
Skeleton-Prompt: A Cross-Dataset Transfer Learning
Approach for Skeleton Action Recognition

Mingqi Lua,b, Xiaobo Lua,b,∗, Jun Liuc

aSchool of Automation, Southeast University, Nanjing 210096, China.
bKey Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education,

Nanjing 210096, China.
cSchool of Computing and Communications, Lancaster University, UK

Abstract

This paper presents Skeleton-Prompt, a novel tuning method designed to tackle cross-

dataset transfer issues in skeleton action recognition models. Given the scarcity of

large-scale 3D skeleton datasets and the variability in keypoint structures across datasets,

existing methods often rely on training models from scratch, necessitating extensive la-

beled data and exhibiting high sensitivity to occlusion. Our approach aims to fine-tune

pre-trained models to adapt to limited real-world skeleton data. We use 2D skele-

tons as inputs and leverage a large human motion dataset for 2D to 3D pose estima-

tion to learn generalizable motion features. A lightweight prompt generator produces

instance-level prompts, and we employ dynamic queries with cross-attention to refine

the semantic information of the input data. Additionally, we introduce a joint-enhanced

multi-stream fusion mechanism based on self-attention to improve robustness against

incomplete skeletons. Skeleton-Prompt represents a significant advancement in effi-

cient fine-tuning for skeleton action recognition, effectively addressing cross-dataset

generalization challenges in a data-efficient and parameter-efficient manner.
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1. Introduction

Owing to its ability to model human joints and topological structures, skeleton

sequence representation learning demonstrates significant advantages in action recog-

nition. Over the past decade, deep learning-based methods for skeleton action recog-

nition have evolved into various networks, such as CNNs and RNNs [1, 2]. With the

introduction of graph convolutional networks (GCNs), methods like ST-GCN [3] uti-

lize graph structures to model the spatiotemporal relationships of skeletons. However,

graph-based methods are constrained by prior knowledge of input nodes and/or edges,

making it difficult to handle unknown node types. The number of key joints varies

across different skeleton datasets, and mainstream GCN-based methods fail to over-

come the limitations posed by differing joint connection rules, resulting in challenges

for scalability and transferability.

Transformers have shown great potential for processing sequential data, leading

to the development of numerous Transformer-based methods for modeling the spa-

tiotemporal information of skeleton sequences [4, 5]. The methods mentioned above

are primarily based on ideal 3D skeletons from indoor simulated datasets, which are

limited by depth sensors like Microsoft Kinect and are not widely applicable in real-

world scenarios. Most mainstream methods rely on large amounts of labeled data, and

the field of skeleton action recognition currently lacks large-scale 3D skeleton datasets.

Consequently, it is challenging to train large pre-trained models akin to those used for

ImageNet or BERT Each model requires training parameters from scratch for different

skeleton datasets, leading to poor generalization.

Currently, there is little research on transferring pre-trained knowledge among skele-

ton action recognition models across different datasets. To address this gap, our work

aims to fine-tune pre-trained models for transferability. We focus on exploring how

far skeleton action recognition can advance in the direction of cross-dataset transfer

learning without large-scale 3D skeleton data. Thanks to the rapidly developing pose

estimation algorithms, 2D skeletons can be easily obtained from RGB videos, proving

to be more accurate and effective for action recognition [6, 7]. Inspired by Motion-

BERT [8], we leverage large-scale 3D human motion data [9] to learn generalizable
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skeleton motion features by recovering 3D motions from 2D skeletons. We propose

SkeleFormer, based on PoseFormer [10], as a skeleton encoder that comprehensively

captures the spatiotemporal relationships between skeleton joints and uses 2D-to-3D

pose estimation as a pretraining task.

Traditional fine-tuning methods in transfer learning add task-specific classification

heads and adjust all parameters; however, full fine-tuning on small datasets can com-

promise the quality of pre-trained parameters. Visual Prompt Tuning (VPT) [11] in-

troduces a small number of task-specific visual prompts into the input space while

freezing the entire pre-trained backbone. By requiring updates to only a few parame-

ters, VPT not only significantly reduces computational and storage costs but also pre-

vents overfitting and feature distortion. Inspired by this, we propose a novel skeleton

prompt generator that allows pre-trained skeleton action recognition models to gener-

alize across different datasets. The skeleton prompt generator dynamically generates

prompts based on each input instance, effectively extracting knowledge from skeleton

samples across different datasets, thereby facilitating knowledge transfer from the pre-

trained model to adapt to the target data. Furthermore, we introduce a cross-attention

mechanism into the skeleton prompts. Unlike the direct concatenation used in VPT, we

compute the cross-attention between the pose embeddings and the generated skeleton

prompts, adding the result as a residual to the pose embeddings. This cross-attention

allows the prompts and pose embeddings to mutually focus on each other, enhancing

the semantic information within the skeleton prompts. These prompts enable flexible

adaptation across different datasets, showcasing immense potential for cross-dataset

transfer, particularly for target datasets with limited large-scale data. It’s worth noting

that Skeleton-Prompt is the first work to apply efficient fine-tuning to skeleton action

recognition.

In the real world, occlusion of skeleton data is both unavoidable and widespread.

Even a few occluded points can severely impact the sparse representation of human

skeletons. In this paper, we consider not only joint stream but also bone stream and

velocity stream, and propose Joint-Enhanced Multi-Stream Fusion (JEMF) to learn

discriminative embeddings through multi-stream fusion. In JEMF, joint embeddings

serve as the query set, while bone and velocity embeddings encode the key-value set.
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Figure 1: Comparison of transfer performance and trade-off of trainable parameters for differ-

ent tuning methods under the NTU-60 CS protocol (higher is better). Using the SkeleFormer

pre-trained on the Posetics dataset, Skeleton-Prompt achieves exceptional cross-dataset transfer

performance and parameter efficiency trade-offs (best viewed in color).

