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Abstract. We give a classification of torsion pairs, t-structures, and co-t-structures in the
Paquette–Yıldırım completion of the Igusa–Todorov discrete cluster category. We prove that the
aisles of t-structures and co-t-structures are in bijection with non-crossing partitions enriched
with some additional data. We also observe that recollements exist in the completion and we
classify them.
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1. Introduction

Given a positive integer m and a field K, Igusa and Todorov defined in [IT] a cluster category Cm
which generalises the classical cluster category C(An) of type An introduced by Buan, Marsh,
Reineke, Reiten, and Todorov in [BMRRT] for finite-dimensional hereditary algebras. The
category C(An) has a nice geometric model in terms of an (n+ 3)-gon, introduced by Caldero,
Chapoton, and Schiffler in [CCS]. Whenm = 1 orm = 2, the category Cm can be regarded as the
orbit category of the infinite quiver A∞ or A∞

∞, respectively, studied by Liu and Paquette in [LP],
in analogy with the finite-rank case. When m = 1, the category Cm is equivalent to the Holm–
Jørgensen category defined in [HJ] as the finite derived category of K[T ] viewed as a graded
algebra, or can be obtained by stabilising a certain subcategory of a Grassmannian category of
infinite rank, see [ACFGS]. When m = 1, Cm is also the unique algebraic triangulated category
generated by a 2-spherical object, up to triangle equivalence. In particular, these categories
come up in many different contexts.

The category Cm has many nice properties, for instance it is a Hom-finite, K-linear, Krull–
Schmidt triangulated category, and has a geometric model which allows us to use combinatorial
tools to classify some important classes of subcategories. The indecomposable objects of Cm
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can be regarded as the arcs of an ∞-gon, Zm, having m two-sided accumulation points. The
Hom-spaces are at most one-dimensional and can be understood in terms of crossings of arcs.
Moreover, Cm is 2-Calabi–Yau, i.e. Ext1(a, b) ∼= DExt1(b, a) for each pair of objects a and b.
The cluster-tilting subcategories of Cm were classified in [GHJ], and in [HJ] and [LP] for m = 1
and m = 2, as certain triangulations of the infinity-gon Zm.

We can also be interested in studying a completion Cm of Cm. Cummings and Gratz studied
in [CG] the Neeman’s completion of Cm. We work with the Paquette–Yıldırım completion of
Cm, defined in [PY], which was obtained by taking the Verdier quotient of C2m with respect
to a specific thick subcategory. In this article, by completion we mean the Paquette–Yıldırım
completion of Cm. This was first defined by Fisher in [F] for the case m = 1, by closing the
category C1 under certain homotopy colimits. August, Cheung, Faber, Gratz, and Schroll proved
in [ACFGS] that the category C1 is also equivalent to a stable Grassmannian category of infinite
rank. The completion inherits many properties from Cm, for instance, Cm is still a Hom-finite,
K-linear, Krull–Schmidt triangulated category and has also a geometric model similar to the
one for Cm. The indecomposable objects of Cm are in bijection with arcs, or limits of arcs,
of Zm, and the Hom-spaces are still at most one-dimensional. Moreover, Cm also has cluster-
tilting subcategories which are in correspondence with some triangulations of the ∞-gon Zm.
Çanakçi, Kalck, and Pressland endowed Cm with an extriangulated structure E and classified
the cluster-tilting subcategories with respect to E in terms of a larger class of triangulations of
the ∞-gon Zm, see [ÇKP].

Despite Cm and Cm having many similarities, these two categories also have relevant differences.
One remarkable difference is that Cm is not 2-Calabi–Yau, although it is “weakly 2-Calabi–Yau”
with respect to the extriangulated structure of [ÇKP]. Therefore, classifying subcategories in Cm
is a way to develop intuition for a more general setting, which is not necessarely 2-Calabi–Yau.

The geometric models of Cm and Cm allow one to classify some important classes of subcate-
gories using arc combinatorics. Torsion pairs of a triangulated category play an important role
in representation theory, as they provide a decomposition of the category into smaller subcat-
egories. By a result of Iyama and Yoshino in [IY], the torsion pairs in a “small” triangulated
category are completely determined by their torsion classes, which are characterised as extesion-
closed precovering subcategories. In order to classify torsion pairs, we classify the precovering
subcategories and the extension-closed subcategories of Cm. We keep those properties separate
and independent from each other.

Theorem A (Theorem 5.4). Let X be an additive full subcategory of Cm. Then X is a precov-
ering subcategory of Cm if and only if the set of arcs corresponding to the indecomposable objects
of X satisfies the completed precovering condition, i.e. it is closed under certain configurations
of converging sequences of arcs of X .
Theorem B (Proposition 6.7). Let X be an additive full subcategory of Cm. Then X is an
extension-closed subcategory of Cm if and only if the set of arcs corresponding to the indecom-
posable objects of X satisfies the completed Ptolemy condition, i.e. it is closed under taking
Ptolemy arcs for each pair of crossing arcs of X .

The torsion pairs in Cm were classified by Gratz, Holm and Jørgensen in [GHJ] generalising
the classifications of Ng in [N] and of Chang, Zhou, and Zhu in [CZZ] for the cases m = 1 and
m = 2 respectively. By combining the two results above, we classify the torsion pairs in Cm.

Theorem C (Theorem 7.1). Let X be an additive full subcategory of Cm. Then X is a torsion
class in Cm if and only if the set of arcs corresponding to the indecomposable objects of X
satisfies the completed precovering condition and the completed Ptolemy condition.

Particular kinds of torsion pairs are t-structures and co-t-structures, which are similar concepts
but have important differences. For instance, t-structures are related to a notion of homology,
and the heart of a t-structure is abelian, while the co-heart of a co-t-structure is presilting.
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The t-structures in Cm were first classified for m = 1 or m = 2 in [N] and [CZZ]. Gratz and
Zvonareva classified the t-structures for m ≥ 1 using decorated non-crossing partitions. These
consist of a non-crossing partition of the finite set {1, . . . ,m} together with some additional data
consisting of elements of the closure of the∞-gon Zm. In [GZ] the authors also proved that the
t-structures in Cm form a lattice under inclusions of aisles. This reflects the fact that the non-
crossing partitions form a lattice under refinement. In this paper we classify the t-structures of
Cm using similar combinatorial objects.

Theorem D (Theorem 8.5, Theorem 10.3). There is a bijection between the aisles of t-structures
in Cm and the half-decorated non-crossing partitions of {1, . . . , 2m}. Moreover, the t-structures
in Cm form a lattice under inclusion of aisles.

We also classify the co-t-structures in Cm using related combinatorial objects. In Cm the only
co-t-structures are the trivial ones (0, Cm) and (Cm, 0). This marks a further difference with the
completion, where non-trivial co-t-structures exist.

Theorem E (Theorem 9.2, Theorem 10.3). There is a bijection between the aisles of the co-
t-structures in Cm and the alternating non-crossing partitions of {1, . . . , 2m}. Moreover, the
co-t-structures in Cm form a lattice under inclusion of aisles.

Another interesting aspect of triangulated categories are their recollements. These can be
thought as exact sequences of triangulated categories. Recollements are in bijection with torsion-
torsion free triples, i.e. triples (X ,Y,Z) where (X ,Y) and (Y,Z) are t-structures, see for
instance [NS]. In our context, where the triangulated categories are Hom-finite, K-linear, and
Krull–Schmidt, recollements are also in bijection with the functorially finite thick subcategories.
Gratz and Zvonareva classified the thick subcategories of Cm in [GZ], and Murphy classified the
thick subcategories of Cm in [M]. The category Cm can be thought as “triangulated simple”,
as its only functorially finite thick subcategories are 0 and Cm. The completion has different
behaviour, indeed in Cm more functorially finite thick subcategories exist. We have the following
classification of the functorially finite thick subcategories.

Theorem F (Corollary 9.26, Corollary 10.6). There is a bijection between the functorially
finite thick subcategories of Cm and certain alternating non-crossing partitions of {1, . . . , 2m}.
Moreover, the functorially finite thick subcategories of Cm form a lattice under inclusion.

Acknowledgments. The author thanks her supervisor David Pauksztello for useful conver-
sation and suggestions and for carefully reading previous versions of this paper, and Raquel
Coelho Simões for useful technical support and advice. The author thanks the referee for care-
fully reading this paper and for the useful comments. The author acknowledges support by the
EPSRC through a mathematical sciences studentship and the grant EP/V050524/1.

2. Background

Throughout this section T will be a Hom-finite, K-linear, Krull–Schmidt triangulated cate-
gory with shift functor Σ: T → T , unless otherwise stated. We denote by ind T the class of
indecomposable objects of T .
Any subcategory X of T is assumed to be full, and we sometimes write X ⊆ T . We say that
X is an additive subcategory if X is closed under direct sums, isomorphisms, direct summands,
and contains the zero object. Given X and Y subcategories of T , we write

X ∗ Y = {t ∈ T | there exists a triangle x −→ t −→ y −→ Σx for some x ∈ X and y ∈ Y} .
A subcategory X of T is called

• extension-closed if X ∗ X = X ;
• suspended if it is extension-closed, additive, and ΣX ⊆ X ;
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• co-suspended if it is extension-closed, additive, and Σ−1X ⊆ X ;
• thick if it is suspended and co-suspended.

Given X and Y additive subcategories of T , we write Hom(X ,Y) = 0 if Hom(x, y) = 0 for each
x ∈ X and y ∈ Y. We denote

X⊥ = {t ∈ T | HomD(X , t) = 0} and ⊥X = {t ∈ T | HomD(t,X ) = 0}.
Let X be an additive subcategory of T and let t ∈ T . We say that a morphism f : x → t is
an X -precover of t if x ∈ X and any g : x′ → t with x′ ∈ X factors through f . We say that an
X -precover f : x → t is an X -cover if additionally it is right minimal, i.e. for any g : x → x if
fg = f then g is an isomorphism. Covers are unique up to isomorphism, while precovers are
not. We say X is precovering if any t ∈ T admits an X -precover. The notions of preenvelope,
envelope, and preenveloping subcategory are dual. If X is precovering and preenveloping, we say
that X is functorially finite.

Remark 2.1. In our context being precovering can be checked at the level of the indecomposable
objects. More precisely, X is a precovering subcategory of T if and only if for any t ∈ ind T
there exist x ∈ X and f : x → t such that any g : x′ → t with x′ ∈ indX factors through f , cf.
[AS, p. 81].

2.1. Torsion pairs. Let X and Y be additive subcategories of T . The pair (X ,Y) is called

• torsion pair if Hom(X ,Y) = 0 and T = X ∗ Y, see [IY];
• t-structure if it is a torsion pair and ΣX ⊆ X , see [BBDG];
• co-t-structure if it is a torsion pair and Σ−1X ⊆ X , see [P] and [B] where they are called
weight structures.

Let (X ,Y) be a torsion pair, then X is called torsion class and Y is called torsion-free class. If
(X ,Y) is a t-structure or a co-t-structure, X is called aisle and Y is called co-aisle. The heart
of a t-structure (X ,Y) is X ∩ ΣY. The co-heart of a co-t-structure (X ,Y) is X ∩ Σ−1Y. Let
(X ,Y) be a t-structure or a co-t-structure, we say that (X ,Y) is

• left bounded, or right bounded, if T =
⋃

n∈ZΣ
nX , or T =

⋃
n∈ZΣ

nY respectively;
• bounded if it is left bounded and right bounded;
• left non-degenerate, or right non-degenerate, if

⋂
n∈ZΣ

nX = 0, or
⋂

n∈ZΣ
nY = 0 re-

spectively;
• non-degenerate if it is left non-degenerate and right non-degenerate.

It is straightforward to check that if (X ,Y) is left bounded then it is right non-degenerate, and
if it is right bounded then it is left non-degenerate.

Proposition 2.2 ([IY, Proposition 2.3]). Let X ,Y be additive subcategories of T . Then (X ,Y)
is a torsion pair if and only if X is extension-closed and precovering, and Y = X⊥.

We recall the following notion from [B]. Let (X ,Y) be a co-t-structure.

• If X is functorially finite, then (⊥X ,X ) is called its left-adjacent t-structure.
• If Y is functorially finite, then (Y,Y⊥) is called its right-adjacent t-structure.

2.2. Decomposition of triangles. In this section we provide a decomposition of certain trian-
gles of T (Proposition 2.5) and we characterise the extension-closed subcategories of T (Proposi-
tion 2.5), under the assumption that T has at most one dimensional Hom-spaces. These results
will be useful in Section 6 for describing the extension-closed subcategories in the Igusa–Todorov
discrete cluster categories. We need the following definition and lemma.

Definition 2.3 ([CP, Definition 4.2]). The morphisms f1 : x1 → y and f2 : x2 → y are factor-
ization free if there is no g : x1 → x2 such that f1 = f2g, and there is no h : x2 → x1 such that
f2 = f1h.
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Lemma 2.4. Let x1, . . . , xn, y ∈ ind T and f = (f1, . . . , fn) :
⊕n

i=1 xi → y be a morphism of
T . If f is right minimal then f1, . . . , fn are pairwise factorization free.

Proof. Assume that there exists a morphism φ : xj → xi such that fi = fjφ for some i ̸= j. We
define the morphism γ = (γ)s,t :

⊕n
i=1 xi →

⊕n
i=1 xi as

(γ)s,t =


1 if s = t ̸= i,

0 if s = t = i,

φ if s = j and t = i,

0 otherwise.

It is straightforward to check that fγ = f . Since γ is not an isomorphism, we have a contradic-
tion with the fact that f is right minimal. We conclude that f1, . . . , fn are pairwise factorization
free. □

Proposition 2.5. Assume that the Hom-spaces of T are at most one dimensional. Let a −→
e −→ b

h−→ Σa be a triangle in T with a, b1, . . . , bn ∈ ind T , b =
⊕n

i=1 bi, and h = (h1, . . . , hn).

Then there exist b′1, . . . , b
′
k ∈ ind T and a morphism h′ = (h′1, . . . , h

′
k) : b

′ =
⊕k

i=1 b
′
i → Σa such

that b′ is a direct summand of b, h′1, . . . , h
′
k are pairwise factorization free, and there is the

following isomorphism of triangles.

a e′ ⊕ b′′ b′ ⊕ b′′ Σa

a e b Σa

1 ≀

(h′,0)

≀ 1

h

Proof. Without loss of generality, we can assume that h1, . . . , hn ̸= 0, see [CP, Lemma 3.1].
Since the Hom-spaces are at most one dimensional, it is straightforward to check that h : b→ Σa
is an add{b}-precover of Σa. Thus, by [J, Lemma 4.1] there exists b′, b′′ ∈ add{b} and an
isomorphism α : b′ ⊕ b′′ −→ b such that the composition

b′
( 10 )−→ b′ ⊕ b′′

α−→ b
h−→ Σa

is an add{b}-cover of Σa, which we denote by h′ : b′ → Σa. We denote hα = (h′, h′′) : b′ ⊕ b′′ →
Σa. Since h′ : b′ → Σa is an add{b}-cover of Σa, there exists β : b′′ → b′ such that h′β = h′′,
and then (

h′ 0
)(1 β

0 1

)
=
(
h′ h′′

)
= hα.

As a consequence, we obtain the isomorphism of triangles in the claim. Since h′ is right minimal,
by Lemma 2.4 , h′1, . . . , h

′
n are pairwise factorization free. □

Remark 2.6. Keeping the notation of Lemma 2.5, since h′1, . . . , h
′
n are pairwise factorization

free, we have that b′i ̸∼= Σa, h′i ̸= 0, and b′i ̸∼= b′j for each i ̸= j.

The following proposition provides a sufficient condition for checking that a subcategory is
extension-closed.

Proposition 2.7. Assume that the Hom-spaces of T are at most one dimensional, and let
U be an additive subcategory of T . Assume that U is closed under extensions of the form

a −→ e −→ b
h−→ Σa with b =

⊕n
i=1 bi, a, b1, . . . , bn ∈ ind T , h = (h1, . . . , hn), and h1, . . . , hn

pairwise factorization free. Then U is closed under extensions.

Proof. We divide the proof into claims.

Claim 1. The subcategory U is closed under extensions of the form a −→ e −→ b −→ Σa with
a ∈ indU and b ∈ U .
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Consider a triangle a −→ e −→ b −→ Σa with a ∈ indU and b ∈ U . This is isomorphic to a

triangle of the form a −→ e′⊕b′′ −→ b′⊕b′′ (h
′,0)−→ Σa where h′ = (h′1, . . . , h

′
k) : b

′ =
⊕k

i=1 b
′
i → Σa

is as in Proposition 2.5. The triangle a −→ e′ −→ b′
h′
−→ Σa satisfies the assumptions of our

statement and therefore e′ ∈ U . Moreover, since e ∼= e′ ⊕ b′′ and b′′ is a direct summand of b,
we have that e ∈ U .
Claim 2. The subcategory U is closed under extensions.

Consider a non-split extension a −→ e −→ b −→ Σa in Cm with
⊕k

i=1 ai, b =
⊕n

j=1 bj , and

ai, bj ∈ indU for each i ∈ {1, . . . , k} and j ∈ {1, . . . , n}. We proceed by induction on k. If
k = 1 then we have the statement by Claim 1. Assume that k ≥ 2, and consider the following
Octahedral Axiom diagram.

ak ak

Σ−1b a e b

Σ−1b
⊕k−1

i=1 ai x b

Σak Σak

1

1 1

0

1

Consider the triangle
⊕k−1

i=1 ai −→ x −→ b −→
⊕k−1

i=1 Σai. By the induction hypothesis we
obtain that x ∈ U . Now consider the triangle ak −→ e −→ x −→ Σak. Since ak ∈ indU and
x ∈ U , by Claim 1 we conclude that e ∈ U . □

2.3. Verdier quotients. Let D be a thick subcategory of T , we recall how to obtain the Verdier
quotient T /D. We refer to [Kra, Section 4] for a detailed description.

