts for technology

products (Ganjeizadeh et al., 2017; Li et al., 2021). Li et al. (2021) forecast demand

relying on representative forecasts found using average demand across similar products

with life cycle sales records. Representative forecasts are also formed by Hu et al.

(2019) by grouping products using time-series-based clustering. The Bass model as

well as polynomial, triangle and trapezoid life cycle shapes are used to forecast sales

of new computers. Dombi et al. (2018) fit parametric life cycle demand functions to

full historical demand series to infer the shape of life cycle curves. Clustering on the

parameters of the fitted life cycle demand functions is performed to find typical demand

models to forecast the demand for active parts.

Applications of life cycle models have justifiably exploited the likeness between past

products to determine forecasts for active products. Life cycle forecasts determined

using solely the incomplete demand history of an active part can have low accuracy.

For the Bass model, parameter estimation issues when limited historical data is available

are well known. Putsis Jr and Srinfvasan (2000) revisit early findings on the estimation

of parameters and demonstrate that the peak of demand needs to have been observed

to obtain robust and stable estimates (Srinivasan and Mason, 1986). Focusing on the

non-linear least squares method, Van den Bulte and Lilien (1997) show that the amount

of bias in estimates is in accordance with the degree of truncation of available demand

history. Highlighting the issue, Meade and Islam (2006) argue for the relevance of

research concerning life cycle modelling for products with limited demand history.

The current methodology to aid long-term decision-making prioritises forecasting

demand in the end-of-life phase of the life cycle. Fortuin (1980) design an approach

for the LTB problem which considers that demand follows a Gaussian process with an

exponentially declining mean. A time-series approach designed by Moore (1971) fits

deterioration curves to sales data on a logarithmic scale. In Chapter 2 we introduced
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a long-term stochastic forecasting model for intermittent SKUs with a declining trend,

whereby demand is treated as Poisson. An extension to the model facilitates using

demand history from similar products to improve forecasts. These approaches are

intended for forecasting during the final phase of the life cycle where a decline in demand

is present. As such, demand with a declining pattern needs to be observed to forecast

demand over the rest of the life cycle.

Pooling the demand history of multiple products to estimate common model param-

eters has received increased attention. This approach is based on the assumption that

demand for a group of products follows an identical process and is also often referred to

as ‘cross-learning’. Semenoglou et al. (2021) find that training a single model for multi-

ple SKUs increases forecast accuracy and is much less computationally expensive than

individual models for each SKU. In the recent M5 competition, the best-performing

approaches utilised joint models using the demand history of multiple products instead

of fitting a model for each SKU using solely its own demand information (Makridakis

et al., 2022). Cohen et al. (2022) also show that borrowing demand history from other

products improves accuracy for newly introduced retail SKUs with insufficient demand

history. Lei et al. (2024) propose a pooling framework that integrates both category

and product level demand history when determining forecasts for individual SKUs.

The main consideration of the current methodology for intermittent SKUs, such as

spare parts, is short-term decision-making. Where long-term circumstances are con-

sidered, approaches are concentrated on the end-of-life phase where historical demand

data with a declining pattern is used to forecast years ahead. Models which represent

multiple phases of the life cycle have yet to focus on intermittent and low-volume items.

Additionally, applications of life cycle models, such as the Bass model, to SKUs with

little or no demand history rely on similar products for which full life cycle demand

is known. We present a forecasting model for spare part SKUs that incorporates the

patterns in demand attributed to the product life cycle phases. Additionally, we utilise
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data pooling techniques and incomplete demand histories of multiple SKUs to forecast

cases with insufficient demand history.

3.3 Methodology

In this section, we introduce a long-term stochastic demand forecasting model for af-

termarket SKUs that incorporates life cycle patterns. We represent demand in each

period throughout the life cycle as a Poisson process with an intensity function that

changes with respect to time. We adopt the well-known Bass curve (Bass, 1969) as a

representation of the intensity function of the Poisson process. Our initial approach

uses the demand history of a single SKU to estimate our model parameters. We de-

velop our methodology to forecast for SKUs with limited demand history by using the

combined demand history of multiple products.

3.3.1 The Bass Model

A principle model of life cycle demand forecasting, the Bass model describes how a

product is adopted by its market. Two factors are considered with regard to the rate of

sales. The first is the probability of a sale at introduction, referred to as the innovation

of a product. The second component, the imitation effect, encompasses the impact of

previous sales on future sales. Model formulation assumes that the relationship between

the rate of sales and the number of previous sales can be described linearly.

Bass (1969) specifies that the cumulative number of sales from time 0 through to

time t is

S(t) = P

(
1− e−(p+q)t

1 + q
p
e−(p+q)t

)
(3.3.1)

where P , P > 0, represents the total market size and p, q , p > 0, q > 0, are

coefficients of innovation and imitation, respectively.
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Thus, the number of sales as a function of time is given as

s(t) =
dS(t)

dt
= P

(
e−(p+q)tp(1 + q

p
)2

(1 + q
p
e−(p+q)t)2

)
. (3.3.2)

An acknowledged advantage of the Bass model is its parameter interpretability. Low

values of P indicate a small total market size. The innovation coefficient, p, represents

the probability of a sale at time t = 0. Therefore, high p values correspond to immediate

product popularity (Li et al., 2021). When the effect of imitation is larger than the

innovation effect (q > p) a bell-shaped curve is formed. In the alternate scenario, the

peak of sales is observed as soon as a product is put on the market with an onward

decline in sales expected. Large values of both p and q are consistent with a product

selling very quickly and reaching its maximum market potential. In such cases, sales

decay rapidly after observing a peak in sales (Lilien et al., 2017).

3.3.2 Application to Spare Part Demand

The Poisson distribution is a commonly proposed representation of spare part demand

(Boylan and Syntetos, 2021). We model demand throughout the life cycle as a Poisson

process with an intensity function that changes over time.

For a single unit of a product, we propose that demand incidences follow a Poisson

process over the time interval [0, T ] with intensity function which follows the Bass curve

as introduced in Equation (3.3.2).

Consequently, for all τ such that 0 ≤ δ(τ − 1) < δτ ≤ T , the total demand within

time interval (δ(τ − 1), δτ) is a Poisson random variable. Let Yτ be the number of

demand incidences for a single unit of product in the interval (δ(τ − 1), δτ), such that

0 ≤ τ − 1 < τ ≤ T . We write

Yτ = Y (δ(τ − 1), δτ) ∼ Poisson

(∫ δτ

δ(τ−1)

s(t)dt

)
.
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We note that Yτ is independent of Yτ+1 if (δ(τ − 1), δτ) ∩ (δτ, δ(τ + 1)) = ∅.

By definition of s(t),

∫ δτ

δ(τ−1)

s(t)dt = S(δτ)− S(δ(τ − 1)), for all 0 ≤ δ(τ − 1) < δτ ≤ T,

and

∫ T

0

s(t)dt = S(T )− S(0) = S(T ).

For n independent demand observations in consecutive time periods, y1, ...yn, the

resulting likelihood function is given by

L(p, q, P ; y1, ..., yn) =
n∏

τ=1

{
[S(τ)− S(τ − 1)]yτ

yτ !
e−[S(τ)−S((τ−1))]

}

∝

[
n∏

τ=1

[S(τ)− S(τ − 1)]yτ

]
e−[S(T )−S(0)]

=

[
n∏

τ=1

[S(τ)− S(τ − 1)]yτ

]
e−S(T ).

The log-likelihood function is given by

ℓ(p, q, P ; y1, ..., yn) =
n∑

τ=1

[yτ ln(S(τ)− S(τ − 1))]− S(T ). (3.3.3)

3.3.3 Extension for Products With Limited Demand History

The issue of poorly estimated parameters when applying the Bass model to products

with limited data is well-known (Srinivasan and Mason, 1986; Van den Bulte and Lilien,

1997; Putsis Jr and Srinfvasan, 2000; Meade and Islam, 2006). Additional methodology

is needed to determine long-term forecasts for these products. Given the expansiveness
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of aftermarket inventories, we assume that there exist products with the same life cycle

pattern. Therefore, the demand history of SKUs with common life cycle behaviour can

be pooled to estimate common model parameters.

Where Yτ,i = Yi(δ(τ − 1), δτ) is the number of demand incidences for a single unit

of product i in the interval (δ(τ − 1), δτ), the demand for product i in period τ is given

by

Yτ,i ∼ Yi(δ(τ − 1), δτ) ∼ Poisson

(∫ δτ

δ(τ−1)

s(t)dt

)
where ∫ δτ

δ(τ−1)

s(t)dt = S(δτ)− S(δ(τ − 1)).

For n independent demand observations in consecutive time periods belonging to m

products, y1,1, ..., yn,1, ...y1,m..., yn,m, the resulting likelihood function is given by

L(p, q, P ; y1,1, ..., yn,1, ...y1,m..., yn,m) =
m∏
i=1

n∏
τ=1

{
[S(τ)− S(τ − 1)]yτ,i

yτ,i!
e−[S(τ)−S(τ−1)]

}

∝

[
m∏
i=1

n∏
τ=1

[S(τ)− S(τ − 1)]yτ,i

]
e−[S(T )−S(0)]

=

[
m∏
i=1

n∏
τ=1

[S(τ)− S(τ − 1)]yτ,i

]
e−S(T ).

The log-likelihood function is

ℓ(p, q, P ; y1,1, ..., yn,1, ...y1,m..., yn,m) =
m∑
i=1

n∑
τ=1

[yτ,iln(S(τ)− S(τ − 1))]− S(T ). (3.3.4)
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3.4 Forecast Accuracy

Our forecasting methodology is inspired by the forecasting requirements of long-term

operational decisions, such as the LTB decision. When evaluating the performance of a

forecasting technique for the LTB, we are concerned with measuring the forecast error

between the total true demand and the total forecasted demand over the remaining

service period, rather than the forecast error in each period.

We define ft,i as the forecasted demand for series i in period t and Fi as the total

forecasted demand across the out-of-sample length, n+1, ..., N , where Fi =
∑N

t=n+1 ft,i.

Additionally, where yt,i is the demand for series i in period t we specify that the total

demand across the out-of-sample period be given by Di, where Di =
∑N

t=n+1 yt,i.

The mean percentage error and mean absolute percentage error are scale-independent

metrics and thus suitable for measuring performance across a number of demand series

that vary in demand size. Over M series, the MPE and MAPE are given as

MPE =
100%

M

M∑
i=1

(
Di − Fi

Di

)

and

MAPE =
100%

M

M∑
i=1

∣∣∣∣Di − Fi

Di

∣∣∣∣ .

Our methodology can also be used for other long-term managerial decisions for

which it may be useful to evaluate forecast performance in every period. To do so, we

require a measure that is suitable for non-stationary demand series with periods of zero

demand. Accuracy metrics that optimise for the median are not suitable for the series

with periods of zero demand as the median is often close to zero. Therefore, these types
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of measures reward approaches that forecast very low levels of demand (Kolassa, 2016).

Measures that involve dividing the forecast error by the true demand in an individual

period are also rendered unsuitable due to the periods of zero demand in intermittent

series.

The root mean squared scaled error (RMSSE) (Makridakis et al., 2022) scales the

mean squared error of the forecast by the mean squared error of a one-step naive forecast

on the in-sample demand. The RMSSE for series i is given by

RMSSEi =

√√√√ 1
N−(n+1)

∑N
t=n+1(yt,i − ft,i)2

1
n−1

∑n
t=2(yt,i − yt−1,i)2

.

A RMSSE value of less than 1 indicates that the performance of the model is better

than the naive forecasting method. Conversely, a RMSSE greater than 1 means that

the performance of the model is not better than the naive forecast method. We evaluate

performance across M series by calculating the RMSSE for each series and taking the

mean across these values. That is,

Average RMSSE =
1

M

M∑
i=1

RMSSEi.

3.5 Simulation

By conducting a simulation, we seek to quantify the accuracy of forecasts determined

using our methodology and determine the impact of volume size, in-sample length and

the combined innovation and imitation effects on forecast accuracy. We also seek to

assess the efficacy of our extension on improving forecasts for products with limited

historical data.
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3.5.1 Experiment Design

In our experiment, we consider monthly demand over a 10 year period. Three life cycle

curves are generated using Equation (3.3.2) with specified parameters, p and q. For

given parameters of innovation, p, and imitation, q, the time period of the peak of

demand is given by

t∗ =
ln(q)− ln(p)

p+ q

(Bass, 1969).

We select parameters p and q such that the peak is fixed at 5 years, i.e., t∗ =

60. Values chosen for p are 0.002, 0.003 and 0.004. Corresponding values for q are

0.0524, 0.0403 and 0.0290, respectively. Henceforth, we refer to the curves generated

using the parameter pairs as curves A, B and C. Three values for the total market

potential, P , are chosen to incorporate the variety of product volume sizes. Table 3.5.1

reports the curve names, corresponding parameters and height of the curves for the

chosen values for total market potential. Figure 3.5.1 shows curves A, B and C for

monthly periods over a ten-year life cycle for P = 1000.

