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Abstract

The work presented in this thesis focuses on the prospect of detecting
continuous gravitational waves (CWs) from pulsars. It first looks at a
method of obtaining evidence of CWs without the use of gravitational
wave (GW) data. The braking index, n, of a pulsar is a measure of
its angular momentum loss and its value corresponds to various spin-
down mechanisms. For a pulsar spinning down due to GW emission
from the principal mass quadrupole mode alone, the braking index
would equal exactly 5. Unfortunately, for millisecond pulsars, it can
be hard to measure observationally due to the extremely small second
time derivative of the rotation frequency, f . This thesis examines
whether it could be possible to extract the distribution of n for a whole
population of pulsars rather than measuring the values individually.
Simulated data is used with an injected n = 5 signal for 47 millisecond
pulsars and the distribution is extracted using hierarchical Bayesian
inference methods. It is found that while detection is theoretically
possible, observation times of over 20 years and RMS noise on the

order of 107° ms are needed.

Next, a targeted search for CWs from 236 pulsars using combined data
from the second and third observing runs of the LIGO and Virgo
interferometric GW detectors are presented. Searches for emission
from the [ = m = 2 mass quadrupole mode with a frequency at only
twice the pulsar rotation frequency (single-harmonic) and from the
[ =2,m = 1,2 modes frequencies of both once and twice the rotation
frequency (dual-harmonic) are performed using a Bayesian analysis

method. No evidence of GWs is found, so for the single-harmonic



search 95% credible upper limits on the strain amplitudes hy are pre-
sented along with limits on the pulsars’ mass quadrupole moments ()29
and ellipticities €. Of the pulsars studied, 23 have strain amplitudes
that are lower than the limits calculated from their electromagneti-
cally measured spin-down rates. These pulsars include the millisecond
pulsars J0437—4715 and JO711—6830 which have spin-down ratios of
0.87 and 0.57 respectively. For nine pulsars, their spin-down limits
have been surpassed for the first time. For the Crab and Vela pulsars
the limits are factors of ~ 100 and ~ 20 times more constraining than
their spin-down limits respectively. In the dual-harmonic search, new

limits are placed on the strain amplitudes Cy; and Cos.

Finally, a targeted search for CWs from 45 pulsars using the first part
of the fourth LIGO-Virgo-KAGRA observing run is presented. Sim-
ilarly to the previous analysis, searches are performed for the single-
and dual-harmonic emission models for each pulsar using a Bayesian
analysis method. No evidence is found for a CW signal and so 95%
credible upper limits are set on the signal amplitudes, as well as el-
lipticities and mass quadrupoles where applicable. For the single-
harmonic search, 29 pulsars have surpassed their spin-down limits.
The lowest upper limit on the amplitude is 6.4 x 10727 for the young
energetic pulsar J0537—6910, while the lowest constraint on the ellip-
ticity is 8.8 x 1079 for the nearby millisecond pulsar J0437—4715.
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Chapter

This chapter presents useful background knowledge in the field of
gravitational waves and pulsars. Therefore, it contains information

from the literature with references where applicable.

Chapter

This chapter introduces a novel method of retrieving the braking in-
dex from a population of pulsars. It has been published in the Astro-
physical Journal, Hewitt et al.| (2025). The script used for this was
created by me and incorporates Tempo2 (Edwards et al., 2006, Hobbs
et al., 2006a, 2009) to generate fake pulsar arrival times based on
the data from the NANOGrav 12.5-year dataset (Alam et al., 2020
2021)). This data is then modelled using enterprise (Ellis et al.,
2020)) and modified versions of enterprise _extensions (Taylor et al.,
2021) and enterprise warp (Goncharov, [2021) which were created
by Matthew Pitkin (Goncharov et all 2024} Taylor et al., |2024)). The
posteriorstacker python package (Baronchelli et al.,|2020; [Buchner)

2021)) was used to combine the posteriors from each pulsar.



Chapter

This chapter represents part of the paper published in the Astrophys-
ical Journal, Abbott et al. (2022¢). The full paper includes the results
of two additional analysis pipelines performed on high value pulsars
which were analysed and added to the paper by other members of the
LIGO-Virgo-KAGRA Collaboration (LVK) collaboration. Therefore,
those pipelines have been removed from this chapter, leaving only the
Bayesian analysis which was done by me. It should be noted that I
led the paper writing process, with input through reviews from oth-
ers in the LVK. Due to collaboration policy, authorship is given to
the entire collaboration and listed alphabetically on an opt-out ba-
sis. Therefore, although I am not the first author of this paper, this

chapter represents my own work.

The GW strain data used in this chapter is from the LIGO and Virgo
GW detectors which has already been through a cleaning process (Ac-
ernese et al.l 2022; |Davis et al| 2019; Viets and Wade, [2021). Pulsar
timing solutions were derived by the following EM observatories: the
Canadian Hydrogen Intensity Mapping Experiment (CHIME) (Amiri
et al., [2021a), the Mount Pleasant Observatory 26 m telescope, the
42 ft telescope and Lovell telescope at Jodrell Bank, the MeerKAT
project (Bailes et al., [2020)), the Nangay Decimetric Radio Telescope,
the Neutron Star Interior Composition Explorer (NICER) and the
Molonglo Observatory Synthesis Telescope (as part of the UTMOST
pulsar timing programme; Jankowski et al., [2019; |Lower et al., 2020)).
LALSuite (LIGO Scientific Collaboration, 2018)) is used to run the
Bayesian analysis, specifically lalapps_knope (Pitkin et all [2017)
using existing methods as described in the chapter. The tables and
figures used to present the results in this chapter are produced using

a modified version of code created by Matthew Pitkin.



Chapter

This chapter represents part of a paper published in the Astrophysi-
cal Jounal, Abac et al. (2025). Similarly to Chapter , the full paper
includes results from additional pipelines which were performed by
other members of the collaboration and have been removed from this
chapter in order to represent my own work only. Additionally, Luca
D’Onofrio lead the paper writing process. The main body of the pa-
per was written more collaboratively, with paragraphs from different
people being merged during editing. Therefore, I have rewritten this

chapter.

As in the previous chapter, this work uses cleaned GW strain data
from the LIGO detectors with detector calibration performed prior to
data collection. Pulsar timing solutions were provided by Chandra
(Weisskopf et al., 2002)), Fermi-LAT (Atwood et al., 2009)), the Neu-
tron Star Interior Composition Explorer (NICER) (Gendreau et al.,
2012)), the Nancay Radio Telescope (NRT) (Desvignes et al., 2016),
the Jodrell Bank Observatory (JBO), the Argentine Institute of Ra-
dio astronomy (IAR) (Gancio et al., [2020), the Mount Pleasant Ra-
dio Observatory (Lewis et al. 2003), the Five-hundred-meter Aper-
ture Spherical Telescope (FAST) (Smits et al., 2009), and the Cana-
dian Hydrogen Intensity Mapping Experiment (CHIME) (Amiri et al.,
2021b)). The Bayesian analysis was performed using CWInPy (Pitkin,
2022). Figure [1.1] Figure [1.2] and Figure were produced with
a modified version of the code used in the previous chapter. The
analysis comparing the results of this chapter to previous results was

initially performed by Luca D’Onofrio and repeated in full by me.

Chapter

This chapter sums up the work covered in this thesis along with a
discussion of future advancements in the field. Similar to the intro-

duction, this comes from the literature with appropriate references.



“There’s always something to look at if you open your eyes!”

— Doctor Who
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Chapter 1

Introduction

The current state of the field of gravitational wave (GW) astronomy is an ex-
citing one. Since the first GW detection in 2015, each search has resulted in
more detections, allowing us to hear for the first time the hidden mergers of the
most massive objects in the universe. This unique observation window enables
detections of events not possible from electromagnetic (EM) observations alone,
and when coupled with EM detections in a multimessenger event, provides con-
firmation on the sources of both. And, with new evidence pointing towards the
observation of a GW background, new types of GW observations are being re-
alised. Neutron stars (NSs) are significant in both astrophysics and the wider
physics field. Hidden beneath their crusts are potential answers to questions
about the fundamental properties of matter under pressure. By studying contin-
uous GWs (CWs) from pulsars, we may gain insights into the equation of state of
neutron star matter, the dynamics of their interiors, and the mechanisms behind

their spin-down rates.

This chapter will provide an introduction to GW astronomy before giving a
more specific background into the search for CWs from pulsars. Additionally, it
introduces neutron stars and our current understanding of them and how obser-

vations of CWs can help to uncover some of their many mysteries.



1.1 Gravitational Waves

1.1 Gravitational Waves

Newton published his laws of motion and universal gravitation in |[Newton| (1687)),
fundamentally changing our understanding of how objects interact. He identified
that objects with mass attract every other object with a force directly propor-
tional to their mass and inversely proportional to the square of their distance.
He called this force gravity. These laws explained the motion of the planets in
the solar system and of objects on Earth with a single coherent theory. In his
theory of universal gravitation, he assumed that gravity acted instantaneously
regardless of distance.

Centuries later, Einstein’s theory of special relativity (SR) was published (Ein-
stein, [1905)). It relies on two core principles: a) The speed of light in a vacuum is
constant regardless of the motion of the observer or the emitting body and b) the
laws of physics are identical for all inertial (non-accelerating) frames of reference.
From these principles, time dilation and length contraction emerge, rendering the
concepts of absolute space or absolute time meaningless. To replace them, SR
introduces the spacetime interval ds, the spatial and temporal difference between

events in four-dimensional spacetime:
ds® = —c*dt* + da® + dy® + d2* (1.1)

where ¢ is the speed of light; z, y, and z are the spatial coordinates; and ¢
is the temporal coordinate. However, as SR limits the speed of information
transmission to the speed of light, Newton’s previous assumption that gravity
acted instantaneously was no longer consistent. Gravitational information should
travel at the speed of light and the information must be propagated somehow.
Ten years later, Einstein expanded on SR to include accelerating observers
in his General Theory of Relativity (or general relativity, GR) (Einstein, [1915]).
This introduced the equivalence theory which states that gravity is equivalent
to acceleration, allowing for the concept of gravity as a curvature of spacetime.
A straight line across curved spacetime will itself appear curved. These straight
lines through spacetime are called geodesics, and an object not being acted on by

any external force will always follow a geodesic. In a non-uniform gravitational
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field, the curvature of spacetime will cause two geodesics to diverge, the extent of
which defines the curvature of spacetime in that area. This curvature of spacetime
provides a solution to the question of how gravitational information propagates.
As matter and energy move through spacetime, spacetime is warped, causing

waves to ripple out at the speed of light. These are gravitational waves.

1.2 Gravitational Waves from General Relativ-
ity

The Einstein field equation describes how mass and energy curve spacetime using

the Einstein tensor G*,
v I 1 R — m
G = R — —g"' R = 87" (1.2)

Here, natural units are used, so the gravitational constant G = ¢ = 1. The right-
hand side represents matter via the stress-energy tensor T"” which describes the
density and flow of energy and momentum in spacetime. The left-hand side
describes the geometry of spacetime using the Ricci scalar R and Ricci tensor
R* along with the space-time metric g"”. The metric ¢"” broadly represents the
geometry of spacetime. The term R*” describes how the curvature changes due
to mass and energy while R is derived from R*” and gives the degree of curvature.

To understand how a gravitational wave distorts spacetime around two test
masses in the most simple case, the weak field approximation, we first begin with

flat spacetime, represented by the Minkowski metric

~100 0
0 100

=10 010 (1:3)
0 00 1

This is valid for regions of space distant from strong concentrations of matter or

radiation. Using this metric, we can calculate the perturbation of spacetime g,
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due to a small (h,, < 1) perturbation caused by a gravitational wave:

G = N + Iy (1.4)

Through Lorentz transforms, it can be shown that h,, transforms as a second-
rank tensor, allowing for it to be treated separately from 7,,. It can be redefined

as the trace reverse

- 1
h* = hl“’ — 577'wjh. (].5)

The assumption that h,, < 1 allows the non-linear terms in equation ((1.2)) to be

ignored, producing the linear field equation

O = —167TH, (1.6)
where [ is the wave operator
0? 0? 0? 0? 0?
O=—-Vi= - - — - — - 1.7
ot? o2 0x?2  OJy? 022 (1.7)

In free space (a vacuum with no matter or energy), 7" = 0, allowing the simpli-
fication of equation ([1.6)) to

82 2\ puv
o~ V) =0, (1.8)

which is the three-dimensional wave equation describing GWs. For the simplest
plane wave, the solution to equation (1.8]) is

R = A" exp(ik,a"), (1.9)

where A" is the amplitude of the wave and k, is the wavevector. This demon-
strates that small perturbations in spacetime propagate as waves. The next step
is to show the effect a passing GW has on objects by deriving the change in

proper distance between two test masses, as shown in [Schutz (2009).



1.2 Gravitational Waves from General Relativity

We can write N, as

o h/mt hxm hxy hmz
hw = hey b B B | (1.10)
hzt hz:c hzy hzz

which has many degrees of freedom that are not physical for GW perturbations.
In order to simplify it, a transverse-traceless (TT) gauge translation is performed.
This leaves the physical content of the theory unchanged while allowing for con-
siderable reduction in the degrees of freedom. There are two properties of the T'T
gauge. The first is that it is transverse, meaning the perturbations are transverse
to the direction of propagation. Assuming the GW is travelling in the z-direction,
this means perturbations occur only in the z- and y-directions. Therefore, the
terms with a z-component can be set to 0. The TT gauge makes the perturbation
purely spatial, and so the temporal components are also set to 0. The second

property is that the TT gauge is traceless, meaning the trace (hy+hay, +hyy+h..)

equals 0, 50 hy, = —hg,. After this translation, h[}" becomes
0 O 0 0
TTr O h:r:): hmy O
0 O 0 0

which demonstrates that there are only two independent constraints, ALT and
AE;F . Using equation ({1.4]), we can look specifically at g,, which can be simplified

using the fact that 7,, = 1 for flat spacetime as shown in equation (|1.3)) to get:
Goz = Moz + hEL =14 AL (1.12)

To find the proper distance between the two test particles along the z-axis,

we can integrate the square root of the spacetime interval

ol = /\/@. (1.13)
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The spacetime interval in equation (|I.1]) represents flat spacetime. In curved

spacetime, the interval can be written in terms of the metric tensor
ds® = g, datdz”. (1.14)

Since the two particles are stationary (dt = 0) and only separated along the z-axis
(dy = dz = 0), the spacetime interval in equation (1.14]) becomes

ds? = guedr® = (1 + h11)dax?, (1.15)

through the substitution of g,, from equation ((1.12). To obtain the proper dis-
tance dl, ds? is integrated following equation (1.13) and, given the perturbation

is small (h1T < 1), a Taylor expansion can be used to approximate

3 &g 1
51:/ \/1+h£fdx%/ <1+§hf’{) dz, (1.16)
0 0

where ¢ is the initial separation of the two particles. This is evaluated at x = 0,
giving

1
ol ~ [1 + §hfg(m = O)} €. (1.17)

This equation tells us that the change in separation of the two test particles due
to a passing GW is proportional to their initial separation, a fact that is utilised
in the designs of modern GW detectors as discussed in Section [[.3] It also gives
an idea of the scale of the change in proper distance, as h1! is generally on the
order of 1072 or smaller (Schutz, 2009).

This approximation is valid for two test masses which are not acted upon by
any other force. In this case, when observed from the inertial frame of reference
of one of the particles, the effect of a passing GW is like that of a tidal force,
stretching and contracting the proper distance between the particles. For particles
that are not free, the amount their separation is stretched depends on the strength
of the other force(s). In the case of two free test masses and a ruler measuring

their separation, a passing GW would cause a separation of the two masses but
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the ruler; due to the much stronger forces within it, would be barely stretched at
all.

From the two independent terms A2 and hZT in equation (L.11]), we can infer
the two polarisations of GWs. The first is referred to as + (plus) polarisation,
and arises when kLT £ 0 and hfyT = 0. In this case, as the wave oscillates as
hil = —h}l changes sign, the particles will be moved in the z- and y-directions
as shown in Figure [L.1} If, on the other hand, hll = 0 and Al # 0, then the
GW has x (cross) polarisation, and will oscillate at 45° from the + polsarisation.

Finally, it is important to look at what causes the emission of GWs. To do
so, equation (|1.6)) is solved for T* 2 0

82 2\ puv v
<@ - V h“ = 167TT“ y (118)
along with the following assumptions: The time-dependent part of T is sinu-
soidal and the typical source velocity inside the GW source region is much slower
than the speed of light. These assumptions are valid for all but the most extreme
GW sources. The solution to this equation is

6iQ(T—t)
hjr, = —2Q%Dj; , (1.19)
T

where () is the frequency of the sinusoidal fluctuation in T#”, r is the radial
coordinate in the spherical polar coordinate system, ¢ is time, and Dj, comes

from the mass quadrupole moment tensor, defined as (Schutz, 2009):

Im .= /Tooxlxmd3x = D'me 4, (1.20)

Lower order mass moments like dipole and monopole moments do not produce
GWs. A monopole mass moment is the mass itself and a changing mass would
violate the conservation of energy. Equally, the dipole mass moment represents
the momentum of the centre of mass and so changing it would violate the conser-
vation of momentum. Therefore, GW emitters must have some mass quadrupole

moment which represents a deviation from spherical symmetry.
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Figure 1.1 The effect of gravitational waves on a free ring of test particles for plus
h, and cross hy polarisations. (Credit: Zach Mason.)



1.3 Gravitational Wave Detector Design

1.3 Gravitational Wave Detector Design

The two behaviours of gravitational waves that have most influenced detector de-
sign are the change in spacetime interval between two test masses and the trans-
verse nature of the wave. Current ground-based observatories are kilometre-scale
laser interferometers. These utilise high-powered lasers to detect minute differ-
ences in the lengths of their two perpendicular arms by measuring interference
patterns. A simplified description of a GW observatory is that of a laser, split
in two by a beam splitter, where half travels down one arm and the other half
travels down the other. The two beams are then reflected back and recombined.
If the lengths of the two arms are perfectly equal, the two halves recombine con-
structively. If they are off by half a wavelength, they combine destructively, and
no light is seen. Any variation between the travel times of the two beams results
in some light making it into the photodetector. However, as the difference in
length that must be detected in order to observe gravitational waves is on the
order of 1x107' m (smaller than the diameter of an electron) (Svitil et al., 2016)),
intense optimisation is required to reduce noise. Having numerous detectors also
becomes important as it allows for noise in individual detectors to be ruled out

as candidates.

1.3.1 Optimising the Detector

The first problem to be addressed is the length of the arms. As demonstrated in
Section the GW strain h is proportional to the initial length of the arms L
AL
h o —. 1.21
o< (1.21)
Therefore, the longer the arms, the smaller the measurements that can be made.
However, with extremely long arms come more practical limitations to overcome.
The simplest solution is to introduce an additional mirror to each arm near the
beam splitter, so that light can be reflected down each arm around 400 times,
increasing the effective arm length from 4 km to about 1600 km in the case of
LIGO (LIGO Caltech, 2016)), seen in Figure This allows for the laser light to
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Figure 1.2 A simplified diagram showing the setup for Advanced LIGO detectors.
Taken from Nuttall et al.| (2015).

10



1.3 Gravitational Wave Detector Design

travel larger distances without the need to build longer arms. The space between
mirrors also constitutes a Fabry-Perot cavity. Only light which is in resonance
with such a cavity can pass through it. It is important to keep the Fabry-Perot
cavities in resonance with the laser beam to avoid loss of power. This means

ensuring the length of the arms L are related to the laser wavelength \ via

L= 5 (1.22)
where n is an integer. Such changes in arm length can occur from a variety of
sources, such as seismic vibrations, thermodynamic mirror surface fluctuations,
and fluctuations of the laser frequency itself. The length of the arms is controlled
through the Pound-Drever-Hall (PDH) technique. This involves modulating the
laser so that radio frequency (RF) sidebands with frequencies not in resonance
with the cavity are produced and reflected down the arms. Through comparison
of the phase difference between the input and reflected sidebands, deviations from
resonance can be identified and corrected (Black, 2001).

The laser power is also a crucial factor to consider. Higher laser power results
in more photons and sharper interference fringes measured by the photodetector
due to a reduction in shot noise (the statistical uncertainty in the arrival times of
photons at the detector) (Buikema et al. 2020)). Due to the physical limitations
of building lasers of the desired power, the power of the laser beam is increased
using power recycling mirrors. These mirrors sit after the laser and before the
beam is split into the two arms. Any light which has already been through the
instrument will be reflected back into the interferometer by the power recycling
mirror allowing it to be recycled. A similar method can be performed on the
other end of the interferometer, before the photodetector. In this case, it is called
signal recycling, as the signal is reflected back into the interferometer to improve
the broadness of the frequency response (Aasi et al. 2015).

Due to their high sensitivities, current interferometers are limited by quantum
noise, the fluctuation in the electromagnetic field due to the uncertainty in phase
and amplitude required by the Heisenberg uncertainty principle. Shot noise is
caused by phase vacuum fluctuations and is the dominant noise at high frequen-

cies, while amplitude vacuum fluctuations are called quantum radiation pressure
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noise and are dominant at low frequencies. While increasing the laser power
improves the sensitivity at higher frequencies by reducing the shot noise, it also
results in higher quantum radiation pressure noise which reduces sensitivity at
lower frequencies. In order to overcome this, quantum squeezing can be used over
certain frequency ranges. This is the use of the uncertainty principle to restrict
the uncertainty in phase in exchange for larger uncertainty in amplitude and vice
versa. Frequency dependent optical squeezing allows for different types of squeez-
ing at different frequencies, meaning shot noise can be reduced by squeezing the
phase at high frequencies and quantum radiation pressure noise can be reduced
by squeezing amplitude at low frequencies (Ganapathy et al., |2023)).

Additional sources of noise include seismic and thermal noise. Seismic noise
sources can include nearby traffic, trains, earthquakes, and even weather pat-
terns across the continent. In order to reduce the effect of such noise, the optical
components of the interferometer are suspended as quadruple-pendulums. These
suspensions are themselves mounted on larger isolation systems. In addition to
the passive damping provided by the pendulum system, active vibration isolation
is also employed to oppose unwanted vibrations through feedback loops, prevent-
ing the vibrations from reaching the passive suspension system in the first place
(Matichard et al.| 2015). Together, this system of isolated suspension allows the
test masses to be considered as free-falling in the plane of the detector. As the
interferometer is kept in a vacuum, thermal noise predominantly results from
thermal fluctuations within the mirror coating and test mass itself. Construct-
ing the mirrors out of materials with very high quality factors like fused silica
maintains reflectivity and concentrates thermally induced vibrations in a narrow
frequency range that can be designed to be outside the detector sensitivity range
(Harry et al., 2002). Another simple way to reduce the effects of thermal noise is
to increase the mass of the test masses as much as possible. In Advanced LIGO,

each test mass is 40 kg.

1.3.2 Calibration Methods

With the interferometer optimised to detect GWs at the required sensitivities

through the above enhancements, it is then important to ensure the instrument
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is properly calibrated. One important calibration method uses a photon radiation
pressure actuator. This involves using an additional laser reflected off the test
masses. By varying the power of the laser, the recoil of the photons hitting the
mirror can be varied, resulting in known movement of the mirror and consequent
change in arm length. Models of actual GW signals can be constructed and passed
into the detector through these precise movements of the mirrors. The models can
then be compared to the actual interferometer response, allowing for calibration
of the instrument and estimation of uncertainties (Abbott et al., 2017b)). For the
most recent LIGO observing run the strain calibration uncertainty was measured
to be 10% in magnitude and 10° in phase (Capote et al., [2024]).