Through the self-attention mechanism, complementary information from the bone and

velocity streams is transferred to the joint stream, enhancing the model’s robustness

against occluded skeletons.

Our contributions can be summarized as follows:

(1) We introduce SkeleFormer, leveraging 2D-to-3D pose estimation for pretraining

to capture spatiotemporal skeleton relationships across datasets.

(2) We propose a skeleton prompt generator with cross-attention to dynamically

adapt pre-trained models across datasets, enhancing knowledge transfer with minimal

parameter updates.

(3) We develop Joint-Enhanced Multi-Stream Fusion to improve robustness against

occluded skeleton data by fusing joint, bone, and velocity streams through self-attention.

(4) We demonstrate effective cross-dataset transfer learning using 2D skeletons

from RGB videos, addressing the scarcity of large-scale 3D skeleton datasets.
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2. Related Work

2.1. Skeleton Action Recognition

In recent years, skeleton action recognition has witnessed significant progress. In

this field, Nguyen et al. [12] proposed the Double-Feature Double-Motion Network,

Peng et al. [13] introduced a scenario navigation framework for open-set recognition,

and Yan et al. [14] addressed the challenge of one-shot 3D action recognition using

large language models. To learn discriminative representations of the skeleton, GCNs

explore the structural information of the skeleton and the interdependencies between

joints in spatiotemporal graphs, such as ST-GCN [3]. However, GCN-based methods

are constrained by the requirement for prior knowledge of input nodes and/or edges,

making it difficult to handle unknown types of nodes. Recently, several studies have

applied transformers to skeleton-based action recognition. ST-TR [4] computes self-

attention scores for each pair of key joints in the spatiotemporal graph. RSA-Net [5]

uses a relation-mining self-attention network to capture intra - and inter-frame action

features. PoseC3D [15] stacks heatmaps along the temporal dimension and uses a

3D-CNN to process 2D skeletons. Regarding multi-stream fusion, Peng et al. [16] em-

ployed attention mechanisms to integrate skeletal, joint, and bone branches, while Xu

et al. [17] adopted a mixture-of-experts strategy for fusion. The methods mentioned

above all train model parameters from scratch in a fully supervised manner and rely

on a large amount of labeled skeletal data. We consider a more realistic setup that uti-

lizes pre-trained models to achieve action recognition across multiple skeletal datasets,

making us the first to address this issue.

Most skeleton-based action recognition methods assume ideal skeleton features;

however, occlusions of the skeleton are unavoidable in real-world scenarios. For in-

complete skeletons, Song et al. [18] proposed a richly activated GCN to improve the

robustness of action recognition models against occluded skeletons. Research in this

area is still in its infancy, and performance improvements are needed.

2.2. Parameter-Efficient Transfer Learning

With the development of Large Language Models (LLMs) in Natural Language

Processing (NLP), parameter-efficient transfer learning for pre-trained models has grad-
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ually emerged. Full fine-tuning may distort pre-trained features, compromising robust-

ness to distribution shifts; however, parameter-efficient transfer learning effectively

mitigates this issue. Bitfit [19] freezes the weights and only adjusts the biases or a

subset of biases in the pre-trained language model (PLM). Adapters [20] freeze all

parameters of the PLM and sequentially insert trainable layers with residual connec-

tions after the feed-forward network (FFN) or attention blocks. LoRA [21] employs

additional low-rank modules as trainable parameters to optimize the weights of the

self-attention layers.

2.3. Visual Prompts

Prompt tuning has also flourished in the field of computer vision, facilitating the

transfer of pre-trained visual models to downstream tasks. Jia et al. [11] introduced

prompts into the ImageNet pre-trained ViT as part of the input tokens. Pro-Tuning

[22] employs lightweight convolutional blocks to generate visual prompts for specific

image tasks. Currently, no research has investigated the effectiveness of parameter-

efficient learning in the field of skeleton action recognition. Our work is the first to

explore skeleton prompts, closely related to VPT and Pro-Tuning, and aims to address

the cross-dataset generalization problem of skeleton action recognition models.

3. Methodology

The proposed Skeleton-Prompt framework is shown in Figure 2. The skeleton

prompt generator captures sample-specific prompts, and during cross-dataset transfer,

only a small number of parameters for the skeleton prompt generator and classifier need

to be optimized. The following sections introduce the skeleton encoding and skeleton

prompt generation.

3.1. Revisiting PoseFormer

PoseFormer treats each 2D pose as input tokens and employs a multi-layer trans-

former structure similar to ViT to model the relationships between body joints within

each frame and the temporal correlations across frames. For the skeletal sequence

X ∈ R f×(J·2), f denotes the number of frames in the input sequence, J represents the
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Figure 2: Tuning architecture of the proposed skeleton action recognition model. Skeleton-

Prompt utilizes a prompt generator for instance-level dynamic updates to achieve cross-dataset

transfer, with the blue blocks representing the frozen parts of the pre-trained transformer (best

viewed in color).

number of joints in each 2D pose, and 2 indicates the coordinates of the joints in the

2D space. First, each 2D pose is mapped to hs = [S 1, S 2, · · · , S J] using the feature

embedding E ∈ R(J·2)×c, where hs ∈ RJ×c. This representation is then input into the

spatial transformer LS to encode the local relationships between the 2D joints in each

frame. (
S i

1, S
i
2, · · · , S

i
J

)
= Li

S

(
S i−1

1 , S
i−1
2 , · · · , S

i−1
J

)
(1)

Next, the single-frame embeddings hs from f frames are concatenated to form hT =[
T1,T2, · · · ,T f

]
, where hT ∈ R f×(J·c). This concatenated representation is then input

into the temporal transformer LT to model dependencies across the frame sequences.