Table 3.5.1: Parameters and Peak Values for Curves A, B and C

Peak Value
Curve p q P=500 P=1000 P=5000

A 0.002 0.0524 7.06 14.12 70.60
B 0.003 0.0403 5.82 11.63 58.15
C 0.004 0.0290 4.69 9.39 46.94

For each value of the total market potential, P , and curve A, B and C (parameter

pair p, q), we draw 10,000 demand series of length 120 (10 years of monthly periods)

from a Poisson distribution which has a mean that changes over time according to the

methodology presented in Section 3.3.2. That is, the first demand value is drawn from a

Poisson distribution with mean
∫ 1

0
s(t) = S(1)−S(0) = S(1), the second demand value
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Figure 3.5.1: Life Cycle Curves A, B and C for P = 1000

is drawn from a Poisson distribution with mean
∫ 2

1
s(t) = S(2)−S(1), the third demand

value is drawn from a Poisson distribution with mean
∫ 3

2
s(t) = S(3)− S(2) and so on,

for S(t) and s(t) given by Equations (3.3.1) and (3.3.2), respectively, and corresponding

parameters p, q, P . Examples of simulated demand series for the different values of P

and curves A, B, C are given in Figure 3.5.2. Each subfigure shows a randomly generated

demand series for specified P and curve A, B or C.

The in-sample demand for each of the 10,000 demand series is used to estimate

the model parameters by numerically maximising the log-likelihood function given by

Equation (3.3.3). We select three in-sample lengths in our experiment, n = 48, 60, 72.

When p < q, as is the case for curves A, B and C, the forecasting challenge with our

chosen in-sample lengths can be described as follows:

• Before the peak of demand (n = 48): The in-sample data ceases one year

before the peak of demand occurs. The majority of the life cycle is yet to be

observed and forecasts need to capture the incline, peak and decline in demand.
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(a) Curve A (P=500) (b) Curve B (P=500) (c) Curve C (P=500)

(d) Curve A (P=1000) (e) Curve B (P=1000) (f) Curve C (P=1000)

(g) Curve A (P=5000) (h) Curve B (P=5000) (i) Curve C (P=5000)

Figure 3.5.2: Simulated Demand Series with Intensity Function Given By Curves A, B
and C

• At the peak of demand (n = 60): Demand will decline over the rest of the

planning horizon however the in-sample does not include demand history with a

declining pattern.

• Past the peak of demand (n = 72): Demand with a declining pattern is

limited to 12 periods. Although past the peak of demand, the rest of the life

cycle still spans a number of years.

We also test the methodology given in Section 3.3.3. For each of the 10,000 series
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of random observations of length 120 drawn for each combination of P and curves A,

B and C (parameter pair p, q), we draw additional demand series of random obser-

vations of length n with the same parameter values. The in-sample demand for each

of the 10,000 generated demand series and its additional series are used to estimate

the model parameters by numerically maximising the log-likelihood function given by

Equation (3.3.4). We consider values of 2, 5, 10 and 50 for the total number of demand

series (1 plus the number of additional series) used in this approach.

3.5.2 Results

We use ‘PBass’ (short for Poisson-Bass) to refer to when only the in-sample from a

single series has been used to estimate the model parameters, by numerically maximising

Equation (3.3.3). Alternatively, ‘PBassM’ corresponds to our multiple series approach.

Parameters are estimated using the in-sample demand of multiple series through the

numerical maximisation of Equation (3.3.4). Forecasts are evaluated over the out-of-

sample using the metrics outlined in Section 3.4. The mean percentage error and the

mean absolute percentage error are presented in Tables 3.5.2 and 3.5.3, respectively.

The total number of demand series (1 plus the number of additional series) used in the

implementation of PBassM is given in parenthesis. Results pertaining to the root mean

squared scaled error, as described in Section 3.4, are presented in Appendix 3.A.

Forecasts determined using the single series approach with data a year past the peak

give reasonable accuracy in all cases. In all cases where n = 72, we see MAPEs less

than 40%. Forecast performance is also good when the series is high volume. When

P = 5000, the mean absolute percentage error is less than 22% in cases when demand

has reached its peak even though no declining demand has yet been observed (n = 60).

As expected, accuracy for forecasts generated using data before the peak are im-

pacted by parameter estimation issues. When the demand history is right-truncated

before the peak (n = 48), accuracy is hardest to achieve for demand series generated
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Table 3.5.2: Mean Percentage Error Over 10,000 Generated Demand Series

n Curve P PBass PBassM (2) PBassM (5) PBassM (10) PBassM (50)

48

A

500 -196.70 -148.01 -81.71 -46.41 -14.74
1000 -140.21 -89.23 -35.95 -15.91 -5.27
5000 -33.81 -12.65 -4.34 -2.62 -1.16

B
500 -91.22 -76.95 -51.59 -33.07 -12.55
1000 -73.85 -54.90 -29.75 -15.47 -5.37
5000 -25.22 -12.22 -4.62 -2.56 -0.95

C

500 -37.07 -35.52 -30.15 -23.35 -11.07
1000 -34.16 -28.97 -22.26 -14.88 -6.57
5000 -18.30 -11.65 -5.27 -2.88 -1.04

60

A

500 -50.18 -23.90 -8.62 -5.22 -2.33
1000 -23.76 -10.36 -4.54 -2.82 -1.84
5000 -4.17 -2.85 -1.82 -1.56 -1.29

B
500 -38.98 -25.41 -10.97 -5.98 -2.98
1000 -24.06 -12.31 -5.06 -3.01 -1.50
5000 -4.72 -2.46 -1.53 -1.23 -1.01

C

500 -22.83 -19.64 -12.70 -8.04 -3.58
1000 -18.79 -13.49 -7.18 -4.02 -1.87
5000 -5.76 -2.75 -1.39 -1.01 -0.73

72

A

500 -10.96 -6.13 -3.77 -3.07 -2.41
1000 -5.41 -3.66 -2.55 -2.19 -1.94
5000 -2.37 -2.11 -1.93 -1.85 -1.74

B
500 -13.60 -7.63 -3.68 -2.58 -1.99
1000 -7.32 -4.43 -2.56 -2.06 -1.56
5000 -2.12 -1.53 -1.33 -1.28 -1.24

C
500 -13.12 -8.78 -4.80 -3.21 -1.93
1000 -8.23 -4.69 -2.49 -1.76 -1.22
5000 -2.20 -1.38 -1.09 -0.98 -0.84
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Table 3.5.3: Mean Absolute Percentage Error Over 10,000 Generated Demand Series

n Curve P PBass PBassM (2) PBassM (5) PBassM (10) PBassM (50)

48

A

500 246.57 188.37 111.55 69.56 27.32
1000 181.25 121.67 59.15 34.03 14.51
5000 57.33 30.87 16.46 11.55 5.33

B
500 141.46 118.17 82.21 57.29 25.20
1000 114.66 87.89 54.07 34.14 15.01
5000 49.98 30.76 17.31 11.90 5.29

C

500 89.38 78.22 62.18 49.08 24.65
1000 77.69 64.22 47.80 34.72 16.87
5000 44.46 31.57 18.88 13.10 5.95

60

A

500 81.97 48.10 25.37 17.74 8.98
1000 47.87 28.71 16.85 11.93 6.36
5000 16.43 11.40 7.19 5.32 2.90

B
500 73.19 51.53 29.74 20.09 10.36
1000 50.64 32.53 19.00 13.16 6.75
5000 18.37 12.48 7.94 5.72 3.01

C

500 60.21 48.94 33.18 23.48 11.92
1000 47.49 35.57 22.43 15.64 7.93
5000 21.25 14.29 8.97 6.49 3.28

72

A

500 32.02 21.71 14.34 10.99 7.57
1000 20.82 14.96 10.05 7.82 5.42
5000 9.06 6.62 4.62 3.69 2.72

B
500 37.29 25.26 15.92 11.96 7.92
1000 24.70 17.24 11.19 8.48 5.59
5000 10.28 7.34 4.89 3.79 2.59

C
500 39.90 29.20 18.96 14.02 8.60
1000 28.01 19.82 12.76 9.48 5.95
5000 11.82 8.41 5.51 4.18 2.65
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from Curve A. This curve has a larger imitation effect causing a faster acceleration and

decay in demand than the other two curves, making the life cycle pattern in demand

much harder to estimate.

Forecasts using the single series approach incur more severe errors when demand

volume is low. Lower volume series contain more frequent zero demand periods so it is

particularly difficult to effectively estimate parameters. In severe cases, the procedure

fails to identify a peak of demand across the total 10 year period, resulting in large

negative mean percentage errors. However, in every case, the bias in the forecast

reduces as the number of series included in PBassM increases.

Using in-complete demand history from series with identical parameters improves

forecast accuracy at all considered phases of the life cycle. The multiple series approach

successfully compensates forecast accuracy for low-volume series of varying in-sample

length, offering improvements to the MAPE in every case. The more series included

in the implementation of PBassM the smaller the reported MAPE. In the case where

demand history is only available up to 12 months before the peak of demand is due

to be observed (n = 48), we see a drastic improvement in forecast accuracy with the

inclusion of demand history from additional series. PBassM achieves a mean absolute

percentage error of less than 30% when 50 demand series are used in its implementation.

For PBass, PBassM (10) and PBass (50), Figure 3.5.3 shows examples of forecasted

curves determined using an in-sample length of n = 60 and the true curves used to

simulate the demand series for a value of P = 500. Similar figures for in-sample lengths

n = 48 and n = 72 are given in Appendix 3.B. The forecasted curves are close to the

true curves when a large number of series are used in the implementation of PBassM

(i.e., for PBassM (50)). The greatest misalignment between the true curves and the

forecasted curves is seen when using PBass and for Curve A in particular. Overall, the

alignment of the forecasted curves with the true curves improves as the number of series

used in the implementation of PBassM increases. These observations are in accordance
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(a) PBass - Curve A (b) PBass - Curve B (c) PBass - Curve C

(d) PBassM (10) - Curve A (e) PBassM (10) - Curve B (f) PBassM (10) - Curve C

(g) PBassM (50) - Curve A (h) PBassM (50) - Curve B (i) PBassM (50) - Curve C

Figure 3.5.3: Comparison of True Curves and Example Forecasted Curves for P = 500
and In-Sample Length of 60 Monthly Time Periods

with the results for the MPE and MAPE given in Tables 3.5.2 and 3.5.3.

The experimentation in this section is done in a controlled setting whereby the

demand series are generated based on the assumptions of our methodology. In the

following section we test our approach on real data to reflect the challenges faced by

practitioners in industry.
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3.6 Real Data

We assess performance of our proposed methodology on real data using monthly demand

for 175 automotive SKUs obtained from a manufacturer. The demand data covers 9

years of the life cycle, from 2014-2022, consisting of 108 monthly demands per SKU.

In our experiment, we consider in-sample lengths of 48, 60 and 72 monthly periods

(4, 5, 6 years). Forecasts are evaluated for the total demand over the remaining time

period, corresponding to an out-of-sample of 60, 48 and 36 monthly periods (5, 4 and 3

years), respectively. We estimate the parameters for PBass by numerically maximising

Equation (3.3.3).

We apply the multiple series approach, PBassM, using the in-sample demand for

all of the SKUs in the dataset by numerically maximising Equation (3.3.4). Before the

parameter estimation, the demand for each SKU is standardised by dividing the demand

in each period in the in-sample by the total demand across its in-sample length. After

common parameters have been found, forecasts are de-standardised by multiplying the

forecasted demand for each SKU by the total demand across its in-sample length.

Table 3.6.1: Forecast Performance Across 175 Automotive SKUs

MPE MAPE Average RMSSE
n PBass PBassM PBass PBassM PBass PBassM

48 -13.71 -28.22 58.28 31.60 1.24 0.94
60 -16.57 -19.01 51.77 25.02 0.99 0.79
72 -3.94 -0.78 38.32 21.55 0.82 0.74

In line with earlier findings, forecast errors for PBass are large when limited historical

data is available, especially when the peak of demand has yet to be observed. Table

3.6.1 reports the metrics outlined in Section 3.4 for both approaches calculated across

the 175 SKUs. We see an improvement in forecast accuracy as the in-sample length

increases. PBass achieves a MAPE less than 40% when n = 72 despite a declining

pattern of demand having been observed for a short period of time. This showcases the
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(a) Exhaust Heat Shield (b) Valve

(c) Seal (d) Pulley

Figure 3.6.1: Examples of Forecasts Determined Using PBass with an In-Sample Length
of 72 Monthly Time Periods

strength of our single series methodology for long-term decision-making in the end-of-

life phase. Example forecasts using PBass with in-sample length n = 72 are shown in

Figure 3.6.1.

Utilising series with similar life cycle behaviour using our methodology is effective

on real data, even when available demand history is limited. PBassM produces more

accurate forecasts than PBass and acquires a mean absolute percentage error 47% lower

on average. Figure 3.6.2 shows the percentage errors and absolute percentage errors

for PBass and PBassM with varying lengths of demand data in the in-sample. The

multiple series approach improves upon forecasts determined using the single series,

with noticeable improvement in accuracy across all lengths of in-sample considered.
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Figure 3.6.3 shows example forecasts determined using PBassM and a short amount of

demand history, n = 48.