Additionally, there can be slow changes in the detector response over time,
which must also be accounted for. These can be caused by drifts in the alignment
and thermal state of the optics in the interferometer. To track these changes over
time, modulated excitations are injected into the interferometer arms. These
cause peaks at the modulation frequency which will be affected by any slow
temporal variation. Monitoring changes in the peaks allows for the identification
and subsequent compensation of any temporal variations (Tuyenbayev et al.
2017).

1.3.3 LIGO and Current Gravitational Wave Detectors

The largest and most sensitive GW detectors to date are those of the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO). This consists of two detec-
tors based in the USA: one in Hanford, Washington (H1) and one in Livingston,
Louisiana (L1) (Aasi et al., 2015) operated by the Caltech and MIT LIGO Lab-
oratory via a cooperative agreement with the NSF. They are separated by ~
3000 km, corresponding to a difference in GW arrival time of up to 10 millisec-
onds, which is useful for estimating the direction of the source. Additionally, as
they are separated by a large distance and situated in different climates, they are
subject to different noise while signals will be common in both detectors. Both
observatories are Michelson interferometers with 4 km long arms.

Another crucial GW detector is Virgo, in Cascina, Pisa in Italy (Acernese

et al, 2015)). This is a single Michelson interferometer with 3 km arms which can
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provide even more accurate source location estimations when combined with the
LIGO detectors. It is operated by the European Gravitational Observatory and
funded by INFN (Italy), CNRS (France) and Nikhef (Netherlands).

A second detector with 3 km arms is the Kamioka Gravitational Wave De-
tector (KAGRA) in Hida, Japan (Akutsu et al. 2021). In contrast to LIGO and
Virgo which are all overground interferometers, KAGRA is underground. It is
operated by ICRR, KEK and NAOJ and funded by MEXT (Japan). It was for-
merly known as the Large Scale Cryogenic Gravitational Wave Telescope (LCGT)

due to its use of cryogenic mirrors.

Other notable detectors include GEO600, a 600 m interferometer in Hanover,
Germany operated by German and British LSC institutions and funded by MPG
(Germany) and STFC (UK) (Lueck, 2010). It is often used to test new tech-
nologies and collect data while other, larger, detectors are offline for upgrades
and maintenance. Another two test detectors are in Japan: TAMA 300, a 300 m
detector in Tokyo (Kozai and TAMA-300 Team, 1999) and the Cryogenic Laser
Interferometer Observatory (CLIO), a 100 m detector in Hida (Yamamoto et al.|
2008).

The LIGO Scientific Collaboration (LSC) and Virgo collaboration have been
carrying out joint analyses when joint data is available since 2010. In 2021, KA-
GRA joined to form the LIGO-Virgo-KAGRA Collaboration (LVK). The current
era is the advanced (2nd-generation) detector era, of which there have been four
observing runs so far, as seen in Figure The first observing run (O1) took
place between September 2015 and January 2016 and was purely LIGO. O2 took
place between November 2016 and August 2017 in which Virgo joined for the
final month (Abbott et al., [2019¢)). O3 took place between April 2019 and March
2020 and contained both LIGO and Virgo (The LIGO Scientific Collaboration
et al., 2021) (see Chapter [3| for more details). O4 has been split into multiple
sections, the first (O4a) running from May 2024 to January 2024 as discussed in
Chapter [d Virgo joined in April 2024 and KAGRA aims to rejoin before the end
of O4 (LVK, [2025). For upcoming and planned detectors, see Chapter .
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Figure 1.3 The LVK observing runs during the advanced detector era along with
the detector activity throughout. Grey represents down-times for min-run main-
tainance, while the hashed sections represent unconfirmed activity. O5 is the best
guess and is subject to change. Virgo is currently reassessing its plans for O5.
The value in Mpc represents the estimated range to which the detectors would

detect a binary neutron star merger. Taken from: (2025).
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On the 12th September 2015, the newly upgraded Advanced LIGO observatories,
LIGO Hanford and LIGO Washington, began their first observing period, set to
run until 19th January 2016. Two days later, on the 14th September 2015, the
first GW was detected, named GW150914. An alert was sounded within three
minutes and was independently confirmed by a second online burst search a few
hours later (Abbott et al., |2016bljc,d). It was a transient signal, produced by
the merger of two black holes around 400 Mpc away. The two detectors both
picked up the event within the 10 ms intersite propagation time with a combined
signal-to-noise ratio (SNR) of 24. The event itself lasted less than 0.2 seconds.
The frequency-time signal from both detectors can be seen in Figure [I.4] taken
from |Abbott et al.| (2016a). The observation of GW150914 would win Rainer
Weiss, Barry C. Barish, and Kip S. Thorne the 2017 Nobel Prize in Physics,
demonstrating the realisation of a vision of almost fifty years and kickstarting a
new era of gravitational wave astronomy.

Only two years later, the first multimessenger event to be observed in both
GW and EM was observed. The GW event GW170817 was observed on the
17th August 2017 at 12:41:04 UTC, the first observation consistent with a bi-
nary neutron star merger (Abbott et al. 2017c). Only 1.74 seconds later, the
gamma ray burst (GRB) GRB 170817A was observed independently by both the
Fermi Gamma-ray Burst Monitor (Fermi-GBM, (Goldstein et al., [2017) and the
Anti-Coincidence Shield for the Spectrometer for the INTErnational Gamma-Ray
Astrophysics Laboratory (INTEGRAL, |Savchenko et al., 2017). This temporal
offset between the GW and photon arrival times had major implications on funda-
mental physics: from constraining the difference between the speed of gravity and
the speed of light, to placing new limits on the violation of Lorentz invariance, to
constraining the Shapiro delay between gravitational and electromagnetic radia-
tion. The multimessenger observation also confirmed that neutron star mergers
are the progenitors of short gamma-ray bursts (Abbott et al., 2017c|). Currently,

this is still the only multimessenger observation involving GWs.
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Figure 1.4 The GW event GW150914 observed by the LIGO Hanford (H1, left
column panels) and Livingston (L1, right column panels) detectors. Top: the
observed strain, with the L1 signal being flipped and shifted before being overlaid
with the H1 signal for comparison. Upper middle: the numerical relativity result
for a system with parameters consistent with those calculated for GW150914.
The two shaded areas are the 90% credible regions for two independent waveform
reconstructions. Dark grey shows the model of the signal using binary black
hole template waveforms while the light grey model calculates the signal as a
linear combination of sine-Gaussian wavelets. Lower middle: the residuals after
the numerical relativity waveform is subtracted. Bottom: the time-frequency
representation of the strain data. Taken from: |Abbott et al.| (2016a)).
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1.4.1 Transient Gravitational Waves

Both of these detections, and all detections from LIGO to date, are transient
signals. These are GW emissions from massive events which are only detectable
for brief periods of time (on the order of 0.1 - 100 s). In the years following
GW150914, hundreds of these GW signals have been detected by the LVK col-
laboration (Abbott et al.; 2023)), all of which have been produced by inspiral and
subsequent mergers of compact objects. Transient GWs from compact binary
coalescences (CBCs) are characterised by increasing frequency and amplitude as
the two objects spiral into each other. At the moment of merger, the frequency
and amplitude peak, followed by a subsequent ring down, as seen in Figure [1.4]
When shifted into an audible frequency, these GWs sound like a chirping sound,
hence their nickname ‘chirps’.

The compact objects involved in transient GW events have involved either
neutron stars or black holes. They have been observed in all configurations,
including neutron star-neutron star, neutron star-black hole and black hole-black
hole mergers. The graphic in Figure shows all announced GW detections up
until the end of O3. Also included are the masses of neutron stars and black
holes which have been observed through EM observations. They provide a sense
of scale for the types of objects being detected through GWs.

As can be seen from Figure[1.5] the majority of compact objects being detected
are black holes, with many of them being more massive than those observed
through EM observations. A number of neutron stars have been detected as both
primary and secondary objects (Abbott et al., 2021b,d). Some compact objects
have been detected in the observed mass gap between the most massive neutron
stars and the least massive black holes to have been observed in the galaxy. This
gap may be due to observational bias or due to fundamental physical constraints
on the formation of compact objects of this mass range. New observations of mass
gap objects can provide clues towards the formation and evolution of compact
objects as they challenge current models. These mass gap objects have been
involved in the transient events as both the remnants and as the secondary objects
(Abbott et al., 2017e| [2020allc). Recently, the merger of a neutron star and an

intermediate mass object has been detected. This is most likely to be a low
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Figure 1.5 The masses of announced GW detections up to and including O3 that
have a probability of astrophysical origin greater than 0.5. For each event, the pri-
mary and secondary objects are represented with arrows indicating the remnant.
The z-axis is meaningless and events have been placed in an aesthetically pleas-
ing way. The y-axis shows objects’ masses. Also included are neutron stars and
black holes which have been observed via EM observation. Credit: LIGO-Virgo
/ Aaron Geller / Northwestern University.
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mass black hole due to the stricter upper limit on neutron stars. Furthermore,
neutron stars have a non-zero tidal deformability compared to zero for black holes.
Analysis of the mass gap object found its tidal deformability to be consistent
with a black hole (The LIGO Scientific Collaboration et al.,2024). Observations
of these rare mass gap objects provide valuable insights into the population of

compact objects and provide updated estimates for merger rates and populations.

1.4.1.1 Searches for Transient Gravitational Waves

Transient events cannot be predicted and, in order to increase the likelihood of
a multimessenger observation through simultaneous EM observations, real-time
alerts are desired. Therefore, transient searches are performed in two modes: on-
line and offline. The online searches are performed with low-latency and provide
public alerts within minutes of a possible detection. The offline search is then
performed in the following days using updated data quality and calibration to
improve the detection confidence and develop an astrophysical interpretation.

There are two methods of extracting a GW signal from data. The first method
uses a database of CBCs and compares the data to the templates to identify
matches. These templates cover the parameter space defined by the two com-
ponent masses of the compact binary and their dimensionless spins. It covers
systems with total masses ranging from 2 Mg to 758 My and spins ranging from
0 (non-spinning) to 1 (the Kerr limit (Reynolds, 2021) at which a singularity
would have no event horizon, which is forbidden). The second method does not
assume any waveform template and instead searches coherently for transient sig-
nals across multiple detectors. Both methods can be used to rapidly identify
signals in the online search and be used to reconstruct signals and estimate their
significance during offline searches (The LIGO Scientific Collaboration et al.|
2021)).

1.4.2 Stochastic Gravitational Waves

While transient GWs have become commonplace, they are no longer the only

type of GW with compelling observational evidence. Searches for a stochastic
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GW background have been performed using ground-based GW detectors, how-
ever these have not resulted in any detection (Abbott et al. 2021f). Instead,
success has been seen through pulsar timing arrays (PTAs). Recently the inde-
pendent collaborations of the North American Nanohertz Observatory for Gravi-
tational Waves (NANOGrav) (Agazie et al., 2023), a joint European-Indian effort
(EPTA/InPTA) (EPTA Collaboration and InPTA Collaboration et al., 2023),
the Chinese PTA (Xu et al., 2023), and the Parkes PTA in Australia (Reardon
et al., 2023)) all reported evidence of the stochastic GW background (GWB). A
large contributor to the potential GWB observed through PTAs are supermassive
black hole binaries (SMBHBs) which occur after mergers of galaxies in hierarchi-
cal structure formation when the two SMBHs eventually fall into each other and
form a binary. These binary systems will emit GWs similarly to the compact
binaries discussed in Section (McWilliams et al., [2014). Potential sources
of the GWB that could be detected using interferometric detectors would pro-
duce GWs at higher frequencies and may have origins such as cosmic strings or
phase transitions in the early universe (Christensen, 2019), allowing us to observe
events that occurred even earlier than what is possible through observations of
the cosmic microwave background radiation (CMBR), which is restricted to the

time of last scattering (Domenech| 2021)).

1.4.2.1 Pulsars as Gravitational Wave Detectors

PTAs depend on the precision of pulsars as natural clocks. Their spin period and
its derivative remain stable and predictable, barring any glitches (refer to Section
and timing noise (refer to Section . However, one source of timing
noise are GWs themselves. As pulsar signals traverse space on their way to Earth,
they can be distorted by GWs passing through the same region of spacetime. This
distortion is correlated among signals from different pulsars, based on the GW’s
form and direction. However, in the case of the GWB, the signal could not be
detected as a distinctive phase-coherent signal like an individual GW as, while
the Earth term of the observed signal would be coherent due to signals arriving
at the same time, the individual GW signals from the SMBHBs sources would

be incoherent. Instead, the GWB is observed across multiple pulsars as excess
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low-frequency residual power with consistent amplitude and spectral shape (Pol
et al., 2021; Romano et al., [2021)).

To verify the signal, the consistent amplitude and spectral shape is not enough,
as this could be caused by other effects such as intrinsic pulsar processes of a
similar amplitude (Goncharov et al., [2022)) or common systematic noise like clock
errors (Tiburzi et al. 2016). Hellings and Downs (1983)) derived that, for an
isotropic GWB, the correlation between the timing delays of any two pulsars is a
universal, quasi-quadrupolar function of their angular separation in the sky. This
behaviour is used to confirm the GWB signal in |Agazie et al.| (2023).

1.4.3 Continuous Gravitational Waves

The form of GW focused on in this thesis is the continuous gravitational wave
(CW). These are characterised by a steady frequency and amplitude in the ob-
servable frequency range of detectors for an extended period of time. They are
generally emitted by long-lived periodic motion. In particular, a promising source
of CWs are neutron stars (NSs, see Sections to for more information). As
discussed in Section[I.2] a changing mass quadrupole will result in the emission of
GWs. This is characterised by some changing deviation from spherical symmetry
about the centre of mass, typically as a result of rotation or the orbit of a binary
system (Mirasola et al| 2024). In the case of an isolated NS, this asymmetry
could manifest in a variety of ways. One is that of solid deformations, such as
mountains on the crust. These can be produced during cooling (Ushomirsky et al.|
2000)), form as a result of binary accretion (Gittins and Andersson) 2021b), or
due to strong magnetic fields (Bonazzola and Gourgoulhon, |1996; |Cutler, 2002).
These ‘mountains’ are only millimetres tall for a typical NS with a radius of 10
km (Gittins, 2024)), as the crust will crack under anything tallerﬂ A common
way of quantifying the solid deformation of a NS is through its ellipticity.
Another mechanism behind potential CWs from neutron stars is through os-
cillation modes. In particular, r-modes are unstable to GW emission and are
therefore considered the most likely oscillation for observable CW emission (An-

dersson), 1998} |Friedman and Morsink, 1998). These modes are analogous to

!The maximum height depends on the equation of state, see Section
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Rossby waves on Earth which are caused by the Coriolis force (an inertial force
which acts on objects in motion from a rotating frame of reference) and pressure
gradients. On neutron stars, r-modes are fluid modes for which the restorative
force is the Coriolis force. These oscillations are able to reach amplitudes such
that the emitted CWs are potentially observable (Haskell, |2015)).

An advantage of CWs rather than transient GWs is that observations can be
stacked up over time to increase the signal-to-noise ratio. The signal will also be
present in historical data, allowing for verification without needing to compare
results from multiple detectors. However, no evidence of CWs has been detected

to date. There are three main types of searches for CWs:

1.4.3.1 All-sky Searches

All-sky searches look for CW signals from EM-silent sources in all sky directions
over a broad range of frequencies and rotational parameters (e.g., |Abbott et al.|
2018, 2019al 2021al, 2022¢; Dergachev and Papay, [2020; [Steltner et al., 2021} 2023)).
This large parameter space is computationally expensive and less sensitive than
other searches due to a higher trials factor. The trials factor is a quantification
of the ‘look-elsewhere effect” which is a statistical phenomenon where apparently
significant results can be caused simply by large parameter spaces or repeat mea-
surements.

All-sky searches are not limited to signals from deformed neutron stars. In
addition to expected alternative sources like compact binaries in stable orbits
(Singh et al., |2019) and scalar boson clouds surrounding spinning black holes
(Abbott et al., 2022d)), it therefore allows for the discovery of unknown or un-
expected sources. All-sky searches use multiple semi-coherent analysis methods
with hierarchical follow-up. This involves breaking the data into smaller sections
and regions of parameter space and running jobs in parallel in order to improve
computation time. The Einstein@Home project (Einstein@Home, 2005) uses the
idle time of volunteers’ computers to perform these searches, proving greater com-
putational power and allowing for more sensitive searches, such as the coherent
search of the whole dataset used in the final hierarchical analysis step in [Steltner
et al.| (2023).
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1.4.3.2 Directed Searches

Directed searches look for signals from small sky locations with high probabilities
of containing neutron stars, such as supernova remnants and the galactic centre
(e.g., Abbott et al., 2021¢|, 2022byf; [Lindblom and Owen, 2020; Liu and Zou,
2022; Papa et al| [2020; [Piccinni et al.| [2020). They usually focus on a single area
of interest rather than whole populations and are therefore less computationally
expensive and more sensitive than all-sky searches. Like all-sky searches, directed
searches are generally semi-coherent, with data divided into segments which are
processed and then incoherently combined without taking the signal phase into
account. They also usually use a hierarchical approach to perform follow-up
analyses on potential signals. As they search a large parameter space within
a specific sky region, directed searches can also be valid for CWs from binary
systems and boson clouds (Abbott et al., 2022f).

1.4.3.3 Targeted Searches

Targeted searches look for signals from pulsars whose timing solutions can be
calculated from known rotation phases and spin-down rates using fully-coherent
methods (e.g.,|Abac et al.; 2025; |/Abbott et al., 2017a; [2019b, [2020b, |2021¢, [2022¢;
Ashok et al [2021; Nieder et al., 2019, |2020)). By assuming that the GW phase
evolution follows the EM solution, the parameter space can be reduced to the un-
known signal amplitude and orientation. This allows for less computational cost
and higher sensitivities but relies on the assumed source parameters. A subset of
targeted searches aims to account for small deviations from the observed values
by relaxing the assumption that the GW evolution follows the EM. In this case,
the search is performed in a narrow band around the frequency and spin-down
rate. These are referred to as narrowband searches (e.g., Abbott et al., 2017d}
2019d, 2022a). However, because this decreases the sensitivity and increases the
computational cost, these are often performed on fewer, specific targets.

As discussed in Section[3.1.2] an isolated triaxial pulsar emitting CWs through
rotation will emit GWs at twice their rotation frequency fio;. Therefore, targeted
searches look for signals at the 2 f,,; harmonic in ‘single-harmonic’ analyses. Ad-

ditionally, GW emission at f,.; is possible due to certain mechanisms, in which
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1.4 Gravitational Wave Searches

case emission would be seen at both f.o and 2f,, (Jones, 2010). Searches at
both harmonics are referred to as ‘dual-harmonic’ searches.

The analyses in Chapters [3] and [4] are regular (not narrowband) targeted
searches using a time-domain Bayesian method. Bayesian analysis is introduced
in Section[I.4.3.4 and the targeted Bayesian search method is described in [Abbott
et al| (2019b) and repeated in Chapter B There are additional analysis pipelines
which run alongside the Bayesian analysis which are not discussed in the later
chapters but are included in the corresponding papers |Abbott et al.| (2022¢) and
Abac et al| (2025) along with a narrowband search. In both cases, the additional
pipelines provide increased robustness and an opportunity for cross-validation of
potential signals. They will be briefly described here.

The 5-vector method is a frequentist approach derived in (Astone et al.,|2010)).
This means the significance of a candidate signal is characterised by the p-value:
the probability of obtaining a larger statistical value from noise only. This is
achieved using off-source frequencies as background noise. The 5-vector method
involves splitting the frequency of the expected CW using the Earth sidereal
motion (movement with respect to the stars) into a central peak and four side-
bands at +1f; and £2f; where fg is the Earth’s sidereal frequency. Then,
matched filters for the + and x GW harmonics are applied to obtain a detection
statistic for which the p-value is calculated. The 5-vector method cannot easily
be applied to the dual-harmonic emission model, which is more complicated than
the single-harmonic model. Instead, a search at only f,; is performed in the
dual-harmonic search. This is consistent with a pulsar with a biaxial moment of
inertia and an angle between its symmetry and rotation axes (Jones|, 2010). The
5-vector method is also used in narrowband searches (Astone et al. 2014).

The F/G/D-statistic method uses the heterodyned data used in the Bayesian
method (see Section for details on the heterodyne steps in the Bayesian
method) to obtain the F-statistic derived in [Jaranowski et al. (1998)), the G-
statistic derived in Jaranowski and Krolak| (2010), and the D-statistic derived in
Verma| (2021)). Which statistic is used depends on the known parameters of the
search. When amplitude, phase, and polarisation are unknown, as in most cases,
the F-statistic is used. When polarisation is known but amplitude and phase are
unknown (as in searches with restricted priors described in Section [3.2.2)), the
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1.4 Gravitational Wave Searches

G-statistic is used. The D-statistic is used to search for dipole radiation from
Brans-Dicke theory, a competitor to GR with a varying gravitational constant G,
which would produce an additional scalar polarisation of the GW. The statistics
are calculated for each detector separately and then combined incoherently by
adding the respective statistics. A signal is considered to be detected if any of
these statistics surpass a threshold for acceptable false alarm rate (FAR), which is
generally a probability of 1%. All methods described in this section can set upper
limits on the GW signal amplitude in the absence of a signal. A comparison of
the 5-vector and F-statistic methods can be found in |D’Onofrio et al. (2024) and
a review of targeted, directed, and all-sky methods and previous searches can be
found in [Tenorio et al. (2021).

1.4.3.4 Bayesian Statistics

Bayesian statistics provides a robust method for calculating the probability of
a hypothesis given some prior belief and observed data, and is used throughout
this thesis. Fundamentally, it computes the posterior probability using Bayes’

theorem:

p(d|d, H)

PO = ar)

p(0|H), (1.23)

where p(0|d, H) is the posterior probability distribution on the parameters 6 that
define hypothesis H, given the observed data d, p(d|6, H) is the likelihood function
of the data, p(8|H) is the prior probability distribution for the model parameter
given hypothesis H, and p(d|H) is the evidence for the data given the model
hypothesis.

The model evidence P(d|H) is given by:

P(d|H) = /P(d!@,H) -P(0|H) do, (1.24)
where 6 represents the parameters of the model. For models with multiple param-
eters, this can be difficult to solve analytically, and therefore is often estimated

numerically via methods like nested sampling algorithms, which explore the pa-

rameter space to estimate the evidence and posterior distribution.
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When comparing two hypotheses, H; and H,, the odds ratio O3 can be

computed as
_ P(d|H) P(Hy)

%= PUdlH) PO

(1.25)

which describes how much more likely the data are under one hypothesis than
the other, adjusted for prior beliefs. When the two models have equal prior
probabilities, P(H;)/P(Hs) = 1, and the odds ratio reduces to the ratio of the
model evidences P(d|Hy)/P(d|Hs), also known as the Bayes factor (Pitkin et al.|
2015). This odds ratio allows for comparisons between different models, such
as those used in Section to compare models with different pulsar braking
indices, and Chapters |3 and {4] to calculate the ratio of a coherent GW signal

versus incoherent noise.