(
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i
2, · · · ,T

i
f

)
= Li

T

(
T i−1

1 ,T
i−1
2 , · · · ,T

i−1
f

)
(2)

7



3.2. Joint-Enhanced Multi-Stream Fusion

Considering the unavoidable issue of skeleton occlusion in the real world, we pro-

pose Joint-Enhanced Multi-Stream Fusion (JEMF) to improve the robustness of the

model against incomplete skeletons. The structure of JEMF is illustrated in Figure 2.

Unlike PoseFormer, we consider three input sequences in SkeleFormer: joint Xjoint ,

bone Xbone, and velocity Xvel. These sequences are used to extract high-dimensional

embeddings Ejoint , Ebone , and Xvel from the three streams, which are then fed into the

joint-enhanced multi-stream fusion (JEMF) module for integration, thereby leverag-

ing complementary crossmodal dependencies. The design of JEMF is based on the

self-attention mechanism, where the joint stream serves as the query set and the bone-

velocity stream acts as the key-value set. We encode Ejoint using a linear projection

layer ProjQ
j , resulting in Q j = ProjQ

j

(
Ejoint

)
. For the keys and values of the bone and

velocity streams, Ebone and Evel are aggregated through concatenation, and each is

encoded using the projection layers ProjK
bv and Proj V

bv, generating Kbv and Vbv, respec-

tively.

Kbv = ProjK
bv (Concat (Ebone, Evel)) (3)

Vbv = ProjVbv (Concat (Ebone, Evel)) (4)

The self-attention output provides joint-enhanced attention (JEA):

EJEA = Selfattention
(
Q j,Kbv,Vbv

))
(5)

The expected Joint-enhanced Multi-stream Fusion (JEMF) is formulated as fol-

lows:

EJEMF = Ejoint + EJEA (6)

This transfers the key information from the bone and velocity streams to the joint

stream, with the resulting embeddings fed into the SkeleFormer.

h = EJEMF + MLP (LN (EJEMF)) (7)

Where Proj refers to the projection layer based on fully connected (fc) layers, and LN

stands for layer normalization.
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3.3. 2D->3D Pre-training

In SkeleFormer, both the spatial transformer and temporal transformer consist of

four layers, with an embedding dimension of 17 × 32 = 544. We conduct a 2D-to-3D

pre-training task on the Human 3.6 M dataset, which is the most widely used indoor

dataset for 3D single-person Human Pose Estimation (HPE). This dataset includes 11

professional actors performing 17 actions, comprising 3.6 million frames of video an-

notated with 3D ground truth. Following the approach of MotionBERT, we use or-

thogonal projection on the 3D motions X to obtain undisturbed 2D skeletons x, where

we randomly mask 15% of the joints (setting them to zero) and add noise. We utilize

SkeleFormer to extract motion features and reconstruct the 3D motions X̂, calculating

the loss function between X̂ and the true X.

L2D→3D =

J∑
j=1

∥∥∥∥X̂ j − X j

∥∥∥∥
2

(8)

The feature embeddings learned by SkeleFormer can serve as spatiotemporal rep-

resentations of human motion. For skeleton-based action recognition tasks, we directly

apply global average pooling across different individuals and time steps. The resulting

embeddings are then input into a multilayer perceptron (MLP) with a single hidden

layer, and the entire network is trained end-to-end using cross-entropy classification

loss.

3.4. Skeleton Prompt Generator

Our Skeleton-Prompt generates instance-level prompts for each input based on the

embedded context to adapt to variations in data distribution. As shown in Figure 2,

we adopt a lightweight bottleneck architecture as the skeleton prompt generator, which

consists of two perceptron layers: a down-sampling projection W1 ∈ Rm×d and an

up-sampling projection W2 ∈ RN×d×m, where d is the input embedding dimension, m

is the hidden layer dimension, and N is the length of the generated skeleton prompt.

The parameter overhead introduced by the single-layer skeleton prompt generator is

minimal. Therefore, for each layer of SkeleFormer, we assign a layer-specific skeleton

prompt generator. In the spatial transformer, the skeleton prompt PS generated at each
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layer is as follows:

PS = WS 2

(
ReLU

(
WS 1 hS + bS 1

))
+ bS 2 (9)

Where WS 1 ∈ Rm×(J·c) and WS 2 ∈ RN×(·c)×m.

In the temporal transformer, a max pooling layer is introduced within the bottle-

neck structure to pool the embeddings of f frames into a prompt of length N, thereby

reducing the number of parameters.

PT = WT2

(
ReLU

(
MaxPool

(
WT1 hT + bT1

)))
+ bT2 (10)

Where WT1 ∈ Rm×(·c) and WT2 ∈ RN×(J·c)×m

The typical approach is to directly concatenate the skeleton prompt P with the

embedding h, using it as the new input for each transformer layer. We introduce cross-

attention to link the two, allowing the skeleton prompt to adapt to crossdataset tasks, as

shown in Fig. 4. For each layer, the input embedding h passes through the self-attention

layer to obtain the pose embedding Epose = SelfAttention(h). Cross-attention is then

computed between the pose embedding and the generated skeleton prompt P. The

pose embedding acts as the query set, represented as QC = PWQ, while the skeleton

prompt serves as the key-value set, with KC = VC = PWK . The cross-attention can be

formulated as:
CrossAttention

(
Epose , P

)
= Softmax

(
Epose WQ · PWK

√
d

)
· PWK

(11)

where d represents the dimension of both the pose embedding and prompts, ensuring

consistency in dimensions throughout the computation.

The cross-attention values between the pose embedding and skeleton prompts cap-

ture the semantic relationship between the two. These values are added to the pose em-

bedding as a residual, and after passing through a Layer Norm and MLP layer, they are

fed into the next transformer layer. Additionally, we introduce a weight-sharing mech-

anism using the parameter values from the self-attention in SkeleFormer to initialize

the crossattention weights, thereby avoiding the need for a large number of learnable

parameters.
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Figure 3: Structure diagram of Skeleton-Prompt, which consists of two key components: skele-

ton prompt generation and cross-attention calculation, with the blue blocks indicating the frozen

sections of the pre-trained transformer (best viewed in color).