(a) Percentage Error (b) Absolute Percentage Error

Figure 3.6.2: Distribution of Forecast Performance Across the 175 Automotive SKUs
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(a) Gasket (b) Fuse Box

(c) Water Hose (d) Radiator Hose

Figure 3.6.3: Examples of Forecasts Determined Using PBassM with an In-Sample
Length of 48 Monthly Time Periods

3.7 Conclusion

We have introduced a stochastic demand forecasting model for aftermarket SKUs to

support long-term decision-making. We model demand over time as a Poisson process

with a non-stationary intensity function that follows the well-established Bass curve

(Bass, 1969). Acknowledging understood parameter estimation issues with the Bass

model when historical demand is right-truncated we further develop our methodology

to improve demand forecasts. Our extension pools the incomplete demand history of

other products with similar life cycle patterns to estimate model parameters. We obtain

the parameters of our model and its extension using maximum likelihood estimation.
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In numerical experiments we find that forecast accuracy improves as the amount of

historical data and the size of demand increases. Forecasts determined using our model

extension have improved accuracy compared to our initial approach and forecast error

reduces as the number of series used in the multiple series extension increases.

We applied our methodology to a dataset consisting of demand for 175 aftermarket

SKUs obtained from an automotive manufacturer. We find that our initial approach

performs well on the real data for larger samples of demand history and when the peak

of demand is likely to have passed. This is useful for long-term forecasting for SKUs

in the end-of-life phase, particularly in cases where only a small amount of demand

with a declining pattern has been observed. Our model extension greatly improves

forecast accuracy for products with a limited demand history. As such, our multiple-

series approach is especially useful for constructing long-term forecasts throughout the

life cycle, particularly when a declining demand pattern or peak in demand value is yet

to be observed.

We estimate the parameters of our model extension using the incomplete demand

history of all SKUs in the dataset. In the case where inventories have parts with

varying life cycle behaviour, SKUs could first be separated into groups with similar life

cycle patterns. Product information could be useful for grouping parts with similar

demand patterns together. The selection of accurate grouping attributes would require

careful consideration and is likely to be specific to the relevant context. Alternatively,

time-series-based clustering approaches which group series based on the overall growth

pattern of the series and allow for temporal distortion could be employed.

In this work, we focus on representing demand in each period as a Poisson random

variable. A potential area for future research is to explore alternative representations

of demand, such as different demand distributions that are useful for spare parts (Syn-

tetos et al., 2012, 2013). Additionally, the underlying pattern for demand incidences is

assumed to follow the Bass curve. However, other life cycle shapes may also be ben-
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eficial for this problem. We highlight these considerations as possible areas for future

research.
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3.A Simulation Results (RMSSE)

Table 3.A.1: Average Root Mean Squared Scaled Error Over 10,000 Generated Demand
Series

n Curve P PBass PBassM (2) PBassM (5) PBassM (10) PBassM (50)

48

A
500 6.30 4.86 2.96 2.01 1.21
1000 6.44 4.31 2.24 1.47 1.04
5000 4.17 2.30 1.44 1.19 0.94

B
500 3.23 2.76 2.04 1.57 1.06
1000 3.61 2.82 1.88 1.36 0.98
5000 3.30 2.12 1.38 1.12 0.89

C
500 1.90 1.72 1.48 1.29 0.97
1000 2.22 1.92 1.55 1.28 0.95
5000 2.71 2.02 1.37 1.11 0.87

60

A
500 1.76 1.20 0.89 0.82 0.76
1000 1.46 1.06 0.86 0.80 0.75
5000 1.17 0.98 0.84 0.80 0.75

B
500 1.54 1.23 0.93 0.83 0.76
1000 1.49 1.12 0.88 0.81 0.75
5000 1.23 1.00 0.86 0.80 0.75

C
500 1.27 1.14 0.95 0.85 0.77
1000 1.37 1.15 0.93 0.83 0.76
5000 1.34 1.06 0.88 0.81 0.75

72

A
500 0.78 0.70 0.66 0.64 0.63
1000 0.76 0.70 0.66 0.64 0.63
5000 0.74 0.69 0.66 0.64 0.63

B
500 0.87 0.76 0.70 0.68 0.66
1000 0.84 0.75 0.70 0.68 0.66
5000 0.81 0.74 0.69 0.68 0.66

C
500 0.92 0.82 0.74 0.71 0.69
1000 0.92 0.81 0.73 0.71 0.69
5000 0.88 0.79 0.73 0.71 0.69
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3.B Comparison of True Curves and Example Fore-

casted Curves for P = 500 and In-Sample Lengths

48 and 72 Monthly Time Periods

(a) PBass - Curve A (b) PBass - Curve B (c) PBass - Curve C

(d) PBassM (10) - Curve A (e) PBassM (10) - Curve B (f) PBassM (10) - Curve C

(g) PBassM (50) - Curve A (h) PBassM (50) - Curve B (i) PBassM (50) - Curve C

Figure 3.B.1: Comparison of True Curves and Example Forecasted Curves for P = 500
and In-Sample Length of 48 Monthly Time Periods
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(a) PBass - Curve A (b) PBass - Curve B (c) PBass - Curve C

(d) PBassM (10) - Curve A (e) PBassM (10) - Curve B (f) PBassM (10) - Curve C

(g) PBassM (50) - Curve A (h) PBassM (50) - Curve B (i) PBassM (50) - Curve C

Figure 3.B.2: Comparison of True Curves and Example Forecasted Curves for P = 500
and In-Sample Length of 72 Monthly Time Periods



Chapter 4

Effective Outreach Design for

Long-Term Impact

4.1 Introduction

The STEM sectors are paramount to securing future prosperity and tackling social

and economic challenges that impact the worldwide population. However, there is a

distinct gap between the STEM skills required by industry and the current expertise

of workers (Royal Society, 2021; Campaign for Science and Engineering (CaSE), 2023).

In England, almost 50% of the working-age population have the level of numeracy

expected of a primary school child (Department for Business, Innovation & Skills, 2012).

The problem is made worse by the critical shortage of mathematics teachers, where

currently at least 12% of maths lessons are taught by non-specialists (Weale, 2023).

At UK universities, many mathematics departments are facing a crisis of low uptake,

leading to the discontinuation of undergraduate courses (Saunders, 2024). Despite

their importance, the STEM sectors face many difficulties in filling necessary roles in

industry, charity and government.

The overall shortage of professionals is not the only problem. The STEM community

89
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suffers from severe diversity issues (Science and Technology Committee, 2023). The

STEM workforce in the UK is predominately comprised of white men, who occupy

65% of roles (British Science Association, 2020). Disabled people are underrepresented

within STEM sectors with a larger gap in representation for disabled women than

disabled men (British Science Association, 2020). People who belong to the LGBTQ+

community are also underrepresented, with 30% of LGBTQ+ young people specifying

concerns over discrimination as the reason they would not choose to pursue a career

in STEM (STEM Women, 2021). Students from lower socio-economic backgrounds are

also critically underrepresented within STEM sectors (Weale, 2024).

Public dissemination and outreach initiatives help to combat issues within STEM

sectors including shortages in the workforce, the underrepresentation of particular de-

mographics and low levels of public numeracy. Outreach activities include talks and

workshops which aim to nurture interest in STEM disciplines and encourage future

generations to pursue careers in STEM fields. Communicators also work to engage the

wider public in STEM-related topics, attracting attention to mathematical ideas and

concepts which have tangible relationships to people’s everyday lives. Initiatives of this

kind work to bridge the gap between the scientific community and the rest of society.

In this chapter, the term ‘outreach’ is used to describe activity and content of any form

that promotes interest in the mathematical sciences.

This chapter presents a portfolio of outreach work conducted by the author during

their PhD. The work is designed based on core principles and focuses on disseminating

techniques within statistics and OR related to forecasting and statistical modelling. A

multitude of dissemination types are considered including published articles targeted

to audiences with differing levels of scientific knowledge. A talk and an interactive

workshop delivered to school students are also presented. A reflection on the impact

of this work is given using audience feedback and the author’s own experiences of

delivery. Motivated by the challenge of overcoming gender disparity within STEM
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fields, the work presented incorporates attempts to address barriers to mathematical

identity. Further, this work puts forward the argument that designing outreach to

target obstacles to belonging in mathematics can maximise the long-term impact of

initiatives, particularly towards the aim of improving issues of gender equity in the

mathematical sciences.

4.2 Background

4.2.1 Public Dissemination and Outreach

Outreach activity has many forms. Talks and workshops tailored to school-age students

take place nationwide and are arranged by organisations, such as charities (Mathematics

Education Innovation (MEI), 2018; Royal Instituition, 2024) and universities. These

activities generate awareness of mathematical topics and career paths. Emphasis is

placed on non-traditional content and delivery where interaction is often encouraged.

Outreach professionals also seek to reach public audiences. Scientific writing is pub-

lished in mainstream news outlets (Pagel, 2023; Yates, 2023; Steckles, 2025) and as

popular science books (Bellos, 2011; Fry, 2018; Rutherford, 2018; Yates, 2019; Imafi-

don, 2022). Examples of science television programmes include the BBC series The

Secret Genius of Modern Life, renewed for a second season in 2024 (Bruce, 2022).

Outreach activity has been found to have a great influence on its audiences. A

reflection on experiences of school students, Vennix et al. (2018) found that learning via

outreach was perceived positively. A survey produced by Appel et al. (2021) indicated

that a single event or individual had positively influenced the choice to pursue a career

in STEM for 97% of participants. More specifically, topics within OR have been shown

to improve interest and skills related to STEM in programmes designed for school

students (Raffaele and Gobbi, 2021; Colajanni et al., 2023). An investigation conducted

by Steckles et al. (2020) found that many undergraduates undertaking degrees in the
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mathematical sciences had engaged in informal mathematical activity before studying

at university.

Although highly influential, the effective design of effective outreach is insufficiently

studied. This applies especially to outreach initiatives involving topics from the math-

ematical sciences (Steckles et al., 2020). By reviewing work by STEM organisations,

Tillinghast et al. (2020) conclude that outreach activities should ‘support and increase

the understanding, awareness and interest in STEM disciplines’. Others argue that

the aim of fostering enthusiasm runs in tandem with addressing matters of workforce

shortages. Johnson and Mulligan (2016) reason that the focal point of outreach de-

sign should be the connection of content to careers so as to encourage young people

to consider mathematical career pathways. An outcome of outreach activities, as ar-

gued by Crawford et al. (2021), is to improve the readiness of participants to fill the

gap in STEM professionals and to increase total innovation by especially promoting to

underrepresented groups.

Some outreach professionals have designed initiatives solely towards the aim of im-

proving diversity within the mathematical community. The talk The Black Heroes of

Mathematics aims to shed light on overlooked contributions to the mathematical sci-

ences made by black mathematicians. Delivered at multiple events across the UK and

available online, the talk frankly discusses obstacles facing ethnic minorities in STEM

subjects (Chamberlain, 2020). Organisation Lathisms highlights the contributions of

Latinx and Hispanic mathematicians by recognising the achievements of a mathemati-

cian for each day of Hispanic Heritage Month. The digital platform Womanthology

promotes female role models in science through a multitude of dissemination outlets

including podcasts and articles (Womanthology, 2024). The creators of the video Faces

of Women in Mathematics aim to celebrate the work and diversity of female mathe-

maticians (Linke and Hunsicker, 2018). Their work has collated video clips featuring

almost 250 women from over 30 countries who are active in mathematics.
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4.2.2 Gender Disparity in the Mathematical Sciences

There is a long-standing issue concerning gender representation within STEM sectors.

Women are underrepresented in all career levels within the STEM workforce (British

Science Association, 2020) and hold just 24% of core positions (WISE, 2019). There

is no contention that the gender imbalance extends to academia. The progressive dis-

parity between the number of men and women in STEM-related academic fields is

colloquially referred to as the ‘leaky pipeline’. In mathematics, national benchmarking

finds that women are underrepresented at every level from A-level through to Professor-

ship (London Mathematics Society, 2023). At the highest level of academic seniority,

the disparity is stark. In the UK, just 14% of professors in the mathematical sciences

are female (London Mathematics Society, 2023). Of the top one hundred most-cited

academics in OR identified on Google Scholar, only one woman is listed (Carroll and

Esposito Amideo, 2024).

The gender disparity within STEM in large part arises from gender bias. Gender

stereotypes concerning STEM subjects are influenced by societal views and perpetu-

ated often unconsciously (Reinking and Martin, 2018). The notion that boys’ interests

are better aligned with computer science and engineering disciplines, is found to be

upheld by children as young as six years old (Master et al., 2021). Unconscious gender

bias can have significant consequences, although judgements occur implicitly. Research

into the impact of gender on the experiences of women and gender minorities pursuing

PhDs in mathematics found imposter syndrome, a lack of female mentors, differential

supervisory treatment and experiences of sexism to be key themes (Reis and Wadkin,

2023). Explicit gender bias results in deliberate acts of prejudice and, in the worst

case, severe forms of discrimination and violence. Such forms include sexual harass-

ment, experienced by approximately 10% of women postgraduate researchers in higher

education (Bull, 2024). The widespread endorsement of gender stereotypes diminishes

girls’ aspirations within STEM fields and contributes to discriminatory environments,
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ultimately leading to poor female representation.