We consider S the class of morphisms f : t1 → t2 of T which extend to triangles of the form

t1
f−→ t2 −→ d −→ Σt1 with d ∈ D. The category T /D has

• as objects exactly the same objects of T ;
• as morphisms the equivalence classes of left fractions, see [Kra, Section 3.1];
• the quotient functor Q : T → T /D which acts as the identity on objects and makes the
morphisms in S invertible, and is universal with this property.

The category T /D has a triangulated structure which consists of

• the shift functor Σ: T /D → T /D induced by the shift functor Σ: T → T ;
• triangles given by isomorphic copies of the images of the triangles of T after Q.

With this triangulated structure, the quotient functor Q is a triangulated functor, i.e. it is an
additive functor commuting with Σ and sending triangles of T to triangles of T /D, see [Kra,
Lemma 4.3.1]. From [Kra, Proposition 4.6.2] we recall that

• a morphism f : t1 → t2 in T is such that Q(f) = 0 in T /D if and only if f = hg for
some g : t1 → d and h : d→ t2 with d ∈ D;
• an object t ∈ T is such that Q(t) ∼= 0 in T /U if and only if t ∈ D.

Let U ⊆ T and X ⊆ T /D. The essential image of U after Q, and the preimage of X after Q,
are respectively

Q(U) = {x ∈ T /D | x ∼= Q(u) in T /D for some u ∈ U} and
Q−1(X ) = {t ∈ T | Q(t) ∼= x in T /D for some x ∈ X}.

6



We have the following generalisation of [V, Proposition 2.3.1].

Proposition 2.8. Let T be a triangulated category and D be a thick subcategory. The following
is an inclusion preserving bijection.{

Extension-closed additive subcategories
U ⊆ T such that D ⊆ U

}
←→

{
Extension-closed additive
subcategories of T /D

}
U 7−→ Q(U)

Q−1(X )←−p X

The argument in [V] is in part not applicable with our assumptions when checking that the
maps are well defined. Therefore, we provide an argument for this statement. Before doing so,
we have the following lemma, which is included in the argument of [V, Proposition 2.3.1]. Our
assumptions are more general than those of [V], but the argument still applies.

Lemma 2.9. Let D be a thick subcategory of T and U be an extension-closed additive subcategory
of T containing D. If t ∈ T and u ∈ U are such that Q(t) ∼= Q(u) in T /D, then u ∈ U .

Proof of Proposition 2.8. We check that the maps are well defined. To show that the two maps
are mutually inverse we can proceed as in the argument of [V, Proposition 2.3.1]. Let U be an
extension-closed additive subcategory of T containing D. It is straightforward to see that Q(U)
is closed under isomorphism, 0 ∈ Q(U), and that Q(U) is closed under direct sums. Moreover,
by Lemma 2.9, it is straightforward to check that Q(U) is closed under direct summands.

Now we show that Q(U) is extension-closed. Consider a triangle in T /D
(T) x1 −→ y −→ x2 −→ Σx1

with x1, x2 ∈ Q(U). Then there is a triangle a −→ e −→ b −→ Σa in T whose image under Q
is isomorphic to the triangle (T) in T /D, see the proof of [Kra, Lemma 4.3.1]. Thus, in T /D
we have the isomorphisms Q(a) ∼= x1, Q(b) ∼= x2 and Q(e) ∼= y. Since x1, x2 ∈ Q(U), we have
that there exist u1, u2 ∈ U such that x1 ∼= Q(u1) and x2 ∼= Q(u2). Then, by Lemma 2.9, we
have that a, b ∈ U . Since U is extension-closed, we obtain that e ∈ U and as a consequence
y ∼= Q(e) ∈ Q(U). Thus, the map U 7→ Q(U) is well defined.
Let X be an extension-closed additive subcategory of T /D. We check that Q−1(X ) is an
additive subcategory of T . It is straightforward to see that 0 ∈ Q−1(X ), Q−1(X ) is closed under
isomorphisms, direct sums, direct summands, and thatD ⊆ Q−1(X ). Now we show thatQ−1(X )
is extension-closed. Consider a triangle a −→ e −→ b −→ Σa in T with a, b ∈ Q−1(X ). Then its
image under Q is a triangle Q(a) −→ Q(e) −→ Q(b) −→ ΣQ(a) in T /D with Q(a), Q(b) ∈ X .
Since X is extension-closed, then Q(e) ∈ X . As a consequence e ∈ Q−1(X ). Hence, the map
Y 7→ Q−1(Y) is well defined.
Finally, from the definitions of Q(U) and Q−1(X ), it is straightforward to check that the maps
U 7→ Q(U) and X 7→ Q−1(X ) preserve inclusion. □

2.4. Non-crossing partitions. Let k be a positive integer. Consider the unit circle S1 with
anticlockwise orientation, and a finite set of elements of S1, which we label as {1, . . . , k} = [k],
with the cyclic order 1 < 2 < · · · < k < 1.

A non-crossing partition of [k] is a partition P of [k] such that for any i1, i2, j1, j2 ∈ [k] which
are in cyclic order i1 < j1 < i2 < j2 < i1, if i1, i2 ∈ B and j1, j2 ∈ C for some B,C ∈ P, then
B = C. If P is a non-crossing partition, its elements are called blocks.

The Kreweras complement, Pc, of a non-crossing partition P of [k] is obtained as follows, see
Figure 1 for an illustration.

(1) Double the elements of [k] to get the set [ke]∪ [ko] = {1e, 1o, . . . , ke, ko} with cyclic order
1e < 1o < · · · < ke < ko < 1e.
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(2) Define Pe as the non-crossing partition of [ke] which consists on P.
(3) Complete Pe to a serrée (dense) non-crossing partition Pe ∪ Po of [ke] ∪ [ko], see [Kre,

p. 338].
(4) Define Pc as Po and relabel the elements of [ko] as 1, . . . , k.

1e
1o

2e

2o

3e

3o

4e

4o
5e

5o

6e

6o

7e

7o

8e

8o
1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1. On the left P = {{1, 3, 4}, {2}, {5, 7, 8}, {6}} is a non-crossing parti-
tion of [8], and Pc = {{1, 2}, {3}, {4, 8}, {5, 6}, {7}} on the right is its Kreweras
complement.

There is a partial order on the set of non-crossing partitions of [k] given as follows: P ≤ P ′ if for
each block B of P there exists a block B′ of P ′ such that B ⊆ B′. The non-crossing partitions
of [k] form a lattice: each pair of non-crossing partitions has a least upper bound P ∨P ′, called
join, and a greatest lower bound P ∧ P ′, called meet. We refer to [Kre, Section 2] for more
details.

Remark 2.10. Let P and P ′ be non-crossing partitions of [k]. Then (P ∨ P ′)c = Pc ∧ P ′c.
Indeed, it is straightforward to check that P ≤ P ′ if and only if P ′c ≤ Pc. Therefore, the
Kreweras complement of the least upper bound of P and P ′ is equal to the greatest lower
bound of the Kreweras complements of P and P ′.

3. The categories Cm and Cm

In this section we recall the Igusa–Todorov discrete cluster category Cm, introduced in [IT], the
Paquette–Yıldırım completion Cm, introduced in [PY], and their geometric models.

3.1. The ∞-gons Zm, Z2m, and Zm. We consider the unit circle S1 with anticlockwise
orientation, endowed with the usual topology. Given a positive integer m, the ∞-gon Zm is
an infinite discrete subset of S1 consisting of m copies of Z embedded in S1 with m two-sided
accumulation points, see Figure 2. We denote the accumulation points of Zm by {1, . . . ,m} =
[m]. Given p ∈ [m], we denote by Z(p) all the elements of Zm which belong to the p-th copy of
Z. The accumulation points are in cyclic order 1 < · · · < m < 1. If p ∈ [m] is an accumulation
point, we denote the successor and the predecessor of p with respect to the cyclic order by p+

and p−. We also regard [m] as a totally ordered set 1 < · · · < m. This total order induces a
total order ≤ on Zm ∪ [m].

We can define intervals in Zm. Given x, y ∈ Zm ∪ [m] we denote

[x, y) =

{
{z ∈ Zm | x ≤ z < y} if x ≤ y, and

{z ∈ Zm | z ≤ x or z > y} otherwise.

Similarly, we can define the intervals (x, y], (x, y), and [x, y]. Since the set Zm is discrete, for
each z ∈ Zm there exists a predecessor z − 1 and a successor z + 1.

Definition 3.1. A pair x = (x1, x2) of elements of Zm is called arc if x2 ≥ x1 + 2, and in
that case x1 and x2 are called endpoints or coordinates of x. Given two arcs x = (x1, x2) and
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y = (y1, y2) of Zm, we say that x and y cross if x1 < y1 < x2 < y2 or y1 < x1 < y2 < x2. Given
p, q ∈ [m] with p ≤ q, we define

Z(p,q) =
{
(x1, x2) is an arc of Zm

∣∣∣ x1 ∈ Z(p) and x2 ∈ Z(q)
}
.

From Zm we define another∞-gon Zm. To this end, we take an intermediate step by considering
the ∞-gon Z2m. We re-label the accumulation points of Z2m as 1′, 1, . . . ,m′,m, see Figure 2.
The set of accumulation points [m′] ∪ [m] has cyclic order 1′ < 1 < · · · < m′ < m < 1′ and a
total order 1′ < 1 < · · · < m′ < m, which induces a total order on Z2m. The notions of interval,
successor, predecessor, arc, are the same as for the set Zm.

On Z2m we define an equivalence relation ∼ as follows. For each x, y ∈ Z2m we have that

x ∼ y if and only if x = y or x, y ∈ Z(p) for some p ∈ [m′].

Consider x ∈ Z2m, we sometimes denote the equivalence class of x by x. If x ∈ Z(p) for some
p ∈ [m′], we identify x = p with an abuse of notation. We define the set Zm = Z2m/ ∼ and we
observe that Zm can be regarded as the set Zm ∪ [m′]. The total order on Z2m induces a total
order on Zm.

Given a point z ∈ Zm = Zm ∪ [m′], we define the successor z + 1 of z as

z + 1 =

{
the successor of z in Zm if z ∈ Zm,

z if z ∈ [m′].

We can define z− 1 analogously. The notions of arc of Zm and of crossing arcs are the same as
those for Zm. Given p, q ∈ [m′] ∪ [m] we define the following sets

C(p) =

{
Z(p) if p ∈ [m],

{p} if p ∈ [m′]
and C(p,q) =

{
(x1, x2) is an arc of Zm

∣∣∣ x1 ∈ C(p) and x2 ∈ C(q)
}
.

The following notation will be useful later. Given x and y both elements of Zm, or both elements
of Zm, with x2 ≥ x1 + 2 or x1 ≥ x2 + 2, we denote

|x1, x2| =

{
(x1, x2) if x1 < x2,

(x2, x1) if x2 < x1.

1 2

1’ 1’1

2’2’2

Figure 2. On the left the ∞-gon Z2, in the centre Z4, and on the right Z2.
The white circles denote the accumulation points of Z2 and Z4, the black circles
denote the accumulation points of Z2.

3.2. Geometric models. Given the ∞-gon Zm and a field K, the category Cm was defined in
[IT]. This is a K-linear, Hom-finite, Krull–Schmidt triangulated category. We denote its shift
functor by Σ: Cm → Cm. Moreover, Cm is 2-Calabi–Yau, i.e. Σ2 is a Serre functor. We recall
some properties of Cm.
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• There is a bijection between the isoclasses of indecomposable objects of Cm and the arcs
of Zm. We regard the indecomposable objects of Cm as arcs of Zm, see [IT, Section
2.4.1].
• Given x = (x1, x2) ∈ ind Cm we have that Σx = (x1 − 1, x2 − 1) by [IT, Lemma 2.4.3].
• Given x, y ∈ ind Cm, by [IT, Lemma 2.4.4] we have that

HomCm(x, y)
∼=

{
K if x and Σ−1y cross,

0 otherwise.

The completion Cm of Cm was defined in [PY], we recall its construction. Consider the set Z2m

defined in Section 3.1 and the associated category C2m. Define D as

D = add

 ⋃
p∈[m′]

Z(p,p)

 .

The category D is a thick subcategory of C2m and Cm is defined as the Verdier quotient C2m/D.
This is a K-linear, Hom-finite, Krull–Schmidt triangulated category. We denote the quotient
functor as π : C2m → C2m/D = Cm and its shift functor by Σ: Cm → Cm as for Cm. We recall
the following properties.

• The isoclasses of indecomposable objects of Cm are in bijection with the arcs of Zm, see
[PY, Corollary 3.11].
• For any x = (x1, x2) ∈ ind C2m \ indD the object πx ∈ Cm is indecomposable by [PY,
Proposition 3.10] and can be regarded as the arc (x1, x2) of Zm.
• Let x ∈ ind Cm, then there exists x′ ∈ ind C2m such that πx′ ∼= x. Indeed, if x = (x1, x2)
with x1, x2 ∈ Zm, we can take x′1, x

′
2 ∈ Z2m such that x′1 = x1 and x′2 = x2, we define

x′ = (x′1, x
′
2) ∈ ind C2m.

• Given x = (x1, x2) ∈ ind Cm we have that Σx = (x1 − 1, x2 − 1).
• The Hom-spaces of Cm between indecomposable objects are at most one-dimensional.
More precisely, we have the following proposition.

Proposition 3.2 ([PY, Proposition 3.14]). Let x, y ∈ ind Cm. Then HomCm
(x,Σy) ∼= K if and

only if one of the following statements holds.

• The arcs x and y cross.
• The arcs x and y share exactly one endpoint z ∈ [m′], and we can reach y by rotating x
in the anticlockwise direction about z.
• The arcs x and y share both endpoints z1, z2 ∈ [m′].

Otherwise HomCm
(x,Σy) = 0.

Remark 3.3. For both categories Cm and Cm, we identify the indecomposable objects with
arcs of Zm or Zm, and the full additive subcategories with sets of arcs.

From now on any subcategory of Cm or Cm is assumed to be additive and full.

4. The AR quiver of Cm

In this section we describe the AR quiver of Cm. It is well known that Cm does not have a
Serre functor, and therefore no almost split triangles in general. In this setting, by AR quiver
we mean the quiver having as vertices the isoclasses of indecomposable objects of Cm and as
arrows the irreducible morphisms between them.
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4.1. The coordinate system. Recall from [IT, Theorem 2.4.13] that the AR quiver of Cm
consists of

• m components of type ZA∞, corresponding to the arcs of Z(p,p) for p ∈ [m],

•
(
m
2

)
components of type ZA∞

∞, corresponding to the arcs of Z(p,q) for p, q ∈ [m] with
p ̸= q.

For the category Cm, we can arrange the isoclasses of the indecomposable objects of Cm into a
coordinate system having

• m components of type ZA∞, corresponding to the arcs of C(p,p) for p ∈ [m],

•
(
m
2

)
components of type ZA∞

∞, corresponding to the arcs of C(p,q) for p, q ∈ [m] with
p ̸= q,
•
(
m
2

)
components of type A1, corresponding to the arcs of C(p,q) for p, q ∈ [m′] with p ̸= q,

• m2 components of type A∞
∞, corresponding to the arcs of C(p,q) for p, q ∈ [m′]∪ [m] such

that either p ∈ [m′] and q ∈ [m], or p ∈ [m] and q ∈ [m′].

Figure 3 illustrates this coordinate system. In Proposition 4.11 we describe the irreducible
morphisms of Cm and thus show that the above describes the AR quiver of Cm.

Z(1,1) Z(2,2)

Z(1,2)

C(1,1)

C(1,2)

C(2,2)

C(1′,1)

C(1′,2′)

C(1,2′) C(2′,2)

C(1′,2)

Figure 3. On the left the AR quiver of C2, on the right the AR quiver of C2.

4.2. Hom-hammocks. Before describing the Hom-hammocks of Cm, we extend the definition
of Hom-hammocks of Cm, see [HJ, Definition 2.1], from m = 1 to the general case m ≥ 1.

Definition 4.1. Let a = (a1, a2) ∈ ind Cm. We define

H+(a) = {(x1, x2) ∈ ind Cm | a1 ≤ x1 ≤ a2 − 2 and x2 ≥ a2} and
H−(a) = {(x1, x2) ∈ ind Cm | x1 ≤ a1 and a1 + 2 ≤ x2 ≤ a2}.

Remark 4.2. For a, b ∈ ind Cm, by [IT, Lemma 2.4.2] it follows that HomCm(a, b)
∼= K if and

only if b ∈ H+(a) ∪H−(Σ2a), or equivalently, a ∈ H+(Σ−2b) ∪H−(b).

We define the Hom-hammocks for the category Cm analogously to Cm; Figure 5 provides an
illustration.

Definition 4.3. Let a = (a1, a2) ∈ ind Cm, and let p, q ∈ [m′]∪ [m] be such that a ∈ C(p,q). We

define the Hom-hammocks H
+
(a) and H

−
(a) as follows.

H
+
(a) =

{
{(x1, x2) ∈ ind Cm | a1 ≤ x1 ≤ a2 − 2 and x2 ≥ a2} if q ∈ [m],

{(x1, x2) ∈ ind Cm | a1 ≤ x1 < a2 and x2 ≥ a2} if q ∈ [m′].