During cross-dataset transfer training, only the parameters of the skeleton prompt

generator and the classification head are updated, while the entire transformer back-

bone remains frozen. Each layer’s skeleton prompt generator has two input options:

the hidden state of the current layer or the output from the previous layer. Our experi-

ments have demonstrated that there is no significant difference between these two input

methods.

4. Experiments

4.1. Datasets and Evaluation Protocols

We conduct experiments on nine mainstream datasets to evaluate the model’s per-

formance.

11



Kinetics-400 [6] is a well-known video dataset comprising 400 action categories

and over 306,000 video clips, with each category containing a minimum of 400 clips.

These clips, each approximately 10 seconds long, are sourced from unique YouTube

videos. Posetics [23] was built upon the Kinetics-400 dataset. It includes 142,000

video clips across 320 action categories with corresponding 2D and 3D skeletons.

NTU-60 [24] consists of 56,880 videos across 60 action categories. The dataset

provides two evaluation protocols: cross-subject (X-Sub) and cross-view (X-View).

NTU-120 [25] contains 114,000 videos across 120 action categories, and is an extended

version of NTU-60. This dataset also offers two evaluation protocols: cross-subject (X-

Sub) and cross-setup (X-Set).

UCF101 [26] includes 13,000 videos across 101 action categories, and HMDB51

[27] contains 6,766 video clips across 51 action categories. Following previous work

[15], split1 is used for dividing training and testing data.

FineGym99[28] is a large-scale fine-grained action recognition dataset for gym-

nastics, consisting of 29,000 videos across 99 fine-grained action categories.

Toyota Smarthome [7] is a real-world dataset for daily activity classification that

contains 16,115 video samples across 31 action categories. The dataset includes two

evaluation protocols: cross-subject (CS) and cross-view (CV1 and CV2).

Penn Action [29] consists of 2,326 video sequences across 15 different actions. In

this paper, we use 2D skeletons for experiments and report Top-1 accuracy based on

the standard train-test split.

For the Kinetics-400, NTU-60, NTU-120, UCF101, HMDB51, and FineGym99

datasets, we use the 2D skeleton sequences provided by PYSKL [30]. Unless otherwise

stated, for NTU-60 and NTU-120, the results from other methods are based on 3D data

experiments.

4.2. Experimental Settings

In 2D->3D pre-training, we utilize the Adam optimizer to train SkeleFormer for

100 epochs, implementing an exponential learning rate decay strategy. The initial

learning rate is configured at 2e-4, with a weight decay coefficient of 0.1.
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For the SkeleFormer fine-tuned from the 2D-to-3D pretraining task, the output of

the skeleton encoder after global average pooling is fed into an MLP for classification.

Similarly, we train a randomly initialized skeleton encoder for comparison. We set the

learning rate for the skeleton encoder to 0.0001 and for the classification MLP to 0.001.

For the SkeleFormer trained from scratch, we use a learning rate of 0.001 and a batch

size of 32. The model is trained for 200 epochs.

4.3. Skeleton Action Recognition

We evaluate the performance of SkeleFormer against other models across multi-

ple skeleton datasets, with the results reported in Table 1-5. It can be observed that

2D-to-3D pre-training significantly improves the accuracy of SkeleFormer on differ-

ent datasets. Despite using 2D skeletons without depth information, SkeleFormer

still achieves competitive performance, on par with or even surpassing state-of-the-art

methods. This demonstrates the effectiveness of 2D-to-3D pre-training, because it en-

ables the skeleton encoder to learn discriminative representations of skeleton sequences

for subsequent generalization. SkeleFormer’s superior performance is also attributed

to its use of self-attention mechanisms to transfer complementary information from the

bone and velocity streams to the joint stream, enabling the learning of discriminative

skeleton feature embeddings. The results in Tables 1–5 demonstrate that SkeleFormer

allows skeleton encoders to learn stronger and more robust features, making them bet-

ter suited for cross-dataset transfer tasks.

We further investigate and compare the structural perturbation robustness of Skele-

Former and the GCN baseline. As shown in Table 6, we introduce perturbations to the

input nodes of ST-GCN and SkeleFormer. ST-GCN, constrained by a fixed topology,

is significantly affected by node deletion, shuffling, and random edge reconnection. In

contrast, SkeleFormer, with its implicit structural learning and spatial-temporal decou-

pled attention, can flexibly capture semantic-driven structural relationships, making it

highly robust to input perturbations.

4.4. Cross-Dataset Transfer

Since Kinetics-400 is not human-centered, many frames lack detectable human

skeletons or the skeletons are difficult to identify. Therefore, we use the Posetics dataset
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Table 1: Comparison of Accuracy with SOTA Methods on NTU-60 and NTU-120 Datasets. ”J,”

”B,” ”JM,” and ”BM” represent the joint, bone, joint motion, and bone motion data modalities,

respectively. ”⋄” indicates the use of the same 2D skeleton data (17 keypoints).

Method N60-CS N60-CV N120-CS N120-CE

ST-GCN(J) [3] 81.5 88.3 70.7 73.2

2s-AGCN(J+B) [31] 88.5 95.1 82.5 84.2

MS-G3D(J+B) [32] 91.5 96.2 86.9 88.4

LST(J+B+JM+BM) [33] 92.9 97.0 89.9 91.1

ST-TR(J+B) [4] 89.9 96.1 84.3 86.7

ST-TR-agcn(J+B) [4] 90.3 96.3 85.1 87.1

RSA-Net(J+B+JM+BM) [5] 91.8 96.8 88.4 89.7

PoseC3D(J) ⋄ [15] 93.7 96.6 86.0 89.6

MS-G3D(J+B) ⋄ [32] 92.2 96.6 87.2 89.0

ST-GCN(J) ⋄ [3] 88.9 96.8 84.0 84.1

Ske2Grid (J+B+JM+BM) ⋄ [34] 93.8 98.6 87.3 90.8

MotionBert (scratch) [8] 87.7 94.1 - -

MotionBert (finetune) [8] 93.0 97.2 - -

SkeleFormer (scratch) 88.5 95.4 84.7 87.0

SkeleFormer (2D->3D) 93.1 97.1 89.7 90.8

Table 2: Comparison of Accuracy with SOTA Methods on the Kinetics-400 Dataset.