A predominant theme in myths related to gender and STEM subjects relates to

competence. The sexist view that women are less capable of scientific pursuits than

their male counterparts is far-reaching. Good et al. (2012) find that messages that

women are not as talented as men at mathematics and the belief that an individual

has a fixed level of mathematical intelligence weakened feelings of belonging for girls in

STEM communities. The perception that intelligence is predetermined has also been

linked to poor retention of doctoral students across STEM disciplines (Clark et al.,

2021). In the same vein, an atypical standard of intelligence is also related to stereotypes

associated with mathematical professionals. Shin et al. (2016) and González-Pérez et al.

(2020) acknowledge the stereotype that successful scientists are unnaturally gifted in

STEM disciplines. This is echoed by Cheryan et al. (2015) who recognise that the

inaccurate association of professionals with genius-like qualities curbed girl’s interests

in STEM subjects. Starr (2018) argue that genius stereotyping of people within the

mathematical community erodes the motivation of women to pursue career pathways

within the discipline. Bradshaw and Mann (2021) also highlight the negative impact of

inaccurate perceptions of competence on underrepresented individuals. They suggest

that a lack of transparency from professionals about the inevitably challenging aspect

of learning mathematics contributes to this stereotype.

Obstacles to the mathematical community also emerge from stereotypes about the

attributes and characteristics of mathematical professionals. Cheryan et al. (2015) argue

that beliefs about the culture within computer science and engineering communities

contribute to the representation gap between men and women. They found assumptions

of masculine interests act as a barrier to belonging for girls in these subjects. Perceptions

of unsupportive workspaces and limited collaboration in STEM roles were also found

to have a negative impact. Starr (2018) suggests that stereotypes linked to physical

appearance and social skills are widely endorsed and lead to non-diverse recruitment.
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Stereotypical messaging that perpetuates exclusivity of certain social groups is also

discussed by Shin et al. (2016). The affiliation of STEM careers with white males is

linked to an adverse sense of belonging for minority individuals in STEM communities.

Solutions to the issue of gender inequality in mathematics are of great importance.

González-Pérez et al. (2020) analyse the effect that female role models have on school-

aged students. They find that intervention has a positive impact on many factors

including girls’ enjoyment of mathematics, self-efficacy and wider aspirations in STEM.

The authors relate this success to the personal and authentic nature of role model

intervention, noting that speakers rely on their own career experiences and journeys in

their dissemination. Outreach initiatives led by female role models are also discussed

as a solution to tackling stereotypes of identity and competence by Shin et al. (2016).

On review of various programmes developed to increase young women’s interest in

STEM subjects, Sáinz et al. (2022) find that most outreach initiatives were successful

in improving students’ self-perception about STEM subjects.

4.2.3 Intersection between Gender Disparity and Outreach

Outreach initiatives have been proven to have a positive impact. Definitions of mathe-

matical outreach commonly focus on fostering interest and facilitating the development

of skills. This neglects the wider long-term goals to improve the representation of

marginalised groups within scientific communities. Initiatives designed to promote di-

versity within the mathematical community largely operate in isolation, solely aiming

towards the goal of improved representation (Lathisms, 2016; Linke and Hunsicker,

2018; Chamberlain, 2020; Womanthology, 2024). Some professionals advocate for out-

reach that promotes diversity alongside traditional aims. Nevertheless, examples of

outreach initiatives that serve multiple objectives are scarce. In discussions about gen-

der imbalances within mathematics, some studies highlight that intervention can help

improve perceptions that fuel gender disparity (Shin et al., 2016; González-Pérez et al.,
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2020; Sáinz et al., 2022). The particular influence of outreach initiatives on female

students has also been emphasised (Cronin et al., 2017; Appel et al., 2021). However,

there is a shortage of examples of mathematical outreach designed to mitigate factors

that negatively influence gender equity.

4.3 Content Design

This section introduces outreach content designed by the author. The content presented

focuses on topics in OR, specifically forecasting and modelling. Section 4.3.1 discusses

the core principles of dissemination that informed the design of the author’s content.

Four examples of outreach content are then given. The content takes three formats.

Articles are presented in Sections 4.3.2 and 4.3.3. A talk delivered at several outreach

events is described in Section 4.3.4. An interactive workshop designed for GCSE-level

students is described in Section 4.3.5.

4.3.1 Design Principles

The activity developed by the author was designed based on principles for effective

dissemination. To be impactful, outreach activity must be engaging and appealing.

Concepts must also be communicated clearly and in appropriate language. Moreover,

the most influential outreach activity is relatable to its audience and provides a con-

nection between individuals and the wider mathematical community. These principles

in relation to the work by the author are explored below.

Engagement

To address its aims, outreach activity should be engaging. OR methodology taught

within a context related to the interests of its audience can improve understanding

(Cochran, 2004). Games and puzzles contribute examples that are known to be exciting
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to students learning OR topics (DePuy and Taylor, 2007; Hartmann, 2018; Arenas-

Vasco et al., 2024). More widely, applications to pop culture, including the use of

examples from film, television and music can enhance learning experiences (Greenfield,

2007; Chlond, 2016). Applications to sports provide another fruitful example (Cochran,

2004; Goossens and Beliën, 2023; Chan et al., 2024). Playing and watching sports are

popular hobbies for many people and data on sporting events is publicly available. This

can allow students to apply concepts to non-fictional and familiar scenarios.

Informed by the positive learning outcomes of connecting content to the interests of

students, the author’s content incorporated applications to popular culture, specifically

literature, film, music and television. Applications include Korean pop music (K-Pop)

and television dramas (K-Dramas), William Shakespeare’s Hamlet and HBO television

hit Game of Thrones. The applications reflect mainstream hobbies that are relevant

to a wide cross-generational audience. The novelty of these topics was also appealing,

given that broader applications are rarely explored within the standard teaching of

mathematical subjects and these interests do not conform to the stereotypical hobbies

associated with the scientific community. Furthermore, applications of this kind high-

light how mathematics can be used to solve problems which have a large economic and

cultural impact. The author’s choice of subject matter enhanced motivation and en-

gagement, improving the efficacy of content to promote interest in relevant disciplines.

An additional reason for choosing these topics was that much of the information

about films, television and music is in the public domain. Utilising the link between

OR and authentic applications to inspire learners can be especially effective (Kaiser

et al., 2013; Budd, 2015; Spooner et al., 2024; Taranto et al., 2024). The author in-

cluded genuine data in activity, permitting the grounding of the methodology in a

real-world context. At the beginning of in-person activities, the author discussed their

PhD research and referred to the real-world application of the models presented in

Chapters 2 and 3. For interactive workshops, the author designed content around box
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office forecasting, motivated by the need for cinemas to recoup losses incurred from

the closures during the COVID-19 pandemic. This problem was selected because it

was grounded in recent real-life events and had a tangible impact on people’s everyday

lives. The reliance on authentic problems secures audience interest and provides a solid

basis for the dissemination of mathematical ideas.

Communication

Clarity is crucial in the communication of STEM-related topics to non-scientific au-

diences. The use of technical language can hinder the efficacy of science writing for

broader audiences (Rakedzon, 2019). In the design of in-person talks, the author omit-

ted mathematical formulation, focusing instead on using illustrations to communicate

core ideas. In an article targeted at a public audience, statistical techniques were

explained without mathematical notation. The author used graphs, illustrations and

comprehensive descriptions to communicate ideas. For example, when explaining the

movement between compartments of the epidemiological SIR (Susceptible, Infectious,

Recovered) model (Keeling and Rohani, 2008), a description in lay terms is used in place

of the functional forms of the transitions. As relating concepts to tangible examples has

been found necessary for effective communication to large audiences (Sullivan Jr et al.,

2021), the compartments are renamed to fit within the context of the application. The

implementation of the concepts explored in this article were also grounded in applica-

tion through the use of real data and the incorporation of well-known references, for

example, Oscar-winning film Parasite and popular television Show Squid Game, which

enhanced the generality of the writing.

Although the overuse of mathematical formulae is discouraged by experienced com-

municators, an introduction to terminology can inspire audiences and build STEM

skills. When incorporating technical language, speakers can prepare audiences by dis-

cussing the meaning of the mathematical formulae before it is presented (Budd, 2015).
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In a workshop setting for GCSE students, the author’s activity included mathemat-

ical notation likely to be unfamiliar to students e.g., the Greek letter sigma (Σ) to

denote the sum of terms. Before providing an explanation and an example, the author

prepared the audience by acknowledging that the terminology was not expected to be

prior knowledge. As peer learning is highly effective in helping students to solidify

their understanding (David, 2014), the students were asked to complete tasks in small

groups to support the familiarisation of new technical material. These steps ensured

the successful incorporation of mathematical notation and formulae.

Consideration of an audience’s prior level of mathematical understanding is essen-

tial for worthwhile dissemination (Mercer-Mapstone and Kuchel, 2017). The author

developed an article on forecasting for mathematics magazine Mathematics Today. The

audience of the magazine consists of individuals who understand mathematics to the

standard expected of graduates in the mathematical sciences. As those reading the mag-

azine have an understanding of mathematical notation and terminology, the descrip-

tions of concepts were accompanied by mathematical formulations. However, given that

the target audience encompasses individuals from various backgrounds across industry,

academia and teaching, the author was mindful not to presume that the audience would

be familiar with forecasting. All methods were explained assuming no prior knowledge

of the methodology. The incorporation of mathematical terminology was determined

to the level appropriate to the article’s audience. The author’s understanding of the

target audience informed the design of relevant content.

Relatability

Preconceptions surrounding mathematical identity have an adverse effect on the gender

gap within the mathematical sciences. Assumptions around mathematical identity

include the association of STEM professionals with a particular demographic (e.g. white

and male), solely scientific and/or masculine interests and isolated working (Cheryan
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et al., 2015; Starr, 2018; Shin et al., 2016; Master et al., 2021). Outreach content

must be designed with relatability in mind in order to dismantle stereotypes. Multiple

studies have found that the visibility of women within STEM careers helps to improve

the recruitment of girls in relevant disciplines (Shin et al., 2016; Bertrand and Duflo,

2017; Cassidy et al., 2018; Van Camp et al., 2019). The author initiated verbal activities

by introducing themselves to the audience as a mathematician and shared photos of

themselves with the other students in their PhD and undergraduate cohorts. This

presentation gave a diverse view of individuals pursuing career pathways in OR in

terms of gender and race. In doing so the author improved the audience’s perceived

compatibility with mathematical science professionals.

In improving the relationship between mathematics and the broader public, one

technique is to humanise mathematicians by connecting the subject matter to the emo-

tions of the people who study it (Budd, 2015). In a similar vein, role-model inter-

vention can have the most impact when speakers share their unique career journeys

and personal experiences (González-Pérez et al., 2020). The in-person activities were

designed to incorporate the author’s journey in mathematics education. The author

discussed setbacks, experiencing low confidence and finding the learning process chal-

lenging. In keeping with the attempt to address the inaccurate perception of uncoop-

erative workspaces with STEM fields (Cheryan et al., 2015), the author highlighted a

number of individuals who had a positive influence on their career path. This included

discussing the collaborative nature of their PhD work and relationships maintained

with supervisors, peers and industrial collaborators.

Related to the inaccurate perceptions attributed to the identity of mathematical

scientists (Cheryan et al., 2015; Shin et al., 2016; Starr, 2018; Master et al., 2021),

the author focused on examples from television, film and music industries that oppose

the convention of masculine interests. Whilst exploring the mathematical analysis of

the cultural phenomenon, known as the Korean Wave, described as the rapid rise of
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popularity of Korean cultural exports, the author focused on television and music.

The global success of these industries has been driven by their female fan bases (Kim,

2022a; Venema et al., 2023). These examples challenged the conventions of masculine

interests of mathematical scientists, removing barriers to mathematical identity. The

lack of inclusivity in examples in teaching is also identified as a barrier to mathematical

belonging by (Bradshaw and Mann, 2021). To make content more relatable, examples

within in-person activity were included to reflect inclusivity. A strategic interaction

between two female characters from the television show Game of Thrones was given

as an example in teaching Game Theory. The inclusion of two female characters was

selected to improve the gender diversity within examples, thus enhancing the relatability

of resources.

4.3.2 Article: Surfing the Korean Wave

This article uses modelling to analyse the cultural phenomenon known as the Korean

Wave. The Korean Wave is described as the rapid rise of popularity of Korean cultural

industries including film, television, music, food, beauty and skincare. The phenomenon

has attracted global attention and interest, making worldwide headlines. Given that

the Korean Wave refers to cultural industries it has relevance to and impacts ordinary

people. Subsequently, the topic is pertinent to the general public. The article employs

the use of a compartmental model commonly used with epidemiology, the Susceptible,

Infectious and Recovered (SIR) model (Keeling and Rohani, 2008), to gain insights

into the behaviour of the Korean wave and forecast the height of the phenomenon. A

version of the article was published in Significance Magazine in December 2023.
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Surfing the Korean Wave

In 1994, Kim Young Sam faced a simple statistic. To generate the same global

revenue as the American blockbuster Jurassic Park, Korea would need to sell more

than 1.5 million Hyundai cars to foreign customers. For the newly elected President, it

was a striking comparison. A product of culture had overshadowed the ‘pride of Korea’

(Shim, 2006) and what the country was offering to the international market. With

the Asian financial crisis looming, Kim Young Sam needed to react. The government

established the Cultural Industry Bureau, conglomerates were encouraged to expand

business into the media sector and the idea of industrialising Korean culture sent ripples

across the country for the very first time (Shim, 2006).