H
−
(a) =


{(x1, x2) ∈ ind Cm | 1′ ≤ x1 ≤ a1 and a1 + 2 ≤ x2 ≤ a2} if p, q ∈ [m],

{(x1, x2) ∈ ind Cm | 1′ ≤ x1 ≤ a1 and a1 + 2 ≤ x2 < a2} if p ∈ [m] and q ∈ [m′],

{(x1, x2) ∈ ind Cm | 1′ ≤ x1 < a1 and a1 ≤ x2 ≤ a2} if p ∈ [m′] and q ∈ [m],

{(x1, x2) ∈ ind Cm | 1′ ≤ x1 < a1 and a1 ≤ x2 < a2} if p, q ∈ [m′].

We can reformulate Proposition 3.2 as follows.
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Proposition 4.4. Let a, b ∈ ind Cm. Then HomCm
(a, b) ∼= K if and only if b ∈ H

+
(a) ∪

H
−
(Σ2a).

Since Cm is not 2-Calabi-Yau, for a, b ∈ ind Cm in general b ∈ H
+
(a)∪H−

(Σ2a) is not equivalent

to a ∈ H
+
(Σ−2b) ∪ H

−
(b). Therefore, we also define the reverse Hom-hammocks I

+
and I

−
,

for which b ∈ H
+
(a) ∪H

−
(Σ2a) if and only if a ∈ I

+
(Σ−2b) ∪ I

−
(b).

Definition 4.5. Let a ∈ ind Cm, and let p, q ∈ [m′] ∪ [m] be such that a ∈ C(p,q). We define

the reverse Hom-hammocks I
+
(a) and I

−
(a) as follows.

I
+
(a) =


{(x1, x2) ∈ ind Cm | a1 ≤ x1 ≤ a2 − 2 and x2 ≥ a2} if p, q ∈ [m],

{(x1, x2) ∈ ind Cm | a1 ≤ x1 ≤ a2 and x2 > a2} if p ∈ [m] and q ∈ [m′],

{(x1, x2) ∈ ind Cm | a1 < x1 ≤ a2 − 2 and x2 ≥ a2} if p ∈ [m′] and q ∈ [m],

{(x1, x2) ∈ ind Cm | a1 < x1 ≤ a2 and x2 > a2} if p, q ∈ [m′].

I
−
(a) =

{
{(x1, x2) ∈ ind Cm | 1′ ≤ x1 ≤ a1 and a1 + 2 ≤ x2 ≤ a2} if p ∈ [m],

{(x1, x2) ∈ ind Cm | 1′ ≤ x1 ≤ a1 and a1 < x2 ≤ a2} if p ∈ [m′].

Note that in general H
+
(a) ̸= I

+
(a) and H

−
(a) ̸= I

−
(a). We can reformulate Proposition 3.2

as follows.

Proposition 4.6. Let a, b ∈ ind Cm. Then HomCm
(a, b) ∼= K if and only if a ∈ I

+
(Σ−2b)∪I−(b).

4.3. Factorization properties. Here we study the factorization properties of the morphisms
of Cm. First we recall the factorization properties of Cm which will be useful later. We say that
a morphism f : a → b in Cm factors through an object c ∈ ind Cm if there exist g : a → c and
h : d → c such that f = hg. We say that a morphism f : a → b in Cm factors through D if it
factors through some d ∈ indD.

Lemma 4.7 ([IT, Lemma 2.4.2]). Let a, b, c ∈ ind Cm. Assume that one of the following state-
ments holds.

(1) b ∈ H+(a) and c ∈ H+(a) ∩H+(b).
(2) b ∈ H+(a) and c ∈ H−(Σ2a) ∩H−(Σ2b).
(3) b ∈ H−(Σ2a) and c ∈ H−(Σ2a) ∩H+(b).

Then any morphism a→ c in Cm factors through b.

The following lemma will be useful for proving Proposition 4.10.

Lemma 4.8. Let a, b ∈ ind Cm be such that HomCm
(a, b) ∼= K, and let a′ ∈ ind Cm be such that

πa′ ∼= a. The following statements hold.

(1) If b ∈ H
+
(a), then there exists b′ ∈ ind C2m such that πb′ ∼= b, b′ ∈ H+(a′), and any

non-zero morphism a′ → b′ in C2m does not factor through D.
(2) If b ∈ H

−
(Σ2a), then there exists b′ ∈ ind C2m such that πb′ ∼= b, b′ ∈ H−(Σ2a′), and

any non-zero morphism f ′ : a′ → b′ in C2m does not factor through D.

Proof. We show statement (1), statement (2) is analogous. Assume that a = (a1, a2) ∈ C(p,q)

with p ∈ [m] and q ∈ [m′], the other cases are similar. We write a′ = (a′1, a
′
2) ∈ Z(p,q). Since

b = (b1, b2) ∈ H
+
(a), we have that a1 ≤ b1 < a2 and b2 ≥ a2, see Figure 4.

It is straightforward to check that there exists b′1 such that b
′
1 = b1 and a′1 ≤ b′1 < q, and there

exists b′2 such that b
′
2 = b2 and b′2 ≥ a′2. Therefore, b′ ∈ H+(a′) and, since b′1 /∈ Z(q), any

non-zero morphism a′ → b′ does not factor through D, see Figure 5. □
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1′

a1

q = a2

a

Zm

a′2

a′1

1′

q

q+

a′

Z2m

{C(p)

p

p+

Figure 4. The element b1 ∈ Zm is such that a1 ≤ b1 < a2 and the element

b2 is such that b2 ≥ a2. We can find b′1 ∈ Z2m such that b
′
1 = b1 and a′1 ≤ b′1.

Similarly for b′2 in Z2m.

The following lemma is dual to the lemma above, and will be useful for proving Lemma 5.5.

Lemma 4.9. Let a, b ∈ ind Cm be such that HomCm
(b, a) ∼= K, and let a′ ∈ ind Cm be such that

πa′ ∼= a. The following statements hold.

(1) If b ∈ I
−
(a), then there exists b′ ∈ ind C2m such that πb′ ∼= b, b′ ∈ H−(a′), and any

non-zero morphism b′ → a′ in C2m does not factor through D.
(2) If b ∈ I

+
(Σ−2a), then there exists b′ ∈ ind C2m such that πb′ ∼= b, b′ ∈ H+(Σ−2a′), and

any non-zero morphism f ′ : b′ → a′ in C2m does not factor through D.

Now we have the factorization properties of Cm.

Proposition 4.10. Let a, b, c ∈ ind Cm. Assume that one of the following statements holds.

(1) b ∈ H
+
(a) and c ∈ H

+
(a) ∩H

+
(b).

(2) b ∈ H
+
(a) and c ∈ H

−
(Σ2a) ∩H

−
(Σ2b).

(3) b ∈ H
−
(Σ2a) and c ∈ H

−
(Σ2a) ∩H

+
(b).

Then any morphism a→ c in Cm factors through b.

Proof. We prove statement (1), statements (2) and (3) are analogous. Fix a′ ∈ ind C2m such

that πa′ ∼= a. Since b ∈ H
+
(a), by Lemma 4.8 there exists b′ ∈ ind C2m such that πb′ ∼= b,

b′ ∈ H+(a′), and any non-zero morphism a′ → b′ does not factor through D. Fix such b′, since

c ∈ H
+
(b), then there exists c′ ∈ ind C2m such that πc′ ∼= c, c′ ∈ H+(b′), and any non-zero

morphism b′ → c′ does not factor through D. We show that c′ ∈ H+(a′) ∩H+(b′).

We denote a = (a1, a2), a
′ = (a′1, a

′
2), c = (c1, c2), and c′ = (c′1, c

′
2). Assume that c′ /∈ H+(a′),

then c′1 ≥ a′2 − 1. It is straightforward to check that as a consequence c1 ≥ a2 − 1. Then

c ̸∈ H
+
(a) and we have a contradiction. Therefore c′ ∈ H+(a′) ∩H+(b′). Now, if there exists

a non-zero morphism f ′ : a′ → c′ which factors through D, then a′2, c
′
1 ∈ Z(q), see Figure 5.

This implies that c1 = q = a2, and then c /∈ H
+
(a) giving a contradiction. Then any non-zero

morphism f ′ : a′ → c′ does not factor through D.
Since b′ ∈ H+(a′) and c′ ∈ H+(a′)∩H+(b′), by Lemma 4.7 there exist h′ : a′ → b′ and g′ : b′ → c′

such that f ′ = g′h′, and then πf ′ = π(g′)π(h′). Since f ′ does not factor through D, we have
that πf ′ ̸= 0. Now consider a non-zero morphism f : a → c in Cm. Since HomCm

(a, c) ∼= K,
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4′

Σ2a
H

−
(Σ2a)

H−(Σ2a′)

Figure 5. Illustration of Lemma 4.8. The darker area inH+(a′) or inH+(Σ2a′),
if present, denotes the objects b′ ∈ H+(a′) ∪H−(Σ2a′) such that any non-zero
morphism a′ → b′ factors through D. Whenever the darker area is not present
there are no such objects in H+(a′) ∪H−(Σ2a′).

we have that f = λπf for some λ ∈ K∗, and then f = λπf ′ = λπ(g′)π(h′). This concludes the
argument. □

4.4. Irreducible morphisms. In this section we describe the irreducible morphisms of Cm.
From Section 4.1 we already know that the isoclasses of indecomposable objects of Cm are in
bijection with the arcs of Zm and that they can be arranged in a coordinate system.

We recall that, from [IT, Lemma 2.4.11], for an object (a1, a2) ∈ ind C2m, the irreducible
morphisms of Cm are exactly the non-zero morphisms of the form (a1, a2) → (a1, a2 + 1) or
(a1, a2)→ (a1 + 1, a2), provided that (a1 + 1, a2) is still an arc, i.e. a2 ≥ a1 + 3.

Proposition 4.11. Let a = (a1, a2), b = (b1, b2) ∈ ind Cm. Assume that a, b ∈ C(p,q) for some
p, q ∈ [m′] ∪ [m] and that one of the following conditions holds.

(1) p ∈ [m′], q ∈ [m] and (b1, b2) = (a1, a2 + 1).
(2) p ∈ [m], q ∈ [m′] and (b1, b2) = (a1 + 1, a2).
(3) p, q ∈ [m] and (b1, b2) = (a1, a2 + 1) or (b1, b2) = (a1 + 1, a2).

Then any non-zero morphism a → b is irreducible. Moreover, there are no other irreducible
morphisms in Cm between indecomposable objects.

Proof. First we show that if any of the conditions (1), (2) and (3) holds, then any non-zero
morphism f : a→ b is irreducible. Assume that condition (1) holds, for the other cases we can
proceed analogously. Consider a non-zero morphism f : a→ b and note that, since (a1, a2+1) ̸∼=
(a1, a2), f is not a split monomorphism nor a split epimorphism. Assume that f = hg for some
g : a → c, h : c → b, and c ∈ Cm. Since the Hom-spaces are one dimensional, we can assume
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that c ∈ ind Cm. We show that g is a split monomorphism or h is a split epimorphism. Note
that

c ∈
(
H

+
(a) ∪H

−
(Σ2a)

)
∩
(
I
−
(b) ∪ I

+
(Σ−2b)

)
.

Assume that c ̸∼= a and c ̸∼= b, then g : a→ c factors as g = lf with l : b→ c, see Figure 6. Since
0 ̸= f = hg = hlf , it follows that hl : b → b is non-zero and hl = λ1b for some λ ∈ K∗. This
implies that b ∼= c, which gives a contradiction with our assumption. We conclude that c ∼= a
or c ∼= b, i.e. f : a→ b is irreducible.

1′ 1

1

2′

2′ 2

2

3′

3′
3

3

4′

4′

4

4

b
Σ−2b

Σ2a

a

Figure 6. The object c belongs to the grey area.

Now, consider a = (a1, a2), b = (b1, b2) ∈ ind Cm and a non-zero morphism f : a → b. We show
that if f is irreducible then it has to be of the form listed in the statement. Let p, q ∈ [m′]∪ [m]

be such that a ∈ C(p,q). Assume that p ∈ [m′] and q ∈ [m], the other cases are analogous.
Note that if b2 ̸= a2 then, from Proposition 4.10, f factors through the irreducible morphism
a → (a1, a2 + 1), and then f is not irreducible unless (b1, b2) = (a1, a2 + 1). If b2 = a2, then
consider the object c = (b2 − 1, a2) and the non-zero morphisms g : a→ c and h : c→ b. From
Proposition 4.10 we have that f = hg, and then f is not irreducible. We can conclude that if
f is irreducible then (b1, b2) = (a1, a2 + 1). □

From Proposition 4.11 we obtain that Cm does not have a Serre functor. This is a well known
fact, but we could not find an argument in the literature. We provide the argument below for
the convenience of the reader.

Corollary 4.12. The category Cm does not have a Serre functor.

Proof. By [RV, Proposition I.2.3], it is equivalent to show that Cm does not always have almost
split triangles. Let a = (a1, a2) ∈ ind Cm with a1, a2 ∈ [m′]. By Proposition 4.11, there are no
irreducible morphisms from and to a, and therefore there are no almost split triangles of the
form a −→ e −→ τ−1a −→ Σa and τa −→ e −→ a −→ Στa. □

5. Precovering and preenveloping subcategories

In this section we classify the precovering and preenveloping subcategories of Cm using arc
combinatorics. We also relate the precovering or preenveloping subcategories in Cm to their
preimages in C2m under the localisation functor π : C2m → Cm.

In [PY] the authors classified the functorially finite weak cluster-tilting subcategories of Cm,
i.e. the cluster-tilting subcategories, in terms of certain triangulations of the ∞-gon Zm. This
classification generalises [F] for the casem = 1. After endowing Cm with a specific extriangulated
structure, the cluster-tilting subcategories were also classified in [ÇKP] in terms of a larger class
of triangulations of Zm. Here we classify subcategories of Cm which are just precovering or
preenveloping.
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5.1. Precovering subcategories of Cm. We start by recalling the classification of the pre-
covering subcategories of Cm from [GHJ].

The following definition corresponds to [GHJ, Definition 0.7], but we use a different formulation
which is more convenient for our purposes. For the notation |x1, x2| we refer to Section 3.1.

Definition 5.1. Let U be a subcategory of Cm. We say that U satisfies the precovering condi-
tions (PC conditions for short) if it satisfies the following combinatorial conditions.

(PC1) If there exists a sequence {(xn1 , xn2 )}n ⊆ U ∩ Z(p,q) for some p, q ∈ [m] such that p ̸= q
and the sequences {xn1}n and {xn2}n are strictly increasing, then there exist strictly

decreasing sequences {yn1 }n ⊆ Z(p+) and {yn2 }n ⊆ Z(q+) such that {|yn1 , yn2 |}n ⊆ U .
(PC2) If there exists a sequence {(xn1 , xn2 )}n ⊆ U ∩ Z(p,q) for some p, q ∈ [m] such that p ̸= q+

and the sequences {xn1}n and {xn2}n are respectively strictly decreasing and strictly

increasing, then there exist strictly decreasing sequences {yn1 }n ⊆ Z(p) and {yn2 }n ⊆ Z(q+)

such that {|yn1 , yn2 |}n ⊆ U .
(PC2′) If there exists a sequence {(xn1 , xn2 )}n ⊆ U ∩ Z(p,q) for some p, q ∈ [m] such that q ̸= p+,

p ̸= q, and the sequences {xn1}n and {xn2}n are respectively strictly increasing and

strictly decreasing, then there exist strictly decreasing sequences {yn1 }n ⊆ Z(p+) and

{yn2 }n ⊆ Z(q) such that {(yn1 , yn2 )}n ⊆ U .
(PC3) If there exists a sequence {(x1, xn2 )}n ⊆ U ∩ Z(p,q) for some p, q ∈ [m] such that the

sequence {xn2}n is strictly increasing, then there exists a strictly decreasing sequence

{yn2 }n ⊆ Z(q+) such that {|x1, yn2 |}n ⊆ U .
(PC3′) If there exists a sequence {(xn1 , x2)}n ⊆ U∩Z(p,q) for some p, q ∈ [m] such that p ̸= q and

the sequence {xn1}n is strictly increasing, then there exists a strictly decreasing sequence

{yn1 }n ⊆ Z(p+) such that {(yn1 , x2)}n ⊆ U .

The conditions (PC1), (PC3), and (PC3′) correspond to condition (PC1) in [GHJ, Definition
0.7], and conditions (PC2), (PC2′), (PC3), (PC3′) correspond to (PC2) in [GHJ, Definition
0.7]. A subcategory of Cm is precovering if and only if it satisfies the PC conditions, see [GHJ,
Theorem 3.1]. This characterization generalises [N] for the case m = 1.

5.2. Precovering subcategories of Cm. Now we classify the precovering subcategories of
Cm. Our approach is to relate the precovering subcategories of Cm to some subcategories of
C2m which are “almost precovering”. To do so, we need to introduce an auxiliary subcategory
of C2m. Fix z0 ∈ Z. For each p ∈ [m′] we denote by z0p ∈ Z2m the copy of z0 belonging to Z(p).

Definition 5.2. We define the subcategory A of C2m as

A = add

(a1, a2) ∈ ind C2m

∣∣∣∣∣∣a1, a2 ∈
⋃

p∈[m]

(p, z0p+ ]

 .

Figure 7 illustrates the subcategory A.
Now we define the completed versions of the PC conditions.

Definition 5.3. Let X be a subcategory of Cm. We say that X satisfies the completed precover-
ing conditions (the PC conditions for short) if it satisfies the following combinatorial conditions.