Methods Kinetics Top-1(%) Kinetics Top-5(%)

ST-GCN [3] 30.7 52.8

2s-AGCN [31] 36.1 58.7

MS-G3D [32] 38.0 60.9

MST-GCN [35] 38.1 60.8

ST-TR [4] 37.0 59.7

ST-TR-agcn [4] 38.0 60.5

4s-MST-GCN [35] 38.1 60.8

ML-STGNet [36] 38.9 62.2

PoseConv3D [15] 47.7 -

SkeleFormer (scratch) 36.1 59.5

SkeleFormer (2D->3D) 41.0 64.1
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Table 3: Comparison of Accuracy with SOTA Methods on the Posetics Dataset.

Methods Posetics Top-1(%) Posetics Top-5(%)

ST-GCN [3] 43.3 67.3

2s-AGCN [31] 47.0 70.8

MS-G3D [32] 52.6 75.8

ST-TR [4] 47.5 71.3

UNIK [23] 47.6 71.3

UNIK(ft.) [23] 52.5 75.7

PoseC3D [15] 53.1 77.1

SkeleFormer (scratch) 51.7 76.0

SkeleFormer (2D->3D) 56.9 80.5

Table 4: Comparison of Accuracy with SOTA Methods on UCF101, HMDB51, and FineGYM99

Datasets.

Method UCF101 HMDB51 FineGYM99

ST-GCN [3] 69.2 47.3 85.1

Pose-SlowOnly [15] 79.1 58.6 -

PoseConv3D [15] 87.0 69.7 93.2

Ske2Grid [34] 73.1 48.4 91.8

Hachiuma et al.[37] 87.8 70.9 -

SkeleFormer (2D->3D) 88.1 69.9 94.3

Table 5: Comparison of Accuracy with SOTA Methods on Toyota Smarthome and Penn Action

Datasets.

Method
Toyota Smarthome

Penn Action
CS CV1 CV2

ST-GCN [3] 53.8 15.5 51.1 89.6

2s-AGCN [31] 60.9 22.5 53.5 93.1

MS-G3D [32] 61.1 17.5 59.4 92.7

UNIK [23] 63.1 22.9 61.2 94.0

ML-STGNet [36] 64.6 29.9 63.5 -

SkeleFormer (2D->3D) 64.7 35.7 64.5 97.6
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Table 6: Comparison of Structural Perturbation Robustness on the NTU RGB+D X-Sub dataset.

Method Node Deletion (20%) Node Shuffling Edge Random Reconnection

ST-GCN [3] -8.7% -12.3% -9.1%

SkeleFormer -1.2% -0.8% -0.9%

as the source dataset for action recognition. We first train SkeleFormer on the Posetics

dataset and then fine-tune it on datasets such as NTU-60 for skeleton-based action

recognition. We use consistent skeleton data ( 2D with 17 joints) to fairly compare

all models. Skeleton-Prompt is compared with several transfer learning methods. The

parameters of the classifier are always updated during the training process:

(1) Full-tuning: All parameters are fully updated.

(2) Linear Probing: Parameters other than the linear classification layer are frozen.

(3) Bitfit [19]: Only the bias terms of the pre-trained backbone are fine-tuned.

(4) LoRA [21]: Optimized low-rank matrices are used in the multi-head attention

of the transformer layers.

(5) Adapter [20]: Additional MLPs are inserted within the transformer layers.

(6) Visual Prompt tuning [11]: A series of learnable prompt tokens are added before

the input patch tokens.

(7) Pro-Tuning [22]: The lightweight convolutional blocks are fine-tuned, which

generate task-specific prompts.

(8) Skeleton-Prompt without CA: The generated skeleton prompts are directly con-

catenated with pose tokens and input into the next transformer layer.

For each transfer method, we test the following learning rates: {0.0001, 0.0005, 0.001,

0.005}. For the prompt-based methods, we fix the weight decay at 0.0001 . For other

methods (non-prompt-based), we vary the weight decay values in the set {0.001, 0.0001}.

We train for a total of 100 epochs, with an initial warm-up period of 10 epochs. We

use the AdamW optimizer and cosine-decay learning rate scheduler. We select an ap-

propriate learning rate (non-prompt-based), we vary the weight decay values in the set

{0.001, 0.0001}. We train for a total of 100 epochs, with an initial warm-up period of

10 epochs. We use the AdamW optimizer and the cosine-decay learning rate scheduler.
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Table 7: Comparison of Transfer Results of Different Tuning Methods Across Multiple Skeleton

Datasets.

Method N60-CS N60-CV N120-CS N120-CE UCF101 HMDB51 FineGYM Smarthome Penn Params (M)

Full fine-tuning 93.7 97.6 90.4 91.5 89.1 70.8 94.7 65.2 98.3 9.58

Linear Probing 82.9 85.5 78.0 78.6 77.9 59.7 79.8 53.5 87.9 0.04

Bitfit [19] 84.2 87.6 81.1 82.9 80.3 61.3 80.7 56.3 89.4 0.19

LoRA [21] 88.1 90.3 83.5 84.4 81.3 62.4 82.5 58.6 90.5 0.32

VPT [11] 89.1 92.9 84.6 84.9 82.0 63.9 83.3 61.1 92.4 0.57

Adapter [20] 89.5 93.1 85.5 86.4 84.2 64.3 84.4 62.0 92.3 1.31

Pro-Tuning [22] 92.3 95.1 87.7 88.8 86.3 67.8 90.1 63.3 96.4 1.65

Skeleton-Prompt w/o CA 91.4 94.2 87.0 87.9 85.0 66.2 88.8 62.5 94.6 0.40

Skeleton-Prompt 93.6 96.8 90.2 91.0 88.8 70.7 93.1 65.0 97.5 0.40

We select an appropriate learning rate and keep the batch size fixed at 64.