Less than 30 years later, the growing international popularity of Korean popular

music (K-pop), television (K-dramas), cosmetics, films, food and other cultural ex-

ports is impossible to ignore. Korean boy band BTS have ascended worldwide charts,

achieving more number one hits on the Billboard Hot 100 than any other artist this

decade (Chin, 2022). The smash hit Squid Game became Netflix’s most-watched show

(Spangler, 2021) in the same year that Bong Joon-Ho’s Parasite made history as the

first non-English language film to win the Oscar for Best Picture. In 2023, Korean girl

group BLACKPINK headlined one of the world’s largest music festivals, Coachella, just

months after they sold out the UK’s O2 Arena. The meteoric rise of Korea’s cultural

industries has been dubbed ‘Hallyu’ and is known in English as ‘The Korean Wave’. A

special exhibition was recently launched in London’s Victoria & Albert Museum dedi-

cated to exploring the origins and impact of the Hallyu phenomenon (Kim, 2022b). In

the UK and beyond, the Korean Wave certainly has made a splash.

The Hallyu fandom has immense influence. Cultural exports have boosted the

Korean economy by more than 12 billion US dollars (Roll, 2021). Though, K-content

followers pride themselves on being so much more than just an economic power. At the

height of the Black Lives Matter campaign, discriminatory hashtags were overloaded
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with fan videos of K-pop artists, making racist tweets nearly impossible to find (Kim,

2022a). A million-dollar donation to the movement by BTS was matched by the group’s

fandom, who are known as the BTS Army (BBC News, 2020). Later, with a rising

number of hate crimes towards the Asian community during the pandemic, fans united

in support of the #StopAsianHate campaign, successfully retweeting the message over

1 million times. The original tweet became the most shared of 2021 (Kim, 2022a).

Together, the Hallyu fandom makes up an unstoppable force.

A love for K-pop, K-dramas and K-everything-in-between has swept across the globe,

inspiring a dedicated group of followers. But just how strong is the Korean Wave? Will

passion for K-content keep growing, or will we see a turn of the tide?

Modelling a Kontagion

From the ear-worms characterising K-pop smash hits and the gripping K-drama

cliffhangers you have to tweet about to the Korean skincare going viral on TikTok,

Korean cultural exports are infectious. In the age of social media, the sharing of K-

content is easier than ever. Algorithms ensure swoonworthy drama scenes shared by

one K-drama fan reach the feed of another likely admirer and K-pop enthusiasts tag

their friends in uploaded attempts at the latest dance challenges.

SIR models, standing for Susceptible, Infectious and Recovered, are statistical mod-

els used to represent infectious processes. They could help us model the Korean Wave,

assuming adoration for K-content is contagious and transmission is driven by word-of-

mouth and online hype. Of course, there is much more sophisticated statistical analysis

that could be done beyond this first approach - when it comes to modelling complex

phenomena like Hallyu, where there’s a will, there’s a wave!
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Imagine that we split everyone into three groups defined as:

Fan potentials (S)

This group is made up of potential K-wave fans. If Fan potentials come into

contact with a supporter of K-content they can become interested in trying it out for

themselves.

Kontagious (I)

The Kontagious are captivated by K-content. Perhaps these people have recently

tried Korean ramyeon or started learning Hangul, the Korean alphabet. Enthralled by

their new fascination, this group is engaging with related content online and is capable

of sharing their excitement with friends and family.

K-community (R)

K-community members are fully fledged Hallyu fans and members of a fan com-

munity. Those in this group could have joined a University K-pop Society, a Korean

film club or a Korean skincare group on Facebook. Because they have found like-minded

friends, they are no longer sharing with others outside of the community. People in this

group could have also decided that K-pop, K-dramas or just K-anything really, was not

for them. Sad but possible. The key thing is that this group is made up of those who

are no longer able to influence Fan potentials. They are either in a K-crew or out of

one for good.

Let’s say that, on average, the number of people one member of the Kontagious

group interacts with during one time period is the Greek letter, β. Multiplying this by

the proportion of the population in the Fan potentials group gives us the expected

number of people just one Kontagious person could reach at this point in time.

Multiplying this value by the number of people in the Kontagious group tells us the

total number of Fan potentials who will experience some kind of Korean culture.

The number of the Kontagious increases with respect to this value at each time step,

whereas the size of the Fan potentials group reduces by this amount as some become
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intrigued by K-content.

We can assume that the probability of finding a fan community (or leaving K-content

behind) and moving from the Kontagious group to the K-community is the Greek

letter, γ. In a particular time period, the number of Kontagious people multiplied by

γ tells us how many will become new members of the K-community. This value also

tells us by how much the Kontagious group will shrink.

We now know how the status of the three groups changes over time. An illustration

is shown in Figure 4.3.1. By writing this in equational form, we can solve to find a

function for the number of individuals in each group with respect to time.

Figure 4.3.1: Visualisation of the SIR Process Applied to the Korean Wave.

To get an insight into the number of people becoming interested in K-content we’ll

use data from Google Trends via the plugin Glimpse (Glimpse, 2022) which tells us

the number of times a term has been searched on Google worldwide. We can assume

that each search is done by someone in the Kontagious group. Let’s look at the two

cultural industries that have caused the biggest surge: K-pop and K-dramas.

K-pop artists, also known as Idols, are a long-standing feature of the Korean Wave,
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having an impact since at least the 2010s. Memorably, PSY ’s Gangnam Style, along

with its iconic dance moves, went viral and broke multiple records in 2012 (Kim, 2022a).

The story is a bit different for K-dramas. Passion for emotive music scores, melodra-

matic slaps and actors with invisible pores skyrocketed during the pandemic. Lock-

downs encouraged people to discover new forms of entertainment, with many falling

headfirst into a blissful K-drama binge.

We can fit the function for the size of the Kontagious through time to information

about the number of searches for K-related content. We will use data from 2010 for

K-pop and 2020 for K-dramas. We can minimise the squared distance between the

model function and our data, which punishes large deviations more severely, to get the

best fit. By finding the line that best suits the data we find estimates for β and γ.

Figures 4.3.2 and 4.3.3 show the function fitted to the number of searches for the terms

‘Kdrama’ and ‘Kpop’, respectively, on Google.

Figure 4.3.2: SIR Model Fitted to the Number of Searches for ‘Kdrama’ on Google from
2020.

There are a number of different search engines as well as streaming, video and social

media platforms people can use to search for content. Interested individuals may also
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Figure 4.3.3: SIR Model Fitted to the Number of Searches for ‘Kpop’ on Google with
90% Confidence Interval Around β.

search specifically for artist, song, or drama names. As the data we have is only a part

of the picture, we compare lots of different estimates for the population size and pick

the one that gives us the lowest total error when fitting the model to our data. We

assume that there are no members of our population in the K-community at the start

of the process and that the number of Kontagious people at that point is equal to the

earliest search volume we have.

It is worth mentioning that more complex models could be used to obtain more

accurate estimations, by relaxing some of our assumptions. For instance, taking into

consideration that a member of the K-community could again become a Fan Po-

tential - after all, a K-pop resister could still be tempted to try some mouth-watering

tteokbokki! In a stochastic version of this model, the number of newly Kontagious

individuals could be represented as a random variable. Interested readers might find

books on modelling infectious processes and the shinySIR package in R useful resources

for further investigation. Significance Magazine has also published articles offering a

more technical breakdown of the SIR model, which make for a fantastic read!
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The K Number

The expected number of people who become interested in K-dramas or K-pop as a

result of just one fan in the Kontagious group tells us important information about

the wave (Zhuhadar, 2020). The K Number (known in epidemic modelling as the

R number), is the expected number of interactions with Fan potentials just one

Kontagious person has before they become a part of the K-community. In our

analysis, we calculate this by multiplying β by the average amount of time someone

stays in the Kontagious group, 1/γ. If our K Number is greater than 1 then it is

likely that the number of Kontagious people will explode, as each member of the

Kontagious group is sharing their love for K-content with more than one other person

on average.

We can form confidence intervals for β and γ such that we are 90% confident that

all plausible values of the true parameter lie between the upper and lower bounds of

the interval. Using these we calculate 90% confidence intervals for the K number. For

K-pop the K number lies between 3.37 and 4.21. For K-dramas, it is greater than 1.10

but less than 1.79. It seems that K-pop is more infectious than K-dramas. The number

of people just one obsessed fan influences is 3.76, on average. For both instances, the

lower bound is greater than 1. This tells us that interest has spread and that the

passionate K-wave fan base has grown rapidly.

Hallyu Herd Immunity

The height of the Korean Wave will occur when the total proportion of people in

the Kontagious and K-community groups exceeds a threshold. This is when we are

at the peak of the K obsession and the number of new people interested in Korean

culture exports will start to decline. This is known as achieving herd immunity. The

proportion of the population that needs to join the Hallyu herd for this to be reached

is 1− 1/K (Zhuhadar, 2020).



CHAPTER 4. OUTREACH FOR LONG-TERM IMPACT 109

(a) K-pop (b) K-dramas

Figure 4.3.4: Proportion of the Population in the Kontagious and K-community Groups
and 90% Confidence Interval Around the Herd Immunity Threshold (Shaded Area)

For K-pop, the region for which Hallyu herd immunity is achieved starts at 0.70

and ends at 0.76. This means that with 90% confidence the total proportion of the

population lucky enough to have experienced K-pop bops needs to be between 70% and

76% before we see a decrease in the number of new fans. For K-dramas, the threshold

is much lower, between 9% and 44%. Figure 4.3.4 shows that the proportion of the

population that has experienced both aspects of K-culture according to our model is

within the region for the herd immunity threshold. It looks as if, if we haven’t reached

it already, the peak of the Korean Wave may be on the horizon.

Surf’s Up

Many have marvelled at the sharp rise in popularity of Korean content within the last

couple of decades. K-pop, K-dramas and so many other Korean cultural industries have

deservedly amassed millions of loyal fans from across the globe. The buzz around K-

content, which has led to sharing both online and in the real world, has fuelled the rapid

increase of Korean Wave supporters. With the height of passion for Korean cultural
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exports only just now in touching distance, the influence of the Hallyu fandom will be

present for some time. Statistics is wonderfully placed to help us make sense of this

cultural phenomenon. After all, the relevance of numbers here cannot be understated.

As Kim Young Sam knows better than the rest of us, sometimes even the simplest

statistic has the power to make waves.

4.3.3 Article: Could Mathematics Be Big at the Box Office?

This article explores the topic of forecasting to predict box office figures. The applica-

tion is grounded in the real-world context of the impact of COVID-19 on business and

is motivated by the steady re-opening of cinema venues following UK lockdowns. The

article was written for the audience of Mathematics Today (produced by the Institute

of Mathematics and its Applications) which is comprised of mathematical graduates.

The article is presented below.

Could Mathematics Be Big at the Box Office?

Since the 1890s, storytelling through moving images has gripped audiences across

the globe. In post-war Britain, desperate to feel the magic of the big screen once again,

people flocked to the cinema in record-breaking numbers. In 1946, 1.6 billion admissions

were recorded in the UK (Thompson et al., 2012). In a similar way, after nearly two

years of disruption, cinemas expect to see admissions bounce back post-pandemic from

their lowest numbers in at least eight decades. This is not surprising. Ultimately,

whether it be by bracing for a jump scare, laugh-crying into our popcorn, or swooning

for actors that meet impossible Hollywood beauty standards, a visit to the pictures is a

way in which we enjoy ourselves and let loose. The stories we are captivated by provide

an entertaining distraction and a powerful form of escapism.

Cinema is also a universal communicative tool. The stories told on the big screen

comment on and challenge societal issues. Big-screen storytelling has the power to
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inspire real change within our communities. After all, cinematic experiences are at the

heart of the communal events we may have taken for granted before the pandemic. We

share feelings, like our suspicion of Norman Bates, the frustration at how the door is

large enough to float Jack as well as Rose and the bittersweetness of an adorable alien

finally ‘phoning home’. Now in the wake of the pandemic, getting the best movies back

into our cinemas, so we can once again share in the moments of wonder, shock and awe,

feels more important than ever.

Although we know mathematics is a powerful tool, art and mathematics can seem

unlikely partners. Among the things for which we do not yet have an exact formula, is

what makes a successful and beloved flick. What will satisfy audiences and, of course,

what will make money are the most pressing questions for a mathematician interested

in the art of the big screen. When trying to understand the complex relationship

between audiences and what they love, forecasting is a technique a mathematician has

up their sleeve. In the following, we will be taking a quick tour through the forecasting

models that can be applied to box office revenue prediction. We will be looking at the

mathematical techniques that could help satisfy a deprived post-pandemic audience.

In doing so, these methods aim to answer crucial questions: do we have the next

Blockbuster? Or just another box office flop?