(PC1) If there exists a sequence {(xn1 , xn2 )}n ⊆ X ∩ C(p,q) for some p, q ∈ [m] such that p ̸= q
and the sequences {xn1}n and {xn2}n are strictly increasing, then |p+, q+| ∈ X .

(PC2) If there exists a sequence {(xn1 , xn2 )}n ⊆ X ∩C(p,q) for some p, q ∈ [m] and the sequences
{xn1}n and {xn2}n are respectively strictly decreasing and strictly increasing, then there

exists a strictly decreasing sequence {yn1 }n ⊆ C(p) such that {|yn1 , q+|}n ⊆ X .
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Figure 7. The category A.

(PC2′) If there exists a sequence {(xn1 , xn2 )}n ⊆ X ∩ C(p,q) for some p, q ∈ [m] such that p ̸= q,
and the sequences {xn1}n and {xn2}n are respectively strictly increasing and strictly

decreasing, then there exists a strictly decreasing sequence {yn2 }n ⊆ C(q) such that
{(p+, yn2 )}n ⊆ X .

(PC3) If there exists a sequence {(x1, xn2 )}n ⊆ X ∩ C(p,q) for some p ∈ [m′] ∪ [m] and q ∈ [m]
such that p ̸= q+ and the sequence {xn2}n is strictly increasing, then |x1, q+| ∈ X .

(PC3′) If there exists a sequence {(xn1 , x2)}n ⊆ X ∩ C(p,q) for some p ∈ [m] and q ∈ [m′] ∪ [m]
such that p ̸= q, q ̸= p+, and the sequence {xn1}n is strictly increasing, then (p+, x2) ∈ X .

Figure 8 illustrates some of the PC conditions.
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1′

2′
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4′

1′

2′

3′

4′

1′

Figure 8. On the left (PC1), in the middle (PC2), and on the right (PC3).

The main result of this section is the following.

Theorem 5.4. Let X be a subcategory of Cm. The following statements are equivalent.

(1) X is precovering in Cm.
(2) π−1X ∩A is precovering in C2m.
(3) X satisfies the PC conditions.

The following lemmas will be useful to prove the theorem above.

Lemma 5.5. The following statements hold.

(1) The category A is the aisle of a t-structure in C2m.
(2) If x ∈ ind C2m and x /∈ D, then there exists an A-cover a → x of x such that πa ∼= πx

and a is indecomposable.

Proof. We prove statement (1). From Proposition 2.2 it is enough to check that A is suspended
and precovering. It is straightforward to check that A satisfies the PC conditions, therefore by
[GHJ, Theorem 3.1] it is precovering. For showing that ΣA ⊆ A, consider a = (a1, a2) ∈ indA,
then, by Definition 5.2, a1 − 1, a2 − 1 ∈

⋃
p∈[m](p, z

0
p+ − 1] ⊆

⋃
p∈[m](p, z

0
p+ ]. As a consequence,
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Σa = (a1−1, a2−1) ∈ indA. Now we prove thatA is extension-closed. Let a −→ e −→ b −→ Σa
be a triangle of C2m with a, b ∈ A. Then all the endpoints of the indecomposable summands of
a and b belong to the set

⋃
p∈[m](p, z

0
p+ ]. Therefore, by [GZ, Lemma 3.4], all the endpoints of

the indecomposable summands of e belong to the same set, and it follows that e ∈ A.
Now we prove statement (2). Let x = (x1, x2) ∈ ind C2m, by [J, Lemma 4.1] x has an A-cover
a→ x. We show that a ∈ indA and that πa ∼= πx. Let p, q ∈ [m′]∪ [m] be such that x ∈ Z(p,q),
and assume that p ∈ [m′] and q ∈ [m], the other cases are analogous. If x1 ∈ (p, z0p ] then

x ∈ indA and 1x : x → x is an A-cover of x. If x1 /∈ (p, z0p ] then let a′ = (z0p , x2) ∈ ind C2m.
We have that a′ ∈ indA. There exists a non-zero morphism a′ → x and it is straightforward
to check that it is an A-precover. Moreover a′ → x is right-mimimal and therefore an A-
cover. Since covers are unique up to isomorphism, we have that a ∼= a′. We also have that
πa ∼= πa′ = (z0p, x2) = (x1, x2) = πx. This concludes the argument. □

Consider a, b ∈ ind Cm such that HomCm
(b, a) ∼= K. We recall, from Lemma 4.9, that we can

fix a′ ∈ ind C2m such that π(a′) ∼= a, and then there exists b′ ∈ ind C2m, which depends on the
choice of a′, such that π(b′) ∼= b, HomC2m(b

′, a′) ∼= K, and any non-zero morphism b′ → a′ does
not factor through D.

Lemma 5.6. Let a, b ∈ ind Cm be such that HomCm
(b, a) ∼= K, and let a′ ∈ ind C2m be such

that π(a′) ∼= a. Let b′ ∈ ind C2m be such that π(b′) ∼= b, HomC2m(b
′, a′) ∼= K, and any non-

zero morphism b′ → a′ does not factor through D. Let b′′ → b′ be the A-cover of b′. Then
HomC2m(b

′′, a′) ∼= K and any non-zero morphism b′′ → a′ does not factor through D.

Proof. By Lemma 4.9 such b′ exists. If b′ ∈ A then b′′ ∼= b′ and we have the statement.
Assume that b′ /∈ A and let p, q ∈ [m′] ∪ [m] be such that b′ = (b′1, b

′
2) ∈ Z(p,q). Consider

the case p ∈ [m′] and q ∈ [m], the other cases are analogous. Since b′ /∈ A we have that
b′1 /∈ (p, z0p ], i.e. b′1 ∈ [z0p + 1, p+). From the argument of Lemma 5.5, b′′ = (z0p , b

′
2). We have

that a′ ∈ H+(b′) ∪H−(Σ2b′), we show that a′ ∈ H+(b′′) ∪H−(Σ2b′′).

If a′ ∈ H+(b′) then b′1 ≤ a′1 ≤ b′2 − 2 and a′2 ≥ b′2. Since b′1 > z0p , then a′ ∈ H+(b′′). Now,

if a′ ∈ H−(Σ2b′) then a′1 ≤ b′1 − 2 and b′1 ≤ a′2 ≤ b′2 − 2. Assume that a′1 ̸≤ z0p − 2, then

b′1 − 2 ≤ a′1 ≤ z0p − 1. In particular, a′1 ∈ Z(p) and any non-zero morphism b′ → a′ factors

through D giving a contradiction, see Figure 5. Therefore a′1 ≤ z0p − 2. Moreover, since b′1 > z0p ,

from b′1 ≤ a′2 ≤ b′2 − 2 we also have that z0p ≤ a′2 ≤ b′2 − 2 and obtain that a′ ∈ H−(Σ2b′′). We
can conclude that HomC2m(b

′′, a′) ∼= K.

We show that any non-zero morphism b′′ → a′ does not factor through D. If this is not the case,
then a′ ∈ H−(Σ2b′′) and a′1 ∈ Z(p). As a consequence, HomCm

(b, a) = 0 giving a contradiction.

We obtain that any non-zero morphism b′′ → a′ does not factor through D, and this concludes
the argument. □

Lemma 5.7. Let X be a subcategory of Cm. The subcategory X satisfies the PC conditions if
and only if π−1X ∩A satisfies the PC conditions.

Proof. We show that X satisfies (PC1) if and only if π−1X ∩ A satisfies (PC1), we refer to
Figure 9 for an illustration. Assume that X satisfies (PC1) and that there exists a sequence

{(xn1 , xn2 )}n ⊆ Z(p,q) ∩
(
π−1X ∩A

)
for some p, q ∈ [m′] ∪ [m] such that p ̸= q with {xn1}n and

{xn2}n strictly increasing sequences. Note that p, q /∈ [m′], otherwise for n big enough we have
{(xn1 , xn2 )}n ̸⊆ A. For each n we define πxn = yn = (yn1 , y

n
2 ), note that {yn1 }n and {yn2 }n are still

strictly increasing sequences, and consider the sequence {yn}n ⊆ X ∩ C(p,q). Since X satisfies

(PC1), then |p+, q+| ∈ X and π−1X contains any arc of C2m having one endpoint in Z(p+) and

the other in Z(q+). In particular, there exist strictly decreasing sequences {zn1 }n ⊆ Z(p+) and

{zn2 }n ⊆ Z(q+) such that {|zn1 , zn2 |}n ⊆ π−1X ∩A. This proves that π−1X ∩A satisfies (PC1).
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Now assume that π−1X ∩ A satisfies (PC1) and that there exists a sequence {(xn1 , xn2 )}n ⊆
X ∩ C(p,q) for some p, q ∈ [m] such that p ̸= q, and {xn1}n and {xn2}n are strictly increasing
sequences. For each n there exists yn = (yn1 , y

n
2 ) ∈ indπ−1X ∩ A such that πyn ∼= xn. Thus,

there exists a sequence {|yn1 , yn2 |}n ⊆
(
π−1X ∩A

)
∩C(p,q) such that {yn1 }n and {yn2 }n are stricly

increasing sequences. Since π−1X ∩ A satisfies (PC1), then there exist strictly decreasing

sequences {zn1 }n ⊆ Z(p+) and {zn2 }n ⊆ Z(q+) such that {|zn1 , zn2 |}n ⊆ π−1X∩A. As a consequence
we have that |p+, q+| ∈ X . This proves that X satisfies (PC1).

It is straightforward to check that X satisfies (PC3) and (PC3′) if and only if π−1X ∩A satisfies
(PC3) and (PC3′). Moreover, if X satisfies (PC2), (PC2′), (PC3), and (PC3′) then π−1X ∩A
satisfies (PC2) and (PC2′). Finally, if π−1X ∩ A satisfies (PC2) and (PC2′) then X satisfies
(PC2) and (PC2′). We can conclude that X satisfies the PC conditions if and only if π−1X ∩A
satisfies the PC conditions. □
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Figure 9. Illustration of the argument of Lemma 5.7.

Proposition 5.8. Let X be a subcategory of Cm. If π−1X ∩ A is a precovering subcategory of
C2m then X is a precovering subcategory of Cm.

Proof. From Remark 2.1 it is enough to check that X is precovering at the level of the inde-
composable objects. Consider a ∈ ind Cm, then there exists a′ ∈ ind C2m such that πa′ ∼= a,
and there exists f : x→ a′ a π−1X ∩A-precover of a′. Consider πf : πx→ a, we show that πf
satisfies the condition of Remark 2.1. First assume that f does not factor through D. Consider
b ∈ indX and g : b → a in Cm. Without loss of generality we can assume that g ̸= 0. From
Lemma 5.5 and Lemma 5.6, there exists b′ ∈ indπ−1X ∩A such that πb′ ∼= b and there exists a
non-zero morphism g′ : b′ → a′ in C2m which does not factor through D. Since the Hom-spaces
in Cm are at most one dimensional, we have that g = λπg′ for some λ ∈ K∗. Since f : x → a′

is a π−1X ∩ A-precover of a′, there exists h : b′ → x in C2m such that fh = g′. We obtain that
λπ(f)π(h) = λπ(fh) = g in Cm. This proves that πf : πx→ a is an X -precover of a.
Now we consider the case where f factors through D. We show that HomCm

(b, a) = 0 for all

b ∈ indX . Assume that there exists a non-zero morphism g : b → a in Cm for some b ∈ indX ,
then as above there exists b′ ∈ indπ−1X ∩ A such that πb′ ∼= b and there exists a non-zero
morphism g′ : b′ → a′ in C2m which does not factor through D. Since f : x→ a′ is a π−1X ∩A-
precover of a′, there exists h : b′ → x in C2m such that fh = g′. Since f factors through D,
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we have that g′ factors through D, giving a contradiction. We can conclude that if f factors
through D then HomCm

(b, a) = 0 for all b ∈ indX . As a consequence, πf = 0 is an X -precover
of a. □

The following proposition is the analogue of [GHJ, Proposition 3.7] in Cm and its proof is similar.

Proposition 5.9. Let X be a subcategory of Cm. If X is a precovering subcategory then it
satisfies the PC conditions.

Proof. Assume that X is a precovering subcategory of Cm, we show that is satisfies (PC1).

Assume that there is a sequence {xn = (xn1 , x
n
2 )}n ⊆ indX ∩C(p,q) for some p, q ∈ [m] with p ̸= q

such that {xn1}n and {xn2}n are strictly increasing sequences. We show that a = |p+, q+| ∈ indX .
Consider (f1, . . . , fk) : y1 ⊕ · · · ⊕ yk → a an X -precover of a with y1, . . . , yk ∈ indX . Note that
HomCm

(xn, a) ∼= K for each n. Fix n and consider a non-zero morphism gn : xn → a. Then

there exists hn = (hn1 , . . . , h
n
k)

T : xn → y1⊕ · · · ⊕ yk such that fhn = gn. Then, for each n there
exists l ∈ {1, . . . , k} such that gn factors through fl.

There exists l ∈ {1, . . . , k} such that gn factors through fl for infinitely many n ∈ Z. Indeed,
if for each l only finitely many of the gn factor through fl, then there are only finitely many
gn’s and this contradicts the fact that the sequence {xn}n is infinite. Now fix an l such that gn

factors through fl for infinitely many n ∈ Z. Without loss of generality we can assume that for
each n ∈ Z the morphism gn factors through fl. Indeed, if this is not the case, we can extract an
infinite subsequence of {xn}n such that all gn : xn → a satisfy that property. From now on we
denote the object yl as y, the morphism fl : yl → a as f : y → a, and we denote by hn : xn → y
the morphism such that fhn = gn.

Since HomCm
(y, a) ∼= K and HomCm

(xn, y) ∼= K for all n ∈ Z, we have that

y ∈

(⋂
n∈Z

H
+
(xn) ∪H

−
(Σ2xn)

)
∩
(
I
−
(a) ∪ I

+
(Σ−2a)

)
.

We refer to Figure 10 for an illustration.
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Figure 10. On the left the argument for (PC1), on the right for (PC2). The
object y belongs to the grey areas.

We show that y ∼= a. Assume that y ̸∼= a, from Proposition 4.10 there exists a non-zero
morphism f ′ : a→ y such that hn = f ′gn for each n ∈ Z. Since fhn = gn ̸= 0, then ff ′gn ̸= 0
and ff ′ : a→ a is non-zero. Thus, ff ′ = λ1a for some λ ∈ K∗ and a ∼= y, which contradicts our
assumption. We obtain that a ∼= y ∈ X , and we conclude that X satisfies (PC1).

Now we show that X satisfies (PC2). Assume that there is a sequence {(xn1 , xn2 )} ⊆ indX∩C(p,q)

for some p, q ∈ [m] such that {xn1}n is strictly decreasing and {xn2}n is strictly increasing. We

show that there is a strictly decreasing sequence {yn1 }n ⊆ C(p) such that {|yn1 , q+|}n ⊆ X .

Consider an object a = |a1, q+| with a1 ∈ Z(p) such that x11 < a1 ≤ x12−2. Then for each n there
exists a non-zero morphism gn : xn → a. Consider an X -precover (f1, . . . , fk) : y1⊕· · ·⊕ yk → a
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of a. With the same argument as above there exists l ∈ {1, . . . , k} such that gn : xn → a factors
through fl : yl → a for all n (up to taking subsequences). Let y = yl, proceeding similarly as
above we obtain that y ∈

{
|z, q+|

∣∣x11 ≤ z ≤ a11
}
, see Figure 10. We define z1 = y, which is the

first element of our desired sequence. Now we consider a′ = |a′1, q+| with x11 < a′1 ≤ x21. By
repeating the same argument there exists z2 ∈ {|z, q+||a′1 ≤ z ≤ a1} which is an object of X .
With this procedure we obtain our desired sequence {zn}n. This proves that X satisfies (PC2).

The argument of (PC2′) is similar to the argument of (PC2), the arguments of (PC3) and (PC3′)
are similar to the argument of (PC1). We can conclude that X satisfies the PC conditions. □

We now have our classification of the precovering subcategories of Cm.

Proof of Theorem 5.4. The claim follows directly from Lemma 5.7, Proposition 5.8, Proposition
5.9, and [GHJ, Theorem 3.1]. □

5.3. Preenveloping subcategories of Cm. Here we discuss a characterization of the preen-
veloping subcategories of Cm dual to Theorem 5.4. First we define an auxiliary subcategory B,
which is the dual version of A. We recall that in Section 5.2 we fixed an integer z0 ∈ Z, now we
define w0 = z0 − 1. For each p ∈ [m′] we denote by w0

p ∈ Z2m the copy of w0 belonging to Z(p).

Definition 5.10. We define the subcategory B of C2m as

B = add

(b1, b2) ∈ ind C2m

∣∣∣∣∣∣b1, b2 ∈
⋃

p∈[m′]

[w0
p, p

++)

 .

Figure 11 illustrates the subcategory B.
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Figure 11. The category B.

For convenience of the reader, we record the duals of Definition 5.3 and Theorem 5.4.

Definition 5.11. Let X be a subcategory of Cm. We say that X satisfies the completed preen-
veloping conditions (PE for short) if it satisfies the following combinatorial conditions.

(PE1) If there exists a sequence {(xn1 , xn2 )}n ⊆ X ∩ C(p,q) for some p, q ∈ [m] such that p ̸= q
and the sequences {xn1}n and {xn2}n are strictly decreasing, then (p−, q−) ∈ X .