1.5 Neutron Stars

Neutron stars (NSs) are small, dense stellar remnants formed when stars with
initial masses of over 9 My can no longer support themselves via nuclear fusion
and collapse via a core-collapse supernova (Heger et al., [2003)). If the mass of the
remnant is not sufficient to overcome the Chandrasekhar limit, it can support it-
self via electron degeneracy pressure, a quantum mechanical effect where fermions
(in this case electrons) cannot occupy the same quantum state as one another
(Shapiro and Teukolsky, [1983)) and results in a white dwarf star. However if the
mass is sufficient, high temperatures and pressures allow for electrons to combine
with protons to form neutrons through electron capture (Chandrasekhar) (1931)).
This leaves a remnant made of neutrons, hence the term ‘neutron’ star. At this
point, the collapse is halted by neutron degeneracy pressure which relies on the
same fermionic behaviour as electron degeneracy pressure (Bombaci, |1996). How-
ever, if the core still has sufficient mass, it can overcome this pressure and collapse
indefinitely, resulting in a black hole. These mass requirements during formation
enforce a range of masses of the NSs themselves. Any less than ~ 1.44 M and
they would have become a white dwarf. Any more than ~ 3 My and they would
overcome neutron degeneracy pressure and become a black hole (Kalogera and
Baym, (1996)).
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1.6 Observing Neutron Stars as Pulsars

There are various conditions under which a NS is created. For less massive
stars (those under 10 M) they must be created through O/Ne/Mg core collapse
rather than the iron core collapse which can create neutron stars from progenitors
with higher initial mass. At the other end of the mass spectrum, stars which
are very high in metallicity can lose their hydrogen envelope during supernova
explosions, leading to enough mass loss to result in neutron stars rather than
black holes even when the initial mass is over 25 My, (Heger et al., [2003)).

These massive objects are compacted into a radius on the order of tens of
kilometres. This, coupled with the fact that they are at stellar distances from
Earth, make it difficult to resolve the NS itself via EM observations. Although
neutron stars were theorised by Walter Baade and Fritz Zwicky as early as 1934
(Baade and Zwicky, 1934])), they were not discovered until Jocelyn Bell and Antony
Hewish identified a uniquely periodic radio ‘pulse’ (that they jokingly suggested
might be due to ‘little green men’) in 1968 which became the discovery of the
first ‘pulsar’ (Hewish et al., |1968).

1.6 Observing Neutron Stars as Pulsars

The precise mechanisms behind these pulses are unknown. However, the following
is a broad description. When the progenitor star undergoes a supernova explosion
and its radius decreases from millions of kilometres to tens of kilometres, its
angular momentum is conserved. This leads to rotational frequencies in the range
of tens to hundreds of hertz. Consequently, the surface of the neutron star can
achieve relativistic speeds. The magnetic field of the star rotates at the same
speed. Plasma near the neutron star is caught in the magnetic field and must
rotate with it. At a certain radius, the plasma would need to be rotating at the
speed of light to corotate with the pulsar. The region in which this happens is
called the light cylinder. Field lines within the light cylinder remain open, no
longer being closed lines which loop back into the pulsar. Particles which are
travelling along these field lines at relativistic speeds will emit radiation in their
direction of movement. This causes beams to be emitted from a certain radius

above the surface and aligned with the direction of the open field lines (Goldreich
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1.6 Observing Neutron Stars as Pulsars

and Julian, 1969). These are the radio beams which Bell and Hewish observed
and remain the defining characteristic of pulsars.

Another factor which is important for generating the observed pulsar beams
is their strong magnetic fields. During the core collapse, the magnetic field is
compressed into a much smaller volume. This increased density of magnetic flux
strengthens the magnetic field. The high rotation speeds can also cause magnetic
currents in the conductive pulsar fluid, increasing the field strength through the
dynamo effect. Magnetic field strengths of ~ 10'2 G are typical for radio pulsars
and ~ 108 G for the faster spinning millisecond pulsars (MSPs) (Mukherjee et al.|
2015). These values can be estimated using the pulsar spin-down rate (described
in Section by assuming that all the loss of angular momentum is due to
magnetic dipole breaking (Kim et al., [2023). For MSPs, strong surface fields also
results in observable cyclotron radiation in their X-ray spectra (Staubert et al.|
2019).

1.6.1 Spin-Down

The spin-down rate of a pulsar is not only used to estimate their magnetic field
strength. By observing pulsar timings over extended periods, we can learn a lot
about their lifecycles. From the moment of their creation, their rotation frequency
decreases at a predictable rate due to loss of angular momentum. There are mul-
tiple potential causes of this loss of momentum, or ‘spin-down’, with magnetic
dipole radiation being generally considered the dominant cause. However, as de-
scribed in Section [1.4.3] pulsars are also expected to emit gravitational radiation,
which would in turn contribute to the loss of angular momentum.

The spin-down rate can also be used to estimate the pulsar age. In this case,
we refer to a characteristic age 7, as it is only an approximation of the pulsar’s

true age. First, we assume that the energy loss of a pulsar can be modelled as
P =kp*™, (1.26)

where P and P are the pulsar rotation period and its derivative, & is a constant,

and n is known as the braking index (Jiang et al., 2013). Rearranging this
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equation gives
dpP

T kP

which, when integrated with the limits P and Fy, gives the following expression

1— (%)H] , (1.28)

where P, is the rotation period at the time of NS formation t,. We can assume

dt (1.27)

for characteristic age 7,

P
T=—

(n—1)P

that P > P, as the pulsar spins down over time, which allows the equation to be

simplified to
P

(n— 1)]5’

T =

(1.29)

in the rest frame of the observer.

For a pulsar losing angular momentum due to magnetic dipole radiation alone,
this corresponds to a braking index of n = 3 (see Section which gives
T = P/QP. However, as the focus of this thesis is GWs from pulsars, it is
more interesting to consider a pulsar whose spin-down is caused by GW emission
alone. These theoretical pulsars are referred to as gravitars and have a braking
index of n = 5 if the GW emission is caused by ‘mountains’ on the pulsar sur-
face as discussed in Section [1.4.3] (r-modes result in n = 7), therefore giving a
characteristic age of 7 = P/4P. This is discussed in more detail in Chapter

However, pulsars are also able to gain angular momentum during their life-
times. Indeed, a significant fraction of pulsars (~ 10%) have periods shorter than
10 milliseconds, which is far shorter than the expected period at birth of ~ 40
ms (van der Swaluw and Wu, [2001)). These frequencies can also correspond to
characteristic ages older than the universe itself. The first millisecond pulsar to
be observed was B1937+21 in 1982 with a period of 1.558 ms (frequency of 642
Hz) (Backer et al., [1982)). This was also the fastest pulsar before the observation
of J1748-2446ad in 2004 which has a frequency of 716 Hz (Hessels et al. 2006).
There must be processes through which these millisecond pulsars can be spun up.
Pulsars in close binary systems which accrete matter from their companion can

gain angular momentum and become ‘recycled’ pulsars. These pulsars can be in
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a binary system with a Sun-like star from their formation or, when in globular
clusters where stellar density is high, old pulsars can interact with regular stellar
binaries to kick one star out and begin accretion of the remaining star once it

evolves into a red giant (Bhattacharya and van den Heuvel, [1991)).

1.6.2 Pulsar Timing Model

As most pulsar properties are derived from radio pulse observations, measuring
them with accuracy is vital. In most cases, the individual pulses observed from a
pulsar are very weak. For very bright pulsars, individual pulses may be observed,
but there are still a variety of effects which cause slight variations on the pulse
time of arrival (TOA) and the strength of the signal. Therefore, to account for
these issues, hundreds of pulses are integrated together. This creates an integrated
pulse profile which is then extremely consistent over time even when individual
pulses are not. This stability allows for pulsars to be used in the pulsar timing
arrays described in Section [1.4.2.1]

The process of obtaining TOAs using an integrated pulse profile is summarised
as follows: First a mask is applied to the data to remove radio frequency inter-
ferences (RFIs). Then, individual pulse observations are folded with respect to
their frequency to obtain a high signal-to-noise ratio template of the shape and
features of the pulse. These folded profiles are then compared to new observations
to obtain the precise moment that each pulse reaches Earth.

The TOAs are used to fit the parameters that define the phase evolution ¢(t)

of the pulsar, which is well described by a Taylor expansion:
1. , 1 5
¢(t) = ¢0+frot(t_t0)+§fr0t<t_t0> +6fr0t(t_t0) +, (130)

where t; is the reference epoch and ¢ is the phase at £y, and fo, frot, and fmt are
the pulsar rotation frequency and frequency first and second derivatives respec-
tively. However, there are many mechanisms which introduce noise, complicating
this process.

A crucial step in determining pulsar timing parameters is the transformation

from observed arrival time to emission time, which is performed by the commonly
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used pulsar timing package TEMPO2 via the following equation (Edwards et al.|
20006)):
P =19 Ay — A — Ag, (1.31)

where Ag accounts for delays due to propagation through the solar system and
the conversion to the solar system barycentre (SSB), Ajs accounts for delays
due to propagation through interstellar space and the conversion to the binary
barycentre (BB), and Ap contains delays due to any binary companion. Each
term is a combination of various effects:

The solar system delay Ay includes:
A@:AA+AR@+AP+AD@+AE@+AS@, (132)

where A4 is the atmospheric propagation delay due to a different speed of light
in the atmosphere, Agy is the Roemer delay from the distance between Earth
and the SSB, A, is the annual parallax, Apg is the Solar system dispersion due
to the electrons in the solar wind, Ags is the Einstein delay due to time dilation
in the solar system, and Agg is the Shapiro delay due to the passage through
curved spacetime in the solar system.

The Ag term is

Ars = Ayp + Arsp + Arpp + Ags (1.33)

where Ayp is the vacuum propagation delay caused by secular motion such as
proper motion, radial velocity, and acceleration (like the Shklovskii effect), Agp
is the interstellar dispersion delay, Arpp represent the frequency-dependent prop-
agation delays, and Agg is the Einstein-like time-dilation due to relative motion

between the SSB and BB.

Finally, for binary systems Ag is included:
Ap = Agrp + Aap + A + Agg, (134)

where Agg is the Roemer delay due to binary orbital motion, Aap is the aberra-
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tion of the radio beam by the companion, Agg is the Einstein delay due to the

binary, and Agg is the Shapiro delay due to the binary.

1.6.3 Timing Noise

The timing model as described in Section predicts the exact times that each
pulsar pulse should be observed on Earth based on the pulsar’s fitted parameters.
The difference between the predicted TOA and the observed TOAs is called a
residual:

Residual = TOA jpserved — TOAexpected (1.35)

For a perfectly modelled pulsar and observation instrument, these residu-
als will be zero. However, unmodelled processes will appear as some identifi-
able feature. These can be classified into two types of noise, red and white.
White noise is independent between observations and generally caused by un-
modelled instrumental errors and pulse jitter intrinsic to the pulsar (Liu et al.
2011 Parthasarathy et al.| 2021)). Red noise is time-dependent and appears over
longer timescales. This type of irregularity is termed ‘timing noise’ and is seen
as a random walk in phase, frequency, or frequency derivative away from the
regular spin-down as described in Section . In equation , the fmt term
is the most affected by the timing noise. Timing noise is strongly correlated to
the spin-down rate and therefore shows up most clearly in younger pulsars with
higher spin-down rates. The Crab pulsar, which is the one of the youngest known
pulsars, experiences larger timing noise compared to other pulsars. Although
MPSs experience less timing noise than other pulsars, it can still be of significant
consideration when it comes to using them in PTAs like those discussed in Section
4211

The root-mean-square (RMS) of the timing residuals is commonly used as a
measure of their overall variation and therefore represents the timing precision
achieved for a given pulsar. It can be influenced both by intrinsic timing noise
sources and observational limitations such as the cadence of observations and

instrument sensitivity. This is discussed in more detail in Chapter 2] The RMS

33



1.6 Observing Neutron Stars as Pulsars

value can be calculated from a set of residuals using:

RMS = (1.36)

where N is the number of residuals and r; is the i-th residual. The signal-to-noise
ratio for a single pulse profile can then be calculated from the pulse profile RMS

noise values and the peak pulse amplitude A;,

A
S/N. = . 1.37
/N == (1.37)
When combining N individual pulse profiles into a folded profile, ((1.37)) can then
be extrapolated to find the signal-to-noise for the folded pulse profile:

S/N = i (1.38)

inUiQ’

which gives a S/N o< v/N scaling relation when all pulses are the same (Liu et al.,
2011).

Additionally, there is a similar relationship between the white RMS noise of a
pulsar and the number of observations of that pulsar, such that RMS o< v/Nopys
where N,y is the number of timing observations. However, as red noise begins to
dominate at longer observation lengths, a ‘time factor’ can be defined to specify
the limit to which increasing the number of timing observations (with a fixed

cadence) improves the RMS noise. This can be calculated as
o2
Time Factor = —2 (1.39)
0-7'

where o is the unweighted RMS of timing residuals and o, is the level of red
noise (Perrodin et al., 2013). This gives the factor by which the number of
observations can be increased without the residuals becoming dominated by red
noise. However increasing the number of observations through a higher cadence

does not have this limitation in the same way, as it increases the number of
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observations without increasing the timing baseline.

The type of timing noise is relevant for the detection of CWs from pulsars.
An early look into this effect is considered in |Jones (2004). If the region of
the star responsible for GW emission is strongly coupled to the region of the star
producing the EM pulses, then both signals will exhibit the same phase wandering
due to timing noise, such that the GW phase residuals A®gw and the EM phase
residuals A®gy are equal. However, if the coupling is imperfect, this may not be

true, and Jones defines the ratio between the phase residuals as

. A(I)GW
 Adpy

« (1.40)
On short timescales, it is expected that the EM and GW emitting parts of the
pulsar are coupled, giving @ = 1. On the other hand, if sources of the timing
noise are processes in the magnetosphere and therefore above the surface of the
pulsar, this would not cause any residuals in the GW phase, leading to a = 0. A
third scenario involves weak, random exchanges of angular momentum between
the GW emitting and EM emitting parts of the pulsar. In this case, conservation

of angular momentum leads to

This can be integrated twice and rearranged to find

o= —Jew (1.42)

Iow’
where [ is the relative moment of inertia of the emitting part. For example, if
the EM emission is produced in the crust while the GW emission comes from a
superfluid core, a typical value for a would be ~ —0.01.
Jones| (2004) found that, under the assumption that o = 1, timing noise
must be accounted for in the case of younger pulsars (like the Crab) in order to
detect CWs emitted from them. With sufficient measurements, it is possible to

account for such timing noise by including higher order terms in equation (|1.30)).
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For the Crab pulsar this means going up to the 12th order term (Abbott et al.,
2019b). In other cases, multiple sinusoidal harmonics can be fit to the timing
noise in the arrival times during a process called ‘harmonic whitening’. This
means obtaining the residuals after fitting up to the fo; term and then fitting
the harmonic sinusoids to them. The fundamental frequency can be specified or
derived from the time-span of the data (Hobbs et al., 2004} |2006b)). The curve
produced by the sum of these curves is removed from the residual to obtain mostly
white noise.

While the origin of red timing noise is still largely unknown, some processes
which contribute to it have been identified. Pulsars may have unknown compan-
ions with which they interact, causing features not included in the model (Pitkin
and Woan, 2007)). Additionally, the density of the interstellar medium (ISM) can
change as the line of sight between the pulsar and Earth shifts, causing variations
in the dispersion of the pulse (You et al. 2007). Even GWs themselves, such as
the stochastic GW background, can disrupt the pulsar signal, leading to red tim-
ing noise (Hellings and Downs, [1983). On the other hand, timing noise may be
random unknown processes, such as micro-glitches (see Section [1.6.4)) (Cordes
and Downs|, 1985)).

1.6.4 Glitches

While micro-glitches may contribute to timing noise, regular glitches deserve their
own classification. Despite having very predictable timings, pulsars can occasion-
ally experience random ‘glitches’ where the rotation frequency suddenly increases
before slowly returning to a stable frequency. Figure shows the location of all
glitching pulsars as of September 2022 on a P — P plane. The younger pulsars
are those in the top right of the plot with higher frequency derivatives. These are
where the majority of glitches have been observed, although some glitches have
been observed in millisecond pulsars like J0613—0200 (McKee et al. 2016) and
B1821-24 (Cognard and Backer| 2004). Roughly 6% of known pulsars have been
observed to glitch, and the majority have been observed to glitch only once or
twice (Zhou et al., 2022). However some younger, high spin-down rate pulsars
have exhibited frequent glitches. In particular, the pulsars J0534+2200 (Crab),
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Figure 1.6 Period-period derivative plot for all pulsars in the ATNF Pulsar Cat-
alogue and their detected glitches as of September 2022. The legend describes
the type of glitch subclass as described in Section [1.6.4] Taken from [Zhou et al.

(2022).
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J0537-6910, and J0835—4510 (Vela) have been seen to undergo tens of glitches
so far.

As seen in Figure[I.6] there are four classifications of glitches. Normal glitches
are by far the most common. They are classified as having a fast spin-up (on
the order of seconds) with a longer recovery ranging from days to years depend-
ing on the shape of the recovery. The causes of glitches are not known, but
popular theories include starquakes (where the crust cracks) (Baym et al., [1969)
and brief couplings between a superfluid core and a solid crust, leading to the
transfer of angular momentum to the slower-moving crust (Antonelli et al., [2022]).
Slow glitches have decreased rates of spin-up and spin-down compared to normal
glitches. These cannot be explained by the angular momentum exchange model
and may be either a type of timing noise (Hobbs et al., 2004)) or due to a sudden
increase in angular momentum of the neutron star crust after a quake (Link and
Epstein), [1996). Delayed spin-up glitches display a short period of frequency in-
crease immediately after the glitch, followed by a rapid decrease in the frequency
derivative. They have only been detected in large glitches of young pulsars (Zhou
et al., 2022)). Anti-glitches are sudden decreases in pulsar frequency accompanied
by an X-ray outburst. As they have so far been observed in magnetars (pulsars
with extremely strong magnetic fields), this suggests that anti-glitches are related

to the magnetosphere (Manchester, [2018]).

1.6.5 Measuring Pulsar Distances

Pulsar beams give us insights into rotation parameters such as the pulsar fre-
quency and its derivatives, but we must rely on additional observations to de-
termine parameters such as pulsar distance and mass. Distance is of particular
interest in the field of CWs, as it allows for the calculation of the spin-down limit:
the maximum GW amplitude possible under the assumption that the observed
pulsar spin-down rate is caused by GW emission alone.

The most common method of measuring pulsar distances is the YMW 16 model
described in [Yao et al| (2017). As a pulsar pulse travels through the galaxy,
Magellanic Clouds, and/or intergalactic medium (IGM), it interacts with free

electrons through electrostatic interactions and is delayed. This causes the pulse
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to be dispersed, which can be measured. The arrival time delay can be calculated

as:

62

At = ———DM (1.43)

- 2mmec f2
where e and m, are the charge and mass of an electron respectively, f is the radio

frequency of the pulse and c is the speed of light. DM is the dispersion measure,

or column density along the path of the pulse, which can be calculated as:
D
DM :/ Ne dl (1.44)
0

where D is the distance to the pulsar and n. is the local free electron density.
YMW16 provides a model for the density of free electrons in the galaxy, Mag-
ellanic Clouds and IGM which is calibrated using pulsars whose distances have
been calculated independently. Then, for other pulsars, YMW16 can be used
with the measured pulse dispersion to obtain an estimate for the distance. For
95% of pulsars YMW16 distance values have a typical fractional uncertainty of
up to 90%.

While YMW16 is especially useful for obtaining distance measurements for
any pulsar with an observable TOA dispersion, there are other methods which
may be more accurate. Some pulsars are associated with other objects for which
the distance is known, such as globular clusters or supernova remnants, allowing
for the pulsar distance to be estimated in comparison. Then there are parallax
measurements, where the perceived movement of the pulsar in the sky over the
course of the year in arcseconds @ is used to estimate the distance in parsecs Dy
using Dy = 1/6. As the parallax is greater for pulsars close to Earth, this method
becomes less accurate for more distant sources. Smits et al. (2011) found that
uncertainties of below 20% could be achieved for close pulsars (< 13 kpc).

Most pulsar distances used to calibrate YMW16 used the absorption of the
pulsar emission by HI gas. Only gas between the pulsar and Earth will cause
absorption. The velocities of regions of HI can be derived from the spectrum of
the absorption and these velocities can be correlated with the galactic rotation
model to obtain a distance. The absorption with a velocity corresponding to the

furthest distance from Earth is used as the pulsar distance measurement. This
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method is more applicable for pulsars with brighter apparent magnitudes which
tend to be close to Earth. Verbiest et al.| (2012) found that their Hi1 distance
measurements could be overestimated by up to ~ 20%.

Another method involves the Shklovskii effect where a pulsar’s transverse
velocity causes a change in radial acceleration, resulting in an apparent doppler-
shift of both the orbital and spin period derivative (Shklovskii, 1970). This is
directly correlated with the pulsar distance, allowing for a Shklovskii distance

estimate Dg, to be calculated from:

c Pshk
Dae = —
hk /~52 p

(1.45)

where g is the proper motion of the pulsar, P is the pulsar period (orbital or
spin) and P'% is the contribution to the observed period derivative from the
Shklovskii effect (Reardon et al.,|[2021)). In Yao et al.| (2017), for the three pulsars
with Shklovskii distance measurements, those were the most accurate distances

measurements, with errors ranging from ~ 1% to ~ 90%.

1.7 Neutron Star Equation of State

So far, I have discussed the rotational parameters like frequency and its deriva-
tives, the distance to pulsars, and some complex processes occurring within and
around these intense objects, but there is a property about which little is known:
density. An equation of state (EOS) describes the density and pressure relation-
ship in a medium. For NSs, it relates their mass and radius and describes what
form matter takes within the star. As NS conditions exceed what is possible
to recreate on Earth, their interiors are of particular note to fields outside GW
physics or even astrophysics.

Mass can be calculated for some pulsars using a variety of methods. For
pulsars in binaries, the doppler shifts of the pulse period and of the spectral
features of the companion can reveal the orbital period and radial velocity from
which the mass function can be calculated. Then, if the mass of the companion

and inclination is known, the NS mass can be measured, otherwise only limits
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1.7 Neutron Star Equation of State

can be produced (Zhang et al., [2011)). For NS-NS binaries, relativistic effects
such as Shapiro delay (the increase in travel time of radio signals in the presence
of a massive object due to the curving of spacetime) and periastron advances
(the change in orbit due to spacetime curvature) can be used to calculate the
pulsar masses to higher precisions (Kramer et al., |2021). For isolated pulsars,
glitches (see Section can play a role in the calculation of mass. |Pizzochero
et al. (2017) showed how the maximum observed glitch amplitude of a pulsar can
constrain its mass based on the assumption that superfluid vortices inside the
star are pinned to the underside of the crust. Angular momentum is stored as
the superfluid at the crust lags behind the deeper superfluid until the vortices
are unpinned, releasing that angular momentum in a glitch. In this case, the
maximum possible glitch depends on the mass of the pulsar.

Radius, on the other hand, is much harder to measure. The Neutron Star
Interior Composition Explorer (NICER) telescope (Gendreau et al., 2016) has
allowed for the measurement of both mass and radius for some X-ray-bright
MSPs: J0030+0451 (Miller et al., 2019; Riley et al., |2019)), J0740+6620 (Miller
et al., 2021 Riley et al., [2021}; |Salmi et al., 2022)), and J0437-4715 (Reardon et al.|
2024). This method involves measuring the X-ray emission from hot spots on the
pulsar surface as it rotates (accounting for the relativistic bending of light which
can allow hot spots on the other side of the NS to still be visible) to calculate the
radius. This is possible due to NICER’s high accuracy of 100 ns for X-ray arrival
times.