First to premiere, is Multi-Linear Regression which is a fundamental forecasting

algorithm, falling into what are known as statistical learning methods. It works by

fitting a function between a dependent target variable and independent input variables

which describe characteristics. In this context, the target variable y is the box office

earnings of a new motion picture. Input variables communicate acquired information

about the new movie, such as the number of positive reviews, the value of the budget,

box office revenue from the opening weekend and the number of mentions on a social

media platform. For n input variables, the box office earnings for a motion picture is

given by
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y = β0 + β1x1 + β2x2 + ...+ βnxn

where the β values are regression coefficients. An example of multi-linear regression

is given in Figure 4.3.5 using data on budget, online popularity and box office revenue.
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Figure 4.3.5: Multi-linear Regression Example using Budget and Online Popularity
Obtained using Data from The Movie Database (The Movie Database, 2021)

To obtain the regression coefficients we can minimise the squared error between

actual and predicted box office revenues (Kim et al., 2015). Multi-Linear regression

can consider a wide range of influences on box office takings but it can only capture

linearity in the relationship between the independent features and the dependent target

value.

An alternative is to look at a type of time series forecasting models known as new

product diffusion models. The Bass Diffusion Model (Bass, 1969) is especially popular

and is not restricted by linearity. It considers two factors, innovation and imitation.
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The innovation parameter represents all mass media communication of the film. The

imitation parameter explains responses of audiences that have already seen the movie

and portrays the effect of word of mouth (Dellarocas et al., 2007). Figure 4.3.6 provides

an illustration. The model gives a hazard rate which is the probability that a potential

audience member that has not yet seen the film will watch it at time t. The hazard

rate is given as:

h(t) =
N ′(t)

1−N(t)
= p+ qN(t)

where p is our innovation coefficient and q is the imitation coefficient. N(t) is the

cumulative portion of potential moviegoers that have seen the film at time t. That is,

the number of people that have seen the film by time t out of all possible cinemagoers,

P . N ′(t) is its derivative. What the hazard rate tells us is that the portion of the

potential moviegoers that go to see the film for the first time at time t can be written

as a linear function of the people that have already seen it. The Bass Diffusion Model

differential equation is

N ′(t) = p+ (q − p)N(t)− q [N(t)]2 .

At time t = 0, the cumulative proportion of the potential audience that has seen

the film is zero. We can solve the differential equation and write N(t) as

N(t) =
1− e−(p+q)t

1 + (q/p)e−(p+q)t
.

The model has three unknown parameters which need to be estimated: the innovation

parameter, p, the imitation parameter, q, and the number of total potential cinemago-

ers, P . The latter, P , can be estimated in a number of ways using historical data such

as total cinema admissions. When we look at the number of new moviegoers, we are

effectively splitting the audience of a film into two categories: innovators and imitators.
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Figure 4.3.6: Bass Diffusion Model: Illustration of New Moviegoers

Innovation is what gives a movie its momentum from the get-go. These are the factors

that entice audience members from early on, whether that be studio reputation, adver-

tising and promotions or just the presence of Tom Cruise. In practice, the box office

takings from the opening weekend can usually be used to gain a reasonable estimate of

p. Conversely, the imitation parameter needs to capture all the internal factors likely

to get you off your couch and into the cinema, chomping on popcorn. This includes

word of mouth as well as social media buzz. In reality, one possible way we could

approximate this is by measuring the positivity of user reviews online.

Once we have N(t) we can multiply by P to get the cumulative number of people

who will watch the film by time t. Using information about ticket revenue we can

calculate the predicted total box office figure. In Figure 4.3.7, a Bass Diffusion model

dispels the mystery around revenue for the whodunnit Knives Out (Box Office Mojo,

2019). Admissions for the blockbuster were halted on its 106th day, at the beginning

of the pandemic.

Another option to model the expected revenue for a new motion picture is to venture
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Figure 4.3.7: Bass Diffusion model Fitted to Box Office Revenue Data for Knives Out
(Box Office Mojo, 2019). Predictions are Given by the Green Line.

into machine learning-based regression algorithms, such as the k-NN algorithm. The

k-NN process uses information about previous motion pictures and their corresponding

box office takings. By looking at previous movies with similar features, k-NN utilises

known box office earnings to forecast the success of a new release.

The first step is to calculate how similar the new release is to previous films. For

instance, we could measure similarity based on characteristics such as budget and rating.

One way to measure the distance between a film and a new release is to compute the

Euclidean distance, the square root of the sum of the squared difference between the

new point and the existing points (after suitable normalisation). The set of the k most

similar films are selected and dubbed the ‘nearest neighbours’. For each of the nearest

neighbours, the box office takings, yj, are observed and weights, wj, are assigned.

The predicted box office earnings for a new release i are given as the following (Kim

et al., 2015):

ŷi =
∑

j∈k-NN(xxxi)

wjyj.

To execute k-NN, the number of neighbours and the weights assigned to those neigh-
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Figure 4.3.8: Example of k-NN Using 300 Samples Obtained from The Movie Database
(2021) with k = 20. Predictions are Depicted by the Green Line.

bours need to be chosen. The number of neighbours, k, is often chosen by evaluating

the performance of the method for multiple different k values. When it comes to the

weights, it feels logical to assign a neighbour that is further away a smaller weight than

a neighbour that is closer. This commonly leads to the adoption of some kind of kernel

function, which monotonically decreases as distance increases. Figure 4.3.8 shows box

office predictions using data about online popularity for 300 movies from The Movie

Database (2021) and a value of k equal to 20.

And that’s a wrap! Predicting the success of art, and how to satisfy worldwide audi-

ences, is an inherently complicated task. By using forecasting algorithms, mathematics

and storytelling can come together with the aim of maximising audience gratification.

Soon cinemas will get back on their feet and it will feel safe to once again journey into

alternate universes and join breathtaking adventures. We can only hope that box office

hits are all that lie in store for the patient audiences that have longed for their return

to the big screen.
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4.3.4 Talk: Back to the Future with Mathematical Techniques

This talk recounted the author’s journey in mathematics education and shared math-

ematical techniques used in forecasting and prediction. The mathematical techniques

introduced are outside of the standard school curriculum and have an emphasis on solv-

ing problems with interesting applications. Within the design, the author incorporated

themes aimed to challenge preconceptions that deter students from pursuing mathe-

matical career pathways. The length of a standard delivery of the talk is 45 minutes.

However, reflective of the flexible demands of outreach events, the delivery of the talk

has also met alternative timing requirements.

To begin, the author introduced participants to the subject of OR. The author

provided a high-level overview of the work they have done in their PhD and mentioned

the real-life applications of their research. Following this, the author described their

journey to studying for a PhD, in doing so highlighting themes related to ability and

learning. In discussing the experience of learning mathematics at school, the author

shared that they found mathematics both enjoyable and challenging. Relative to the

inaccurate perception of mathematicians as individuals who find mathematics easy, the

author relayed formative advice from university lecturers related to the unavoidable

challenge of learning mathematics. An example can be seen in Figure 4.3.9.

The author introduced the topic of their final year undergraduate project, using

Game Theory to model and predict the outcome of narratives within storytelling. The

author described the concepts of a two-person strategic game, including the sets of

players, actions and player preferences (Osborne, 2004). The author introduced a

proposition within Game Theory, the Theory of Moves (Brams, 1993). The author

explained that by the Theory of Moves, a game begins in an initial state and ends in a

nonmyopic equilibrium, defined as a state from which neither player would have reason

to move and identified using players’ preferences. During the game, a player can change

the state of the game from the initial state to a more favourable state by unilaterally
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Figure 4.3.9: Slide from ‘Back to the Future with Mathematical Techniques’ Talk.

Figure 4.3.10: Game Theoretic Interpretation of Conflict within Hamlet (Brams, 2011)
as Shown in ‘Back to the Future with Mathematical Techniques’ Talk.

switching their action.

Once core concepts were understood by the audience, the author demonstrated how

the Theory of Moves can be applied to the central conflict between the protagonist and

the villain within Shakespeare’s Hamlet by depicting it as a two-person game, as shown

in Figure 4.3.10 (Brams, 2011). The author communicated the following details. The

players of the game are Hamlet and Claudius. Hamlet ’s set of actions includes choosing
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whether or not to expose Claudius as the King’s murderer. Claudius ’s action are to kill

or not kill Hamlet. The states of the game are preferentially ranked from best to worst

for each character. The states are summarised below.

1. Hamlet exposes Claudius as the King’s murderer, Claudius kills Hamlet

2. Hamlet exposes Claudius as the King’s murderer, Claudius does not kill Hamlet

3. Hamlet does not expose Claudius as the King’s murderer, Claudius kills Hamlet

4. Hamlet does not expose Claudius as the King’s murderer, Claudius does not kill

Hamlet

The author informed the audience that the game begins in the fourth state and

that by the rules of the Theory of Moves, Hamlet switches action, changing the state of

the game to the second state. In response, Claudius changes the state of the game to

the first state. In this state, neither player can benefit from changing the state of the

game and thus the demonstration leads to a nonmyopic equilibrium, signalling the end

of the game. The outcome corresponds to the true ending of the play in which Hamlet

exposes Claudius as a murderer but ultimately succumbs to a wound caused by a blade

poisoned by Claudius (Brams, 2011). Thus, the mathematical analysis provided an

accurate prediction of the resolution of the conflict.

Following this, the author relayed an additional example from the popular television

show Game of Thrones and characters Cersei Lannister and Daenerys Targaryen. The

conflict central to the final season of the show involves these characters’ decision to

form an alliance. Figure 4.3.11 depicts the conflict as presented in the talk.

In relation to the third design principle, relatability, the author discussed feeling

anxiety about exploring applications of Game Theory in storytelling, given that the

application aligned with their non-scientific interests. However, the author shared a

positive response from their supervisor. Further, the author mentioned the reassuring
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Figure 4.3.11: Game Theoretic Interpretation of Conflict within Game of Thrones as
Shown in ‘Back to the Future with Mathematical Techniques’ Talk.

reception from other mathematical teaching staff, the high assessment outcome and

their enjoyment of completing the project.

Near the end of the talk, the author highlighted the exciting applications of math-

ematics. In discussing how mathematical techniques can be used to predict the future

the author gave advice designed to inspire the students. The author communicated

that in the future the students are also likely to discover surprising applications of

mathematics and oftentimes find learning new things difficult. The author reminded

the students that feeling stuck when trying to understand something new in mathemat-

ics is a common feeling and that learning mathematics is inevitably challenging. The

author emphasised that, for many mathematicians, the difficult nature of building an

understanding of mathematical topics is in large part what makes learning enjoyable.

The talk finished with the opportunity for the audience to ask questions.



CHAPTER 4. OUTREACH FOR LONG-TERM IMPACT 121

4.3.5 Workshop: Mathematics at the Box Office

A workshop was designed for the Royal Institution (Royal Instituition, 2024) master-

class series. Participants were of GCSE level and elected by their school to attend

events. The workshop was based on exploring forecasting techniques that can be ap-

plied to predict the monetary success of films at the box office. The workshop was 120

minutes long.

To begin, the author introduced themselves as a mathematician and PhD student.

Towards the first design principle, engagement, the author engaged the audience by

asking if they knew what a PhD student is. Following audience suggestions, the author

discussed the PhD qualification and, more widely, the aims of mathematical research.

An overview of OR was also given. The author went on to describe their PhD research

topic at a high level, focusing on the application to real-life impact in reducing waste

and making sustainable decisions.

The author set the motivation for the problem that was explored in the workshop

by discussing the negative impact of the COVID-19 pandemic on cinemas, citing the

bankruptcy of the US chain of Cineworld. The author explained that, once deemed safe

to reopen, cinemas struggled to account for the losses incurred from extended closures.

This topic was selected because it was a real-world, high-stake problem relevant to the

interests of the general population. The author proposed that forecasting techniques

might be able to help cinemas determine the popularity of a film before its release, thus

allowing cinemas to tailor their screenings and secure profit. The author relayed that

this analysis could also be useful for stakeholders to gauge whether a film is a worthy

investment before production begins.

The author delivered an introduction to Linear Regression and Least Squares Opti-

misation. With a focus on the second design principle, communication, the techniques

were described within the context of the problem setting, by using the budget of a film

as an explanatory variable and the box office takings as the response variable. The
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author used a graphical representation to build audience understanding.

The students were then given a small sample of real data on the budget and US

box office takings of eight films from 2022. The students were tasked to model the

relationship between budget and US box office takings. Using their model, they were

asked to make a prediction for how much a new film, Avatar 2: Way of Water, would

make at the box office, given its particularly large budget of $460 million US dollars.

The data provided to students is presented in Table 4.3.1. Figure 4.3.12 shows a related

slide from the talk.