(PE2) If there exists a sequence {(xn1 , xn2 )}n ⊆ X ∩ C(p,q) for some p, q ∈ [m] such that p ̸= q
and the sequences {xn1}n and {xn2}n are respectively strictly increasing and strictly

decreasing, then there exists a strictly increasing sequence {yn1 }n ⊆ C(p) such that
{(yn1 , q−)}n ⊆ X .

(PE2′) If there exists a sequence {(xn1 , xn2 )}n ⊆ X ∩ C(p,q) for some p, q ∈ [m] such that the
sequences {xn1}n and {xn2}n are respectively strictly decreasing and strictly increasing,

then there exists a strictly increasing sequence {yn2 }n ⊆ C(q) such that {(p−, yn2 )}n ⊆ X .
(PE3) If there exists a sequence {(x1, xn2 )}n ⊆ X ∩ C(p,q) for some p ∈ [m′] ∪ [m] and q ∈ [m]

such that p ̸= q, p ̸= q− and the sequence {xn2}n is strictly decreasing, then (x1, q
−) ∈ X .
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(PE3′) If there exists a sequence {(xn1 , x2)}n ⊆ X ∩ C(p,q) for some p ∈ [m] and q ∈ [m′] ∪ [m]
such that the sequence {xn1}n is strictly decreasing, then (p−, x2) ∈ X .

Theorem 5.12. Let X be a subcategory of Cm. The following statements are equivalent.

(1) X is preenveloping in Cm.
(2) π−1X ∩ B is preenveloping in C2m.
(3) X satisfies the PE conditions.

The following lemma will be useful in Section 8.2 for computing the heart of a t-structure.

Lemma 5.13. The following statements hold.

(1) The category B is the co-aisle of a t-structure in C2m.
(2) If x ∈ ind C2m and x /∈ D, then there exists x′ ∈ indA ∩ Σ−1B ⊆ indA ∩ ΣB such that

πx′ ∼= x.

Proof. Statement (1) is the dual of statement (1) of Lemma 5.5. For statement (2), consider
the A-cover x′ → x of x as in statement (2) of Lemma 5.5. We have that π(x′) ∼= x, and it
is straightforward to check that x′ ∈ Σ−1B. Moreover, since Σ−1B ⊆ B ⊆ ΣB, we have that
x′ ∈ ΣB. This concludes the proof. □

6. Extension-closed subcategories

In this section we classify the extension-closed subcategories of Cm. To do so, we first show
that the extension-closed subcategories of Cm are precisely those closed under extensions having
indecomposable outer terms.

6.1. Extension-closed subcategories of Cm. The extension-closed subcategories of Cm were
classified in [CP, Theorem 7.2] for the case m = 1. The precovering extension-closed subcate-
gories of Cm, i.e. the torsion classes, were classified in [GHJ, Theorem 4.7]. Here we classify the
subcategories of Cm which are just extension-closed for all m ≥ 1.

We recall that we identify the indecomposable objects of Cm with the arcs of Zm.

Definition 6.1. Let a, b ∈ ind Cm be crossing arcs. The arcs of ind Cm \ {a, b} which connect
the endpoints of a and b are called Ptolemy arcs. We say that a subcategory U of Cm satisfies
the Ptolemy condition, PT condition for short, if it is closed under taking Ptolemy arcs.

Figure 12 provides an illustration of Ptolemy arcs.

a

b

Figure 12. The dotted arcs are the Ptolemy arcs of a and b.

Consider a non-split triangle of the form a −→ e −→ b −→ Σa with a, b ∈ ind Cm and b ̸∼= Σa.
The middle term e is determined by the Ptolemy arcs of a and b. More precisely

• if a1 < b1 < a2 < b2 then e ∼= e1 ⊕ e2 with e1 = (a1, b2) and e2 = (b1, a2), and
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• if b1 < a1 < b2 < a2 then e ∼= e′1 ⊕ e′2 with e′1 = (b1, a1) and e′2 = (b2, a2).

In the first case, if a2 = b2 + 1 we interpret (b1, a2) as the zero object. In the second case, if
a1 = b1 + 1 we interpret (b1, a1) as the zero object, and if a2 = b2 + 1 we interpret (b2, a2) as
the zero object.

Now consider a triangle of the form a −→ e −→ b
h−→ Σa with a, b1, . . . , bn ∈ ind Cm,

such that the objects b1, . . . , bn are non-isomorphic to Σa and pairwise Hom-orthogonal, i.e.
HomCm(bi, bj) = 0 for each i ̸= j, and all the entries of h = (h1, . . . , hn) are non-zero, cf. [GZ,
Lemma 3.2]. The middle term e of such a triangle was computed in [GZ, Lemma 4.16]. Their
result generalises [CP, Proposition 4.12] for the case m = 1. Now we show that computing the
middle term of a triangle of that form is enough to obtain the middle term of a triangle of the
form a −→ e −→ b −→ Σa with a ∈ ind Cm. This follows from Proposition 2.5, which holds in
a more general framework.

Remark 6.2. Let f1 : x1 → y and f2 : x2 → y be non-zero morphisms in Cm with x1, x2, y ∈
ind Cm. By applying the same argument of [CP, Lemma 4.6], we obtain that f1 and f2 are
factorization free if and only if x1 and x2 are Hom-orthogonal. We observe that the “if”
implication holds in the setting of additive categories, while the “only if” implication is specific
to the category Cm.

Corollary 6.3 (of Proposition 2.5). Let a −→ e −→ b
h−→ Σa be a triangle in Cm with

a, b1, . . . , bn ∈ ind Cm, b =
⊕n

i=1 bi, and h = (h1, . . . , hn). Then there exist b′1, . . . , b
′
k ∈ ind Cm

and a morphism h′ = (h′1 . . . , h
′
k) : b

′ =
⊕k

i=1 b
′
i → Σa such that b′ is a direct summand of b,

b′1, . . . , b
′
k are non-isomorphic to Σa and are pairwise Hom-orthogonal, all the entries of h′ are

non-zero, and there is the following isomorphism of triangles.

a e′ ⊕ b′′ b′ ⊕ b′′ Σa

a e b Σa

1 ≀

(h′,0)

≀ 1

h

Proof. By Proposition 2.5 there exists b′1, . . . , b
′
k ∈ ind Cm such that b′ =

⊕k
i=1 b

′
i is a direct

summand of b, all the entries of h′ = (h′1, . . . , h
′
k) : b

′ → Σa are pairwise factorization free, and
there exists an isomorphism of triangles as in the statement. By Remark 2.6 and Remark 6.2
we conclude that b′i ̸∼= Σa and h′i ̸= 0 for each i, and b′1, . . . , b

′
k are pairwise Hom-orthogonal. □

From [CP, Theorem 4.1] we know that the middle terms of arbitrary triangles of Cm can be
computed iteratively when m = 1. It is straightforward to check that the same holds for m ≥ 2.

Let U be a subcategory of Cm, and consider a triangle a −→ e −→ b −→ Σa in Cm with
a, b ∈ U . From [GZ, Lemma 3.4] the coordinates of the indecomposable summands of e belong
to the set of coordinates of the indecomposable summands of a and b. Note that in general this
does not imply that e ∈ U . Now we discuss a necessary and sufficient condition for U to be
extension-closed. First, we need the following lemma.

Lemma 6.4. Let U be a subcategory of Cm. Assume that U is closed under extensions of
the form a −→ e −→ b −→ Σa with a, b ∈ indU . Then U is closed under extensions of the

form a −→ e −→ b
h−→ Σa with a ∈ ind Cm, b =

⊕n
i=1 bi where b1, . . . , bn ∈ ind Cm are non-

isomorphic to Σa and pairwise Hom-orthogonal, and all the entries of h = (h1, . . . , hn) are
non-zero.

Proof. Consider a triangle a −→ e −→ b
h−→ Σa with a ∈ ind Cm, b =

⊕n
i=1 bi where b1, . . . , bn ∈

ind Cm are non-isomorphic to Σa and pairwise Hom-orthogonal, and all the entries of h =
(h1, . . . , hn) are non-zero. We prove that e ∈ U . We proceed by induction on n. If n = 1 then
e ∈ U by assumption. Now assume that n ≥ 2. For each i ∈ {1, . . . , n} we have that bi and
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a cross, i.e. bi ∈ H+(Σ−1a) ∪ H−(Σa). We have the following possibilities: bi ∈ H−(Σa) for
each i, or there exists i such that bi ∈ H+(Σ−1a). In the first case, we rename b1, . . . , bn in
such a way that the first coordinate of bn is the minimum of the first coordinates of b1, . . . , bn.
In the second case, we rename b1, . . . , bn in such a way that the first coordinate of bn is the
maximum of the first coordinates of b1, . . . , bn. We refer to Figure 13 for an illustration. We

a

bn

1

a

bn

1

x′ x′

Figure 13. On the left when bi ∈ H−(Σa) for each i ∈ {1, . . . , n}, on the right
when there exists i ∈ {1, . . . , n} such that bi ∈ H+(Σ−1a). The dotted arcs
represent the indecomposable direct summands of x.

write b = b′ ⊕ bn, where b′ =
⊕n−1

i=1 bi. Consider the following Octahedral Axiom diagram.

b′ b′

e b′ ⊕ bn Σa Σe

e bn Σx Σe

Σb′ Σb′

1

( 10 ) h′

1

h

( 0 1 ) 1

g

0

1

Consider the triangle a −→ x −→ b′
h′
−→ Σa, and note that all the entries of h′ are non-zero.

Thus, by induction hypothesis we have that x ∈ U . By [GZ, Lemma 4.16] we can compute the
indecomposable direct summands of x. Moreover, there is precisely one indecomposable direct
summand of x, denoted by x′, such that HomCm(bn, x

′) ̸= 0, see Figure 13. We write x = x′⊕x′′

and g =
(
g′

0

)
: bn → Σx′ ⊕ Σx′′. Since x ∈ U , we have that x′, x′′ ∈ U . Consider the triangle

x′ −→ e′ −→ bn
g′−→ Σx′ and note that e′ ∈ U because x′, bn ∈ indU . We have the following

isomorphism of triangles.

x′ ⊕ x′′ e bn Σx′ ⊕ Σx′′

x′ ⊕ x′′ e′ ⊕ x′′ bn Σx′ ⊕ Σx′′

1 ≀

(
g′

0

)

1 1(
g′

0

)

Therefore, we conclude that e ∼= e′ ⊕ x′′ ∈ U . □

Proposition 6.5. Let U be a subcategory of Cm. Then the following statements are equivalent.

(1) The subcategory U satisfies the PT condition.
(2) The subcategory U is closed under extensions of the form a −→ e −→ b −→ Σa where

a, b ∈ ind Cm.
(3) The subcategory U is closed under extensions.
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Proof. The equivalence of statements (1) and (2) follows from the computation of the middle
term of an extension having indecomposable outer terms. We prove that (2) implies (3), the
other implication is trivial. Since U is closed under extensions having indecomposable outer
terms, by Lemma 6.4 U is closed under extensions of the form a −→ e −→ b −→ Σa with
a ∈ ind Cm, b =

⊕n
i=1 bi where b1, . . . , bn ∈ ind Cm are non-isomorphic to Σa and are pairwise

Hom-orthogonal, and all the entries of h = (h1, . . . , hn) are non-zero. By Remark 6.2, in
particular h1, . . . , hn are pairwise factorization free. Then, by Proposition 2.7, U is closed under
extensions. □

6.2. Extension-closed subcategories of Cm. Here we characterise the extension-closed sub-
categories of Cm. First we introduce the completed version of the PT condition. We refer to
Proposition 3.2 for the computation of the Hom-spaces of Cm.

Recall that we identify the indecomposable objects of Cm with the arcs of Zm.

Definition 6.6. Let x, y ∈ ind Cm be such that HomCm
(x,Σy) ∼= K. The arcs of ind Cm \ {x, y}

which connect the endpoints of x and y are called Ptolemy arcs of x and y. We say that a
subcategory X of Cm satisfies the completed Ptolemy condition, PT condition for short, if it is
closed under taking Ptolemy arcs.

Figure 14 provides an illustration of the Ptolemy arcs in Cm.

x

y

x

y

Figure 14. The dotted arcs are the Ptolemy arcs of x and y. On the left x and
y cross, on the right they share one endpoint which is an accumulation point.

The middle term of a non-split extension in Cm having indecomposable outer terms was com-
puted in [PY, Section 3].

Proposition 6.7. Let X be a subcategory of Cm. The following statements are equivalent.

(1) The subcategory X satisfies the PT condition.
(2) The subcategory X is closed under extensions of the form x1 −→ c −→ x2 −→ Σx1 with

x1, x2 ∈ ind Cm.
(3) The subcategory X is closed under extensions.

Proof. The proof of the equivalence of (1) and (2) is straightforward and follows from [PY,
Section 3]. The fact that (3) implies (2) is trivial. We prove that (2) implies (3). To this end,
first we show that π−1X is closed under extensions, and then that X is closed under extensions.

Assume that X is closed under extensions with indecomposable outer terms. Consider the
preimage π−1X in C2m. It is straightforward to check that π−1X is an additive subcategory
of C2m. We show that π−1X is closed under extensions having indecomposable outer terms.
Consider a triangle a −→ e −→ b −→ Σa in C2m with a, b ∈ indπ−1X . Then πa −→ πe −→
πb −→ πΣa is a triangle in Cm, see [Kra, Lemma 4.3.1]. Moreover, from [PY, Proposition 3.10]
it follows that πa and πb are either indecomposable objects or zero. From (2) we obtain that
πe ∈ X , i.e. e ∈ π−1X . This proves that π−1X is closed under extensions having indecomposable
outer terms. By Lemma 6.4 we obtain that π−1X is closed under extensions.
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Now we show that X is closed under extensions. Consider a triangle x1 −→ c −→ x2 −→ Σx1
in Cm with x1, x2 ∈ X . Then there exists a triangle a −→ e −→ b −→ Σa in C2m whose image
after π is isomorhic in Cm to x1 −→ c −→ x2 −→ Σx1. Thus πa, πb ∈ X , i.e. a, b ∈ π−1X . Since
π−1X is closed under extensions, we have e ∈ π−1X and then c ∼= πe ∈ X . This completes the
proof. □

7. Torsion pairs

Torsion pairs in Cm were classified in [GHJ, Section 4], we classify the torsion pairs in Cm. We
recall from Proposition 2.2 that a torsion pair (X ,Y) is uniquely determined by its torsion class
X , and therefore it is enough to classify the torsion classes.

Theorem 7.1. Let X be a subcategory of Cm. Then X is a torsion class in Cm if and only if
X satisfies the PC conditions and the PT condition. Moreover, there is an inclusion preserving
bijection.

{ Torsion-classes in Cm } ←→
{
Extension-closed subcategories U ⊆ C2m such

that D ⊆ U and U ∩ A is precovering

}
X 7−→ π−1X
πU ←−p U

Proof. The first statement follows directly from Proposition 2.2, Theorem 5.4, and Proposition
6.7. The bijection follows from Proposition 2.8 and Theorem 5.4. □

We have the following corollaries of Theorem 7.1 and which will be useful in Section 8 and
Section 9 for classifying t-structures and co-t-structures.

Corollary 7.2. Let X be a subcategory of Cm. Then X is the aisle of a t-structure in Cm if
and only if X satisfies the PC conditions, the PT condition, and X is closed under clockwise
rotations. Moreover, there is an inclusion preserving bijection.

{ Aisles of t-structures in Cm } ←→
{

Suspended subcategories U ⊆ C2m such that
D ⊆ U and U ∩ A is precovering

}
X 7−→ π−1X
πU ←−p U

Corollary 7.3. Let X be a subcategory of Cm. Then X is the aisle of a co-t-structure in Cm if
and only if X satisfies the PC conditions, the PT condition, and X is closed under anticlockwise
rotations. Moreover, there is an inclusion preserving bijection.

{ Aisles of co-t-structures in Cm } ←→
{

Co-suspended subcategories U ⊆ C2m such
that D ⊆ U and U ∩ A is precovering

}
X 7−→ π−1X
πU ←−p U

8. t-structures

The t-structures in Cm were classified in [GZ] form ≥ 1, and in [N] and [CZZ] for the casesm = 1
and m = 2. Here we classify the t-structures in Cm. We start by classifying the aisles, then
we compute the co-aisles and the hearts. Finally, we classify the bounded and non-degenerate
t-structures.
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8.1. Aisles of t-structures. We recall the classification of the aisles of the t-structures in Cm
from [GZ, Section 4] in terms of decorated non-crossing partitions.

Definition 8.1 ([GZ, Definition 4.5]). A decorated non-crossing partition of [m] is a pair (P, X)
given by a non-crossing partition P of [m] and an m-tuple X = (xp)p∈[m] where for each p ∈ [m]

xp ∈


[p, p+) if {p} ∈ P,
(p, p+] if p, p+ ∈ B for some block B ∈ P,
(p, p+) otherwise.

The following theorem gives a classification of the aisles of the t-structures in Cm.

Theorem 8.2 ([GZ, Theorem 4.6]). There is a bijection between the decorated non-crossing
partitions of [m] and the aisles of t-structures in Cm.

In order to classify the aisles of the t-structures in Cm we need to adapt Definition 8.1 in our
setting.

Definition 8.3. A half-decorated non-crossing partition of [m′]∪ [m] is a pair (P, X) given by a
non-crossing partition P of [m′]∪ [m] and an m-tuple X = (xp)p∈[m] such that for each p ∈ [m]

xp ∈


[p, p+) if {p} ∈ P,
(p, p+] if p, p+ ∈ B for some block B ∈ P,
(p, p+) otherwise.