The main difference between various EOS models is their rigidity. A model is
more rigid if the addition of matter results mostly in an increase in radius. On
the other hand, a softer EOS would result in other effects like increased pressure
and density. The observations from NICER have so far ruled out both the most
rigid and the softest EOSs. The ability for a pulsar to support certain levels of el-
lipticity (or mountain heights) is also dependent on the EOS. As described briefly
in Section and more deeply in Section [3.1.2] the ellipticity of an isolated
pulsar can be calculated using the GW strain amplitude and pulsar distance.
Even in the absence of detections, the amplitude upper limits can constrain the

ellipticies, which in turn can constrain the EOS.
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Current models of neutron star interiors include a solid iron outer crust with
superfluid below it. However, the precise form of matter in the core is unknown.
There are many proposals, the simplest of which is nucleonic matter. The ex-
treme density may allow for additional degrees of freedom, which would allow
for nucleonic matter alongside hyperons (a baryon with strangeness) (Zachariou
et al.; [2024). The matter in the core may undergo a phase transition where the
nuclear matter breaks down into deconfined quarks and gluons (Annala et al.
2023). If there is quark matter in NSs, it is possible that this matter is in a
colour superconducting phase, where colour transitions can take place without
loss if the effective temperature is low enough (Tanimoto et al., [2020)). Simi-
larly, another possibility is for the core to be made up of pairs of neutrons in
Bose-Einstein condensates (Rodriguez Concepcién and Quintero Angulol 2024).
On the underside of the crust, there may be a so-called ‘pasta’ phase, where the
nucleonic matter takes forms such as rods (spaghetti), voids (anti-gnocchi), and
sheets (lasagne) which strongly resemble varieties of pasta (Caplan and Horowitz,
2017)). With plenty of exciting physics waiting to be understood in the centres of

these intense objects, all methods of further constraining the EOS are of interest.

1.8 Summary

In this chapter, I have provided a brief description of the field of GW astrophysics
today, along with methods of observations with a focus on searching for CWs
from isolated NSs. I have also given a description of NSs, the methods we have
of observing these unique objects and the many mysteries and exotic processes
occurring within them. It should now be clear why the prospect of observing CWs
from pulsars is both interesting and promising. In the following chapter, I will
discuss the opportunity to search for evidence of CWs from pulsars without the
use of GW observations through the measurement of the pulsar braking index.
In the chapters following this, I will describe the search for a direct measurement
of CWs from known pulsars in targeted searches using the third (Chapter |3) and
first part of the fourth (Chapter |4) LVK observing runs. Finally, I will conclude
with the future of GW observations in Chapter [5
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Chapter 2

Recovering Pulsar Braking Index
from a Population of Millisecond

Pulsars

2.1 Introduction

Pulsars are objects of great interest in the world of gravitational waves (GWs). As
their pulses are very regular, they can be used as cosmic clocks, and due to small,
coherent variations over whole populations of pulsars in pulsar timing arrays
(PTAs), they have been used as tools to identify the stochastic GW background
as described in Section [[.4.2]

However, as well as being useful for detecting GWs, pulsars are predicted
to emit them themselves (Ostriker and Gunn) |1969). The LIGO-Virgo-KAGRA
(LVK) collaboration has already detected several transient GW signals from the
inspiral and subsequent mergers of neutron stars in binary systems with black
holes or other neutron stars (Abbott et al., 2021b.d} [2023) as described in Section
[1.4.1] While observing transient GWs has become commonplace, it is not the only
form of GW expected to be produced by neutron stars. Another category of GWs

which remain unobserved to date are continuous waves (CWs), i.e., very long-lived
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quasi-monochromatic signals. A promising candidate source for such a signal is an
individual neutron star spinning with some non-axisymmetric deformation. Such
a deformation could take the form of a mountain on the crust caused by cooling
(Ushomirsky et al., 2000), binary accretion (Gittins and Andersson, 2021a)) or
due to strong magnetic fields (Bonazzola and Gourgoulhon, |1996; |Cutler|, 2002).
Oscillations beneath the crust, such as r-modes, can also cause GW emission from
a single pulsar (Andersson, [1998; |Friedman and Morsink|, 1998). More information
on CWs can be found in Section [1.4.3] Although these signals are currently yet
to be observed, it is possible to obtain evidence of their existence observationally
without requiring a GW detection. One method is to measure the braking index
n of a pulsar, which I will discuss in this chapter.

The braking index is a measure of a pulsar’s angular momentum loss as seen
in equation . This can be rewritten in terms of frequency rather than period
to get:

foc—pm, (2.1)

where f is the pulsar’s rotation frequency and f is the first time derivative of the
frequency, i.e., the spin-down rate. The value of n depends on the mechanism
of angular momentum loss. For example, a pulsar losing angular momentum

through magnetic dipole radiation follows
fap = —=—=—R°f3sin’ a, (2.2)
c

which gives a braking index of 3 (Hamil et al [2015). Here, ¢ is the speed of light,
B represents the magnitude of the dipolar magnetic field at the magnetic pole,
I.. is the moment of inertia, « is the angle between the magnetic field axis and
the rotation axis, and R is the star’s radius at the magnetic pole.

Similarly, if the spin-down of a non-axisymmetric pulsar was instead domi-
nated by emission of GWs (as in the case of a ‘gravitar’) the angular momentum

loss would follow
51274 G

5 &
where ¢ = |I,, — I,,|/1.. is the ellipticity of the pulsar, (1,4, 1, 1..) are the

fGW = - Izz€2f57 (23)
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source’s principle moments of inertia (Palombay, [2005)), and G represents the grav-
itational constant. In this case, the braking index is equal to 5. |Woan et al.| (2018)
observed a possible minimum ellipticity for millisecond pulsars (MSPs) consistent
with n = 5, suggesting that the spin-down of pulsars near this limit is dominated
by GW emission. It is also possible for pulsars to have a braking index of 7 if
GWs are emitted via r-modes described in (Abbott et all) 2021g). Most
realistic systems are expected to have a mixture of several processes such that
f=—af?>—=bf> —cf7, where a, b, and ¢ are coefficients that define the amount
of mixing.

By solving the differential in equation (2.1)), the value of n can be determined

from observational parameters using

n= ﬁ (2.4)

f2
This requires knowledge of both the first and second derivatives of f. Although
several pulsars have measured braking indices (Lower et al.; 2021} |Parthasarathy
et al., 2020)), the second derivative for MSPs is usually small, often around the

order of 1073 s73, making it difficult to observe over current timescales.

Rather than trying to directly measure the braking index of single pulsars,
this chapter discusses the possibility of using a population of pulsars to infer the
distribution of n for the whole sample. This could allow the underlying energy loss
process to be inferred without needing precise values of f for individual sources.
This method is similar to that used in |Pitkin et al.| (2018) to search for CWs from
a population of pulsars. If the braking index distribution could be determined
in this way, it would give valuable insight into whether pulsar populations are
spinning down due to GW emission.

In this chapter, I discuss the method used to obtain and extract the braking
index from the pulsar population in Section [2.2] present and discuss the results
in Section [2.3] and comment on the feasibility of this method now and for future
observations in Section 2.4]
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2.2 Analysis

2.2 Analysis

I create simulated time of arrival data (TOAs) for simplified pulsar models with
injected braking indices of primarily n = 5 (see for analysis using other
values of n), representing pulsars with spin-down dominated by GW emission.
Posteriors on n for each pulsar are then obtained from their TOAs without an
informed assumption on the value of n. These posteriors are combined to extract
the distribution of n for the entire population. I look at how factors like noise
levels, observation length, and observation frequency affect the accuracy and

confidence of the recovered distribution.

2.2.1 Creating TOAs

The 47 pulsars from the wideband NANOGrav 12.5-year data set (Alam et al.
2020, |2021)) are used as example pulsars for this analysis. All pulsars in this
sample are MSPs, meaning they have a rotation frequency of over 100 Hz. This
puts the sample closer to the cut-off described in [Woan et al. (2018) which is
caused by n = 5 processes than if it contained pulsars with lower frequencies.
It may be noted that 30 of the pulsars are in binary systems; however, this
information is not used in this study, and they are treated as isolated pulsars.

I take the pulsar parameter files provided by NANOGrav and strip them of
unnecessary parameters, leaving a basic imitation of the original pulsar: binary
information is removed, so all pulsars appear isolated and glitches (see Section
are ignored. The effect that glitches would have on the braking index
is discussed briefly in Section The parameters retained are chosen as only
those required for the production of the fake TOAs by the pulsar timing software
package Tempo2 (Edwards et al., 2006; [Hobbs et al., 2006a; [2009). A list of the
parameters can be seen in Table . The values FO and F1 (representing f and f )
are used as provided, while F2 ( f ) is fixed at the value corresponding to a braking
index of n = 5 by rearranging equation (2.4). This provides realistic TOA data
for pulsars with an injected n = 5 for us to test the analysis method on.

Using simulated TOAs instead of real data decreases the number of variables,

allowing the analysis to be performed with fewer unknown effects. It also allows
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Table 2.1 Pulsar parameters kept in the stripped parameter files used to create
simulated TOAs with Tempo2.

Parameter Details

PSR Pulsar name

LAMBDA Ecliptic longitude

BETA Ecliptic latitude

POSEPOCH Position epoch

FO Frequency of pulsar rotation

F1 Derivative of frequency

PEPOCH Period epoch

DM Dispersion measure

EPHEM Which solar system ephemeris to use
CLK Definition of clock to use

TZRSITE Telescope site code corresponding to TZR
F2 Second frequency derivative

us to vary parameters such as noise and frequency of observations. I can in-
vestigate beyond current observational constraints, performing the analysis with
observation times that exceed the 12.5 years of the NANOGrav sample. Impor-
tantly, it allows us to know the true value of n so I can verify the accuracy of my
results.

Real pulsar TOAs are subject to noise, which is generally classified into two
types: white (uncorrelated in time) and red (correlated in time). Red noise is
prevalent at low frequencies and so affects data with longer timescales. There
are several sources of red noise: stochastic GWs which will induce correlated red
noise in the residuals (the difference between the predicted TOAs and the actual
TOASs) of multiple pulsars, processes intrinsic to each pulsar (such as compan-
ions), and the varying effects of the interstellar medium (ISM). The spin down
of younger pulsars is caused by various complex methods (Palombay, 2000)), lead-
ing to stronger red noise than their older MSP counterparts. Although sources
of red noise can be hard to identify, the noise properties of the MSPs in the
NANOGrav sample can mostly be described as white noise (Perrodin et al.
2013), with Gaussian noise present at all frequencies. White noise represents
instrumental errors that have not been modelled and intrinsic pulse jitter (Liu

et al., |2011; Parthasarathy et al., 2021)). The impact of noise, especially red noise,
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on high-precision pulsar timing and its effect on the measurability of f, can be

seen in Liu et al. (2019).

In this analysis, I allow my simulated TOAs to be created with a root-mean-
square (RMS) noise value for white noise alone. For each pulsar, the noise value
is taken from Table 5 in |Alam et al. (2020). In cases where the source has a
separate red noise value, the value for white noise is taken only. These noise
value used for each pulsar is listed in Table [A. T} As the effect of timing noise on
the accuracy of this method will be tested, I need to be able to vary the average
noise of the sample to any desired value RMSgesireq.- Therefore, 1 scale the RMS

noise of each individual pulsar using

RMS;
RMSi,soaled = Hdesired X [ ) (25)

where RMS; is the RMS noise value for pulsar i taken from Alam et al.| (2020)),
1 is the mean across all pulsars in the original dataset, and figesireq 1S the mean
the target mean across all pulsars after scaling. This retains the realistic natural

variation of RMS noise throughout the population.

The number of days between observations is kept at 28 throughout this analy-
sis, despite it being one of the parameters which I wish to vary. Instead, I simulate
changing it using the known relationship between frequency of observations and

RMS noise for a pulsar assuming only white noise:

RMS

RMSeqv = ——
VN

(2.6)

where N is the factor by which the cadence of observations is increased and
RMS,v is the RMS noise equivalent to such an increase in observations (Perrodin
et al., 2013)). This allows us to simulate a higher cadence without increasing the

computational load. The full list of parameters used in generating the fake TOAs

are listed in Table 2.2
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Table 2.2 Run parameters used to generate TOAs. Unless otherwise stated, these
parameters were kept constant between pulsars.

Parameter Details Value

NDOBS Number of days between observations 28

NOBSD Number of observations per day 1

RANDHA Random hour angle (y/n) n

START Start date of observation (MJD) Varied

END End date of observation (MJD) 58850 (Jan 2020)
RMS RMS noise to be added (ms) Varied

2.2.2 Bayesian Odds

The first iteration of this method involves a bespoke script written to calculate
the Bayesian odds of specific values of n given a set of residuals. To do this,
TEMPO?2 is given the simulated TOAs for each pulsar along with a parameter file
containing identical information as is used to create the TOAs with the exception
of F2, which is varied to create models with assumed braking indices between 0
and 10. Other parameters are given, as shown in Table 2.2

An example of residuals produced using this method is shown in Figure 2.1]
The top panel shows the residuals for the assumption that n = 0 and n = 5
plotted on the same graph. To the naked eye, there is little variation between the
two models. In the bottom panel, the difference between the residuals is plotted
for each TOA. The cubic F2 term can now be clearly seen. This is because the
assumption in the n = 0 model does not correct for the F2 term, therefore leaving
it in the residualdl

Since the signal from F2 is difficult to detect by eye, the Bayesian odds of
a model with a braking index of n being preferred over a model with a braking
index of 0 can be used to assess the support for the presence of a signal. These

odds are defined as .
o _ PUDIM,) p(O,)

~ p(D|M,) p(Mo)”

(2.7)

where M, represents the model with an assumed braking index, n, with M,

!The difference is actually a polynomial up to 3rd order, as FO and F1 are allowed to be fit
by TEMPO2.
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J0023+0923, rms = 1e-05
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Figure 2.1 Top: The residuals for pulsar J0023+0923 for each model plotted over
time. Bottom: The difference between the residuals for each model. A cubic
signal can clearly be seen, though on a scale much smaller than the noise on the
residuals.
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being the assumption that n = 0. D is the set of residuals for all pulsars such
that D = {cfl, e ,afN} with d; representing the set of residuals for one of the N
pulsars in the sample. As mentioned in Section [1.4.3.4] the fraction p(M,,)/p(Mj)
is the prior odds which can be set to 1 if there is no prior preference between
the models, as is the case here. This leaves the term p(D|M,)/p(D|My), which
is also known as the Bayes factor.

As the residuals for each pulsar are independent, the probability of the full
set of residuals for a given assumption of n can be calculated as the product of

the probability of the residuals of each individual pulsar

p(D|M,) = [ [ p(di|M,,). (2.8)

), 29

where o; is the rms noise on the residuals, n; is the number of residuals for that

The probability for pulsar, 7, can be calculated as

i

7 2\ —ni/2 . 76(271)2‘(%)
p(di|M,,) = (2707) exp | — Z 5

: 20
J=1

pulsar, and r(,),(t;) is the residual at time ;.
It is sometimes more useful to calculate the natural log of the Bayesian odds,
which is equivalent to

In(0) = n(p(D|My)) — In(p(D|Mp)), (2.10)

with In(p(D|M,)) being calculated as

N ng 2
— ’[’LZ T n l(t )
In(p(D|M,) =S (- 5 In(2m?) %T?J) (2.11)
i=0 j=0 i

These odds values are then plotted against n for varying numbers of pulsars

and observation lengths, providing a plot as seen in Figure . These early re-

!Note that this early script only used pulsars whose names begin with ‘J’, hence 44 being
the maximum amount.
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sults demonstrate the key ideas that with greater observation length and number
of pulsars, it should be easier to determine the braking index. It suggests that
even for long observation lengths, having 20 rather than 10 pulsars can make a
significant difference. The results for larger numbers of pulsars appear to be-
come increasingly correlated to each other, likely due to them having increasing

proportions of pulsars in common.

2.2.3 Obtaining Posteriors

The method discussed in Section can be easily improved upon. First, it
requires running TEMP02 for every desired value of n between 0 and 10. Before
the script was fully refined, the decision was made to switch to a more robust
method which produces posteriors on n for each pulsar. It also allows for n to be
treated as continuous rather than discrete.

I choose to use enterprise (Ellis et al., 2020)) and enterprise extensions
(Taylor et al., 2021)) to model TOAs and provide likelihoods using the simulated
TOAs for each pulsaIEI. enterprise_warp (Goncharov, [2021)), a set of tools which
allow Bayesian inference via the bilby package (Ashton et al., [2019; Romero-
Shaw et al., [2020)) in combination with enterprise, is used to produce poste-
riors on the rotational parameters that I require. enterprise warp can only
sample over non-derived pulsar parameters, i.e., the rotational frequency and its
derivatives. However, the strong correlation between f and f means it is dif-
ficult to draw samples from their joint posterior. Therefore, enterprise warp
(Goncharov et al., 2024) is modified to allow it to draw samples directly from
the braking index so, for each pulsar, I sample from the posterior on f (F0), f
(F1), n, and a constant white noise variance. I use priors on f and f defined by
the enterprise_extensions defaults: uniform priors that are constant between
+50 (where o is taken from the values from the fit provided in the PTA param-

eter files). For the braking index I use a uniform prior that is constant between

T have used a modified version of enterprise_extensions (Taylor et al.,|2024)) that retains
128 bit floating point precision for parameter values to avoid numerical truncation errors which
were noticed when running analyses for very low RMS noise values.
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Figure 2.2 Bayesian odds for each model of n compared to n = 0 for different
numbers of pulsars observed over varying lengths of time. The black dotted line
shows n = 5, the true braking index of the sample. The RMS noise was kept at

1x 1075,
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0 <n < 10. For the sampling I use the dynesty nested sampling package (Spea-
gle, 12020)), via bilby. Despite not being required for my subsequent analysis, f

samples can be recreated from those I obtain via equation ([2.4)).

2.2.4 Recovering the Underlying Distribution

Finally, the posteriors on n can be ‘stacked’ using the posteriorstacker python
package (Baronchelli et al.| [2020; Buchner] |2021)) to infer and plot the underlying

distribution of n for the entire population.

Posteriorstacker uses the hierarchical Bayesian model described in Ap-
pendix A of Baronchelli et al.| (2020) to infer the intrinsic distribution for desired
parameters given posteriors for a sample of objects. I briefly describe the method
here. The parent distribution of a value n for all objects is assumed to be a
Gaussian N (n;|p, o) with unknown mean p and standard deviation o (the hier-
archical model’s hyperparameters); in this case the objects are pulsars and n; is
the braking index for each pulsar 7. As the parent distribution should hold for all
pulsars, the hierarchical Bayesian modelling likelihood for the hyperparameters
can be calculated as the product of the individual pulsar likelihoods marginalised

over n;

L = P(Dl|u,o) = H / P(D;|n;)N (n;|p, o)dn;, (2.12)

where D refers to the full dataset of all 47 pulsars used in this analysis. The
posterior distributions on the braking index, P(n|D;), for each pulsar, ¢, can be

used as likelihoods in equation (2.12), i.e.,

which is valid due to having used a uniform prior on n; in the posterior inference,
with the associated constant of proportionality being unimportant. As I have a

finite number of posterior samples rather than a functional form of the posterior,
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the posteriorstacker package makes use of the useful observation that

/ P(Difn) N (il o)elng o S Nl o), (2.14)

J=1

where m; is the number of samples (usually on the order of 20,000 per pulsar when
using dynesty for the parameter estimation) and n;; are the posterior sample val-
ues of the braking index for the i*" pulsar, i.e., it is the expectation value/mean
of the parent distribution evaluated at the posterior sample values. So, the like-

lihood that posteriorstacker evaluates over 1 and o can be approximated by

Lo HiN(nij|u,U). (2.15)

Equation (2.12)) or (2.15)), can be converted to a posterior over u and o by

multiplying by appropriate priors on these hyperparameters. In this case, the
priors are uniform for p and log-uniform for o.

Posteriorstacker requires a single file containing the posteriors for each
pulsar in separate lines, with the same number of samples given for each pulsar.
Since enterprise_warp returns varying numbers of samples (this was on the order
of 20,000 samples for each pulsar), I must randomly remove surplus samples from
the pulsars based on the pulsar with the lowest number of samples.

Posteriorstacker provides two model distributions: histogram (using a
Dirichlet prior distribution) and Gaussian. The histogram distribution is more
agnostic of the true underlying distribution, but it is therefore also less con-
straining. I use the Gaussian distribution as it provides better constraints and
has fewer parameters to infer (i.e., it is a ‘simpler’ model) with 0 and 10 being the
lower and upper ends of the distribution respectively. For the Gaussian model,
posteriorstacker estimates the distributions for the mean and standard devi-
ation for the braking index. Posteriorstacker can provide an evaluation of the
parent Gaussian distribution at different percentiles of the sampled hyperparam-
eters, i.e., the median (50th percentile) distribution.

To summarise Section so far, for each analysis presented below, I perform

95



2.2 Analysis

the following steps: i) generate simulated TOAs for a set of pulsars, ii) for each
pulsar, use the simulated TOAs to draw posterior samples on f, f , and n using
a nested sampling algorithm, and iii) use the combined posterior samples on n
from all pulsars to infer posterior samples on the mean y and standard deviation

o of a parent Gaussian distribution for n.

2.2.5 Quantifying the Results

The results obtained in this analysis are mostly represented as plots, which pro-
vide easy visual analysis of the degree to which recovering n is successful. It
is also useful to accompany these plots with more quantitative values for easier
comparison between results. One method is by calculating the odds ratio that a
randomly drawn braking index would be within a given range about the desired

value. To achieve this, I begin with the following equation

(i) ()] e

which is the analytical solution to integrating the Gaussian distribution from a

to b, where i and o are the mean and standard deviation.

First, I decide on an arbitrary grid on the braking index. Then for each grid
bin I evaluate equation using the grid bin boundaries, by, and by, as the
limits of integration for the equally weighted posterior sample values distributions.
I then sum the probabilities within each bin. For each bin, this gives the odds,
Obpin —bmas s
within that bin:

that a braking index randomly drawn from my distributions would be

% %ﬁ [erf (—(’“"“\/_ﬁsr:ax)) — erf (—(”’“\/_iiji“>> ] , (2.17)
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2.3 Analysis Results

where N is the number of samples from the posterior of the underlying distribu-
tion hyperparameters 4 and o.

To find the equivalent probability within an arbitrary range, for example [4, 6],
I can sum up the probabilities for the bins within that range. I can then also sum
together the probabilities for all bins, O,y (in my case, this is [0, 10]) to obtain

the odds ratio:
Oa—b

OR,.p= ———.
’ Oall - Oa—b

(2.18)

It is important to note that this is not a Bayesian odds ratio, rather it is a
straightforward ratio between probabilities. As these values are for comparing the
results of analyses with differing parameters, the choice of metric is arbitrary. It
must only be consistent and allow for meaningful comparisons. In this analysis, I
choose to use 100 bins and calculate the odds ratio within the range [4, 6], denoted
as OR4_g. While the choice is arbitrary, this range is chosen as it excludes the
n = 3 case where the spin-down is due to magnetic dipole radiation alone and
n = 7 case where it is due to GW emission via r-modes. Figure [2.3| visualises the
results of this process for a run with an observation length of 20 years and an
RMS noise value of 1x107° ms using all 47 pulsars. For this run, OR4_¢ = 1.00,
meaning there is a 50% chance of drawing a value of n between 4 and 6 from the

distributions.

2.3 Analysis Results

Following the methods described in Section[2.2] I repeat the analysis several times,
changing the RMS noise, observation length, and number of pulsars to identify
the parameters with the greatest impact on the recoverability of the braking index
using this method. In the following sections, the “default” parameters will be an
observation length of 20 years with a mean RMS noise of 1 x 10~° ms using all
47 pulsars. The run using these parameters is depicted as the solid blue line in

each plot.
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Figure 2.3 A normalised histogram of the equally weighted posterior samples
binned into 100 bins for an observation length of 20 years and an RMS noise
value of 1x107° ms using all 47 pulsars. Using equation , the probability
that n lies in the bins between 4 and 6 (shaded in red) and the probability that
it lies outside that region is calculated to find OR4_g.
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Figure 2.4 The result of varying the number of samples produced by MCMC. The
lines represent the median values while the shaded regions are bounded by the

5th and 95th percentiles.
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2.3 Analysis Results

2.3.1 MCMC samples

Before settling on dynesty as the sampler, a Markov chain Monte Carlo (MCMC)
sampler called bilby-MCMC was used. While dynesty has its own stopping criteria
which causes an arbitrary number of samples to be produced, bilby-MCMC takes a
desired number of samples selected by the user. This introduces a new parameter
to be considered in these analyses. This Section, and Section [2.3.1.1] describe
tests performed using the bilby-MCMC version of the code which are not relevant
when performing this analysis with dynesty.