Table 4.3.1: Film Budget and US Box Office Takings Data Provided to Students in
Workshop

Film Budget (Millions of
US Dollars)

US Box Office Takings
(Millions of US Dollars)

Sonic the Hedgehog 2 110 190

Uncharted 120 148

Elvis 85 151

Morbius 75 73

Puss in Boots: The Last
Wish

25 70

Everything Everywhere
All At Once

25 70

DC League Super Pets 90 93

The Woman King 50 67

Later, the students were introduced to more sophisticated forecasting models, in-

cluding the Bass model (Bass, 1969), which they implemented to find updated predic-

tions. The author asked the students to interpret the parameters, provoking discussion

about the relationship between film characteristics and its box office performance. In
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Figure 4.3.12: Slide from ‘Mathematics at the Box Office’ Workshop

this way, students were encouraged to link their findings to the real world and explore

the interdisciplinary nature of the problem. The author asked the students to consider

the limitations of the methodology. Discussion prompts included the differences be-

tween linear and non-linear models and ways to improve predictions (i.e., increasing

the amount of data used or including additional explanatory variables).

The workshop finished with a 20-minute question-and-answer session. The student’s

questions were varied. Most questions related to the experience of studying mathematics

at university and possible career pathways. Some students wanted to know more about

the author’s personal career experiences and obstacles they had faced. In particular,

the author was asked for advice on dealing with feelings of self-doubt or low confidence

whilst studying mathematics.
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4.4 Reflection

This section offers a discussion about the impact of the work presented in this chapter.

Firstly, a record of STEM outreach activity completed by the author from December

2021 to June 2024 is provided. Thereafter, feedback from teachers on the delivery of the

outreach activities is reviewed. The experiences of the author are used in combination

with comments made in feedback to analyse the effectiveness of this dissemination in

achieving the aims of outreach. Additionally, a reflection on the inclusion of content

designed to encourage diversity within the STEM community is discussed.

4.4.1 Record of Activity

The in-person activities conducted by the author vary in location, style, length, au-

dience demographic and audience size. In recognition of the disparity in the fields of

mathematics, statistics and OR, some events were tailored to encourage students be-

longing to particular demographics, such as the Enrichment Day run by the Advanced

Maths Support Programme which invites attendees of underrepresented genders. The

majority of the activity took place in the North West of England with the target au-

dience being students studying for A-Levels. A talk was the most common style of

delivery. Further details of the audiences and location of the in-person STEM outreach

events are outlined in Table 4.4.2.

A record of published work is given in Table 4.4.1. The article given in Section 4.3.2

was published in Significance Magazine which aims at a general audience with differing

levels of mathematical and statistical knowledge. A second article, presented in Section

4.3.3, was published in Mathematics Today, the magazine produced by the Institute of

Mathematics and its Applications for readers who are graduates of the mathematical

sciences.
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Table 4.4.1: Record of Published Activity

Title Publication Date
Published

Audience Demographic

Surfing the Korean
Wave

Significance
Magazine

Dec-23 General Audience

Could Mathematics
be Big at the Box
Office?

Mathematics
Today

Dec-21 Mathematics Graduates

A description of the in-person outreach events are presented below.

Greenwich Maths Time

Greenwich Maths Time is a day of talks, workshops and interactive activities held

at the University of Greenwich in London designed to allow Year 9 and 10 students to

explore mathematics. In 2024, it was run as a part of the Institute of Mathematics and

its Applications Festival of Mathematics. The event aims to allow students to explore

maths used in everyday life, to encourage students to consider career pathways in

mathematics and to showcase the diversity of the mathematical community (University

of Greenwich, 2023).

Lancaster University Year 12 STEM Taster Day

The STEM Taster Day is a school outreach initiative run by Lancaster University

offering Year 12 students the opportunity to discover more about studying STEM-

related subjects at university. The event is cross-departmental, with hands-on sessions

offered by enthusiasts and communicators from many STEM disciplines. The day aims

to inform students about the impact of STEM research with an emphasis on practicality

(Lancaster University, 2023b).

The Advanced Mathematics Support Programme Steps to University

Mathematics Enrichment Day

A government-funded initiative the Advanced Mathematics Support Programme
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(AMSP) aims to improve participation and teaching in mathematics at core and post-

16 levels. Support provided by the AMSP is given to areas of low social mobility

and where participation in A-level is low with the aim to encourage and support all

students regardless of their location, gender, ethnicity, or background. The Steps to

University Mathematics Enrichment Days happen nationally and are designed for fe-

male, non-binary and transgender Year 12 students considering studying mathematics

at university. These events connect students with early-career women mathematicians

and run in various locations across the UK (Mathematics Education Innovation (MEI),

2018).

Royal Institution Masterclass

Royal Institution masterclasses are extracurricular interactive workshops run across

the UK, typically for secondary school students on Saturday mornings. The master-

classes are interactive and cover a wide range of STEM subjects within the fields of

mathematics and computer science. The masterclasses aim to nurture students’ engage-

ment with STEM, allow students to build confidence in STEM skills and excite students

by exploring topics not taught typically taught within the classroom. By connecting

students with STEM experts and enthusiasts many students are inspired to consider a

career within STEM (Royal Instituition, 2024).

Florence Nightingale Day

Organised by Lancaster University, the Florence Nightingale Days are an effort to

promote mathematics and statistics by showcasing successful women mathematicians

and statisticians at a variety of stages of the career ladder. Aiming to inspire, the next

generation of mathematical scientists, the event emphasises the variety of breadth of

possibilities pursuing a career in mathematics can bring. The event is named after

Florence Nightingale, who is most famous for her work as a nurse, in recognition of

her lesser-celebrated statistical work. She pioneered data visualisation techniques that

saved countless lives. (Lancaster University, 2023a).
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Table 4.4.2: Record of In-Person Activity

Event Date Activity
Length

(minutes)
Audience

Size
Audience

Demographic

Greenwich Maths
Time

Jun-24 Talk 50 300 GCSE & A-level stu-
dents

Lancaster
University STEM
Taster Day

Jun-24 Talk 45 100 A-level students

Greenwich Maths
Time

Jul-23 Talk 50 300 GCSE & A-level stu-
dents

Lancaster
University STEM
Taster Day

Jun-23 Talk 45 100 A-level students

AMSP Steps to
University
Mathematics
Enrichment Day
(London)

Apr-23 Talk 25 60 A-level students

AMSP Steps to
University
Mathematics
Enrichment Day
(Lancaster)

May-23 Talk 25 60 A-level students

Royal Institution
Masterclass

Jan-23 Workshop 120 60 GCSE students

Florence
Nightingale Day

Jan-23 Talk 45 300 GCSE & A-level stu-
dents
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4.4.2 Feedback & Author Experiences

Teacher feedback was obtained from a subset of the outreach activities completed by

the author. The comments are labelled by letters A-H and presented in Table 4.4.3.

With the exception of comment E, which was communicated directly to the author, the

feedback presented in Table 4.4.3 was collected by event organisers and passed on to

the author anonymously.

Table 4.4.3: Teacher Feedback on Author’s Outreach Activity

Label Event Comment

A Florence

Nightingale Day

‘I thought the talks were great. I’d love to have the

second speaker (Robyn) come and give a talk to stu-

dents at our school!’

B Florence

Nightingale Day

‘All the students really enjoyed the talk from Robyn

especially regarding her pathway into maths’

C Florence

Nightingale Day

‘Robyn’s talk - they thought she was interesting and

really engaged with what she was talking about - felt

they could relate to her.’

D Florence

Nightingale Day

‘The girls were so inspired by the women speakers,

it was a joy to listen to how excited they were on

the journey home. One girl now wants to get into

mathematical modelling following this session. They

really were inspired to hear how mathematics could

be used in so many fields. We had a great day and

would love to bring a group every year!’
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E Florence

Nightingale Day

‘I came to the Florence Nightingale day a couple of

years ago and heard you speak, and I have always

remembered your talk and how much my students

were fascinated by it. I have a new group of Year

12 students, who are all very interested in maths and

have been asked to look at an inquiry project based

on a question they found interesting. I was telling

them about your talk on that day and now they are

going away and looking into game theory and pre-

diction modelling. I have shown them some of your

articles and they are fascinated so I just wanted to

pop an email across to say thank you for helping me

to make them more interested in a maths inquiry and

developing their skills.’

F Greenwich Maths

Time

‘All the speakers were great and the students were

inspired especially by Robyn. I think it made them

feel at ease knowing that studying Maths is tough

and you will get stuck but you need to keep going.’

G Greenwich Maths

Time

‘The ‘Back to the Future’ talk was especially impact-

ful for our students as we are a vocational film school

but we have a small a group who are studying A-Level

Maths so it really resonated with them. Two of them

were so inspired by the talk that they made the deci-

sion to stick with the A-Level course next year when

they were considering dropping.’
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H Lancaster

University STEM

Taster Day

‘She (A participant) came out absolutely buzzing

about the maths session in particular, which is par-

ticularly impressive because it was her 2nd choice.

It sounds like they have a couple of great activi-

ties, which were really thought-provoking. If you get

chance, let them know that it changed at least one

attendee’s perspective on maths!’

The comments in Table 4.4.3 highlight that the work reported in this chapter has

been well received and contributed to the aims of promoting interest in mathematical

subjects. Comment A indicates that the outreach activity was beneficial for students.

The excitement held by the participant mentioned in Comment H insinuates that the

sessions delivered by the author were enjoyable and that activities based on forecasting

and prediction inspired a positive view of mathematics, statistics and OR. Accordingly,

the author found that students engaged with content, expressing a willingness to under-

stand mathematical concepts. Following sessions, students waited to speak one-on-one

or in small groups with the author, demonstrating a keenness towards mathematical

topics. Comment G reflects a particularly desirable outcome in which students were

inspired to pursue a pathway in mathematics after previously deciding not to. This

provides a clear argument for the effectiveness of this work towards the long-term goal

of improving student retention.

The feedback and the author experiences also reflect that the author’s activity al-

lowed students to build competency in mathematical skills. The mention of mathemat-

ical modelling in Comment D showcases that the activity allowed students to develop

an understanding of the breadth of mathematical fields. A progression in ability is also

insinuated by Comment E, with specific reference to the building of skills about both

in-person activity and written communication completed by the author. At the end
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of many in-person events, students sought recommendations for additional learning re-

sources. This indicates that this work has had a positive influence on the development

of mathematical skills.

The deliberate incorporation of themes relating to mathematical belonging in this

work has highlighted that irrespective of enthusiasm for the subject, students are af-

fected by barriers to mathematical belonging. Discouragement from pursuing mathe-

matics, in some cases, originated from the students’ beliefs about competence. In dis-

cussions with students, many cited an average performance in classroom assessments or

experiences of finding learning challenging as reasons to not pursue a career in math-

ematics. In the delivery of the workshop described in Section 4.3.5, students reacted

negatively to making mistakes during the exercises. Comment F reflects the attempts

of the author to dismantle inaccurate expectations of ability associated with mathemat-

ical professionals. Comment B mentions the inclusion of the author’s personal journey,

highlighting the importance of communicators to retell experiences of setbacks as well

as successes. This aspect of the activity had an impact, emphasising the importance of

outreach initiatives to diversify perceptions related to the learning of mathematics.

In the author’s experiences of delivery, imposing transparency about belonging and

diversity within mathematics revealed insights into students’ perceptions of the math-

ematical community. In particular, gender stereotypes were identified by the author

as a key theme that deterred students from pursuing a mathematical career pathway.

Events targeted at students of underrepresented genders (e.g., the AMSP Steps to Uni-

versity Mathematics Enrichment Day) evoked open discussion about equity within the

classroom. Participants spoke of their hesitancy to answer questions in class in fear of

being incorrect and expressed pressure to oppose the stereotype of women not being

good at mathematics. These students felt this opinion was endorsed by some of their

male peers and shared instances of sexist comments made in the classroom. Comment

D shows that girls were positively affected by the author’s talk, referring to women



CHAPTER 4. OUTREACH FOR LONG-TERM IMPACT 132

speakers having an impact. Comment E evidences the favourable reception of the au-

thor’s articles for subsequent cohorts. Given that the article presented in Section 4.3.2

explores female-dominated interests (e.g., K-pop, K-dramas), this shows that outreach

can have a long-lasting effect on diversifying perceptions related to gender within the

mathematical sciences.

In verbal feedback that students gave directly to the author, the notion of having

non-scientific interests was a repeated theme. Multiple students relayed their passions

for other disciplines, such as fashion, history or philosophy, and were inspired by the

interplay between mathematical ideas and non-traditional applications. These stu-

dents spoke of feeling conflicted about maintaining a passion for mathematics whilst

also being interested in non-scientific pursuits. Interdisciplinary applications explored

throughout the in-person activities were key to challenging the expectation that math-

ematical professionals hold exclusively scientific interests. Considering Comment H,

the context of film and television is identified to have resonated with some students’

passions. In interactions, the author was able to emphasise that qualities commonly

associated with humanities and artistic subjects, such as creative thinking, are also

essential skills in the study of the mathematical sciences. The applications considered

in the articles in Sections 4.3.2 and 4.3.3 (television, film and music) also directly chal-

lenge the concept of mathematicians having singular interests. Exposing students to

mathematical techniques and applications that are not taught within the classroom is

effective not just towards the aim of promoting interest in mathematics but also in

challenging preconceived ideas about mathematical identity.