Note that a decorated non-crossing partition (P, X) of [m′] ∪ [m] is not a half-decorated non-
crossing partition of [m′] ∪ [m] because X is a 2m-tuple, not an m-tuple. Figure 15 gives
examples of a half-decorated non-crossing partition and a decorated non-crossing partition of
[m′] ∪ [m].

Remark 8.4. Given a half-decorated non-crossing partition of [m′] ∪ [m], we can obtain a
decorated non-crossing partition by adding the decoration z0p for each p ∈ [m′]. Conversely,
given such a decorated non-crossing partition we obtain a half-decorated non-crossing partition
by removing the decorations xp for each p ∈ [m′]. These assignments are mutually inverse.
Therefore, we have a bijection between the half-decorated non-crossing partitions of [m′] ∪ [m]
and the decorated non-crossing partitions of [m′]∪[m] of the form (P, X) withX = (xp)p∈[m′]∪[m]

such that xp = z0p for each p ∈ [m′].

1′

1

2′

2

3′

3

4′

4

x1 =

x2 =

x3

x4
1′

1

2′

2

3′

3

4′

4

y1 =

y2 =

y3

y4

(P , X) (P , Y )

y1′ =

y2′

y3′

y4′

Figure 15. On the left (P, X) is a half-decorated non-crossing partition of
[4′]∪ [4], and on the right (P, Y ) is a decorated non-crossing partition of [4′]∪ [4],
where P = {{1′, 1, 2′, 3′}, {2}, {3, 4′, 4}}. Note that (P, Y ) does not correspond
to (P, X) according to Remark 8.4.

The main result of this section is the following analogue of Theorem 8.2. The notation employed
in the statement will be defined in Definition 8.7 and Definition 8.10.
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Theorem 8.5. The following is a bijection.{
Half-decorated non-crossing

partitions of [m′] ∪ [m]

}
←→ { Aisles of t-structures in Cm }

(P, X) 7−→ πU(P,X)

(Pπ−1X , Xπ−1X )←−p X

From Remark 8.4 and Theorem 8.5 it follows that the aisles of the t-structures in Cm are in
bijection with certain aisles of t-structures in C2m (namely those corresponding to the decorated
non-crossing partitions (P, X) of [m′] ∪ [m] with X = (xp)p∈[m′]∪[m] such that xp = z0p for each
p ∈ [m′]).

To prove Theorem 8.5 we take an intermediate step through C2m. From Corollary 7.2 the aisles
of t-structures in Cm are in bijection with the suspended subcategories U of C2m such that D ⊆ U
and U ∩ A is precovering. These can be regarded as “almost aisles” of t-structures in C2m and
are classified in terms of half-decorated non-crossing partitions of [m′] ∪ [m], see Proposition
8.6. The aisles of the t-structures in Cm are then obtained by localising the “almost aisles” in
C2m. Figure 16 illustrates this process.

1′

1

2′

2

3′

3

4′

4

x1 =

x2 =

x3

x4
1′

1

2′

2

3′

3

4′

4

x3

x4
1′

2′

3′

4′

x3

x4

(P, X)
half-decorated non-crossing

partition of [4′] ∪ [4]

U
suspended subcategory of C8
such that U ∩ A is precovering

X
aisle of t-structure in C4

Figure 16. Illustration of how to obtain the aisle of a t-structure of Cm from a
half-decorated non-crossing partition of [m′] ∪ [m].

The following proposition classifies the “almost aisles” of t-structures in C2m.

Proposition 8.6. The following is a bijection.{
Half-decorated non-crossing

partitions of [m′] ∪ [m]

}
←→

{
Suspended subcategories U ⊆ C2m such that

D ⊆ U and U ∩ A is precovering

}
α : (P, X) 7−→ U(P,X)

(PU , XU )←−p U : β

The rest of this section is devoted to prove Proposition 8.6. We start by defining the assignments
of the maps α and β.

Definition 8.7. Let (P, X) be a half-decorated non-crossing partition of [m′]∪ [m]. We define

U(P,X) = add
⊔
B∈P

(u1, u2) ∈ ind C2m

∣∣∣∣∣∣u1, u2 ∈
 ⋃

p∈B∩[m]

(p, xp]

 ∪
 ⋃

p∈B∩[m′]

Z(p)

 ,

where we use the following convention: for p ∈ [m], if xp = p then (p, xp] = ∅, and if xp = p+

then (p, xp] = Z(p).

We check that the map α is well defined.
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Proposition 8.8. Let (P, X) be a half-decorated non-crossing partition of [m′] ∪ [m]. Then
U(P,X) is a suspended subcategory of C2m such that D ⊆ U(P,X) and U(P,X) ∩ A is precovering.

Proof. We show that D ⊆ U(P,X). Consider d = (d1, d2) ∈ indD, then d1, d2 ∈ Z(p) for some

p ∈ [m′]. Since p ∈ B for some block B ∈ P, then Z(p,p) ⊆ indU(P,X), and then d ∈ U(P,X).
Moreover, it is straightforward to check that ΣU(P,X) ⊆ U(P,X). For showing that U(P,X) is
extension-closed, we can proceed as in the argument of [GZ, Proposition 4.8].

Now we show that U(P,X) ∩ A is precovering. Let X̃ be the 2m-tuple X̃ = (x̃p)p∈[m′]∪[m] where
for each p ∈ [m′] ∪ [m]

x̃p =

{
z0p if p ∈ [m′],

xp if p ∈ [m].

By Remark 8.4 (P, X̃) is a decorated non-crossing partition of [m′] ∪ [m] and we can associate
to it the aisle of a t-structure U ′ in C2m, see Theorem 8.2. By [GZ, p. 986] we have that

U ′ = add
⊔
B∈P

(u1, u2) ∈ ind C2m

∣∣∣∣∣∣u,u2 ∈
⋃
p∈B

(p, x̃p]

 .

It is straightforward to check that U ′ = U(P,X)∩A. Thus, U(P,X)∩A is the aisle of a t-structure
in C2m, and in particular it is precovering. This concludes the argument. □

Now we define the map β. To this end, given an “almost aisle” in C2m, we define an equivalence
relation ∼U on the set [m′] ∪ [m] in the same way as in [GZ, Section 4.1]. The same argument
of [GZ, Lemma 4.10] shows that ∼U is an equivalence relation.

Definition 8.9. Let U be a suspended subcategory of C2m such that D ⊆ U and U ∩ A is
precovering. The relation ∼U on the set [m′]∪ [m] is defined as follows: for any p, q ∈ [m′]∪ [m]

we have that p ∼U q if and only if p = q or there exists an arc of U with an endpoint in Z(p)

and the other in Z(q).

Definition 8.10. Keeping the assumptions and notation of Definition 8.9, we define PU to be
the partition of [m′] ∪ [m] given by the equivalence classes of ∼U . For each p ∈ [m] we define

xp = sup{z ∈ Z(p) | there exists an arc of U with an endpoint equal to z}.
We denote by XU the m-tuple XU = (xp)p∈[m].

With Proposition 8.14 we will show that (PU , XU ) is a half-decorated non-crossing partition of
[m′] ∪ [m]. The following remark and lemmas are useful for that purpose.

Remark 8.11. Consider a suspended subategory U of C2m such that D ⊆ U and U ∩ A
is precovering. We observe that U ∩ A is the aisle of a t-structure in C2m. We denote by
(PU∩A, XU∩A) the decorated non-crossing partition associated to U ∩ A, as defined in [GZ,
Definition 4.11]. The following lemmas relate (PU∩A, XU∩A), defined in [GZ], and (PU , XU ),
defined above. We recall that PU∩A is the set of equivalence classes of [m′] ∪ [m] under the
equivalence relation ∼U∩A.

Lemma 8.12. Let U be a suspended subcategory of C2m such that D ⊆ U and U ∩ A is pre-
covering. Let (PU∩A, XU∩A) be the decorated non-crossing partition associated to U ∩ A. Then
PU = PU∩A.

Proof. We show that for any p, q ∈ [m′]∪ [m] we have that p ∼U q if and only if p ∼U∩A q. It is
straightforward to check that if p ∼U∩A q then p ∼U q. Assume that p ∼U q. If p = q then the
claim is trivial. If p ̸= q then there exists u ∈ indU having one endpoint in Z(p) and the other
endpoint in Z(q). Note that there exists n ≥ 0 such that Σnu ∈ A and then, since ΣnU ⊆ U , we
obtain that u ∈ U ∩ A. Then we have that p ∼U∩A q. This concludes the argument. □
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Lemma 8.13. Let U be a subcategory of C2m as in Lemma 8.12, (PU∩A, XU∩A) be the decorated
non-crossing partition associated to U ∩A. Denote XU = (xp)p∈[m] and XU∩A = (x̃p)p∈[m′]∪[m].
Then for each p ∈ [m′] ∪ [m] we have that

x̃p =

{
z0p if p ∈ [m′],

xp if p ∈ [m].

Proof. Let p ∈ [m′] ∪ [m]. We recall that by construction, see [GZ, Section 4.1], we have that

x̃p = sup{z ∈ Z(p) | there exists an arc of U ∩ A with an endpoint equal to z}.

If p ∈ [m′], there exists an arc of U ∩A with an endpoint equal to z0p . Let z ∈ Z(p) be such that

z > z0p . There is no arc of A, and therefore no arc of U ∩A, with an endpoint equal to z. Thus,

x̃p = z0p . Now consider p ∈ [m], we show that x̃p = xp. We divide the argument into claims.

Claim 1. Let z ∈ Z(p). If there exists an arc of U with an endpoint equal to z, then there exists
an arc of U ∩ A with an endpoint equal to z.

Assume that there exists u ∈ indU having an endpoint equal to z. If u ∈ U ∩ A, then we have
the claim. Now assume that u ∈ U and u /∈ A. We denote u = (u1, u2). We assume that u1 = z,

the other case is analogous. Since u /∈ A, we have that u2 ∈ Z(q) for some q ∈ [m′] and u2 > z0p .
Then we are in the situation of Figure 17.

z0q

p+

q

q+

p
u1

u2

d1

d2

Figure 17. Illustration of the argument of Claim 1.

Consider d = (d1, d2) ∈ Z(q,q) with d1 ≤ z0q < u2 < d2. Since d ∈ D ⊆ U , u and d are crossing,
and U is extension-closed, we obtain that (z, d1) = (u1, d1) ∈ U . Moreover, (z, d1) ∈ A. This
concludes the argument of Claim 1.

Claim 2. If x̃p = p then xp = p.

Assume that x̃p = p, i.e. there is no z ∈ Z(p) such that there is an arc of U ∩A with an endpoint

equal to z. By Claim 1 we have that there is no z ∈ Z(p) such that there is an arc of U with an
endpoint equal to z, i.e. xp = p. This concludes the argument of Claim 2.

Claim 3. If x̃p = p+ then xp = p+.

The proof is straightforward.

Claim 4. x̃p = xp.

If x̃p = p or x̃p = p+ then the claim follows from Claim 2 and Claim 3. Assume that there exists

z ∈ Z(p) such that x̃p = z. As a consequence, there is an arc of U ∩ A with an endpoint equal

to z, and then there is an arc of U with an endpoint equal to z. Moreover, for any z′ ∈ Z(p)

such that z′ > z there is no arc of U ∩ A with an endpoint equal to z′. Then, by Claim 1, for
any z′ ∈ Z(p) such that z′ > z there is no arc of U with an endpoint equal to z′. Thus, xp = z.
This concludes the argument of Claim 4.

We can conclude that x̃p = z0p for each p ∈ [m]′, and x̃p = xp for each p ∈ [m]. □
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Now we can prove that the map β of Proposition 8.6 is well defined.

Proposition 8.14. Let U be a suspended subcategory of C2m such that D ⊆ U and U ∩ A is
precovering. Then (PU , XU ) is a half-decorated non-crossing partition.

Proof. We check that (PU , XU ) satisfies the conditions of Definition 8.3. Consider U ∩A, which
is the aisle of a t-structure, and its associated decorated non-crossing partition (PU∩A, XU∩A),
as defined in [GZ]. We recall that PU is a partition of [m′] ∪ [m] and that, from Lemma 8.12,
PU∩A = PU . As a consequence, PU is a non-crossing partition of [m′] ∪ [m]. Now, we denote
the decorations by XU = (xp)p∈[m] and XU∩A = (x̃p)p∈[m′]∪[m]. By Lemma 8.13 we have that
xp = x̃p for each p ∈ [m]. We conclude that (PU , XU ) is a half-decorated non-crossing partition
of [m′] ∪ [m]. □

Given U a suspended subcategory of C2m such that D ⊆ U and U∩A is precovering, the following
lemma shows that any shift of U has the same properties of U . This fact will be useful in the
proof of Proposition 8.6.

Lemma 8.15. Let U be a suspended subcategory of C2m such that D ⊆ U and U ∩ A is pre-
covering. Consider the associated half-decorated non-crossing partition (PU , XU ) with XU =
(xp)p∈[m]. The following statements hold.

(1) For any n ∈ Z the subcategory ΣnU of C2m is suspended, D ⊆ ΣnU , and ΣnU ∩ A is
precovering.

(2) Consider (PΣnU , XΣnU ). Then PΣnU = PU and XΣnU = (xp − n)p∈[m].

Proof. First we prove statement (1), statement (2) follows by construction, see Definition 8.7. It
is straightforward to check that ΣnU is extension-closed and contains D, we show that ΣnU ∩A
is precovering. By Proposition 2.8 we have that π−1πU = U , and, since π−1πU ∩ A = U ∩ A is
precovering, by Theorem 5.4 we have that πU is precovering in Cm. Now fix n ∈ Z. Since πU
is precovering, then ΣnπU is precovering in Cm. As a consequence, again by Theorem 5.4, we
have that π−1ΣnπU ∩ A is precovering. Since π−1ΣnπU ∩ A = π−1πΣnU ∩ A = ΣnU ∩ A, we
obtain that ΣnU ∩ A is precovering. □

Finally, we can prove Proposition 8.6.

Proof of Proposition 8.6. By Proposition 8.8 and Proposition 8.14 the maps α and β are well
defined, we prove that they are mutually inverse. We divide the proof into steps.

Step 1. The map β is injective.

Let U and U ′ be suspended subcategories of C2m such that D ⊆ U , D ⊆ U ′, with U ∩ A and
U ′ ∩ A precovering. Assume that (PU , XU ) = (PU ′ , XU ′), we show that U = U ′.

First we show that ΣnU ∩ A = ΣnU ′ ∩ A for each n ∈ Z. By Lemma 8.12 and Lemma 8.13
and Lemma 8.15, (PΣnU∩A, XΣnU∩A) = (PΣnU ′∩A, XΣnU ′∩A). By Theorem 8.2 we obtain that
ΣnU ∩ A = ΣnU ′ ∩ A.
Now we show that U ⊆ U ′, the other inclusion can be obtained in the same way. Consider u ∈
indU , we have that Σnu ∈ A for some n ≥ 0. Then Σnu ∈ ΣnU ∩A. Since ΣnU ∩A = ΣnU ′∩A,
we have that Σnu ∈ ΣnU ′ ∩ A and then u ∈ U ′. We obtain that U = U ′ and this concludes the
argument of Step 1.

Step 2. We show that βα = id.

Let (P, X) be a half-decorated non-crossing partition of [m′]∪ [m]. Let U(P,X) be the associated
subcategory of C2m, which we denoted by U . Let (PU , XU ) be the half-decorated non-crossing
partition associated to U . We show that (P, X) = (PU , XU ).
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Showing the equality P = PU is equivalent to show that for any p, q ∈ [m′] ∪ [m] we have that
p ∼U q if and only if p, q ∈ B for some block B ∈ P. This follows directly from Definition 8.7
and Definition 8.9. Now we show that X = XU . We denote X = (xp)p∈[m] and XU = (yp)p∈[m].
By construction, see Definition 8.7 and Definition 8.10, we have the following equalities for each
p ∈ [m].

yp = sup{z ∈ Z(p) | there exists an arc of U = U(P,X) with an endpoint equal to z} = xp

Therefore we have that (P, X) = (PU , XU ). This concludes the argument of Step 2.

We can conclude that the maps α and β are mutually inverse. □

8.2. Co-aisles of t-structures. From Theorem 8.5 we have a classification of the aisles of
the t-structures in Cm, now we compute the corresponding co-aisles in terms of non-crossing
partitions. As before, we take an intermediate step through C2m. Given a half-decorated non-
crossing partition (P, X) of [m′] ∪ [m], we consider its complement (P, X)c = (Q, Y ), where
Q = Pc is the Kreweras complement of P, see Section 2.4. With a computation similar to [GZ,
Section 4.2], (Q, Y ) corresponds to a subcategory V of C2m. This is a co-suspended subcategory
of C2m such that D ⊆ V and V ∩ B is preenveloping, therefore V can be thought as an “almost
co-aisle” in C2m. From such V we obtain the corresponding co-aisle in Cm after localising. Figure
18 illustrates this process.
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Figure 18. Illustration of how to obtain the co-aisle of the aisle of Figure 16.

Definition 8.16. Let (P, X) be a half-decorated non-crossing partition of [m′] ∪ [m] with
X = (xp)p∈[m]. We define the complement, (P, X)c, of (P, X) to be the pair (Q, Y ) where
Q = Pc is the Kreweras complement of P, and Y is the m-tuple Y = X − 1 = (xp − 1)p∈[m] for
each p ∈ [m].

We describe how to obtain an “almost co-aisle” of t-structure in C2m from the complement of a
half-decorated non-crossing partition of [m′] ∪ [m].