I vary the number of MCMC samples for the bilby sampler to find a good
compromise between computation time and producing converged MCMC chains.
This allows us to fix the number of samples while varying the other parameters.
Unlike the other parameters, the number of samples can be improved without
needing advancements in instruments or observations; therefore, it is best to
identify a suitable value before looking at the parameters which are more difficult
to achieve in reality. I note that the overall number of samples that I can run the
MCMC for is also limited by memory constraints, due to the implementation of
data storage within the enterprise software. Due to this, I limit the maximum
samples in a run to 3000.

Figure |2.4] shows the variation in results for different sample sizes. Simulated
TOAs are created for all 47 pulsars for an observation length of 20 years and a
mean RMS of 1x107° ms. The solid lines come from generating Gaussians using
the median values from the distributions on the braking index, while the shaded
bands come from the values at the 95th and 5th percentiles of the distributions.
These same TOAs are then used to create each set of samples. This approach
mimics the scenario where the analysis would be performed repeatedly on one set
of real observational data. The analysis is performed three times for each sample
size and the result with the smallest standard deviation on n for each is plotted
to help account for random variations (see Section [2.3.1.1)). The observation time
and mean RMS is chosen for illustrative purposes as it shows a clear variation of
confidences across the range of samples.

As can be seen from Figure [2.4] there is evidence for a signal at n = 5 and

there is a general improvement with increasing sample size. This occurs because
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2.3 Analysis Results

larger sample numbers are more likely to produce convergent MCMC chains.
However, there are a few anomalies. For example, the analysis with 375 samples
is more confident than the 1000 sample analysis and the 2000 sample analysis
is more confident than the analysis with 3000 samples. This is due to random
variations introduced both during the analysis to generate posteriors on n and

when surplus samples are removed before posteriorstacker is used.

2.3.1.1 Selecting samples

As demonstrated in Figure [2.4] there can be large variations in results which
sometimes go against expected trends. I investigate sources of random variation
and identify that randomly removing excess samples has a much larger effect than
anticipated. This is likely due to the samples having a high correlation, meaning
that by randomly removing certain values I am skewing the overall distribution.
Figure shows the result of the investigation. The same TOA data for all
47 pulsars is used as in Section for both the 375 (blue) and 3000 (orange)
sample runs. However, the sample file given to posteriorstacker is generated
5 separate times, so each file contains a different selection of samples. The effect
of this selection can be seen in the variation in lines of each colour. It can also
be seen that for the larger number of samples, this variation is less significant.
However, the wide variation in these results is suggestive of the MCMC chains
not fully converging even for the larger sample sizes. Figure [2.6| shows the trace
and posterior histogram plots for the pulsar rotation parameters f, f , and f
for J171340747 for a 20-year run with an RMS value of 1 x 107 ms, and 2000
samples. The red points at the start represent the burn-in. Stable behaviour can
be seen in the trace plots with no evidence of drift. The histograms for f and f
are both smooth and unimodal, suggesting that the sampler has converged. In
comparison, Figure shows the trace and histogram plots for B1953+29 for
the same analysis. Here, the burn-in period is significant, and the histogram
for f is relatively flat, suggesting that the chain may not have fully converged.
These examples illustrate that while some pulsars have converged, this cannot be

assumed for the whole sample.

61



2.3 Analysis Results

0.5
- —— 375samples
---- 3000 samples
0.4 ---- n=5
P
B 034
& 0.3
©
2
8 0.2
o
o
0.1

Braking Index

Figure 2.5 The result of identical analyses except for the removal of different
excess samples for use in posteriorstacker. The blue lines represent results
from keeping 375 samples while orange represents keeping 3000 samples. The
lines represent the median values while the shaded regions are bounded by the
5th and 95th percentiles.
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Figure 2.6 The MCMC trace diagram for J171340747, with 2000 samples and
an average RMS of 1 x 107° ms. The red dots represent burn-in and 7 is the

autocorrelation time.
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Figure 2.7 The MCMC trace diagram for B19534-29, with 2000 samples and
an average RMS of 1 x 107° ms. The red dots represent burn-in and 7 is the
autocorrelation time. It can be seen that for this pulsar, the MCMC chains do
not appear to have converged.
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These findings indicate that the number of samples tested are insufficient, but
as larger sample sizes are infeasible, a new method is required. Instead, a nested
sampling method was chosen. By using dynesty, 20,000 samples are produced
on average before the stopping criteria is met with similar runtimes to those
of bilby-MCMC, which vastly reduces the effect of removing excess samples for
posteriorstacker. Additionally, dynesty simplifies the process by removing
the number of samples from consideration. Therefore, the following sections

describe the results obtained using dynesty as described in Section [2.2.3]

2.3.2 TOAs and Posteriors

In Figure 2.8] T investigate the variation caused at various stages in the analy-
sis. Each colour represents a different set of TOAs produced by Tempo2 given
identical parameters. These three sets of TOAs are then put through the rest of
the analysis five times to see the variation introduced when obtaining posteriors.
The variation on each TOA itself is produced during either the enterprise or
posteriorstacker stage while the differences between each TOA would be in-
troduced by Tempo2. I calculate the mean and standard deviation of OR4_4 for
each TOA set to be 0.96 £+ 0.03, 0.94 + 0.02, and 1.04 + 0.06 for blue, orange,
and green respectively. While the green TOA set had higher odds ratios over-
all, its lowest was still well within the range of the other two. Blue and orange
are additionally within each other’s ranges, suggesting that the variation from
post-processing dominates the variation from the TOA set used.

I conclude that there is little correlation between the TOA data used and the
probability density after the full analysis pipeline. Each set of TOAs demonstrates
a similar amount of variation with no TOA producing consistently better results.
To rule out the amount of variation introduced by posteriorstacker, the script
is additionally run repeatedly on the same posteriors. This results in negligible
variation, so it is concluded that most of the variation is introduced when using

enterprise to obtain posteriors on n.
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Figure 2.8 The result of identical analyses performed on three sets of TOAs
produced by Tempo2 given identical parameters. It demonstrates the variation
introduced during the TOA generation step and posterior analysis. The lines
represent the median values while the shaded regions are bounded by the 5th and
95th percentiles. The mean OR4_¢ for the blue, orange, and green TOAs are:
0.96 + 0.03, 0.94 4+ 0.02, and 1.04 % 0.06 respectively.
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Figure 2.9 Analyses with identical parameters aside from varying the mean RMS
noise, calculated using equation , in the simulated TOAs. The lines represent
the median values while the shaded regions are bounded by the 5th and 95th
percentiles. The OR4_¢ for these runs, in order from highest rms to lowest, are:
0.62, 0.88, 0.98, 1.00, 1.06, 1.76.
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2.3.3 RMS Noise

Of the three main factors I want to investigate, I look at the RMS noise value first.
It makes sense to include the full pulsar population for these comparisons, since
pulsars can be analysed in parallel so they do not affect the runtime. Performing
this analysis for a 50-year observation length could cost over 262 GB of memory
and take on the order of a week to run, so care was taken to avoid running lots
of expensive analyses. Therefore, an observation length of 20 years was chosen
for repeat analyses. This value is also ideal as in a few years the pulsars in this
sample will have 20 years of observations. Changing the mean RMS noise has
two effects, as discussed in Section [2.2.1] While it represents white noise on the
pulsar TOA data, it can also represent changing the cadence of observations using
equation . It is important to note that the cadence of observations is fixed

at 1 per month for all analyses. The following values for RMS (in ms) are chosen:

e 2.9x107* ms: The mean RMS for the NANOGrav sample.

e 1x107* ms: It is estimated that the Square Kilometer Array (SKA) will pro-
duce this RMS for 50 pulsars (Stappers et al} |[2018). The SKA is discussed
in more depth in Section

e 3.5x107° ms: The smallest RMS for a pulsar in the NANOGrav sample
(J2234+0611).

e 1x107° ms: The SKA could provide this RMS value for five pulsars (Stap-
pers et al., |2018)).

e 5x107% ms: The equivalent RMS corresponding to a true RMS noise of

1x107° ms but with an observation every week rather than every month.

e 1x107% ms: Chosen to demonstrate what kinds of rms values would have

a strong effect on the confidence.

Where possible, one set of TOAs is produced and repeated analyses performed
on that set with the parameters for the inference analysis varied as desired. This
ensures the least amount of random error is introduced. However, with the RMS

and observation time comparisons, new TOA data must be produced for each run
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as those parameters are used in the production of the simulated data. This means
these analyses are subject to additional variation caused by the independent noise
realisations. This is likely to be minimal, as discussed in Section [2.3.2]

The results for the various RMS values can be seen in Figure 2.9) The lines
represent the median values of a Gaussian braking index distribution for each
RMS value and the shaded regions are bounded by the 5th and 95th percentiles.
The RMS noise values below 3.5x 107° ms are able to recover the n = 5 signal
with OR,_g over 1.00, representing a higher likelihood that the braking index is
between 4-6 than outside that range (such as n = 3 or n = 7, which would be
expected from magnetic dipole radiation or r-modes respectively). This suggests
reasonable accuracy and confidence. The difference between OR,4_g for the factor
of 10 improvement between 1x 107 ms and 1x107° is a factor of 1.76. This
suggests that for current optimistic projections, decreases to TOA noise will not
greatly improve the viability of this analysis method. The RMS noise value of
1x107°% was included to verify that the braking index could be recovered with vast
improvements in noise. Values even smaller than this have been tested and, using
the change to enterprise_extensions described in Section [2.2.3] they continue
this trend.

A mean RMS noise value of 1x1075 calculated using equation is chosen
to be kept constant for the subsequent analyses as it represents a balance between
optimistic but still realistic. Table shows the braking index results for the
20-year run with an RMS noise value of 1x107° along with the pulsar parameters
used to derive it. The individual braking index values come from taking the mean

and standard deviation of each pulsar’s posterior samples.

2.3.4 Observation Length

Since n depends on the frequency double derivative, which changes very slowly
over time, I expect more accurate and confident results with increased observa-
tion length. This is especially true as f will have a cubic increase with time.
Additionally, f decorrelates with f over greater observation periods, making it
easier to measure. Figure 2.10] shows the results of five runs of varying obser-

vation lengths. In this case, new simulated TOAs are created for each analysis
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with different specified lengths going backwards in time. This could theoretically
result in slightly better results due to higher pulsar f, f, and f values than in
future measurements. However, this, and the location of the epoch within the ob-
servation length, was verified to make negligible difference. The mean RMS noise
is kept at 1x107® ms and I include all 47 pulsars. Identical posterior analyses
are performed.

It can be seen that the confidence increases with length of observation. For
10 or fewer years, the correct braking index is not recovered with any significant
confidence as reflected by OR4_g < 1.00. In the 20-year run, the mean n is correct,
but with a OR4_g value of 1.00 exactly. For longer observation lengths, the correct
n is recovered with an OR,_4 of 1.46 and 9.65 for 30 and 50 years, respectively.
The signal at n = 5 for the 50-year run is very significant, although multiple
decades must pass before such an observation length is achievable. That time-
frame would doubtlessly also herald advances in timing precision which would
also improve the probability of a signal. However, it should be remembered that

these runs were performed assuming an already optimistic RMS noise value.

2.3.5 Number of Pulsars

Figure [2.11] shows the results of running the analysis with different numbers of
pulsars. In this case, the same TOA and posterior data is used for all analyses
with an observation time of 20 years and an RMS noise of 1x 107> ms. Origi-
nally, the pulsars to be included were chosen randomly, but it was identified that
one pulsar with a well-constrained braking index dominates the results, causing
improvements the moment it is included. To limit this effect, the pulsar is au-
tomatically included in the dataset for the first 10 pulsars, and all subsequent
datasets. Reproducing this plot results in variation only due to the random se-
lection of pulsars added to each run.

Increasing the number of pulsars is shown to improve the confidence of the
detection of n as expected. While the signal is dominated by one exceptional
source which is included from the start, it can be further improved by increasing
the population size. There is roughly a factor of 2 improvement between the

maximum probability densities for the 10- and 47-pulsar runs, which demonstrates
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Figure 2.10 Analyses with identical parameters aside from varying observation
time. The lines represent the median values while the shaded regions are bounded
by the 5th and 95th percentiles. The OR4_g for these runs, in order from shortest
to longest observation length, are: 0.69, 0.69, 0.92, 1.00, 1.46, 9.65.
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Figure 2.11 Analyses with identical parameters aside from varying the number
of pulsars. For each set, additional pulsars are picked at random except for
the pulsar with the strongest signal, which was included in all runs. The lines
represent the median values while the shaded regions are bounded by the 5th
and 95th percentiles. The OR4_g for these runs, in order from fewest to the most
pulsars, are: 0.53, 0.70, 0.81, 0.90, 1.00.
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the significance of sample size, even if the added pulsars are not better constrained
than those already included in the sample.

The pulsar selected to be included in the 10-pulsar run is B19374-21 with
n = 5.01 £ 0.06. This pulsar has the highest frequency derivative and therefore
also the highest double derivative, as can be seen in Table [A.T]

2.3.6 Varying Braking Index

So far, all analyses have been run on simulated TOAs with n fixed at 5. To test the
ability of this method to identify any value of n, runs are performed on TOAs with
different true values of n. I perform three analyses with 20 years of observation at
an RMS noise level of 1x107%. These values are chosen as they produce accurate
and confident results in the other analyses. Tests for n = 3 and n = 7 are chosen
as they represent the braking indices due to magnetic dipole radiation and r-mode
GWs respectively (see . Figure shows that a strong signal is found for all
three analyses with similar confidences and accuracies, verifying that this method

is not biased towards a braking index of 5.

2.4 Discussion

This analysis looks at purely simulated data from reduced pulsar parameters to
represent simple, isolated versions of real pulsars. Therefore, when performing
this analysis on real data it is reasonable to expect that it would be harder to
extract the underlying distribution of n. Specifically, the inclusion of parameters
which are correlated with f , such as the proper motion of the pulsar or non-white
timing noise, would make this more complicated. I also assume that the measured
f is dominated by the intrinsic spin-down and not contaminated by acceleration
effects. The results in this chapter therefore represent an optimistic scenario, but
are presented as a proof-of-principle study.

Of the factors considered, improvement of some are more achievable than
others. Although some pulsars, such as Vela, have been observed for 50 years,

having a large sample with consistent observations and small timing residuals for
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Figure 2.12 Analyses with identical parameters aside from varying the braking
index used to set f when generating the simulated TOAs. The lines represent
the median values while the shaded regions are bounded by the 5th and 95th
percentiles.

74



2.5 Summary

such a timescale will not happen soon. For example, the NANOGrav dataset
(Alam et al., 2020) used in this analysis has 12.5 years of observations for 47
pulsars, while the EPTA has 24 years for 6 pulsars (Chen et al., 2021) and the
PPTA as observed 30 MSPs spanning up to 18 years (Reardon et al., 2023). The
newest NANOGrav dataset, the 15-year dataset, has 67 pulsars (Agazie et al.,
2023). These three groups are part of the International Pulsar Timing Array
(IPTA). In the future, combined arrays will allow for much larger populations of
pulsars to be analysed for longer periods of time, thus increasing the likelihood
that this analysis would observe the underlying distribution on the braking index.

Increasing the cadence of observations is known to have the same effect as
reducing the RMS noise. However, even with collaborations such as the IPTA, it
may be more beneficial to have individual telescopes observing different pulsars
than for multiple telescopes observing the same source (Lam, 2018)). Therefore,
improving the RMS noise itself would be preferable as it would free observation
time for other targets. The SKA, which is currently in construction and expected
to enter operation by the end of the decade, could provide an RMS noise of 1x10~*
ms for 50 pulsars and potentially 1x10~° ms for five more (Stappers et al., [2018)).

2.5 Summary

This chapter looks at the feasibility of observing the braking index, n of a pop-
ulation of pulsars in order to identify the types of processes involved in angular
momentum loss. Simulated pulsar TOA data with an injected braking index
of n = 5 is produced using Tempo2 (Edwards et al., [2006; [Hobbs et al., 20064,
2009). Without assuming any prior knowledge of n, posteriors are produced by
enterprise (Ellis et all) [2020) for each pulsar, which are then combined using
the hierarchical Bayesian model in posteriorstacker (Buchner, 2021). The ef-
fect of RMS noise, observation length, and number of pulsars in the sample are
investigated.

It is found that with realistically optimistic values for RMS noise, I am able
to accurately recover the braking index from the sample, but with a low OR,_4

of around 1.0, which means it is equally likely that n is between 4 — 6 as it is
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outside that range. Decreasing the RMS noise to values better than predicted for
upcoming detectors enables us to recover the signal accurately and confidently,
but order of magnitude improvements would be needed to increase the ratio by
a factor of 1.5. Due to the difficulty of such an improvement, this parameter is
likely to have the least effect on the feasibility of this method in the near future.

The observation length is found to have a significant impact on how well n
is recovered with this method. Using an optimistic value for the RMS noise, a
20-year observation length enables accurate identification of n with an OR4_¢ of
1.00. For longer observation lengths, the odds ratio increases significantly to 9.65
for the 50-year run. This parameter has a big impact on the feasibility of this
method, but by definition requires many years to pass.

The number of pulsars is also found to increase the likelihood of confidently
recovering a signal significantly, with a factor of four increase in the number of
pulsars resulting in a factor of 2 increase in OR,_g. With more telescopes being
built and the increase in large collaborations, this parameter should not be too
difficult to improve and therefore is likely to have a substantial impact on the
feasibility of this method.

In conclusion, I have developed a method for extracting the braking index
distribution for a set of millisecond pulsar observations. In my proof-of-principle
studies, I have shown that this works for a simplified scenario under some opti-
mistic assumptions. While this may not provide a way to confidently constrain
a particular pulsar braking mechanism if applied to current real timing datasets,
this may be possible with future observations. It is still worthwhile testing the
method on real datasets, with some of my assumptions and simplifications re-

laxed, to see what constraints can be placed on values of the braking index.
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Chapter 3

Searches for Gravitational Waves

from Known Pulsars in the
Second and Third LIGO-Virgo

Observing Runs

3.1 Introduction

To date, the LIGO and Virgo observatories have made detections of numerous
sources of gravitational radiation. These detections have been of transient grav-
itational waves (GWs) from the inspiral and subsequent mergers of compact bi-
nary objects including binary black holes and binary neutron stars (Abbott et al.,
2021b). Recently, the list of observed events expanded to include neutron star-
black hole binaries (Abbott et al., 2021d)). There remain other types of GW
sources that are yet to be observed such as continuous GW (CW) sources. Un-
like transients, CW signals are almost monochromatic, with their amplitude and
frequency changing negligibly over year-long timescales. The mass quadrupoles
of these sources, such as deformed neutron stars, are expected to be far smaller

than those involved in compact binaries and therefore only local galactic sources
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are likely to produce detectable signals.

As discussed in Section likely candidates for producing such signals are
neutron stars spinning with some non-axisymmetric deformation (Zimmermann
and Szedenits, 1979), particularly solid deformation which can manifest as NS
ellipticities or ‘mountains’. GW radiation can also be caused by fluid modes of
oscillation beneath the crust such as r-modes. By detecting CWs, light can be
shed on the structure of the star. Additionally, detections of such GWs can be
used to test general relativity via the constraint of non-standard GW polarisation
(Abbott et al) 2019e; [Isi et al., [2017). A more thorough discussion of various
methods of GW emission from neutron stars can be found in [Riles (2017) and
Glampedakis and Gualtieri| (2018).

The structure of this chapter is as follows. Section [3.1.1] outlines the types
of CW searches. Section describes the types of signal models used in this
analysis. Section describes the search method used. Section covers both
the GW and EM data used. I present my results in Section with conclusions
in Section [3.5

3.1.1 Continuous-Wave Searches

The three types of CW searches are described in more detail in Section [1.4.3
but summarised here for completeness. Targeted searches look for signals from
known pulsars for which their rotational phases can be accurately determined
from electromagnetic (EM) observations (e.g., Abbott et al., [2017a, |2019b,, [2020b),
2021c; |Ashok et al, 2021} Nieder et al.| |2019| [2020). This simplifies the search as
the EM observations can be used to derive a timing solution and it is assumed
that the GW phase evolution is locked to the EM evolution. This means the
search is over a small parameter space, generally limited to the unknown signal
amplitude and orientation of the source, which allows a more sensitive search
than other methods. In some targeted searches, the assumption that the GW
evolution follows the EM evolution is relaxed and the search is performed in a
narrow band around the expected frequency and spin-down rate (Abbott et al.|
2017d, [2019d). In this case, the search is more computationally expensive due

to the larger parameter range being searched and slightly less sensitive because
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of a higher trials factor. To overcome this, narrowband searches often look at
fewer targets. Directed searches look for signals from small sky regions that are
believed to have a high probability of containing a neutron star, such as supernova
remnants. As the timing solution cannot be derived from EM observations, a wide
range of rotational parameters (such as rotation frequency and its derivative)
must be searched. All-sky searches look for signals in all sky directions and
over a wide range of rotational parameters. Both these methods suffer increasing
computational costs and decreasing sensitivity of the searches as parameter space
increases.

Searches of all three types have been performed and so far no convincing evi-
dence for CWs has been observed. However, searches have probed new regimes,
such as providing upper limits on emission that are more stringent (i.e., smaller)
than those based on energetics arguments. For example, for several pulsars in-
cluding the Crab pulsar, Vela pulsar (Abbott et al., 2019b), J0537—6910 (Abbott
et al., 2021clg) and two millisecond pulsars (Abbott et al.,|2020b) the direct upper
limits set on the GW amplitude are more constraining than limits based on the
assumption that all the pulsars’ spin-down luminosity is radiated through GWs,
known as the spin-down limit.

In this chapter I report the results of a targeted search for CW signals from 236
pulsars using the second and third LIGO-Virgo observing runs (02 and O3 respec-
tively). A description of these detectors can be found in Section [1.3]| while Sec-
tion details the observing runs. The ephemerides for the pulsars have been
derived from observations using the CHIME, Hobart, Jodrell Bank, MeerKAT,
Nancay, NICER and UTMOST observatories. More details on these EM obser-

vations can be found in Section 3.3.2

3.1.2 Signal Models

I assume that the GW emission is locked to the rotational phase of the pulsar.
For the ideal case of a triaxial star rotating steadily about a principal moment
of inertia axis, the GW emission is at twice the star’s spin frequency, f,o;. How-
ever, there are mechanisms that can produce variations to this 2f,, frequency.

For example, a superfluid component with a misaligned spin axis within the star
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could produce a dual-harmonic emission at both once and twice the rotation fre-
quency without leaving an imprint on the EM emission (Jones, 2010). Therefore,
I perform two searches: one at just twice the pulsar rotation frequency called a
single-harmonic search, and one at both one and two times the frequency referred
to as a dual-harmonic search.