Table 7 displays the transfer results of Skeleton-Prompt across multiple datasets.

The proposed method achieves performances comparable to those of full fine-tuning.

Skeleton-Prompt without CA also demonstrates good transfer performance, with instance-

based dynamic skeleton prompts showing strong generalization for cross-dataset recog-

nition. Skeleton-Prompt has significantly fewer trainable parameters than full fine-

tuning, making it deployable across multiple datasets without the need to redundantly

store a large number of fundamental parameters, providing a substantial advantage in

real-world applications. By introducing cross-attention in prompt tuning, Skeleton-

Prompt outperforms Skeleton-Prompt without CA, and achieves state-of-the-art per-

formance compared to previous PETL methods across different evaluation protocols.

Previous work [32] demonstrates weaker transferability, as dataset-specific model con-

figurations do not always adapt well to the transferred datasets.

Table 8: Efficiency Comparison of Different Fine-Tuning Methods in the Posetics → NTU-60

Transfer Task.

Method Trainable Params (M) Training Time / Epoch (min) Inference FPS Accuracy (%)

Full Fine-Tuning 9.58 25.3 31 93.7

LoRA [21] 0.32 18.7 29 88.1

VPT (p = 10) [11] 0.57 16.2 28 89.1

Skeleton-Prompt 0.40 14.5 27 93.6

As shown in Table 8, Skeleton-Prompt requires training only 0.40M parameters
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(4.2% of the full fine-tuning baseline), reducing per-epoch training time by 42.7%

(14.5 vs. 25.3 minutes), with only a 12.9% drop in inference speed (27 vs. 31 FPS). In

cross-dataset transfer, Skeleton-Prompt achieves the highest accuracy (93.6%) while

maintaining the lowest parameter count and shortest training time. By comparison,

LoRA suffers from impaired temporal modeling due to its low-rank approximation

(88.1% accuracy), and VPT is limited by the inflexibility of static prompts (89.1%

accuracy).

4.5. Different Numbers and Structures of Nodes

We further investigate the inconsistency in the number and structure of skeletal

nodes in cross-dataset transfer tasks. We conduct experiments using the original NTU-

60 CS dataset (with 25 3D keypoints) and the Posetics dataset (with 17 2D keypoints),

applying a full fine-tuning approach for transfer. We compare the performance of

SkeleFormer with the GCN baseline ST-GCN, and the performance differences are

shown in Table 9.

Table 9: Comparison of Transfer Performance Across Different Numbers and Structures of

Nodes.

Datasets ST-GCN SkeleFormer

Original NTU-60 81.5% 90.4%

Posetics→ Original NTU-60 81.6% 92.6%

Posetics 43.3% 57.8%

Original NTU-60→ Posetics 43.3% 57.8%

Due to the differences in node count and structure between the two datasets, transfer

training does not yield performance gains for the GCN method. However, SkeleFormer

overcomes the fixed topology limitation of GCN through sequence modeling and a

pretraining strategy that decouples motion semantics, systematically addressing the

challenge of inconsistent node numbers and structures across different skeletal datasets.
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4.6. Qualitative Analysis

4.6.1. Joint-Frame Heatmaps

As shown in Figure 4, we conduct an in-depth analysis of the tuning performance

on NTU-120 for Adapter (1st column), VPT (2nd column), Skeleton-Prompt w/o CA

(3rd column), Pro-Tuning (4th column), and Skeleton-Prompt (5th column) using the

attribution algorithm BIG [38]. The resulting attribution scores are visualized as joint-

frame heatmaps, where the brightness of each grid reflects its importance in the pre-

diction process. Compared to other methods, Skeleton-Prompt more accurately clus-

ters action-relevant joints in the spatial dimension and achieves clearer boundaries in

the temporal dimension, enabling it to learn more discriminative features (best viewed

in color). The visualization results demonstrate that Skeleton-Prompt provides a more

comprehensive action representation and exhibits a superior capability for cross-dataset

representation learning.

4.6.2. Feature Space Visualization

In the Posetics→ NTU-60 transfer task, we use t-SNE to visualize the output fea-

tures from the last layer of the Transformer model. We randomly selected 20 categories

from the NTU-60 dataset, with 100 samples per category. As shown in Figure 5, the

t-SNE visualization clearly validates the significant advantage of Skeleton-Prompt in

decision boundary clarity. Compared to other fine-tuning methods, where similar ac-

tions are loosely clustered, Skeleton-Prompt shows clear separation between different

categories.

4.6.3. Action Dynamics

As shown in Figure 6, using NTU-RGB+D as an example, we categorize actions

into three groups based on their dynamic levels: low, medium, and high. We fur-

ther explore the accuracy differences (in %) between Skeleton-Prompt and the base-

line ST-GCN for each action category on the NTU RGB+D X-Sub dataset. From the

analysis of Figure 6, it can be observed that Skeleton-Prompt performs significantly

better than the baseline method on medium and low dynamic actions, i.e., actions with

medium to long temporal dependencies (e.g., ”reading,” ”writing”). The advantages
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Adapter VPT Skeleton-Prompt w/o CA Pro-Tuning Skeleton-Prompt

(a) A013 tear up paper

(b) A025 reach into pocket

(c) A079 sniff/smell

(d) A085 apply cream on face

Figure 4: Joint-frame heatmaps for (a) A013 “tear up paper”, (b) A025 “reach into pocket”, (c) A079

“sniff/smell” and (d) A085 “apply cream on face” (best viewed in color).