Definition 8.17. Let (P, X) be a half-decorated non-crossing partition of [m′] ∪ [m] and let
(Q, Y ) = (P, X)c. We define

V(Q,Y ) = add
⊔
B∈Q

(v1, v2) ∈ ind C2m

∣∣∣∣∣∣v1, v2 ∈
 ⋃

p∈B∩[m]

[yp, p
+)

 ∪
 ⋃

p∈B∩[m′]

Z(p)

 .

Consider the complement (Q, Y ) of a half-decorated non-crossing partition of [m′] ∪ [m]. The
following lemmas and remark establish some properties of the subcategory V(Q,Y ) of C2m. The
first is analogous to Proposition 8.8.

Lemma 8.18. Let (P, X) be a half-decorated non-crossing partition of [m′] ∪ [m] and let
(Q, Y ) = (P, X)c. Then V(Q,Y ) is co-suspended and contains D.
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Proof. The proof is analogous to the argument of Proposition 8.8. □

Lemma 8.19. Let (P, X) be a half-decorated non-crossing partition of [m′] ∪ [m] and let

(Q, Y ) = (P, X)c. Then V(Q,Y ) ∩ B =
(
U(P,X) ∩ A

)⊥
.

Proof. For each p ∈ [m′] ∪ [m] we define

ỹp =

{
yp if p ∈ [m],

w0
p if p ∈ [m′]

where we recall from Section 5.3 that w0
p = z0p − 1. It is straightforward to check that

V(Q,Y ) ∩ B = add
⊔
B∈Q

(v1, v2) ∈ ind C2m

∣∣∣∣∣∣v1, v2 ∈
⋃
p∈B

[ỹp, p
+)

 .

Moreover, from [GZ, Corollary 4.14] the right hand side is equal to
(
U(P,X) ∩ A

)⊥
. □

Remark 8.20. Let U(P,X) and V(Q,Y ) be as in Lemma 8.19. Since U(P,X) ∩ A is precovering

and suspended, by Proposition 2.2
(
U(P,X) ∩ A,V(Q,Y ) ∩ B

)
is a t-structure in C2m.

The following lemma and proposition show that an “almost co-aisle” in C2m is, after localising,
the co-aisle of a t-structure in Cm.

Lemma 8.21. Let X be the aisle of a t-structure in Cm, let (P, X) be the half decorated non-

crossing partition associated to X , and let (Q, Y ) = (P, X)c. Then πV(Q,Y ) ⊆ X
⊥
.

Proof. Assume that there exist x ∈ indX and y ∈ indπV(Q,Y ) such that HomCm
(x, y) ∼= K. Note

that there exists y′ ∈ indB such that π(y′) ∼= y. Then y′ ∈ π−1πV(Q,Y ) and, by Proposition

2.8 and Lemma 8.18, we have that y′ ∈ indV(Q,Y ) ∩ B. We define U = π−1X , we have that
U = U(P,X). Now, by Lemma 5.5 and Lemma 5.6 we have that there exists x′ ∈ indA such
that π(x′) ∼= x, and then x′ ∈ indU ∩ A, and HomC2m(x

′, y′) ∼= K. Since x ∈ indU ∩ A and
y′ ∈ indV(Q,Y ) ∩ B, this gives a contradiction with Lemma 8.19. Then we can conclude that
HomCm

(X , πV(Q,Y )) = 0. □

Proposition 8.22. Let (X ,Y) be a t-structure in Cm, U = π−1X , (P, X) be its associated
half-decorated non-crossing partition, and (Q, Y ) = (P, X)c. Then

Y = πV(Q,Y ) = π
(
V(Q,Y ) ∩ B

)
= π

(
(U ∩ A)⊥

)
.

Proof. First we show that πV(Q,Y ) = π
(
V(Q,Y ) ∩ B

)
. The inclusion π

(
V(Q,Y ) ∩ B

)
⊆ πV(Q,Y )

is straightforward. We show the other inclusion. Consider y ∈ indπV(Q,Y ), then there exists

y′ ∈ indB such that π(y′) ∼= y. Since y ∈ πV(Q,Y ), we have that y′ ∈ π−1πV(Q,Y ). By

Proposition 2.8 and Lemma 8.18 we have that π−1πV(Q,Y ) = V(Q,Y ). Thus, y
′ ∈ indV(Q,Y ) ∩ B

and then y ∼= π(y′) ∈ π
(
V(Q,Y ) ∩ B

)
. By Lemma 8.19 we also have the equality π

(
V(Q,Y ) ∩ B

)
=

π
(
(U ∩ A)⊥

)
. It remains to show the equality Y = πV(Q,Y ), to do so we check that

(
X , πV(Q,Y )

)
is a torsion pair.

By Lemma 8.21 we have that πV(Q,Y ) ⊆ X⊥, we show that X∗πV(Q,Y ) = Cm. Since X = π(U∩A)
and πV(Q,Y ) = π

(
(U ∩ A)⊥

)
, it is equivalent to show that π (U ∩ A) ∗ π

(
(U ∩ A)⊥

)
= Cm.

Let a ∈ Cm, there exists a′ ∈ C2m such that π(a′) ∼= a. Since (U ∩ A) ∗ (U ∩ A)⊥ = C2m, there

exists a triangle u −→ a′ −→ v −→ Σa in C2m with u ∈ U ∩A and v ∈ (U ∩A)⊥ . After localising
we obtain the triangle π(u) −→ a −→ π(v) −→ Σπ(u) in Cm. Note that π(u) ∈ π(U ∩ A) and
π(v) ∈ π

(
(U ∩ A)⊥

)
, thus we have that a ∈ π (U ∩ A) ∗ π

(
(U ∩ A)⊥

)
. We can conclude that(

X , πV(Q,Y )

)
is a torsion pair, and as a consequence Y = πV(Q,Y ). □
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8.3. Hearts. With Theorem 8.5 we classified the aisles of t-sturctures in Cm, and with Propo-
sition 8.22 we computed the corresponding co-aisles. Now we can compute the heart of a
t-structure (X ,Y) in Cm. We first consider the preimage of (X ,Y) under π, which we denote
by (U ,V). Note that (U ,V) is not a t-structure of C2m, but (U ∩A,V ∩ B) is. We can compute
the heart of (U ∩ A,V ∩ B) as in [GZ, Corollary 4.15], and then obtain the heart of (X ,Y) by
localising. Figure 19 illustrates this process.
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Figure 19. The heart of the t-structure (X ,Y) of Figure 16 and Figure 18.

Corollary 8.23. Let (X ,Y) be a t-structure in Cm. Consider its associated decorated non-
crossing partition (P, X) of [m′]∪ [m] with X = (xp)p∈[m]. Then the heart H = X ∩ΣY is given
by

H = add{(xp − 2, xp) | p ∈ [m] and xp ∈ Zm}.

Proof. Let U = π−1X , V = π−1Y, U ′ = U ∩ A, and V ′ = V ∩ B. By Lemma 8.19, the pair
(U ′,V ′) is a t-structure in C2m. Consider the heart H′ = U ′∩ΣV ′, we show that πH′ = H. Then
the claim follows directly from [GZ, Corollary 4.15].

First we show the inclusion πH′ ⊆ H. Consider h′ ∈ indH′. Since h′ ∈ U ′ ⊆ U , we have that
πh′ ∈ πU and from Proposition 2.8 we have that πU = X . Similarly, since h′ ∈ ΣV ′ ⊆ ΣV, we
obtain that πh′ ∈ πΣV = ΣπV = ΣY. Thus, πh′ ∈ X ∩ ΣY = H.
Now we show the inclusionH ⊆ πH′. Let h ∈ indH, by Lemma 5.13 there exists h′ ∈ indA∩ΣB
such that πh′ ∼= h. Since h ∈ X , h′ ∈ π−1X = U . Moreover, since h ∈ ΣY, then h′ ∈ π−1ΣY =
ΣV. Thus, h′ ∈ U ∩ A and h′ ∈ ΣV ∩ ΣB. We obtain that h′ ∈ U ′ ∩ ΣV ′ = H′, and then
h ∼= πh′ ∈ πH′. We can conclude that H = πH′. □

8.4. Boundedness. The bounded t-structures in Cm were classified in [GZ, Section 4.4]. In
Cm there exist bounded t-structures only if m = 1, see [GZ, Remark 4.20, Corollary 4.22]. Here
we classify the bounded t-structures in Cm, and we obtain that for each m ≥ 1 there are no
bounded t-structures in Cm.

Proposition 8.24. Let (X ,Y) be a t-structure in Cm, let (P, X) be its associated half-decorated
non-crossing partition of [m′] ∪ [m], U = π−1X and V = π−1Y. The following statements are
equivalent.

(1) The t-structure (X ,Y) is left bounded in Cm.
(2) The t-structure (U ∩ A,V ∩ B) is left bounded in C2m.
(3) The non-crossing partition P has as unique block {1′, 1, . . . ,m′,m}.

Proof. We prove the equivalence of statements (1) and (2), for the equivalence between (2) and
(3) we refer to [GZ, Proposition 4.21]. Assume that (1) holds, we check the inclusion C2m ⊆⋃

n∈ZΣ
n(U ∩ A), the other inclusion is trivial. Consider a ∈ ind C2m. Note that there exists
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k ∈ Z such that a ∈ ΣkA. Moreover, since π(a) ∈ Cm, there exists l ∈ Z such that π(a) ∈ ΣlX ,
and then a ∈ π−1ΣlX = ΣlU . Thus, we have that a ∈ ΣlU ∩ ΣkA. Let n = min{k, l}, then
a ∈ Σn(U ∩ A).
Now we assume that (2) holds, we check the inclusion Cm ⊆

⋃
n∈ZΣ

nX , the other inclusion is

trivial. Consider a ∈ ind Cm, then there exists a′ ∈ ind C2m such that π(a′) ∼= a. Then there
exists n ∈ Z such that a′ ∈ Σn(U ∩ A) ⊆ ΣnU , and then a ∼= π(a′) ∈ πΣnU = ΣnX . This
concludes the proof. □

Dually, we have the following proposition.

Proposition 8.25. Keeping the assumptions and notation of Proposition 8.24, the following
statements are equivalent.

(1) The t-structure (X ,Y) is right bounded in Cm.
(2) The t-structure (U ∩ A,V ∩ B) is right bounded in C2m.
(3) The non-crossing partition P has as blocks {1′}, {1}, . . . , {m′}, {m}.

We have the following corollary of Proposition 8.24 and Proposition 8.25.

Corollary 8.26. For each m ≥ 1 there are no bounded t-structures in Cm.

8.5. Non-degeneracy. We classify the non-degenerate t-structures in Cm. We refer to [GZ,
Corollary 4.19] for the classification of the non-degenerate t-structures in Cm.

Proposition 8.27. Let (X ,Y) be a t-structure in Cm, let (P, X) be its associated half-decorated
non-crossing partition with X = (xp)p∈[m], and U = π−1X . The following statements are
equivalent.

(1) The t-structure (X ,Y) is left non-degenerate in Cm.
(2) We have that

⋂
n∈ZΣ

nU = D.
(3) For each p ∈ [m] we have that xp ̸= p+, and for each p, q ∈ [m′] if p, q ∈ B for some

block B ∈ P, then p = q.

Proof. First we show the equivalence between the statements (1) and (2). Assume that (X ,Y)
is left non-degenerate, i.e.

⋂
n∈ZΣ

nX = 0. The inclusion D ⊆
⋂

n∈ZΣ
nU is straightforward,

we show the other inclusion. Consider u ∈ ind C2m such that u ∈ ΣnU for all n ∈ Z, then
π(u) ∈ πΣnU = ΣnX for all n ∈ Z. As a consequence, π(u) ∼= 0 and then u ∈ D. Now assume
that

⋂
n∈ZΣ

nU = D, we show that
⋂

n∈ZΣ
nX = 0. Assume that there exists x ∈ ind Cm

such that x ∈ ΣnX for all n ∈ Z. Then there exists x′ ∈ ind C2m such that π(x′) ∼= x, and
x′ ∈ π−1(ΣnX ) = ΣnU for all n ∈ Z. Then x′ ∈ D and x ∼= π(x′) ∼= 0, contradicting the fact
that x ∈ ind Cm. This proves the equivalence between (1) and (2).

Now we prove the equivalence between statements (2) and (3). Assume that
⋂

n∈ZΣ
nU = D

and that there exists p ∈ [m] such that xp = p+, then Z(p,p) ⊆ indU . Let u ∈ Z(p,p), then
x ∈ ΣnU for each n ∈ Z. As a consequence x ∈ D, and this contradicts the fact that p ∈ [m].
This proves that xp ̸= p+. Now consider p, q ∈ [m′] such that p, q ∈ B for some block B ∈ P,
then U contains all arcs having one endpoint in Z(p) and the other in Z(q). Consider such u,
then u ∈ ΣnU for each n ∈ Z. As a consequence, u ∈ D and then p = q. This proves that (2)
implies (3).

Now assume that statement (3) holds, we show that
⋂

n∈ZΣ
nU = D. The inclusion D ⊆⋂

n∈ZΣ
nU is straightforward, we prove the other inclusion. Let u ∈ ind

⋂
n∈ZΣ

nU , we show

that u ∈ D. Assume that u has an endpoint z ∈ Z(p) for some p ∈ [m]. Since u ∈ indU , then
z ∈ (p, xp]. Moreover, since xp ̸= p+, there exists n ∈ Z such that Σnu /∈ U , and this contradicts

the fact that u ∈
⋂

n∈ZΣ
nU . Thus, u ∈ Z(p,q) for some p, q ∈ [m′]. Then p, q ∈ B for some

B ∈ P and as a consequence p = q, i.e. u ∈ D. This concludes the argument. □
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Dually, we have the following proposition.

Proposition 8.28. Keeping the assumptions and notation of Proposition 8.27, let (Q, Y ) =
(P, X)c and V = π−1Y. The following statements are equivalent.

(1) The t-structure (X ,Y) is right non-degenerate.
(2) We have that

⋂
n∈ZΣ

nV = D.
(3) For each p ∈ [m] we have that xp ̸= p, and for each p, q ∈ [m′] if p, q ∈ C for some block

C ∈ Q, then p = q.

Combining Proposition 8.27 and Proposition 8.28 we obtain the following corollary.

Corollary 8.29. Keeping the assumptions and notation of Proposition 8.27 and Proposition
8.28, the following statements are equivalent.

(1) The t-structure (X ,Y) is non-degenerate.
(2) We have that

⋂
n∈ZΣ

nU = D =
⋂

n∈ZΣ
nV.

(3) For each p ∈ [m] we have that xp ∈ Z(p), and for each p, q ∈ [m′] if p, q ∈ B for some
block B ∈ P, or p, q ∈ C for some block C ∈ Q, then p = q.

With the following example we show that there exist half-decorated non-crossing partitions of
[m′] ∪ [m] satisfying condition (3) of Corollary 8.29.

Example 8.30. Let P be the non-crossing partition {{1′, 1}, {2′, 2}, . . . , {m′,m}} of [m′]∪ [m],

and let X = (xp)p∈[m] with xp ∈ Z(p) for each p ∈ [m]. Then (P, X) is a half-decorated non-
crossing partition of [m′] ∪ [m] and Pc = {{1′}, {2′}, . . . , {m′}, {1, 2, . . . ,m}}, see Section 2.4.
Note that (P, X) satisfies condition (3) of Corollary 8.29.

As a consequence, we have the following corollary.

Corollary 8.31. Non-degenerate t-structures in Cm exist for each m ≥ 1.

9. Co-t-structures

From [ZZ, Proposition 4.6] we know that in the category Cm the only co-t-structures are (Cm, 0)
and (0, Cm). In Cm this is not the case, Figure 20 gives an example of a non-trivial co-t-
structure in Cm. In this section we classify the aisles of the co-t-structures, we compute the
co-aisles and co-hearts. We also classify the bounded and non-degenerate co-t-structures, and
the co-t-structures having a left or right adjacent t-structure. Moreover, from the classification
of the co-t-structures, we can easily obtain the classification of the recollements of Cm.

1′

2′

3′

4′

x

Figure 20. The subcategory add{x} of C4 is the aisle of a co-t-structure.
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9.1. Aisles of co-t-structures. Here we classify the aisles of the co-t-structures in Cm in a
way similar to the classification of the aisles of the t-structures in Section 8.1. The definition
below is the analogue of Definition 8.3.

Definition 9.1. An alternating non-crossing partition of [m′]∪ [m] is a pair (P, X) given by a
non-crossing partition P of [m′] and an m-tuple X = (xp)p∈[m] such that xp ∈ [p, p+] for each
p ∈ [m].

The main result of this section is the following analogue of Theorem 8.5. The notation employed
in the statement will be defined in Definition 9.4 and Definition 9.6.

Theorem 9.2. The following is a bijection.{
Alternating non-crossing
partitions of [m′] ∪ [m]

}
←→ {Aisles of co-t-structures in Cm }

(P, X) 7−→ πU(P,X)

(Pπ−1X , Xπ−1X )←−p X

To prove this result, we proceed as in Section 8.1 by taking an intermediate step through C2m.
From Corollary 7.3 the aisles of co-t-structures in Cm are in bijection with certain subcategories
of C2m, which can be regared as “almost aisles” of co-t-structures. These are co-suspended sub-
categories U of C2m such that D ⊆ U and U ∩A is precovering, and are classified in Proposition
9.3 in terms of alternating non-crossing partitions of [m′] ∪ [m]. The aisles of co-t-structures in
Cm are then obtained after localising the “almost aisles” of co-t-sturctures in C2m. Figure 21
illustrates this process.