The waveform used in the dual-harmonic search is detailed in [Jones (2010)
and used in Pitkin et al.| (2015)), |Abbott et al. (2017a), |Abbott et al.| (2019b)),
and |Abbott et al| (2020b)). The signals hy; and hoy at once and twice the pulsar

rotation frequency can be defined as

hoy = —%[ FP(a,8,1;t)sinccosecos (P(t) + 0F)) +

FP (e, 8,9;t) sinesin (®(t) + @%)], (3.1)
hey = —C’QQ[ FP(a,6,9;t)(1 + cos®t) cos (28(t) + ) +

2F2 (o, §,4b;t) cos usin (20(t) + @%)] ) (3.2)

where C5; and Cyy are the dimensionless constants that give the component am-
plitudes, the angles (a,d) are the right ascension and declination of the source,
while the angles (¢,1)) describe the orientation of the source’s spin axis with re-
spect to the observer in terms of inclination and polarisation respectively, ®$
and @, are phase angles at a defined epoch, and ®(t) is the rotational phase of
the source. The antenna functions F¥ and F2 describe how the two polarisa-
tion components (plus and cross as derived in Section are projected onto the
detector.

For the ideal case of a steadily spinning triaxial star emitting GWs only at
twice the rotation frequency, the equatorial ellipticity can be defined as

|Ixm — Iyy|

where (I, Iy, I..) are the source’s principal moments of inertia, with the star

rotating about the z-axis. The mass quadrupole of the source (D92 is often quoted
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and is related to the ellipticity as

/15
QQZ = [z25 8_7T (34)

For single-harmonic emission, Cy; from equation (3.1) can be set as 0, leaving
only Cy in equation (3.2). The amplitude can then be parameterised as the
dimensionless hg: the amplitude of the circularly polarised signal that would
be observed if the source lay directly above or below the plane of the detector
and had its spin axis pointed directly towards (¢ = 0) or away (¢ = 7) from
the detector. In this configuration, the plus and cross polarisations have equal
amplitude and a phase difference of 7/2, equivalent to circular polarisation. The
polarisation angle 1 described how the circularly polarised wave projects onto
the detector arms via the antenna functions. When ¢ =0, F, = 1,F, = 0 and
when o = 7/4, F, = F, = 1/1/2.
The following equations are defined in |Aasi et al.| (2014)):
167G I.ef2, (3.5)

A d '’

ho = 2C5 =

where d is the distance of the source, ¢ is the speed of light in a vacuum and G

is the gravitational constant. The spin-down limit k3! of a source is given by:

1 (56 |l
h%d _ E ( 2z |frot|> 7 (36)

2 03 f rot

where f,o; is the first derivative of the rotational frequency, i.e., the spin-down
rate, and provides an amplitude limit assuming that all the rotational energy lost
by the pulsar is converted to GW energy (Owen, 2005). When hg is smaller than
h$d the spin-down limit can be said to have been surpassed. This information is
most often represented by quoting the ‘spin-down ratio’, i.e., the ratio between hg
and h§. If, assuming that there is no mechanism (e.g., accretion) providing some
additional spin-up torque, the direct amplitude constraints probe a new physical

regime only when the spin-down limit is surpassed. There are two types of spin-
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down rate: intrinsic and observed. The observed spin-down rate can be affected
by the transverse velocity of the source, e.g., the Shklovskii effect (Shklovskii,
1970), so where possible the intrinsic spin-down rate is used to calculate the

spin-down limit.

3.2 Analysis

In this analysis, I perform a time-domain Bayesian analysis method. This method
searches for two signal models: a single-harmonic signal emitted by the [ = m = 2
mass quadrupole mode at twice the pulsar rotation frequency and a dual-harmonic
signal emitted by the [ = m = 2 and [ = 2, m = 1 modes at twice and once the
frequency.

The raw GW strain data are heterodyned using their expected phase evolu-
tion, which includes both corrections for the relative motion of the source with
respect to the detector and relativistic effects (Dupuis and Woan| 2005)). This
results in the data being centred about the expected signal frequency now at
OHz. They are then low-pass filtered using a cut-off frequency of 0.25Hz and
then down-sampled to one sample per minute. For the dual-harmonic search
this is repeated so that time series are obtained centred at both f.,; and 2f,o.
Bayesian inference is used to estimate the remaining unknown signal parameters
and the evidence for the signal model (Pitkin et al.. [2017). For the parameter
inference, the prior distributions used are those given in Appendix 2 of |Abbott
et al| (2017a). They are uninformative uniform priors for the orientation angles,
unless restricted ranges are appropriate as discussed in Section [3.2.2] For the
amplitude parameters, Fermi-Dirac distribution priors are used (see Section 2.3.5
of |Pitkin et al |2017). The Fermi-Dirac distributions for each pulsar are set such
that they are close to flat over the bulk of the likelihood while penalising very
large values. This choice of prior means that the amplitude posteriors will be
dominated by the likelihood even when no signal is observed. Any upper limits
derived from the posteriors will be more conservative than those that would be

found from using an uninformative Jeffreys prior that is uniform in the logarithm
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of the amplitude, i.e., p(hg) o< 1/hg. To avoid basing the priors on current de-
tector data, the priors are constructed by choosing Fermi-Dirac parameters that
give distributions for which the 95% probability upper bound is equivalent to
the estimated upper limit sensitivity of the combined LIGO S6 and Virgo VSR4
science runs at the particular pulsar GW signal frequencyE]

This method also considers the effect of glitches on the pulsars (Section

and can perform searches with restrictions on the pulsar orientation (Section(3.2.2)).

3.2.1 Glitches

Although their frequency is usually very stable, pulsars occasionally experience a
transient increase in rotation frequency and frequency derivative called glitches.
These are discussed in more detail in Section[1.6.4] Some of the sample of pulsars
glitched during the course of O2 and O3. I assume that glitches affect the GW
phase identically to the EM phase, but with the addition of an unknown phase
offset at the time of the glitch. This phase offset is included in the parameter
inference. For glitches that occur before or after the range of the data, no phase
offset is needed. The pulsars which experienced glitching during the course of
this analysis are J0534+2200, also known as the Crab pulsar (Shaw et al.| [2021)),
J0908—-4913 (Lower et al., [2019) and J1105—6107. They are shown in Table
along with the time (MJD) of the glitch.

Table 3.1 Pulsars with glitches occurring during the course of the runs used in
this analysis.

PSR Epoch (MJD)
J0534+42200 (Crab) | 58687.6448 + 0.0033
J0908—-4913 a8767.34 £ 4.5

J1105-6107 58582.24

'For the dual-harmonic search for pulsars with signal components below 20 Hz, the Ca;
priors are constructed without using the estimated VSR4 Virgo sensitivity. This is to prevent
the prior from dominating over the likelihood in this frequency region.
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3.2.2 Restricted Orientations

Occasionally, the orientation of a pulsar can be determined from modelling of
X-ray observations of its pulsar wind nebula (Ng and Romani, 2004} |2008). In
such cases, these values can be included as narrow priors on inclination ¢ and po-
larisation W angle rather than using an uninformative uniform prior. Results still
assuming uniform priors are also included. Such pulsars are shown in Table
(below) along with their restricted prior ranges (Abbott et al., [2017al), which are

assumed to be Gaussian with the given mean and standard deviation.

Table 3.2 Pulsars with observations sufficient to restrict their orientation priors
in terms of inclination + and polarisation W angles and the values used as the con-
straints. The two values for ¢ are to incorporate the unknown rotation direction
in the search by using a bimodal distribution. The additional 5 is simply 7 — 1
radians.

PSR U (rad) 11 (rad) Lo (rad)
J0534+2200 (Crab) | 2.1844 + 0.0016 | 1.0850 £ 0.0149 | 2.0566 + 0.0149
J0835-4510 (Vela) | 2.2799 + 0.0015 | 1.1048 4+ 0.0105 | 2.0368 + 0.0105
J1952+3252 0.2007 £ 0.1501
J2229+6114 1.7977 £ 0.0454 | 0.8029 £ 0.1100 | 2.3387 £ 0.1100

In the case of the Crab pulsar, which both experienced a glitch and has suf-
ficient observations for restricted priors, four individual analyses are performed.
Each analysis accounts for the glitch, with combinations of dual/single-harmonic

search and restricted /unrestricted priors.

3.3 Data Sets Used

3.3.1 Gravitational-Wave Data

The data set used O2 and O3 runs. The O2 run took place between 2016 October
30 (MJD: 57722.667) and 2017 August 25 (MJD: 57990.917). Virgo joined O2
on 2017 August 1. The duty factors for L1, H1, and V1, were 57%, 59%, and
80%, respectively. O3 took place between 2019 April 1 (MJD: 58574.625) and
2020 March 27 (MJD: 58935.708). Virgo was operational for the whole of the
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3.3 Data Sets Used

O3 run. The duty factors for this run were 76%, 71%, and 76% for L1, H1, and
V1, respectively. The uncertainties on the amplitude and phase calibration of
the detectors for O2 can be found in |Cahillane et al. (2017) and Acernese et al.
(2018)) and those for O3 can be found in Sun et al.| (2020), Sun et al. (2021)), and
Acernese et al. (2022). For O2, the maximum lo amplitude uncertainties over the
range 10-2000 Hz were between about [—2.5,+7.5]% and [—8,+4]% for H1 and
L1, respectively, and for Virgo the maximum uncertainty was 5.1%. For O3, the
maximum lo amplitude uncertainties over the range 10-2000 Hz were between
about [—5,+7]% and [—5.5,+5.5]% for H1 and L1, respectively, and for Virgo
the maximum uncertainty was 5%. These ranges are the extremes of the upper
and lower bound over the full frequency range and over different measurement
epochs over the run, so at specific frequencies/times the uncertainty can be far
smaller.

The data used underwent cleaning processes (Acernese et al., 2022; Davis
et al., [2019; Viets and Wade, [2021)), specifically the removal of narrowband spec-
tral artifacts at the calibration line frequencies and power line frequencies. A
discussion on the consequences of performing a search using LIGO data with ver-
sus without the narrowband cleaning of Viets and Wade (2021) applied can be
found in Section 3.4.2

3.3.2 Electromagnetic Data

EM observations of pulsars produce the timing solutions used as input to the GW
searches. These observations have been made in radio and X-ray wavelengths.
The observatories which have contributed to the data set are: the Canadian
Hydrogen Intensity Mapping Experiment (CHIME) (as part of the CHIME Pulsar
Project; Amiri et all [2021a)), the Mount Pleasant Observatory 26 m telescope,
the 42 ft telescope and Lovell telescope at Jodrell Bank, the MeerKAT project (as
part of the MeerTime project; Bailes et al., [2020), the Nangay Decimetric Radio
Telescope, the Neutron Star Interior Composition Explorer (NICER) and the
Molonglo Observatory Synthesis Telescope (as part of the UTMOST pulsar timing

programme; |Jankowski et al., [2019; [Lower et al., |2020). Pulsar timing solutions
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were determined from this data using TEMPO (Nice et al. 2015) or TEMPO2
(Edwards et al., |2006; [Hobbs et al., 2006a}, 2009)) to fit the model parametersﬂ

Pulsars whose rotation frequency is greater than 10 Hz are selected so they
are within the sensitivity band of the GW detectors. This leads to primarily
targeting millisecond pulsars and fast spinning young pulsars. Of the 236 pulsars
in this analysis, 74 are different from the 221 used in the O2 analysis (Abbott
et al. [2019b). There are 168 pulsars in binary systems and 161 are millisecond
pulsars (see Section for more detail about millisecond pulsars). The pulsar
J0537—6910 is not included due to the recently published searches for it in|Abbott
et al. (2021clg).

For some pulsars, ephemerides were only available for the course of O3. In
such cases, only GW data from O3 was used. This is the case for 102 out of the

236 pulsars in this analysis.

3.4 Analysis Results

No evidence for GW signals from any of the included pulsars is found. The results
for all except the high-value targets are shown in Table [A.2] The pulsars which
surpass their spin-down limits are labelled as ‘high-value’ pulsars and are shown
in Table and discussed in Section [3.4.1] As no CWs are observed, I present
the 95% credible upper limits on the GW amplitudes Cyy and Cy; for the dual-
harmonic run (searching for the mass quadrupole modes | = 2, m = 1,2) and
the GW amplitude hy for the single-harmonic (I = 2, m = 2) search. These are
calculated using coherently combined data from all three detectors over the O2
and O3 observing runs or just the O3 run, as appropriate. Due to the calibration
amplitude systematic uncertainties for the detectors, the amplitude estimates can
have uncertainties of up to ~ 8%.

Figure shows the 95% credible upper limits on the GW amplitudes Cas
and Cy; for all pulsars. In addition, it shows joint detector sensitivity estimates

for the two amplitudes based on the representative power spectral densities for

"'While TEMPO2 is an updated and more flexible version of TEMPO, the latter may be used
in legacy workflows or due to its stability over time.
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the detectors over the course of O3. For an explanation of how these estimates
are calculated, see Section or Appendix C in |Abbott et al.| (2019b).

The 95% credible upper limits for the GW amplitude hq from the single-
harmonic analysis for all pulsars are shown as stars in Figure[3.2] The spin-down
limit for each pulsar is represented as a grey triangle. If the observed upper limit
for a pulsar is below the spin-down limit, this is shown via a dotted green line
from the spin-down limit to the hg limit which is plotted within a shaded circle.
The solid line gives the joint detector sensitivity estimate over the course of 03E|

Figure shows a histogram of the spin-down ratio h85% /hsd for every pulsar
for which calculating a spin-down rate is possible.ﬂ These values rely on the pulsar
distance, frequency derivative and principal moment of inertia, which all have
associated uncertainties. These uncertainties are not taken into account in this
study, for which I use the best-fit values listed in Table and and a fiducial
moment of inertia 4 of 10% kgm?, but their presence should be kept in mind.
Distance errors are primarily based on uncertainties in the galactic free electron
distribution (Yao et al., 2017)), which can lead to distance errors on the order of a
factor of two. Nearby pulsars, for which parallax measurements are possible, will
generally have smaller distance uncertainties. Table provides a reference for
the distance to each pulsar, which can be used to find an estimate of the associated
error as required. The relative uncertainties in frequency derivative are generally
much smaller than the distance uncertainties. The principal moment of inertia
is equation of state dependent and could range between ~ (1 — 3) x 103 kg m?
(see, e.g., |Abbott et al. [2007). The mass quadrupole Qo2 and the ellipticity e
limits also rely on these values; for example, the given ellipticity upper limits are
inversely proportional to I./10% kg m?.

The single-harmonic search is used to place limits on the mass quadrupole

95% which can be used to find the pulsar’s ellipticity £**” using equations
and . However, for pulsars that did not surpass their spin-down limits these
(D22 and ¢ values would lead to spin-down rates Prot that are greater than (and

thus are in violation of) their measured values. The results are shown in terms

!The sensitivity estimate for O3 alone is used as it dominates compared to the estimate for
the O2 run.

2Spin-down rates cannot be calculated for pulsars with insufficient distance, frequency or
frequency derivative data (see equation (3.6)).
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Figure 3.1 The 95% credible upper limits on the GW amplitudes for all 236
pulsars. The pink stars and green crosses show the 95% credible upper limits for
the GW amplitudes (C, and Cyy respectively) for the dual-harmonic search. The
solid lines show the estimated sensitivity of all three detectors combined over the
course of O3.
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Figure 3.2 Upper limits on hq for the 236 pulsars in this analysis. The stars show
95% credible upper limits on the amplitudes of hy. Grey triangles represent the
spin-down limits for each pulsar (based on the distance measurement stated in
Table[A.2]and assuming the canonical moment of inertia). For those pulsars which
surpass their spin-down limits, their results are plotted within shaded circles. The
pink curve gives an estimate of the expected strain sensitivity of all three detectors
combined during the course of O3. The highlighted pulsars are those with the
best hgy, Q22 and spin-down ratio out of the pulsars which surpassed their spin-
down limit, as well as the best hg limit out of the whole sample. The Vela pulsar
is highlighted and the pulsar J0537—6910 upper and spin-down limits calculated

in |Abbott et al.| (2021c) are also included for completeness.
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Figure 3.3 A histogram of the spin-down ratio for the 195 pulsars for which a
spin-down ratio is calculated.
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of the mass quadrupole Q22 and ellipticity ¢ in Figure 3.4 Also included are
histograms of the upper limits and spin-down limits as well as contour lines of
equal characteristic age 7 calculated under the assumption that all spin-down is
due to energy loss through GW emission, i.e., the braking index is n = 5.

Twenty-three pulsars have direct upper limits that are below their spin-down
limit, with 89 pulsars within a factor of 10 of their spin-down limit. There
are 90 millisecond pulsars with a spin-down ratio less than 10. For the dual-
harmonic search, the most constraining upper limit for Cy; is J2302+4442 with
7.05x 10727, The smallest Cyy upper limit is 2.05 x 10727 for J1537—-5312. As
physically meaningful constraints for the single-harmonic search are only achieved
once the spin-down limit has been surpassed, the following best limits are taken
from the 23 pulsars that have h3°*/h5? < 1. The smallest spin-down ratio is
0.009 for J05344-2200 (the Crab pulsar). The pulsar with the smallest upper
limit on hg is J1745—0952 with 4.72x107%7. The best Q3 upper limit is achieved
by JO711—-6830 with 4.07 x 10* kg m? which leads to the best limit on ellipticity
of 5.26 x 1072, This pulsar has a dispersion measure distance of 0.11kpc, which
makes it relatively close-by. However, its high ecliptic latitude makes it very
insensitive to parallax measurement (Reardon et al., 2021)).

For each pulsar, a model comparison between the assumption of the data being
consistent with a coherent signal compared to the assumption of an incoherent
signal or noise is performed. This is calculated for both the dual-harmonic (I = 2,
m = 1,2) and single-harmonic (I = 2, m = 2) searches. Specifically, the base-10
logarithm of the Bayesian odds between models is calculated assuming a prior
odds ratio of 1, which will be referred to as 0. Of all the pulsars in this search,
none have O > 0, meaning in all cases incoherent noise is more likely than a
coherent signal. The pulsar with the highest O overall is J2010—1323 with —0.77.

3.4.1 High-Value Targets

Table shows the results for the analyses on the high-value targets. For each
pulsar with either a glitch or restricted priors, individual analyses are performed
assuming GW emission at both 2f.,; and fio; and just 2f.. In the case of

the Crab pulsar, which both experienced a glitch and has sufficient observations
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Figure 3.4 95% credible upper limits on ellipticity € and mass quadrupole Q)25 for
all 236 pulsars. The upper limits for each pulsar are represented by blue circles
while their spin-down limits are shown as grey triangles. Pulsars for which my
direct upper limits have surpassed their spin-down limits are highlighted within a
shaded circle with a dotted green line linking the limit to its spin-down limit. Also
shown are pink contour lines of equal characteristic age 7 = P/ 4P assuming that
GW emission alone is causing spin-down. To the right of the plot, histograms of
both these direct limits and spin-down limits are shown by filled and empty bars
respectively.
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for restricted priors, four individual analyses are performed. Each analysis ac-
counts for the glitch, with combinations of dual/single-harmonic search and re-
stricted /unrestricted priors. The values shown in Table are from the searches
with glitches accounted for via an unknown phase offset where applicable. When
a pulsar has a restricted prior search, the results are shown in the restricted priors
TOW.

By definition, all high-value pulsars surpassed their spin-down limits. Sev-
eral pulsars glitched during the course of the runs: J0534+2200 (Crab pulsar),
J0908—4913 and J1105—6107. The times of the glitches are shown in Table
and the process for dealing with them is outlined in Section [3.2.1 Additionally,
some have sufficient information from EM observations on their orientation to
restrict their priors: J05344-2200 (Crab pulsar), JO835—4510 (Vela), J1952+43252
and J2229+4-6114. This is discussed in [3.2.2 and the pulsars’ restricted ranges are
quoted in Table [3.2]

The Crab pulsar is of interest due to its high spin-down luminosity. For the
single-harmonic analysis and with the glitch accounted for by a phase offset,
its upper limit as a fraction of the spin-down limit is only 0.0094 (0.0085 in the

restricted analysis). The fraction of spin-down luminosity emitted as gravitational

E GW < ho )2
=" ==, 3.7
g Ey h3d (37)

waves is given by

meaning that the spin-down ratio for the Crab pulsar corresponds to a GW
luminosity of less than 0.009% of the available spin-down luminosity. This is
consistent with previous studies that also surpassed the spin-down limit (Abbott
et al., 2017d, 2019b)). Tts hY®”* upper limit is found to be 1.3(1.2) x 10726, With
a distance of 2kpc and period derivative of 4.2x 10713 ss™!, the upper limits on
the mass quadrupole and ellipticity are calculated to be Q357 = 5.6(5.0)x10%* kg
m? and €% = 7.2(6.5) x 107%. The base-10 logarithm of the Bayesian odds for
this analysis favouring a coherent signal over incoherent noise is -2.6(-2.7), which
clearly favours incoherent noise by a factor of ~ 400. As a visual example of the
results, Figure [3.5] shows the corner plots for the search parameters for both the

single- and dual-harmonic searches for the Crab pulsar.
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results with non-restricted priors and with the glitch taken into account. Each
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94



3.4 Analysis Results

The Vela pulsar also has a very high spin-down luminosity and is considered
another source of interest. Unlike the Crab pulsar, the Vela pulsar did not ex-
perience any glitches over the course of this analysis. In the single-harmonic
analysis, the spin-down limit is surpassed with a ratio of 0.052(0.051), with
h% = 1.8(1.7)x10~2°. This ratio corresponds to a maximum of 0.27% of the spin-
down luminosity being emitted by GWs. The previous known pulsar search by
Abbott et al.[ (2019b) found the spin-down ratio to be 0.042 with h9>”% = 1.4x10~%°
which is lower than in this analysis. This is due to significant noise in the LIGO
Hanford detector at twice Vela’s rotational frequency in O3, with an angular sens-
ing control dither line being the most likely culpritﬂ. However, this analysis is
an improvement on the more recent measurement of the spin-down ratio of 0.067
and h®” = 2.2x10~2 produced in|Abbott et al.[(2020b). The upper limits on the
mass quadrupole Q937 and ellipticity ¢ are calculated to be 7.2(7.1) x 10% kg m?
and 9.3(9.2)x1075, respectively. These values are calculated assuming a distance
of 0.28kpc and a period derivative of 1.2x 107 ss™. The base-10 logarithm of
the Bayesian odds for this pulsar in the single-harmonic analysis is -1.1(-1.0).

The pulsar J0537—6910 has the highest spin-down luminosity but has not
been included in this search due to recently published searches for it in |Abbott
et al. (2021cyg). The limits, which can be found in Table 3 of |[Abbott et al.
(2021c)), are shown for comparison. They found A®”* = 1.1(1.0) x 10~ with a
spin-down ratio of h3°”*/hs? = 0.37(0.33) and %% = 3.4(3.1) x 10~° while for the
dual-harmonic search C5” = 2.2(1.8) x 10726 and C9% = 5.6(5.0) x 10727,

3.4.2 Cleaned versus Uncleaned Data Comparison

The data used in this analysis was subject to a cleaning process described in |Viets
and Wade| (2021)) which focused on the removal of various narrowband spectral
artifacts at calibration line frequencies. For any pulsars with GW frequencies very
close to these lines, this cleaning would be expected to provide an improvement in

sensitivity. In this section, I present the comparison of results using this cleaned

!This contamination was removed for the final third of O3, although its presence at earlier
times still has a detrimental effect on the result.
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data against results using data without this cleaning process (which I will refer

to as ‘uncleaned’) for a sample of pulsars.