Bitfit LoRA VPTAdapter Skeleton-Prompt

Figure 5: Visualization of Transfer Feature Distributions for Different Tuning Methods (best

viewed in color).

of global attention in modeling long-range dependencies are evident. Additionally,

the prompt generator identifies key stages through inter-frame velocity features (e.g.,
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Figure 6: Top-1 accuracy differences (in %) between Skeleton-Prompt and ST-GCN on joint

input modality in the NTU RGB+D X-Sub dataset (best viewed in color).

sudden changes in acceleration). Skeleton-Prompt’s performance is limited on high-

dynamic fast actions (e.g., ”throw”), as the fixed positional encoding in the Transformer

results in information loss when discretizing high-frequency movements (such as rapid

wrist rotation).

4.6.4. Failure Cases

Figure 7 presents typical examples of errors made by the proposed method when

recognizing skeletal actions, including ”reading” vs. ”playing with phone/tablet,” ”take

off glasses” vs. ”wipe face,” ”wear a shoe” vs. ”take off a shoe,” and ”pointing to

something with finger” vs. ”taking a selfie.” These failure cases occur when action

categories are determined based on fine finger movements, which involve subtle spatial

features and insufficient discriminative cues in the skeletal feature space.

4.7. Ablation Experiments

4.7.1. Different Components

In Table 10, we perform ablation experiments on the components of the proposed

method. Even without 2D-to-3D lifting, SkeleFormer pre-trained on the Posetics dataset
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reading

playing with phone/tablet

take off glasses

wipe face

pointing to something with finger

taking a selfie

take off a shoe

wear a shoe

Figure 7: Failure Case Analysis in Cross-Dataset Transfer (best viewed in color).

Table 10: Comparison of the transfer performance of different components of Skeleton-Prompt

across multiple skeleton datasets.

w/ 2D->3D w/ JEMF w/ CA N60-CS N60-CV N120-CS N120-CE UCF101 HMDB51 FineGYM Smarthome Penn

✓ ✓ 89.5 92.4 84.5 85.7 83.5 65.0 86.0 61.1 93.6

✓ ✓ ✓ 93.6 96.8 90.2 91.0 88.8 70.7 93.1 65.0 97.5

✓ ✓ 91.7 94.6 87.5 88.6 85.2 66.2 89.4 62.5 94.5

✓ ✓ 91.4 94.2 87.0 87.9 85.0 66.2 88.8 62.5 94.6

still performs exceptionally well across multiple datasets. Notably, on smaller datasets

such as HMDB51 and Penn, Skeleton-Prompt shows particularly outstanding transfer

performance. Our analysis of the cross-attention between pose embeddings and skele-

ton prompts reveals that it enhances mutual focus and semantic richness within the

prompts, further improving the flexibility and effectiveness of cross-dataset transfer

learning. Moreover, the introduction of JEMF significantly improves accuracy across

multiple skeleton datasets by enhancing the robustness of skeleton features through the

fusion of joint, bone, and velocity streams.
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4.7.2. Prompt Design

In the Posetics→ NTU-60 cross-dataset transfer task, we conduct ablation exper-

iments on prompt structure, length, and position. As shown in Tables 11 and 12, the

optimal accuracy (93.6%) is achieved with a prompt length of 10. Longer prompts

(20) lead to a performance decrease (-0.4%) due to the introduction of redundant in-

formation, while shorter prompts (5) fail to effectively capture the semantic differences

across datasets (-1.5%). Cross-attention significantly outperforms direct concatenation

(+4.5%) and element-wise addition (+4.2%) due to its ability to focus on key semantic

areas using learnable attention weights.

Table 11: Ablation Experiment on Prompt Length in the Posetics→ NTU-60 Transfer Task.

Prompt Length Top-1 Accuracy(%) Inference FPS

5 92.1 29

10 93.6 27

20 93.2 24

Table 12: Ablation Experiment on Prompt Position and Interaction Mechanism in the Posetics

→ NTU-60 Transfer Task.

Prompt Position Interaction Mechanism Top-1 Accuracy(%)

Layer-wise Concatenation Direct Concatenation 89.1

Layer-wise Concatenation Element-wise Addition 89.6

Layer-wise Concatenation Cross-Attention 93.6

Mid-layer Insertion Cross-Attention 92.9

4.7.3. Multi-Stream Fusion Strategies

As shown in Table 13, we compared the following fusion strategies (with other

modules kept consistent) on the NTU-60 dataset.

(1) Concatenation: The prompt vector and the original pose embedding are con-

catenated along the channel dimension and then input into the Transformer.

(2) Addition: The prompt vector and the pose embedding are added element-wise.
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(3) Multiplication: The prompt vector and the pose embedding are multiplied

element-wise.

(4) Cross-Attention (Ours): The cross-attention between the pose embedding and

the prompt is computed, and the result is added in residual form.

Table 13: Performance Comparison of Multi-Stream Fusion Strategies on the Posetics→ NTU-

60 Transfer Task.

Fusion Strategy Top-1 Accuracy(%) Trainable Params (M)

Concatenation 89.0 0.51

Addition 89.4 0.40

Multiplication 88.8 0.41

Cross-Attention (Ours) 93.6 0.40

In the Posetics→NTU transfer task, the accuracy of the cross-attention mechanism

(93.6%) is significantly higher than that of other strategies. We analyze that cross-

attention adaptively adjusts the prompt-embedding correlation based on the character-

istics of the target dataset, while static fusion strategies (such as concatenation) fail to

adapt to domain differences. Residual learning overlays the attention results in residual

form, preserving the cross-domain generalization ability of the original embedding and

avoiding feature distortion caused by direct modification.

4.8. Varying Data Scales

We evaluate the transfer performance of different tuning methods across varying

dataset sizes, gradually increasing the training set size from 10% to 100%. As shown in

Table 14, Skeleton-Prompt consistently outperforms other baselines under limited data

conditions. When only 30% of the training data is used, Skeleton-Prompt achieves

a performance comparable to the classic Bitfit, which requires 50% of the training

data. However, when the training data are extremely scarce, Skeleton-Prompt struggles

to effectively train the prompt generator, resulting in a sharp decline in performance.