Overall, it is evident from the feedback that the inclusion of content intended to re-

move barriers to mathematical belonging is necessary and valuable. Despite there being

less focus on the aim of mathematical belonging within the workshop in Section 4.3.5,

in comparison with the talk in Section 4.3.4, several questions were asked during the

question and answer session on topics related to competence. This included questions
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about how to build mathematical confidence. Comment C communicates that students

felt that they could relate to the author, improving the accessibility of mathematical

careers. Comment E shows how the outreach activity has had a sustained impact. The

talk delivered at Florence Nightingale Day has continued to inspire new cohorts of stu-

dents and the content has been adopted by their teacher. This supports an argument

for the careful design of outreach activity which can leave a lasting impression on future

generations.

Although useful, it should be acknowledged that analysis based on the feedback

given above has limitations. The feedback is from teachers across three events and can-

not be assumed to be representative of the opinions held by all students who attended

the sessions. In the author’s experience, written feedback from students is rarely col-

lected at outreach events. Feedback from teachers whose students attended outreach

activities is much more commonly requested by event organisers however, after collec-

tion, it is not always communicated directly to speakers. More rigorous qualitative

methods should be utilised by organisers and communicators to formally assess the im-

pact of outreach activity. Longitudinal studies are needed to determine the long-term

impact of outreach towards uptake in careers within STEM and solidify the proposi-

tion that, in addressing barriers to mathematical belonging, outreach forms valuable

intervention.

4.5 Conclusion

Expertise in STEM subjects is fundamental to facing societal and economic problems

that have serious global consequences. Although imperative, STEM sectors are facing

a crisis of shortages across the workforce. Efforts to increase the visibility of careers

and foster interest in mathematical topics are needed to improve the uptake of STEM

roles across industry, business and government. Additionally, improving diversity is
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a necessary focus for the STEM community to ensure future prosperity. In terms of

gender, the underrepresentation of women within the community is a long-standing

issue. Stereotypes are perpetuated by parents, teachers and wider society making mis-

aligned beliefs about STEM subjects and mathematical science professionals difficult

to dismantle.

Outreach is pivotal in efforts to overcome the difficulties facing the STEM sector.

Talks, workshops and written communication provide practitioners the chance to share

excitement for the mathematical sciences and its applications to broad audiences. Com-

municators foster engagement with scientific topics, relating core ideas with real-world

issues affecting the wider population. Outreach also offers the opportunity for profes-

sionals to connect with future generations. Activities incorporate content outside of the

standard curriculum which excites students and supports the learning of related skills.

In turn, outreach plays a crucial role in encouraging the pursuit of science-related career

paths.

This chapter has introduced original content that contributes towards the aims of

outreach. The content focused on the communication of forecasting and modelling

methodology and has included various formats of dissemination including a talk, a

workshop and two written pieces of science communication. The work was developed in

line with core design principles. Not all outreach initiatives include the aim of addressing

the STEM community’s shortage issues and improving recruitment and retention of

individuals belonging to underrepresented groups. Towards the aim of improving the

representation of women in mathematical fields, the work has also aimed to dispute

stereotypes that contribute to gender disparity.

On reflection of experiences and feedback, the author’s content was positively re-

ceived and led to a tangible impact. A notable outcome of this work was improved

student retention. These results support the hypothesis that topics within forecasting

and modelling can promote interest in methodology and applications of statistics and
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OR. A strength of the work introduced is its diversity in terms of activity, with original

content provided across three mediums. Moreover, the content has considered a variety

of audience demographics, including school students, mathematical graduates and the

wider public. The author’s focus on designing relatable content featured prominently

in teacher feedback, showing the potential of outreach activity in overcoming the is-

sues faced by the STEM community. The author’s work lays the foundation for future

investigation into the effective design of outreach activities.

The author’s work could be enhanced in many ways. In the majority of the content

presented, the author used applications to film & television to engage audiences. How-

ever, a wider variety of applications could also be explored. One approach could be to

focus on applications that are highly relevant to the general public (i.e., climate change).

Equally, the dissemination of topics from active research areas could excite audiences.

The work given in this chapter considers the disparity between men and women in

fields within the mathematical sciences. However, investigation into how outreach can

help improve the underrepresentation of people with disabilities, ethnic minorities, the

LGBTQ+ community and those from disadvantaged socioeconomic backgrounds is an

important line for further work. Additionally, the analysis provided is focused on the

experience of one individual within a limited time frame. Longitudinal studies into the

effect of outreach initiatives designed to improve diversity in mathematical fields could

be conducted to better understand the impact of outreach work in this area.



Chapter 5

Conclusions and Further Work

This thesis addressed challenges related to forecasting and modelling for long-term

problems. The work presented centred on the gap in forecasting methodology for after-

market products with long-standing patterns. This topic was motivated by the strategic

decisions faced by an automotive manufacturer. We also explored the dissemination of

forecasting and modelling ideas and discussed the use of outreach to ensure methodol-

ogy has a long-lasting, practical impact.

In closing, we summarise the key findings of each chapter of this thesis, the limita-

tions of our approaches and valuable avenues for future research.

5.1 Forecasting Declining Demand

In Chapter 2, we introduced methodology to support long-term inventory decision-

making. Our approach was inspired by the LTB decision, for which a company has

to make a final order that is intended to cover all future demand. We presented a

stochastic model to forecast demand that exhibits a long-term declining pattern and

may have periods of zero demand, consistent with spare parts in the EOL phase of the

life cycle. We represented demand as Poisson with a mean that declines geometrically.

The model specifies two parameters, an initial mean demand size where the decline in

136
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demand begins and a rate of decline. The parameters are estimated using maximum

likelihood estimation. Theoretical insights were obtained which expose a disparity in

the performance of the model, by which better forecasts are determined for products of

higher demand volume. To improve forecasts for slower-moving products we contributed

an extension to this model which assumes that the demand for some products will

decline at the same rate. Using our assumption of Poisson demand, we obtained LTB

quantities for target fill rate using a base stock policy.

Our forecasting approach was time-series based, using only previous demand obser-

vations to estimate model parameters. Times-series methodology to determine long-

term forecasts for spare parts is under-researched and recent developments centre on

short-term, opposed to long-term, decision-making. As such, our work makes an im-

portant contribution to the literature. In addition, the problem we solve has practical

relevance. Our methodology aims to support planners who must make high-stake LTB

decisions which are common in aftermarket industries. The forecasts determined using

our approach could also be used for other long-term operational decisions including

those regarding capacity and financial planning. Accurate long-term demand forecasts

have economic and environmental advantages in a wide range of contexts.

We tested our methodology in both a simulated and real-world setting. We eval-

uated the performance of the forecasts on the total demand across the out-of-sample

period and assessed the effectiveness of our approaches for LTBs. We measured the

achieved fill rate with a target of 95% and calculated the excess inventory percent-

age to account for the difference in demand volumes across parts. As expected, we

found that the forecasts for faster-moving products were more accurate than forecasts

for slower-moving products. The results showed that our model extension provided

increased forecast accuracy and returned a fill rate closer to the target while incurring

less excess inventory.

We proposed that demand in each period be represented by a Poisson random vari-
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able. This is a common representation of the demand for aftermarket products in the

literature (Teunter and Haneveld, 1998; Syntetos et al., 2012; Boylan and Syntetos,

2021). However, there are alternative distributional assumptions which could be made

to model demand. Compound Poisson distributions offer more flexibility, as the vari-

ance can take a different value to the mean of demand. This is more suitable to model

a series which has periods with large quantities and periods of zero demands. An-

other appropriate setting may be when demand quantities are large but the variance

of these observations is small (Boylan and Syntetos, 2021). Further research might

explore alternative distributional assumptions in modelling demand in the EOL phase.

Furthermore, our approach assumes that demand observations are independent. Even

though our model and its extension perform well both on simulated and real data a more

sophisticated approach might incorporate auto-correlation of demand observations.

We used the demand history of all the products in the dataset when implementing

the multiple series approach. In the example at the automotive manufacturer this

works well. However, some inventories may have products with differing patterns of

decline. Implementing our methodology, in this case, would necessitate techniques to

group products with similar decline rates. To this aim, time-series-based clustering

approaches that define proximity between two series based on the overall pattern of

demand could be used. Alternatively, product information could be utilised. It would

be interesting to determine which product attributes are most useful in the effective

grouping of products with similar demand patterns.

A limitation of this work is that it does not consider issues in the integration of

forecasting methodology and inventory decision-making. The literature on inventory

management in almost all cases assumes that the demand distribution and its param-

eters are known to the decision-maker. In practice, decision-makers rely on estimated

parameters and thus bias in the parameter estimates is propagated through to the cal-

culation of the order quantities (Prak et al., 2017; Prak and Teunter, 2019). There is a
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shortage of work that considers the impact of forecast uncertainty on inventory control

for demand which is Poisson and non-stationary. This is an important issue for future

research.

5.2 Life Cycle Demand Forecasting

In Chapter 3, we focused on forecasts required throughout the product life cycle. It is

especially challenging to determine a forecast over a product’s life when demand has

only been observed in the early phases of the life cycle. We introduce an approach

that models demand over the life cycle as a Poisson process with an intensity function

that follows the Bass curve for product adoption (Bass, 1969). We acknowledge widely

discussed issues with parameter estimation for life cycle models when only a small

amount of demand history has been observed (Srinivasan and Mason, 1986; Van den

Bulte and Lilien, 1997; Putsis Jr and Srinfvasan, 2000; Meade and Islam, 2006) and

thus extend our formulation by pooling the incomplete demand history from multiple

series to estimate common parameters.

Our findings make an important contribution to the field of life cycle demand fore-

casting. Many of the applications of the Bass curve found in the literature assume

that the demand for active products will be similar to past products. Thus, the full

demand history of past products is used to forecast the demand for an active product

over the life cycle. In our model extension, the incomplete demand histories of multiple

active products were used to obtain joint parameters. This approach is advantageous

for products for which manufacturers do not have full demand records, such as newly

designed products and products with long life cycles.

Our model was validated using simulated data and real data from the automotive

manufacturer. We calculated the percentage errors and absolute percentage errors

for the total demand over the out-of-sample. Additionally, we determined the root
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mean squared scaled error (Makridakis et al., 2022) to account for scenarios where it

is necessary to measure the forecast error in each period. In the simulation study,

we showed that the mean absolute percentage error decreased as the number of series

pooled for our model extension increased. Our experiment on 175 SKUs revealed that

our model extension improves forecast accuracy irrespective of the length of the in-

sample. This is especially notable for forecasting life cycle patterns when demand

history is limited.

As in Chapter 2, our approach modelled demand using a common representation for

aftermarket products and an assumption of independent demand observations. Alterna-

tive distributions suitable for the demand for spare parts include the Stuttering Poisson

and the Negative Binomial distribution (Boylan and Syntetos, 2021). Furthermore, as

demand sizes across spare parts can vary significantly, more than one distribution may

need to be considered to model the demand of SKUs belonging to large inventories.

Future research could explore alternative distributions and model formulations which

assume dependence between demand observations.

In testing our model on real data we found commonality in the life cycle shape

across the automotive spare parts. In other cases, assuming joint parameters may not

be appropriate. Clustering could be used to group products with similar life cycle be-

haviour together prior to the implementation of our model. Additionally, we assume

that the underlying intensity function driving demand follows the Bass curve. Polyno-

mial, triangular and trapezoid life cycle shapes have also been discussed in the literature

(Hu et al., 2019). It would be interesting to conduct an empirical investigation on the

goodness-of-fit of various shapes for aftermarket products.
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5.3 Outreach for Long-Term Impact

In Chapter 4 of this thesis, we explored the communication of forecasting and mod-

elling topics to non-scientific audiences. The effective dissemination of forecasting and

modelling techniques is important for many reasons. Firstly, the successful transition of

knowledge ensures research developments lead to impact in the real world. Stakeholders

must understand model formulations and methods to properly implement them within

their systems. Further, OR methodology is commonly designed for real-world problems

which impact the general population. Communication helps to build understanding be-

tween professionals and the wider public. Efforts to foster interest in statistics and OR

also secure the recruitment of future professionals required to meet current workforce

shortages and address diversity issues in STEM industries.

We showcase a diverse portfolio of outreach work based on forecasting and mod-

elling topics designed based on core principles. We identified key contributors to the

underrepresentation of girls pursuing STEM-related career pathways and designed con-

tent to oppose these factors. On a reflection of teacher feedback, we found that the

content delivered to secondary school students was effective in developing skills and

promoted interest in statistics and OR. This supported the view that forecasting and

modelling techniques provide an exciting basis for outreach activity. We found that

content which aimed at dismantling stereotypes related to the identity and competence

of mathematical scientists was positively received.

This work mostly explores applications of forecasting and modelling methodology

within television and film. A wider range of applications could enhance the appeal of

this content. A benefit of our work is that we consider issues related to equity, diversity

and inclusion. However, we primarily focus on issues related to the underrepresentation

between women and girls. Future work that aims to overcome wider issues of inclusion

in STEM are therefore suggested.
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In a review of teacher feedback, we found that this work resulted in two students

choosing to continue studying A-level mathematics when they had previously considered

withdrawing from their course. This is a clear indication that our contribution has

been effective in securing long-term impact. Nevertheless, longitudinal studies should

be undertaken to better understand the impact of outreach work in achieving long-term

goals. This work has laid the foundations for important future research in this area.
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