Uncleaned O3 LIGO data is used for a dual-harmonic analysis of 95 pulsars
which had ephemeris data only overlapping with O3. This is compared to the
O3-only analysis performed in this chapter using the cleaned data. The Virgo
data used is the same in both cases. For comparison, the ratio of hy upper limits
for each pulsar using uncleaned hg yncleaned Versus cleaned hg cleaned data are shown
in Figure[3.6

The mean ratio of upper limit for uncleaned data versus cleaned data is 0.9966
(with a standard deviation of 0.0486) which suggests no major effect of the line
cleaning on the majority of results. It should be noted that for this analysis
there is a statistical uncertainty on the upper limits of around 1% due to the
use of a finite number of posterior samples when calculating them (Abbott et al.|
2020b)). When performing parameter estimation on hg using multiple data sets
consisting of independent noise realisations drawn from the same distribution,
it has been observed emperically that the resultant upper limits will vary by on
order of 30%. Due to the cleaning, the cleaned and uncleaned datasets will contain
different, albeit highly correlated, noise. So, a spread of upper limit ratios that
are larger than expected from the pure statistical uncertainty on each limit, but
smaller than one would get from independent data, is to be expected. The pulsar
with the highest ratio was J1753-1914 with over 1.3. This pulsar has a rotation
frequency of 15.8 Hz corresponding to a GW frequency of 31.6 Hz. There were
spectral lines at 31.4 Hz and 31.8 Hz for 1.1 and H1 respectively (LIGO Scientific
Collaboration, [2020), which were filtered out in the cleaned data, leading to the
improvement seen.

As the upper limit ratio spread can be explained as being consistent with
expectations from statistical fluctuations, it suggests that very few pulsars have
GW frequencies close enough to the cleaned lines for the cleaning to have a
significant effect overall. However, to be consistent for all pulsars being analysed,

I choose to use the narrowband cleaned data.
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Figure 3.6 The ratio of uncleaned versus cleaned upper limits against pulsar
rotational frequency. The hg upper limits for both data sets are calculated from
the Cs limit determined in dual-harmonic searches using O3 data only. The
mean ratio is represented by the solid pink line and ratios above zero represent
an improvement in the cleaned data.
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3.5 Summary

In this chapter, I search for evidence of GWs from 236 pulsars over the course
of the LIGO and Virgo O2 and O3 runs and across all three detectors (LIGO
Hanford, LIGO Livingston and Virgo). This is an improvement on the 221 pulsars
from the O1 and O2 analysis in |Abbott et al.| (2019b). Searches are carried out
for two different emission models. One assumes GW emission from the [ = m = 2
mass quadrupole mode and the other assumes emission from the [ =2,m = 1,2
modes. For the single-harmonic search, new upper limits on hy are produced and
a total of 23 pulsars surpass their spin-down limits (24 if one includes J0537-
6910 from |Abbott et al. (2021c)). This is an improvement from the 20 pulsars in
Abbott et al.| (2019b)) and includes 9 pulsars for which their spin-down limit had
not previously been surpassed. For the dual-harmonic search, new limits on Cy;
and Cye are found.

The millisecond pulsars that surpass their spin-down limits, J0437—4715 and
JO711-6830, have ellipticity upper limits of 8.5x107? and 5.3x107?, respectively.
Comparing these values to those in Figure 3.7 I find that my results are lower
than the maximum values predicted for a variety of neutron star equations of
state. While this does not yet rule any EOS out, it demonstrates that these
results are therefore providing new constraints in physically realistic parts of the
ellipticity parameter space.

This search found no strong evidence of GW emission from any of the pulsars.
However, with so many pulsars now surpassing their spin-down limit, including
the millisecond pulsars J0437—4715 and J0711—-6830 (Abbott et al., 2020b), the
next observing run O4 could add more pulsars to this count and bring us closer

to observing CWs from pulsars for the first time.
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Figure 3.7 Maximum ellipticities predicted by a variety of neutron star EOSs.
Taken from the left-hand panel of Figure 3 in |Gittins and Andersson| (2021b)
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Chapter 4

Search for Continuous
Gravitational Waves from Known
Pulsars in the Early Part of the
Fourth LIGO-Virgo-KAGRA

Observing Run

4.1 Introduction and Methods

This chapter is a repeat of the analysis performed on the second and third LIGO-
Virgo observing runs described in Chapter [3| (subsequently referred to as the O3
analysis). This time, the analysis is performed on the first part of the fourth
LIGO-Virgo-KAGRA observing run (O4a). Due to the similarities in the two
analyses, only their differences are highlighted in this section. For full details and
motivations for both targeted searches, see Sections and [3.2]

As in the O3 analysis, a time-domain Bayesian analysis is performed search-

ing for continuous GWs at two harmonics. The signal models remain the same,
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4.1 Introduction and Methods

as does the analysis method involving two heterodyne phases: course and fine,
followed by parameter estimation. However, the primary difference in the analy-
sis method is that while the O3 analysis was performed using LALSuite (LIGO
Scientific Collaboration| |2018), this O4a analysis uses the new Continuous (grav-
itational) Wave Inference in Python (CWInPy) software package (Pitkin, 2022)
which uses the dynesty (Skilling, 2004, 2006) sampler within bilby (Ashton
et al} 2019). The CWInPy software, written in Python rather than C, is designed
to supersede LALSuite, providing greater ability to control various aspects of the

analysis along with improved robustness and efficiency.

4.1.1 Prior Assumptions

Bayesian inference is used to estimate the unknown prior parameters and the
evidence for the signal model. The majority of the priors used in this analysis
are the same as those detailed in O3 and listed in Appendix 2 of |[Abbott et al.
(2017a)). However, for the amplitude priors I use a flat prior with an upper
cutoff of 1.0x 107! for all pulsars. This value is much higher than the detector
sensitivity. The Bayesian stochastic sampling algorithm dynesty is used with
1024 live points. These live points represent the number of samples initially drawn
from the prior which are repeatedly updated by replacing the point with the lowest
likelihood with a new point with a higher likelihood in order to efficiently explore

the posterior.

4.1.2 Restricted Priors

For some pulsars, there is sufficient information to restrict my uninformative prior
assumptions on their inclination and polarisation angles. For example, I can use
restricted priors if I have electromagnetic observations of their pulsar wind nebu-
lae or, in the case of J19524-3252, proper motion measurements and observations
of Ha lobes bracketing the bow shock (Ng and Romani, 2004). In these cases,
the parameter estimation is repeated using these restricted priors and the results
are listed alongside the results obtained using the original uninformed priors. Ta-
ble 4.1 shows the pulsars for which I could restrict the priors and the values used
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4.1 Introduction and Methods

for the restrictions. In addition to those with restricted priors in O3, there are
four new pulsars: J02054-6449, J0537-6910, J0540-6919, and J2021+4-3651. The
orientation values for these pulsars were obtained using the data from Table 2
of Ng and Romani| (2008) and the methods described in Appendix B of |Abbott
et al.| (2017a). Each prior range is assumed to be Gaussian with the given mean
and standard deviation. The two values for ¢ are to incorporate the unknown
rotation direction in the search by using a bimodal distribution. The additional

Lo is simply 7 — ¢; radians.

Table 4.1 Pulsars for which I can restrict their orientation priors using electro-
magnetic observations. ¥ is the polarisation and ¢ is the inclination.

PSR U (rad) 1y (rad) Lo (rad)
J0205+6449 1.5760 £ 0.0078 | 1.5896 + 0.0219 | 1.5519 + 0.0219
J0534+2200 (Crab) | 2.1844 £ 0.0016 | 1.0850 £ 0.0149 | 2.0566 + 0.0149
J0537-6910 2.2864 £ 0.0383 | 1.6197 + 0.0165 | 1.5219 £+ 0.0165
J0540-6919 2.5150 £ 0.0144 | 1.6214 £ 0.0106 | 1.5202 £ 0.0106
J0835-4510 (Vela) | 2.2799 + 0.0015 | 1.1048 4+ 0.0105 | 2.0368 £ 0.0105
J1952+3252 0.2007 £ 0.1501
J20214-3651 0.7854 £ 0.0250 | 1.3788 £ 0.0390 | 1.7628 £+ 0.0390
J22294-6114 1.7977 £ 0.0454 | 0.8029 £ 0.1100 | 2.3387 £ 0.1100

4.1.3 Glitches

During the course of the second and third LIGO-Virgo observing runs, three
pulsars experienced sudden increases in both their rotation frequency and its
derivative, referred to as a glitch. In this analysis, only two pulsars in the sample
experienced glitches during the length of O4a: J0537—6910 with a glitch epoch of
60223 MJD and J0540—6919 with an epoch of 60150 MJD. I assume that the GW
phase is affected in the same way as the EM phase. However, as the phase offset
is unknown at the time of the glitch, it is included in the parameter inference for

those pulsars as a uniform prior.
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4.2 Datasets

4.2.1 The GW Dataset

The dataset used in this analysis is referred to as O4a. This is the first part
of the fourth observing run from the LIGO collaboration, taking place between
15:00:00 UTC 24th May 2023 and 16:00:00 UTC 16th January 2024. O4 in total
will be a joint observation using the LIGO Livingston (L1) and LIGO Hanford
(H1) observers in the United States, Virgo (V1) in Italy, and KAGRA in J aparﬂ
However, as Virgo only joined O4 on 10th April 2024 and KAGRA is scheduled
to join by the end of O4, only L1 and H1 data is used in this analysif The
duty factors for these detectors are 69% and 67.5% respectively. A description of
the upgrades to the Advanced LIGO, Advanced Virgo, and KAGRA detectors in
preparation to the O4 run can be found Appendix A of |Abac et al| (2024)).

As described in Section the two LIGO detectors are calibrated using
photon radiation pressure actuation (Karki et al., [2016; [Viets et al., 2018)). For

the O4a data over the 10-2000 Hz range, the worst 1o calibration uncertainty
is within 10% for amplitude and 10 degrees for phase. This uncertainly can be
significantly smaller at specific frequencies and times. The Bayesian pipeline also
performs a cleaning step where outliers are removed before the heterodyne step
using a median-absolute-deviation (MAD) method as described in Chapter 3 of
Iglewicz and Hoaglin| (1993), with a threshold of 3.5.

4.2.2 The EM Dataset

The inputs for the GW search are produced from timing solutions from a wide
range of wavelengths. Chandra (Weisskopf et al.,2002) and Fermi-LAT (Atwood,

et all [2009) provide the gamma-ray ephemerides. X-ray ephemerides are pro-
vided by the Neutron Star Interior Composition Explorer (NICER,

| !As seen in Figure[1.3] KAGRA has still not joined O4, however it still hopes to join before]
the end.

“Specifically, the channels L1:GDS—CALIB_STRAIN_CLEAN_AR and H1:GDS—
(CALIB_.STRAIN_CLEAN_AR are used, with CAT1 vetoes for L1 and H1, respectively. |
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et al), [2012). The radio ephemerides are extracted from the Nancay Radio Tele-
scope (NRT, Desvignes et al., 2016)), the Jodrell Bank Observatory (JBO), the
Argentine Institute of Radio astronomy (IAR, |Gancio et al., 2020), the Mount
Pleasant Radio Observatory (Lewis et al.| 2003)), the Five-hundred-meter Aper-
ture Spherical Telescope (FAST, Smits et al., | 2009) and the Canadian Hydrogen
Intensity Mapping Experiment (CHIME, Amiri et al., 2021b)).

PSRCHIVE (van Straten et al., 2012) or PRESTO (Ransom, 2011) are used to

fold observations. Radio-frequency interferences (RFIs) are mitigated using pazi

or rfifind. TOAs are then obtained by cross-correlating the folded observations
with template profiles that have high signal-to-noise ratios. The TOAs during the
course of O4a are selected, meaning the solutions are valid for this analysis. Tempo
(Nice et al., 2015)), due to varying workflows between groups,Tempo?2
et al., 2006} [Hobbs et al., 2006a, 2009) or PINT (Luo et al., 2019} 2021)) are then

used to fit the model parameters used in this search.

For most pulsars, their distances were taken from the Australia Telescope
National Facility (ATNF) catalogue. Of these, the majority have been calculated
using the Galactic electron density distribution model YMW16 (Yao et al., [2017).

This can result in uncertainties as large as a factor of two. Another method

involves measuring parallax with the timing solution (Smits et al.) 2011) and

can produce an uncertainty ranging from 5-50% (Shamohammadi et al., [2024).

Other methods include using the orbital period derivatives of binary systems

(Verbiest et al., |2008)), which can produce uncertainties of 0.1%, and Very Long

Baseline Interferometry (Lin et al., 2023). The uncertainty in pulsar distances is

not accounted for in this analysis.

A few pulsar distances were not in the ATNF catalogue at the time of anal-
ysis (version 2.1.1). The pulsars J1412+-7922 and J1849—0001 did not yet have
distance values, and so their distances are taken from |Mereghetti et al. (2021)
and H. E. S. S. Collaboration et al. (2018) respectively. The pulsar J2016+3711
was not in the catalogue at all, so its values are taken directly from |Liu et all
(2024).

In order to ensure that the pulsars selected are both in the bandwidth of the

LIGO detectors and in a region where the expected targeted search sensitivity for

the strain amplitude is within a factor of 3 of the spin-down limit, I choose pulsars
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with rotation frequencies close to, or greater than, 10 Hz. Of the 45 pulsars in
this analysis, 11 belong to binary systems and 10 are millisecond pulsars with

frequencies higher than 100 Hz.

4.3 Results

I detect no statistical evidence of a CW signal in the O4a data for any of the
pulsars. Therefore, I present the 95% credible upper limits in the absence of a
detection. The results of the analysis on the 45 pulsars are shown in Table [A.4]
The 95% credible upper limits on the strain amplitude h)*” are given for the

957 and ellipticity %%

single-harmonic search along with the mass quadrupole )
upper limits calculated using the distances listed in the table (not taking into
account the uncertainty on the distance) and a fiducial moment of inertia I,, =

103 kg m?. For pulsars that do not surpass their spin-down limits, Q337 and

£%% are not physical as they would lead to spin-down rates that are greater
than observed. Using h85% and the spin-down limit from equation , I also
calculate the spin-down ratio as hJ°” /hd. The upper limits for the dual-harmonic
search are included as C32” and C95%. Finally, the base-10 logarithmic odds of
a coherent signal versus incoherent noise are given for both the single-harmonic
042, and dual-harmonic O}72, , searches.

For J0537—6910 and J0540—6919, the pulsars that experienced glitches during
O4a, the results in this table are produced when incorporating an additional phase
offset in the parameter inference. For pulsars with sufficient observational data
(listed in Table , results using restricted priors of inclination and polarisation
angles are listed in separate rows.

Figure [4.1{ shows the upper limits from the single-harmonic analysis alongside
the combined sensitivity curve of both detectors during O4a. The results from
this analysis for each pulsar are represented by the blue stars, with their cor-
responding spin-down limit shown by the grey triangles at the same frequency.
The sensitivity curve is shown as a pink line. Some pulsars have been highlighted:
the Crab pulsar (J05344-2200) which has the lowest spin-down ratio of 0.0078,

Vela (J0835—4510), J2021+3651 which has the highest base-10 logarithmic odds
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Figure 4.1 Upper limits on hqy for the 45 pulsars in this analysis from the single-
harmonic search. The blue stars show 95% credible upper limits on the amplitudes
of hg. Grey triangles represent the spin-down limits for each pulsar (based on the
distance measurement stated in Table and assuming the canonical moment
of inertia). The pink curve gives an estimate of the expected strain sensitivity of
both detectors combined during the course of O4a.
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of coherent signal versus incoherent noise with —3.1, J0537—-6910 which has the
most constraining amplitude upper limit of 6.4 x 10727, and J0437 4715 which
has the most constraining ellipticity upper limit of 8.8x107?. The distribution of
spin-down ratios for these results is shown in Figure [4.2] with all pulsars having
a spin-down ratio below 5 and 29 pulsars surpassing their spin-down limits.

95% 33% upper limits are plotted against

The ellipticity €”°” and mass quadrupole )
the GW frequency in Figure [£.3] The results from this analysis are represented
by blue dots while the spin-down limits are represented by grey triangles at the
corresponding frequencies. Additionally, the contours of equal characteristic age
are represented as pink lines. They are calculated using 7 = P/ 4P which can be
derived with the assumption that GW emission alone is driving the spin-down.
It should be noted that although all the results are plotted, only those which

surpass their spin-down limit are physically meaningful.

4.4 Discussion

This section compares the results in this analysis with those of previous targeted
searches (Abbott et al., 2017a, 2019bj 2021c, [2022¢]) which used combinations of
the first three observing runs. The ratio between the O4a 95% credible upper
limits and the equivalent upper limits from previous runs are shown in Figure 4.4

The expected sensitivity of targeted searches is expressed as the minimum
detectable amplitude h,;,. This can be calculated for a multi-detector analysis

averaged over sky positions and polarisation parameters, using

where n is the number of detectors and T} and .S; are the effective observation time
and average power spectral density (PSD) for the i-th detector respectively. The
PSD is dependent on frequency, meaning there is a value of hy;, for each pulsar,
reflecting the frequency-dependent performance of the detector. The factor C

depends on the search pipeline used, but in targeted analyses is ~ 11, which
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Figure 4.2 A histogram of the spin-down ratio for 45 pulsars from the single-
harmonic analysis.
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Figure 4.3 95% credible upper limits on ellipticity ¢%°% and mass quadrupole Q35"

for all 45 pulsars using the Bayesian analysis method. The upper limits for each
pulsar are represented by blue circles while their spin-down limits are shown as
grey triangles. The upper limits are also shown in the histogram in solid blue
along with their upper limits in hollow grey. Also included are pink contour lines
of equal characteristic age 7 = P/ 4P assuming that GW emission alone is causing
spin-down. Only the results for pulsars which surpassed their spin-down limits
are physically meaningful.
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Figure 4.4 Comparisons of GW strain upper limits from this O4a analysis versus
previous analyses including the same pulsars plotted against the GW frequency.
The hollow blue stars represent the hy upper limits assuming the single-harmonic
emission model produced in O4a divided by the equivalent upper limits pro-
duced using O3 and O2 data in |Abbott et al.| (2022¢]). The red circles represent
the comparison of the Cy; upper limit from the dual-harmonic analyses in the
same datasets. Filled blue stars show the hg upper limit ratio for J020546449,
JO737—3039A, J1813—1246, J1831—-0952, J1837—0604 from the O4a analysis
compared to the study including O2 and O1 data (Abbott et al., 2019b). The
blue cross represents the comparison for J1826—1334, which was included in the
search using just O1 data |Abbott et al. (2017a)). Points below 1 represent im-
proved upper limits.
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corresponds to a 90% detection probability at a 1% false alarm rate calculated
under the assumption of a matched-filter coherent search (Krishnan et al., 2004}
Leaci et al., 2012).

While the PSD for L1 and V1 in O4a is generally 1.5 — 2 times better than
the corresponding PSD for O3, depending on the frequency band, the effective
observation time of O4a is reduced by factor of 1.6 compared to O3. This means
the effect of the improved PSD is decreased. However, the O4a sensitivity is still
greatly improved for frequencies below 20 Hz. This leads to an expected similar
sensitivity to O3 for the single-harmonic search and improved sensitivity for Csy;
in the dual-harmonic search which is at lower frequencies.

Of the 45 pulsars in this analysis, 33 were also analysed in the previous tar-
geted search using O3 and O2 (Abbott et al 2022¢), including J0537—6910
derived from [Abbott et al. (2021c). Of the remaining pulsars, 5 (J0205+6449,
JO737—3039A, J1813—1246, J1831—0952, and J1837—0604) were included in the
joint O2 and O1 search (Abbott et al. 2019b). Finally, J1826—1334 was only
previously included in the O1 search (Abbott et al., [2017a).

The A" upper limit ratio between O4a and 03402 is shown in Figure
as hollow blue stars, while the C5” upper limit ratio is shown as red circles.
In general, the amplitudes are comparable between the two analyses, with some
pulsars showing improved results in O4a and others having worse results. The
majority of the pulsars seeing improvements are at low frequencies. This is to be
expected due to the improvements in sensitivity at low frequencies in O4a and
comparable sensitivities at other frequencies.

For the pulsars from 02401 (shown in blue filled stars) and J1826—1334 from
O1 only (shown as a blue cross), there is a clear improvement in the upper limits
from O4a. While the remaining targets which were not included in Figure 4.4
(J0058—-7218, J0540—-6919, J1811-1925, J1826—1334, J2016+3711, J2021+-3651,
J2022+3842) have not been analysed in any other recent targeted searches, they
all surpassed their spin-down limits in the O4a analysis.

The upper limits are subject to uncertainties from detector calibration as
described in
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4.5 Summary

In this analysis, I present a targeted search for CWs from 45 known pulsars in
the O4a data from the two LIGO detectors, H1 and L1. I perform a time-domain
Bayesian analysis with the pulsars’ parameters constrained by EM observations
during the O4a period. I search at two harmonics, a single-harmonic search
looking for CW signals at 2 f,,; and a dual-harmonic search looking for signals at
both fior and 2 fq.

No evidence of CWs are detected, and so I present 95% confidence upper
limits on the strain amplitude, as seen in Figure |4.1| and Table Of the 45
pulsars in this analysis, 29 surpass their theoretical spin-down limits, allowing us
to place further constraints on their ellipticities and mass quadrupoles. Compared
to the last LVK targeted search (Abbott et al., 2022¢), the C component of the
dual-harmonic search has seen an improvement on average across the pulsars
included in both analyses. For the single-harmonic search, the upper limits are
comparable to O3 due to the improved sensitivity but shorter observation time
of O4a. There has been a notable improvement in the upper limits for all pulsars
included in LVK targeted searches prior to O3. Additionally, I surpass or equal
the theoretical spin-down limit for all these pulsars.

Analysis on the full O4 dataset will improve the sensitivity of CW searches
using known pulsars due to the longer effective observation time and continued
improvement to the PSD, allowing even further constraints and more pulsars to
surpass their spin-down limits. I am optimistic that further analyses, such as

those discussed in Section |5 will lead to the observation of a CW signal.
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Chapter 5

Conclusion

This thesis has presented a novel method for retrieving the braking index from
a population of pulsars via Bayesian inference (Chapter . While this method
has its limitations under current observation lengths and noise values, it shows
promise with potential future advancements. As the proof of concept described in
this thesis uses simulated data only, the next logical steps would be to run a more
sophisticated model including binary systems, astrometric measurements such as
proper motion and parallax, and more complicated noise profiles; and to run the
analysis on real TOA datasets. With the newest NANOGrav dataset being the
15-year dataset containing 67 pulsars compared to the 47 pulsars in the 12.5-year
dataset used in Chapter [2] it is already likely that some improvement could be
seen. Further upcoming advancements which would contribute to the improved
efficacy of this result are discussed in Section [5.2] If the method described in
this thesis is successful, obtaining the braking index would give key insights into
the mechanisms for pulsar spin-down rates and how much of a part GW emission
plays.