Once the training data exceeds 50%, Skeleton-Prompt can generate meaningful skeletal

prompts, surpassing other methods and exhibiting stronger generalization ability.
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Table 14: Comparison of the transfer performance of tuning methods at different training data

scales under the NTU-120 CS evaluation protocol.

Fraction Bitfit LoRA VPT Adapter Pro-Tuning Skeleton-Prompt

10% 66.5 61.6 65.8 65.0 66.2 64.8

20% 72.2 70.0 71.5 72.1 75.4 69.3

30% 74.3 74.8 75.5 75.9 80.9 77.3

40% 76.4 77.9 77.1 78.3 82.4 81.9

50% 77.4 79.7 79.5 80.2 84.5 84.3

60% 78.6 80.9 80.6 81.6 85.1 86.2

70% 79.4 81.9 81.7 82.4 85.9 87.6

80% 80.0 82.5 82.6 83.4 86.7 88.8

90% 80.8 83.1 83.8 84.6 87.3 89.6

100% 81.1 83.5 84.6 85.5 87.7 90.2

4.9. Robustness to Occlusion

Referring to the experimental setup in [18], we evaluate the model’s robustness to

occlusion under the NTU-60 CS protocol, categorizing it into two cases: part occlusion

and frame occlusion. We train the models on unobstructed skeleton data and test them

on occluded data. The types of part occlusion are categorized as None, without left arm

(1), right arm (2), two hands (3), two legs (4), and trunk (5). The number of occluded

frames is set to 0, 10, 20, 30, 40, and 50. Tables 8 and 9 demonstrate the superiority

of our method for recognizing skeleton actions under occlusion. Compared with RA-

GCN and PDGCN, which are specifically designed to address skeletal occlusion, our

method still exhibits significant advantages under various occlusion conditions.

We compare the proposed JMSF with the input fusion and post-fusion methods.

In the input fusion baseline, joint embeddings, bone embeddings, and velocity embed-

dings from the three streams are merged into a single stream and input into the skeleton

encoder. In the post-fusion baseline, the three streams are input into the skeleton en-

coder separately, and the final embeddings are summed afterward. As shown in Tables

15-16, under various occlusion conditions, JMSF outperforms both input fusion and

post-fusion baselines while using smaller model sizes for both inference and training.

This demonstrates the robustness of the JMSF in handling occluded skeleton data.
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Table 15: Comparison of results of different methods under part occlusion using the NTU-60 CS

protocol.

Part Occlusion
Occluded Part

None 1 2 3 4 5

ST-GCN [3] 80.7 71.4 60.5 62.6 77.4 50.2

2s-AGCN [31] 88.5 72.4 55.8 82.1 74.1 71.9

3s RA-GCN [18] 87.3 74.5 59.4 74.2 83.2 72.3

STIGCN [39] 88.8 12.7 11.5 18.3 45.5 20.9

MS-G3D [32] 87.3 31.3 23.8 17.1 78.3 61.6

3s PDGCN [40] 87.5 76.0 62.0 75.4 85.0 73.0

SkeleFormer (input) 91.8 81.1 71.9 72.7 82.8 81.6

SkeleFormer (post) 92.1 81.8 72.8 73.1 83.3 82.0

SkeleFormer (JMSF) 93.1 84.2 75.4 76.6 87.1 86.5

Table 16: Comparison of results of different methods under frame occlusion using the NTU-60

CS protocol.

Frame Occlusion
Number of Occluded Frames

0 10 20 30 40 50

ST-GCN [3] 80.7 69.3 57.0 44.5 34.5 24.0

2s-AGCN [31] 88.5 74.8 60.8 49.7 38.2 28.0

3s RA-GCN [18] 87.3 83.9 76.4 66.3 53.2 38.5

STIGCN [39] 88.8 70.4 51.0 38.7 23.8 8.0

MS-G3D [32] 87.3 77.6 65.7 54.3 41.9 30.1

3s PDGCN [40] 87.5 83.9 76.6 66.7 53.9 40.0

SkeleFormer (input) 91.8 82.8 74.5 63.5 50.2 36.6

SkeleFormer (post) 92.1 83.3 75.6 65.1 52.3 38.6

SkeleFormer (JMSF) 93.1 85.0 77.9 67.9 55.5 41.7
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5. Limitations and Future Work

Although Skeleton-Prompt reduces the number of parameters by freezing the back-

bone network, the cross-attention mechanism in the prompt generator introduces addi-

tional computational costs. In real-time scenarios (such as online action recognition),

inference speed may be constrained. In future work, we will adopt Neural Architec-

ture Search (NAS) or knowledge distillation techniques to reduce the computational

complexity of the cross-attention module.

6. Conclusion

In this work, we present SkeleFormer, a novel framework that addresses critical

challenges in skeleton action recognition by leveraging 2D-to-3D pose estimation for

robust pretraining. Our proposed skeleton prompt generator with cross-attention en-

hances model adaptability across datasets, enabling efficient knowledge transfer with

minimal parameter updates. Additionally, the Joint-Enhanced Multi-Stream Fusion

method improves robustness against occluded skeleton data by integrating joint, bone,

and velocity streams through self-attention. While our approach effectively mitigates

issues of scalability and dataset variability, challenges remain regarding the generaliza-

tion to highly noisy or incomplete skeleton data. The lack of large-scale 3D skeleton

datasets also limits broader applicability. Nevertheless, this study demonstrates signif-

icant potential for advancing cross-dataset transfer learning and inspires avenues for

future research. These include expanding datasets, exploring unsupervised or semi-

supervised approaches, and integrating contextual information. Our contributions pro-

vide a robust foundation for researchers and practitioners to refine skeleton-based ac-

tion recognition and extend its applicability to real-world scenarios.
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