This thesis has also described the two most recent targeted CW searches on
LVK datasets. Although these searches have not found evidence of CWs, there
remains optimism for the prospects of the upcoming full O4 search and, failing
that, the subsequent O5 search which may begin in 2028. As can be seen in
Figure the latter parts of O4 will involve Virgo, with KAGRA joining towards
the end of the run. As of March 2025, KAGRA is still yet to join O4, but with the
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observing run continuing until October 2025, it still aims to join before the end
(LVK], 2025). Since detector sensitivities are already surpassing the spin-down
limits for many pulsars, a detection is very possible. However, the spin-down limit
assumes that all pulsars are gravitars. Pitkin| (2011) calculated that, assuming
pulsars emit only 10% of their spin-down as GWs, 3 currently known pulsars
would emit CWs detectable by Advanced LIGO-Virgo and 6 to 11 detectable by
upcoming detectors, specifically the Einstein Telescope described in Section [5.1.1]
This number is likely to have improved as more pulsars are now known and the
design of ET has been updated. More recently, Cieslar et al. (2021) modelled
the Galactic neutron star population assuming a supernova rate of 1 per 100
years, an initial ellipticity of 10™° with no decay, and 10 million stars, predicting
that 0.15 neutron stars would emit CWs detectable by advanced LIGO. This
number increases to 26.4 neutron stars for ET. Additionally, the detection of new
pulsars through advancements in EM astronomy (described in Section could
increase this number further. As described in Section sensitivity for targeted
searches depends on the observation time as well as the power spectral density
of the detectors. Therefore, in comparison to the O3 and O4a runs, the full O4
run will have a greater sensitivity both due to the longer effective observing time
and the sensitivity improvements made during the break between O4a and O4b|1_-].
The full O4 search will also contain more pulsars, as additional up-to-date pulsar
ephemerides are provided by EM astronomers for full searches. A full analysis
of O4 detector performance so far can be found in (Capote et al. [2024). Even
without a CW detection, this dataset will provide new strain amplitude upper
limits and ellipticity constraints for numerous pulsars. Additionally, O5 boasts
further significant sensitivity improvements over O4 with the possibility of both
Virgo and KAGRA participating. However, specifics are not yet known.
Continuous improvements will also be made in the data analysis side. The
move from LALSuite to CWInPy in Chapter |4 has already sped up the analysis
method with greater robustness and customisability. This program will continue

to be improved and new analysis methods will appear, alongside improvements in

'Tn particular, the end test masses of the Livingston detector were cleaned, reducing scatter
by 20-40% compared to O4a
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computing hardware, which will allow for more computationally expensive anal-
yses. This will benefit both the method of recovering the braking index in Chap-
ter 2| and the upcoming targeted CW searches. For example, CWInPy allows for
searches of continuous-transient signals, signals with varying amplitude but which
are long-lasting, on timescales of days to months (Abbott et al., 2022a)). These
may be emitted as a result of pulsar glitches, so searches for continuous-transient
GWs can be performed alongside targeted searches on any pulsar glitches. Also,
a method which might be able to detect a signal earlier than traditional targeted
searches involves combining results for individual searches into an ensemble as in

Pitkin et al.|(2018), which uses a similar hierarchical approach as used in Chapter
22| and [D’Onofrio et al. (2023).

5.1 Future Gravitational Wave Detectors

While the existing LVK detectors will continue to be upgraded, pushing their sen-
sitivities to new limits for each observing run, there are other exciting prospects
for GW detectors on the horizon. As discussed in Section [1.4.2] interferometric
detectors have the potential to observe a GW background which is cosmological
in origin. By pushing the observing distance further and improving sensitivity
at lower frequencies, we can observe GW sources throughout the history of the
universe, allowing for lifecycle and population studies. In the search for CWs,
the spin-down limit for many pulsars sits below current detectors’ sensitivities, as
seen in Figure An order of magnitude sensitivity improvement would put the
spin-down limit for the majority of pulsars included in the O3 targeted analysis

within detector sensitivity.

5.1.1 Ground-Based Detectors

There are multiple planned ground-based GW detectors which will probe new
sensitivities and frequency ranges. Figure |5.1| shows the amplitude spectral den-
sities (ASDs) for a variety of upcoming detectors along with the advanced-plus
upgrades to the current LIGO (A+), Virgo (V+), and KAGRA (K+) detectors.
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Figure 5.1 The amplitude spectral densities (ASDs) for various upcoming ground-
based detectors. A+: Advanced-plus LIGO Hanford, LIGO Livingston, and
LIGO India. V+: Advanced-plus Virgo. K+: Advanced-plus KAGRA. Voy:
Voyager upgrade of LIGO. ET: Einstein Telescope. CE: Cosmic Explorer. Taken
from Borhanian and Sathyaprakash| (2024]).
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A+ will include a new detector in Aundha, India called A1l. The additional de-
tector, with a similar sensitivity to H1 and L1, will help to further improve the
detector signal-to-noise ratio and baseline duty factor (the fraction of the time
at least one of the detectors are operational over the length of the observing
run) (Saleem et al. 2022). It is estimated that the number of CBC detections
will increase by ~ 70% with the inclusion of Al versus just H1, L1, and Virgo
(Soni et al. [2024)). In fully coherent searches (such as targeted CW searches),
combining multiple identical detectors with known phase corrections results in
a sensitivity improvement of v/ N compared to a single detector (Riles, 2023).
The inclusion of A1 therefore has twofold benefit to CW searches: improved duty
factor and improved sensitivity. LIGO India is expected to be completed by 2030.

Figure [5.1] also shows the ASDs for the Voyager upgrade for LIGO. This tech-
nology can be installed in the current detectors with an aim to improve sensitivi-
ties by a factor of ~ 2 to ~ 4 compared to advanced LIGO, as they approach the
thermodynamic and quantum mechanical limits of their current designs (Borha-
nian and Sathyaprakash| [2024). The most significant changes involve reducing
the quantum noise through squeezed light and increased optical power in the
arms, reducing thermal noise via mirror coatings with higher thermal conduc-
tivity and lower dissipation, and lowering the test mass temperature to 123 K
to mitigate thermo-elastic noise (random heat flow within the masses) (Adhikari
et al., 2024). This upgrade has already been partially implemented in O4a with
the inclusion of vacuum squeezing and should be implemented in O5. Beyond this
is A#, which will aim to further upgrade the detectors after O5 (Gupta et al.,
2024} ILIGO Scientific Collaboration, [2024)).

In addition to the upcoming advancements to LIGO, there are also two new
detectors shown in Figure[5.1} The Einstein Telescope (ET) and Cosmic Explorer
(CE). The former will be made up of three cryogenically-cooled underground de-
tectors with three 10 km arms nested together in a triangular shape. In the
optimal design, each detector will have two interferometers, one tuned to high
frequencies and one tuned to low frequencies (Branchesi et al., 2023). This ar-
rangement can be seen in Figure 5.2} These enhancements will not only increase
sensitivities at the frequencies of current detectors, but will also probe much

lower frequencies. It will be able to detect GWs originating from redshifts of
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Figure 5.2 The geometry for the Einstein Telescope. Taken from Rowlinson et al.|
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Figure 5.3 Pulsar spin-down limits plotted with sensitivity curves for O3 (black),
an O4-like run using two detectors for two full years (magenta), and ET with
two possible designs (blue and green). The green line represents the geometry
described in Figure (ET-C) while blue describes a geometry similar to LIGO
(ET-B). Closed triangles represent isolated stars while open circles are binary
systems. The grey dotted lines are quotients of ellipticity /distance. Taken from

Riles| (2023).
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up to z = 1000 (during the cosmological dark ages). This allows it to see the
entire population of stellar and intermediate black holes throughout history, giv-
ing valuable information about their demographics, origins, and evolution. Great
improvements can also be made in CW searches. Figure |5.3| shows where various
pulsar spin-down limits sit against the expected sensitivity curve of ET. Assuming
that GW emission is contributing significantly to the spin-down for these pulsars
(although this is unlikely), the sensitivity would be low enough to detect CWs
from the majority of pulsars. ET aims to begin observations in 2035.

Cosmic Explorer is a planned US-based observatory consisting of two L-shaped
detectors, one with 40 km arms and one with 20 km arms. The L-shaped design
allows CE to utilise the mature technology which has already been used reliably
in the LVK detectors. The large arm lengths will allow it to achieve similar
sensitivities to ET at most frequencies and better in some, while an order of
magnitude better than Advanced LIGO (Reitze et al., 2019). A benefit of being
above ground is easier access for the purpose of topological upgrades in the future
(Evans et al., [2021). It is envisioned to begin operation some time in the 2030s
(Hall et al., [2021)).

5.1.2 Space-Based Detectors

While upcoming detectors include new ground-based detectors like those in the
LVK, they are not limited to Earth. Figure |5.4] shows the sensitivity curves for
various space-based GW detectors on a plot of characteristic strain amplitude
h. against GW frequency f. One exciting prospect is the Laser Interferometer
Space Antenna (LISA). This will be the first space-based GW observatory with
a planned launch in ~ 2035 and operation from 2037 for at least 4.5 years. Led
by the European Space Agency (ESA), it will have a duty factor of > 82% (Colpi
et al., 2024). The LISA mission is also a collaboration between ESA, NASA,
and the LISA consortium. LISA will comprise three spacecraft in a triangular
formation trailing behind the Earth in its orbit, with each spacecraft separated by
2.5x10% km. Due to the distances involved, it is not feasible to use a Michelson
interferometer design where a single laser is split and reflected. Instead, each

spacecraft in LISA will have two lasers which travel one-way to the neighbouring
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Figure 5.4 The sensitivity curve of LISA compared to LIGO and ET along with
the GW foregrounds from binary white dwarfs (BWDs) and binary black holes
(BBHs). Also included are the Atomic Experiment for Dark Matter and Gravity
Exploration (AEDGE) and Big Bang Observer. Taken from [Lewicki and Vasko-

e (2021).
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Figure 5.5 The geometry for LISA. Each spacecraft (S/C) measures the phase
of interference between its local laser and neighbours which will contain a time-
delayed copy of the neighbour’s laser noise plus any GW signal. The noise can
be suppressed by combining measurements from all three spacecraft along with
corrections for the time delays. Taken from |Colpi et al.| (2024]).
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spacecraft as seen in Figure[5.5] This formation is passively stable for the duration
of LISA’s lifetime. LISA aims to detect a host of new low-frequency GW sources,
achieving high sensitivity in the low-frequency range, between 20 yHz and 1 Hz,
as seen in Figure 5.4, While LISA is not sensitive to the frequency region of CWs
from deformed neutron stars, its frequency range puts it in the realm of CWs
from binary white dwarfs.

LISA has already been tested in the LISA Pathfinder mission launched by
the ESA in 2015. The aim of this mission was to demonstrate that the test
masses would follow a geodesic (and therefore be free-falling) to a sufficient noise
level. This mission used two 2 kg test masses separated by tens of centimetres.
The mission exceeded the noise levels required, showing great promise for the
prospects of the full LISA observatory (Armano et al.l 2024)).

The TAIJI program, a Chinese GW observatory with similar geometry and
sensitivity to LISA (Hu and Wu, 2017), is likely to work in partnership with
LISA, forming an even greater network. Wang et al.| (2021)) found that the most
complimentary orientation would be for TAIJI to lead the Earth in its orbit
by 20° with a —60° inclination in comparison to LISA, which trails the Earth
by 20° with an inclination of +60°. This would provide the most accurate sky
localisation and polarisation measurement. Another Chinese detector is TianQin
(Luo et al.l 2016). This detector would consist of three satellites in an equillateral
triangle formation around Earth (An et al.; 2022)) It is possible that LISA, TALJI
and TianQin may be operational simultaneously, and if operating together in a
network, could detect mergers of SMBHBs as standard sirens, precise contraints
on the cosmological constant to 0.9 - 1.2 % (Jin et al.; 2024)).

The Big Bang Observer (Harry et al., 2006) is the proposed successor to LISA
with three clusters of LISA-like detectors as seen in Figure [5.6f These would
be launched in stages, starting with the pair of constellations in the star-like
formation and following up with the ‘outrigger’ constellations. The two star con-
stellations provide maximum cross-correlation while minimising cross-correlated
noise, and the outrigger constellations primarily aid in improving angular res-
olution of foreground sources. The primary goal of the BBO is to detect the
GW background, but it will still be sensitive to foreground sources. As seen in

Figure [5.4] it is capable of achieving greater sensitivities than any of the other
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Figure 5.6 The geometry for BBO. Three sets of interferometers like those in
LISA are positioned in an Earth-like orbit, with one pair rotated with respect to

each other to form a star shaped configuration. Taken from Crowder and Cornish
(2005)).
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observatories discussed here, though in a frequency range which only reaches
slow-spinning neutron stars. While its primary aim will not be the detection of
CWs from pulsars themselves, it will also be sensitive to CWs from both binary
white dwarfs and binary black holes.

Also seen in Figure is the Atomic Experiment for Dark Matter and Grav-
ity Exploration (AEDGE) (Abou El-Neaj et al. 2020). This experiment will be
sensitive in the range between that of LISA and ground-based observers like Ad-
vanced LIGO with the aim of detecting both GWs from sources such as SMBHs
(Ellis et al., [2023)), cosmic strings (Chang and Cui, 2022), and first-order phase
transitions (Badziak and Nalecz, 2023)); and bosonic dark matter (Arvanitaki
et al., 2016). Rather than using laser interferometers, it will use cold atom inter-
ferometers, which involve measuring the phase shift as laser light travels across
strontium atoms and excites them (Graham et al., 2016). It could be realised in
the ESA Voyage 2050 Science Program, building on knowledge gained by LISA

and other cold atom interferometers.

5.2 Electromagnetic Advancements

The future of GW astronomy is clearly filled with novel ideas for observatories
which can push the boundaries of GW detection towards the edges of the universe.
However, in the realm of CW searches for known pulsars, a vital part of the puzzle
comes from the EM detections used to constrain the priors. As discussed briefly
in Section constant advancements to PTAs are being achieved. The observa-
tion length and frequency have a significant impact on obtaining accurate pulsar
timing models, which will naturally increase with time and the development of
more telescopes.

The International Pulsar Timing Array (IPTA) is a consortium containing the
European Pulsar Timing Array (EPTA), the North American Nanohertz Obser-
vatory for Gravitational Waves (NANOGrav), the Indian Pulsar Timing Array
Project (InPTA), and the Parkes Pulsar Timing Array (PPTA). Its most recent
data release described in |Perera et al. (2019) involved 65 MSPs. This includes
the 9-year NANOGrav dataset of 37 pulsars. Already, the 15-year NANOGrav
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dataset has 67 MSPs itself. While potential observations of the GWB benefit
from high quality pulsar timing rather than pure quantity, the large number of
smaller telescopes provides opportunities to observe increasing numbers of pulsars
which is useful in CW searches.

The Square Kilometre Array Observatory (SKAO) offers major advancements
in radio astronomy. It consists of two radio telescopes in South Africa and Aus-
tralia, with the SKAO headquarters in the UK. The Australian telescope is called
SKA-Low as it features 131,072 low-frequency radio antennas spread between 512
stations for a total collecting area of 419,000 m?. Each antenna is a log-periodic
antenna which features triangular teeth of increasing scale (like a Christmas tree).
This variation in teeth size gives SKA-Low a wide frequency range of 50 - 350
MHz (Grainge et al., 2017)). Compared to LOFAR, a similar radio telescope in
the Netherlands, SKA-Low will have a 25% better resolution with 8 times greater
sensitivity and be able to survey the sky 135 times faster, allowing for frequent
observations of more pulsars and faster responses for multimessenger observations
(Braun et al., 2019). SKA-Mid is in South Africa and contains 197 mid-frequency
15 m-diameter radio dishes. These dishes are arranged in a pattern radiating out
from a central point in three spiral arms with a total collecting area of 33,000
m? which contributes to greater sensitivity and a baseline (distance between two
furthest dishes) of 150 km contributing to greater resolution. It has a frequency
range of 350 MHz - 15.4 GHz and aims to reach 24 GHz. The existing MeerKAT
radio telescope with its 13.5 m-diameter dishes will also form part of the SKA-
Mid array (Grainge et al) [2017). Compared to the Karl G. Jansky Very Large
Array (VLA) in the US, SKA-Mid will have 5 times the resolution, 5 times the
sensitivity and 60 times the survey speed (Braun et al., |2019). In 2024, four
of the SKA-Low stations have been populated and the synchronisation of the
first SKA-Mid dish with MeerKAT has been tested. Construction on both is
scheduled to finish by 2030. These improvements in sensitivity will lead to better
pulsar timing models with reduced uncertainties, which in turn can lead to better
constraints on the pulsar parameters used in targeted CW searches, increasing
their sensitivities. Additionally, the SKA may result in the observation of more

pulsars, leading to more candidates for observable CWs.
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5.3 Summary

5.3 Summary

This thesis has described the current state of physics from the perspective of
GW observations, in particular searches for CWs from known pulsars, an area
in which there have been no observations to date. Chapter [2] introduced a novel
Bayesian method for determining the braking index from a population of pulsars,
the measurement of which would indicate the source of pulsar spin-down, possi-
bly identifying GW emission as a contributor. Moving forward, the next steps
would be using a more sophisticated model followed by real pulsar TOAs. While
this method is unlikely to uncover the braking index from current datasets, the
advancements discussed in Section [5.2] increase the likelihood that this method
will be viable in the future.

In Chapters[3|and [}, two Bayesian searches using the most recent data releases
from the LIGO-Virgo-KAGRA collaboration are presented, surpassing the spin-
down limits for 23 and 29 pulsars respectively. In the O3 search, the pulsar with
the lowest h85% upper limit was J1745—0952 with 4.72x 102" corresponding to
an ellipticity of 9.5x107% and a mountain size of 0.01 - 0.02 cm depending on the
EOS and assuming a mass of 1.4 M@E] Meanwhile, in the O4a search, J0537—6910
had the most constraining amplitude upper limit of 6.4x1072” which corresponds
to an ellipticity of 1.95x107° and a mountain size of 2 - 4 cm following the same
method and assumptions.

While no signals were found, upcoming advancements in both analysis meth-
ods and current detectors, and the inclusion of the new observatories as discussed
throughout Chapter [5 will increase the prospect of a future detection in upcom-

ing LVK runs and beyond.

!This is calculated using Equation 11 and Figures 1 and 2 from Johnson-McDaniel (2013)
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A.1 Pulsar braking index table

128



A.1 Pulsar braking index table

Name FO FO err F1 F1 err F2 RMS  Mean n* Std n*
6 () ) ) ms

J00234+0923 327.8 3.45e-13 -1.23e-15 1.49¢-20 2.30e-32 0.000288 5.17 2.83
J0030+4+-0451 205.5 7.74e-11 -4.30e-16 2.78e-19 4.49e-33  0.0002 5.03 2.83
J03404+4130 303.1 9.67e-13 -6.47e-16 4.17¢-20 6.91e-33 0.000449 4.79 2.82
J0613-0200 326.6 1.63e-12 -1.02e-15 1.71e-20 1.60e-32 0.000188 4.67 2.80
J0636+5128 348.6 8.68e-13 -4.19e-16 7.25e-20 2.52e-33 0.000596 5.05 2.83
J0645+5158 112.9 1.23e-13 -6.28e-17 4.49¢-21 1.74e-34 0.000196 5.10 2.82
J07404+6620 346.5 1.18e-12 -1.46e-15 7.91e-20 3.09e-32 0.000106 4.49 2.80
J0931-1902 215.6 8.77e-13 -1.69e-16 5.35e-20 6.60e-34 0.000424 5.08 2.84
J1012+5307 190.3 1.49e-12 -6.20e-16 1.75e-20 1.01e-32 0.000209 5.17 2.82
J1024-0719 193.7 6.18e-13 -6.96e-16 8.38e-21 1.25e-32 0.00024 5.19 2.83
J112547819 238.0 2.35e-12 -3.93e-16 1.61e-19 3.25e-33 0.000614 5.02 2.88
J14534+1902 172.6 2.09e-12 -3.47e-16 1.15e-19 3.50e-33 0.000798 5.02 2.85
J1455-3330 125.2 3.59e-13 -3.81e-16 4.40e-21 5.80e-33 0.000544 4.94 2.85
J1600-3053 277.9 1.58e-13 -7.34e-16 3.63e-21 9.69e-33 0.000213 4.99 2.80
J1614-2230 317.4 2.21e-13 -9.69e-16 5.20e-21 1.48e-32 0.000175 5.06 2.85
J1640+2224 316.1 1.50e-13 -2.82e-16 2.53e-21 1.25e-33 0.000142 5.13 2.79
J1643-1224 216.4 4.21e-12 -8.64e-16 5.39e-20 1.73e-32 0.000292 5.34 2.80
J171340747 218.8 7.93e-14 -4.08e-16 1.11e-21 3.81e-33 8.1le-05 4.75 2.86
J17384-0333 170.9 4.12e-13 -7.05e-16 1.08e-20 1.45e-32 0.000272 4.54 2.83
J174141351 266.9 2.13e-13 -2.15e-15 8.23e-21 8.68e-32 0.000148 6.77 2.36
J1744-1134 245.4 1.78e-12 -5.38e-16 1.68e-20 5.90e-33 0.000278 4.99 2.83
J1747-4036 607.7 2.03e-10 -4.85e-15 2.21e-18 1.94e-31 0.000767 5.25 2.81
J1832-0836 367.8 5.82e-13 -1.12e-15 3.16e-20 1.70e-32 0.000195 5.10 2.82
J18534+1303 244.4 2.79e-12 -5.21e-16 5.36e-20 5.55e-33  9.2e-05 5.15 2.88
B18554+09 186.5 4.05e-12 -6.20e-16 2.41e-20 1.03e-32 0.000357 5.13 2.84
J19034-0327 465.1 2.03e-11 -4.07e-15 3.70e-19 1.78e-31 0.000394 4.93 2.82
J1909-3744 339.3 1.21e-12 -1.61le-15 9.76e-21 3.84e-32 5.8e-05 3.48 2.50
J1910+1256 200.7 3.83e-13 -3.90e-16 8.10e-21 3.79e-33 0.000399 5.03 2.83
J1911+41347 216.2 2.15e-13 -7.91e-16 1.31e-20 1.45e-32 0.000115 5.28 2.77
J1918-0642 130.8 1.11e-13 -4.39e-16 1.45e-21 7.38e-33 0.000296 4.83 2.85
J1923+42515 264.0 4.93e-13 -6.66e-16 1.41e-20 8.40e-33 0.000237 4.95 2.83
B19374+21 641.9 3.26e-11 -4.33e-14 1.79e-19 1.46e-29 0.000103 5.01 0.06
J194440907 192.9 4.13e-13 -6.45e-16 6.20e-21 1.08e-32 0.000375 5.11 2.80
J1946+3417 315.4 6.12e-12 -3.15e-16 2.18e-19 1.57e¢-33 0.000143 4.90 2.83
B1953+29 163.0 7.93e-13 -7.91e-16 2.76e-20 1.92e-32 0.000475 5.33 2.85
J2010-1323 191.5 1.48e-13 -1.77e-16 4.31e-21 8.17e-34 0.00025 4.95 2.82
J201740603 345.3 5.14e-13 -9.53e-16 3.30e-20 1.32e-32 9.7e-05 4.42 2.81
J2033+1734 168.1 9.20e-13 -3.15e-16 5.71e-20 2.95e-33 0.00052 4.93 2.87
J2043+1711 420.2 3.04e-13 -9.26e-16 9.33e-21 1.02e-32 0.000122 4.69 2.78
J2145-0750 62.3 9.24e-13 -1.16e-16 8.99e-21 1.07e-33 0.000274 4.95 2.82
J2214+4-3000 320.6 1.13e-12 -1.5le-15 3.71e-20 3.57e¢-32 0.000419 5.17 2.87
J2229+4-2643 335.8 7.18e-13 -1.72e-16 4.84e-20 4.40e-34 0.000196 5.01 2.87
J223440611 279.6 3.94e-13 -9.39e-16 2.25e-20 1.58e-32 3.5e-05 4.21 2.68
J22344-0944 275.7 8.77e-13 -1.53e-15 3.77e-20 4.23e-32 0.000165 5.22 2.80
J23024+4442 192.6 7.64e-13 -5.14e-16 3.52e-20 6.87e-33 0.000693 4.95 2.84
J23174+1439 290.3 3.20e-11 -2.05e-16 1.14e-19 7.22e¢-34 0.000204 4.97 2.85
J232242057 208.0 9.85e-13 -4.18e-16 1.02e-19 4.19e-33 0.000237 5.11 2.85

Table A.1 Pulsar values used in the analysis in Chapter Columns denoted by *
include values calculated from individual pulsar posterior samples in a simulated 20-
year run with an average RMS of 1 x 107 ms scaled using the listed RMS value and

equation (2.5) and assuming all pulsars have a braking index of exactly n = 5.
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