1′

1

2′
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3′

3

4′

4x1 =

x2 =

x3

x4
1′

1

2′

2

3′

3

4′

4

x3

x4
1′

2′

3′

4′

x3

x4

(P, X)
alternating non-crossing
partition of [4′] ∪ [4]

U
co-suspended subcategory of C8
such that U ∩ A is precovering

X
aisle of co-t-structure in C4

Figure 21. Illustration of how to obtain the aisle of a co-t-structure in Cm from
an alternating non-crossing partition of [m′] ∪ [m].

The rest of this section is devoted to prove the following proposition. The assignments of the
maps α and β will be defined in Definition 9.4 and Definition 9.6.

Proposition 9.3. The following is a bijection.{
Alternating non-crossing partitions

of [m′] ∪ [m]

}
←→

{
Co-suspended subcategories U ⊆ D such that

D ⊆ U and U ∩ A is precovering

}
α : (P, X) 7−→ U(P,X)

(PU , XU )←−p U : β

The following definition and lemma define the map α and show that it is well defined.

Definition 9.4. Let (P, X) be an alternating non-crossing partition of [m′] ∪ [m]. We define

U(P,X) = add
⊔
B∈P

(u1, u2) ∈ ind C2m

∣∣∣∣∣∣u1, u2 ∈
⋃
p∈B

[xp− , p
+)

 ,
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where we use the following convention: if xp− = p− then [xp− , p
+) = Z(p−)⊔Z(p), and if xp− = p

then [xp− , p
+) = Z(p).

Proposition 9.5. Let (P, X) be an alternating non-crossing partition of [m′]∪[m]. Then U(P,X)

is co-suspended subcategory of C2m such that D ⊆ U and U ∩ A is precovering.

Proof. In order to show that U(P,X) is extension-closed, contains D, and is closed under Σ−1,
we can proceed similarly to the argument of Proposition 8.8. We show that U(P,X) ∩ A is
precovering. From [GHJ, Theorem 3.1] we know that this is equivalent to show that U(P,X)

satisfies the PC conditions, see Definition 5.1.

We check that U(P,X) satisfies (PC1), the other conditions are analogous. Assume that there

exists a sequence {(xn1 , xn2 )}n ⊆ U(P,X)∩A∩Z(p,q) for some p, q ∈ [m′]∪ [m] such that p ̸= q and
the sequences {xn1}n and {xn2}n are strictly increasing. Then p, q ∈ [m]. By Definition 9.4 we
have that p+, q+ ∈ B for some block B ∈ P. As a consequence, there exist strictly decreasing

sequences {yn1 }n ⊆ Z(p+) and {yn2 }n ⊆ Z(q+) such that {|yn1 , yn2 |}n ⊆ U(P,X) ∩ A. This proves
that (PC1) holds and concludes the argument. □

With the following definition and proposition we define the map β of Proposition 9.3 and we
check that it is well defined. Given a co-suspended subcategory U of C2m such that D ⊆ U and
U ∩A is precovering, we define the equivalence relation ∼U on the set [m′] as in Definition 8.9.

Definition 9.6. Let U be a co-suspended subcategory of C2m such that D ⊆ U and U ∩ A is
precovering. We define PU to be the partition of [m′] given by the equivalence classes of ∼U .
For each p ∈ [m] we define

xp = inf{z ∈ Z(p) | there exists u ∈ U with an endpoint equal to z}.
We denote by XU the m-tuple XU = (xp)p∈[m].

Proposition 9.7. Keeping the notation of Definition 9.6, the pair (PU , XU ) is an alternating
non-crossing partition of [m′] ∪ [m].

Proof. We already know that PU is a partition of [m′], we only need to check that PU non-
crossing. To this end, we can apply the same argument of [GZ, Lemma 4.12]. □

The following lemma is useful for the argument of Proposition 9.3.

Lemma 9.8. Let U be a co-suspended subcategory of C2m such that D ⊆ U and U ∩ A is
precovering. Consider the alternating non-crossing partition (PU , XU ) with XU = (xp)p∈[m].
Let p, q ∈ [m′] be such that p, q ∈ B for some block B ∈ PU . Then any arc of C2m having one
endpoint in [xp− , p

+) and the other in [xq− , q
+) is an arc of U .

Proof. In order to simplify the notation we assume that q ̸= 1′, if q = 1′ we can proceed
analogously. We denote by [xp− , p

+)× [xq− , q
+) the set of arcs a = (a1, a2) ∈ ind C2m such that

a1 ∈ [xp− , p
+) and a2 ∈ [xq− , q

+). We show that [xp− , p
+) × [xq− , q

+) ⊆ indU . We have the
equality

[xp− , p
+)× [xq− , q

+) = Z(p,q) ⊔
(
[xp− , p)× Z(q)

)
⊔
(
Z(p) × [xq− , q)

)
⊔
(
[xp− , p)× [xq− , q)

)
.

We assume that xp− ̸= p and xq− ̸= q, the other cases are analogous. We divide the proof into
steps.

Step 1. We show that Z(p,q) ⊆ indU .
If p = q we have the claim from the fact that D ⊆ U . Now assume that p ̸= q. Since p, q ∈ B for
some block B ∈ PU , there exists u ∈ indU such that u ∈ Z(p,q). We show that Σnu ∈ indU for
each n ∈ Z, then, using the fact that U is extension-closed, it is straightforward to check that
U contains any arc of Z(p,q). Since Σ−1U ⊆ U , we already know that Σnu ∈ U for each n ≤ 0,
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it remains to check that Σnu ∈ U for each n ≥ 1. Consider the arcs a = (u1− 1, u1+1) ∈ Z(p,p)

and b = (u2 − 1, u2 + 1) ∈ Z(q,q). The arcs u and a are crossing, and then, since U satisfies
the PT condition, u′ = (u1 − 1, u2) ∈ U . Moreover, the arcs u′ and b are crossing and u′′ =
(u1 − 1, u2 − 1) = Σu ∈ U . Repeating this argument we obtain that Σnu ∈ U for each n ≥ 1.
This concludes the argument of Step 1.

Step 2. We show that [xp− , p)× Z(q) ⊆ indU .

Let a = (a1, a2) ∈ ind C2m with a1 ∈ [xp− , p) and a2 ∈ Z(q), we show that a ∈ U . First we show
that there exists an arc of U with an endpoint equal to a1. If there is not such arc, then there
is no arc u ∈ indU with an endpoint in [xp− , a1], otherwise Σnu ∈ U has an endpoint equal to
a1 for some n ≤ 0. Since

xp− = inf{z ∈ Z(p−) | there exists an arc of U with an endpoint equal to z}

this gives a contradiction, and therefore there exists an arc of U with an endpoint equal to a1.
Let u′ be such arc, then Σnu′ ∈ U for each n ≤ 0. Moreover, since U satisfies the PT condition,
we obtain that (a1, a1+2), (a1, a1+3), · · · ∈ U . Note that these arcs are also in A because they

belong to Z(p−). Therefore, we have a sequence {(a1, a1 + 2 + n)}n≥0 ⊆ indU ∩ A such that
{a2 +2+n}n≥0 is strictly increasing. Since U ∩A is precovering and satisfies condition (PC3),

it follows that there exists an arc v = (a1, v2) ∈ Z(p−,p) ∩ U such that v2 ≤ a2. Consider an arc

of the form z = (z1, a2) ∈ Z(p,q) with p < z1 < v2. Since the arcs v and z cross and Z(p,q) ⊆ U ,
then a = (a1, a2) ∈ U . This concludes the argument of Step 2.

Step 3. Analogously as in Step 2 we have that Z(p) × [xq− , q) ⊆ indU .
Step 4. We show that [xp− , p)× [xq− , q) ⊆ indU .
Let a = (a1, a2) ∈ [xp− , p) × [xq− , q), we show that a ∈ U . If p = q, consider the sequence
{(a1, a1 + 2 + n)}n≥0 ⊆ U ∩ A of Step 2. Since (a1, a2) = (a1, a1 + 2 + n) ∈ U for some n ≥ 0,

we have that a ∈ U . Now assume that p ̸= q. We consider the arc v = (a1, v2) ∈ Z(p−,p) of

Step 2, and an arc z = (z1, a2) ∈ Z(p,q−) with p < z1 < v2. Since the arcs v and z cross and

z ∈ Z(p) × [xq− , q) ⊆ U , by Step 3 a = (a1, a2) ∈ U . This concludes the argument of Step 4.

We can conclude that [xp− , p
+)× [xq− , q

+) ⊆ indU . □

Finally, we can prove Proposition 9.3.

Proof of Proposition 9.3. From Definition 9.4 and Proposition 9.5 we have that the maps are
well defined, we prove that they are mutually inverse. We divide the proof into steps.

Step 1. The map α is injective.

Let (P, X) and (Q, Y ) be two alternating non-crossing partitions of [m′]∪[m] such that U(P,X) =
U(Q,Y ), we show that (P, X) = (Q, Y ). Assume that P ≠ Q. Then there exist p, q ∈ [m′] with
p ̸= q such that p and q belong to the same block of P and to distinct blocks of Q, or vice versa
p and q belong to the same block of Q and to distinct blocks of P. In the first case, there exists
an arc of U(P,X) with an endpoint in Z(p) and the other in Z(q), while there is no such arc in
U(Q,Y ). As a consequence U(P,X) ̸= U(Q,Y ), giving a contradiction. In the second case the role
of P and Q exchange and we obtain the same contradiction. Thus we have that P = Q.
Now we show that X = Y . We denote X = (xp)p∈[m] and Y = (yp)p∈[m], and we assume that
X ̸= Y . Let p ∈ [m] be such that xp ̸= yp, then either xp < yp or xq < yp. Assume that xp < yp,
the other case is analogous. Since p ≤ xp < yp, there is an arc of U(Q,Y ) with an endpoint
greater that xp, while there is no such arc in U(P,X). We obtain that U(P,X) ̸= U(Q,Y ), giving a
contradiction. This concludes the argument of Step 1.

Step 2. We show that αβ = id.
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Consider U a co-suspended subcategory of C2m such that D ⊆ U and U ∩A is precovering. We
show that U = U(PU ,XU ). First we show the inclusion U(PU ,XU ) ⊆ U . Consider u = (u1, u2) ∈
indU(PU ,XU ), then there exist a block B ∈ PU and p, q ∈ B such that u1 ∈ [xp− , p

+) and

u2 ∈ [xq− , q
+), where XU = (xp)p∈[m]. Then u ∈ indU by Lemma 9.8.

Now we show the inclusion U ⊆ U(PU ,XU ). Consider u = (u1, u2) ∈ indU , then there exist

p, q ∈ [m′] such that u1 ∈ [xp− , p
+) and u2 ∈ [xq− , q

+) where

xp− = inf{z ∈ Z(p−) | there exists an arc of U with an endpoint equal to z}

and xq− is defined similarly. We show that p, q ∈ B for some block B ∈ PU , i.e. that there

exists an arc of U with an endpoint in Z(p) and the other in Z(q). Then we can conclude that
u1, u2 ∈

⋃
p∈B[xp− , p

+), and then u ∈ U(PU ,XU ). If p = q the claim is straightforward, we assume

that p ̸= q. We can write [xp− , p
+) = [xp− , p)⊔Z(p) and [xq− , q

+) = [xq− , q)⊔Z(q). If u1 ∈ Z(p)

and u2 ∈ Z(q) then the claim follows directly. We assume that u1 /∈ Z(p) or u2 /∈ Z(q).

Assume that u1 ∈ [xp− , p) and u2 ∈ [xq− , q). We consider the sequence {Σ−nu = (u1 + n, u2 +

n)}n≥0 ⊆ indU . This sequence is also in A because it is contained in Z(p−,q−). Since U ∩ A is

precovering and satisfies condition (PC1), there exists an arc of U with an endpoint in Z(p) and

the other in Z(q). This gives the claim.

Now assume that u1 ∈ Z(p) and u2 ∈ [xq− , q). We consider the sequence {Σ−nu = (u1 + n, u2 +

n)}n≥0 ⊆ indU . The sequence {(u2, u2+2+n)}n≥0 ⊆ Z(q−,q−) is obtained from the crossings of
the sequence {Σ−nu}n≥0. We have that {(u2, u2+2+n)}n≥0 ⊆ indU ∩A because this sequence

is contained in Z(q−,q−) and U satisfies the PT condition. Since U∩A is precovering and satisfies
condition (PC3), there exists an arc x ∈ indU with an endpoint equal to u2 and the other in

Z(q). The arcs Σ−1u and x cross, and from this crossing we obtain an arc u′ ∈ indU with an
endpoint in Z(p) and the other endpoint in Z(q). The case where u1 ∈ [xp− , p) and u2 ∈ Z(q) is
analogous, therefore we have the claim. This concludes the argument of Step 2.

We can conclude that the two maps of the claim are mutually inverse. □

9.2. Co-aisles of co-t-structures. We compute the co-aisles of co-t-structures in Cm using a
method similar to Section 8.2. From an alternating non-crossing partition (P, X) of [m′]∪ [m],
we consider its complement (P, X)c, obtained from the Kreweras complement Pc of P, see
Section 2.4. This corresponds to a subcategory V of C2m, which can be thought as an “almost
co-aisle” of a co-t-structure in C2m. This is a suspended subcategory V of C2m such that D ⊆ V
and V ∩ B is preenveloping. The subcategory V gives a co-aisle of a co-t-structure in Cm after
localising. Figure 22 illustrates this process.
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Figure 22. Illustration of how to obtain the co-aisle of the aisle of Figure 21
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Definition 9.9. Let (P, X) be an alternating non-crossing partition of [m′] ∪ [m] with X =
(xp)p∈[m]. We define the complement (P, X)c of (P, X) to be the pair (Q, Y ) where Q = Pc

is the Kreweras complement of P, and Y is the m-tuple Y = X − 1 = (xp − 1)p∈[m] for each
p ∈ [m].

From the complement of an alternating non-crossing partition of [m′]∪[m] we obtain an “almost
co-aisle” of co-t-structure in C2m. The following definition is similar to Definition 8.17.

Definition 9.10. Let (P, X) be an alternating non-crossing partition of [m′] ∪ [m] and let
(Q, Y ) = (P, X)c. We define

V(Q,Y ) = add
⊔
B∈Q

(v1, v2) ∈ ind C2m

∣∣∣∣∣∣v1, v2 ∈
⋃
p∈B

(p, yp+ ]

 .

The proof of the following lemma is analogous to the proof of Proposition 8.8.

Lemma 9.11. Let (P, X) be an alternating non-crossing partition of [m′]∪[m] and let (Q, Y ) =
(P, X)c. Then V(Q,Y ) is suspended and contains D.

Consider the complement (Q, Y ) of an alternating non-crossing partition of [m′] ∪ [m]. The
following lemmas and remark describe some properties of the subcategory V(Q,Y ).

Lemma 9.12. Let (P, X) be an alternating non-crossing partition of [m′]∪[m] and let (Q, Y ) =
(P, X)c. Then V(Q,Y ) ∩ B = (U(P,X) ∩ A)⊥.

Proof. It is straightforward to check that

V(Q,Y ) ∩ B = add
⊔
B∈Q

(v1, v2) ∈ ind C2m

∣∣∣∣∣∣v1, v2 ∈
⋃
p∈B

[w0
p, yp+ ]


where we recall from Section 5.2 that w0

p = z0p − 1 for each p ∈ [m′]. We denote the right hand
side of the equality by W. Proceeding analogously as in the argument of [GZ, Corollary 4.14],
it is straightforward to check that Σ−1W consists precisely of all the arcs of C2m which do not

cross U ∩ A. As a consequence V(Q,Y ) ∩ B = (U ∩ A)⊥ . □

Remark 9.13. Let U(P,X) and V(Q,Y ) be as in Lemma 9.12. Since U(P,X) ∩ A is precovering

and extension-closed, by Proposition 2.2
(
U(P,X) ∩ A,V(Q,Y ) ∩ B

)
is a torsion pair. It is not a

t-structure nor a co-t-structure because in general U(P,X) ∩A is not closed under Σ or Σ−1, cf.
Remark 8.20.

Let (Q, Y ) be the complement of an alternating non-crossing partition of [m′] ∪ [m]. With the
following proposition we prove that by localising V(Q,Y ) we obtain the co-aisle of a co-t-structure

in Cm. The argument is the same of Proposition 8.22.

Proposition 9.14. Let (X ,Y) be a co-t-structure in Cm, U = π−1X , (P, X) be its associated
alternating non-crossing partition, and (Q, Y ) = (P, X)c. Then

Y = πV(Q,Y ) = π
(
V(Q,Y ) ∩ B

)
= π

(
(U ∩ A)⊥

)
.

9.3. Co-hearts. We classified the aisles of co-t-structures in Cm in Theorem 9.2, and we com-
puted the co-aisle of a co-t-structure in Proposition 9.14. Here we compute the co-heart of a
co-t-structure in Cm.

First we introduce some notation. Let (P, X) be an alternating non-crossing partition of [m′]∪
[m]. Consider p, q ∈ [m′] ∪ [m], we write q = p+B if

• p, q ∈ [m′], and
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• p, q ∈ B for some block B ∈ P, and
• q is the next element of [m′] ∩ B we meet while moving from p along S1 in the anti-
clockwise direction.

If B = {p}, then by convention p+B = p.

Now let (X ,Y) be a co-t-structure in Cm. We consider the preimage (π−1X , π−1Y) of (X ,Y),
which we denote by (U ,V). The pair (U ,V) is not a torsion pair, but (U∩A,V∩B) is. Moreover,
(U ∩ A,V ∩ B) is not a co-t-structure, but we can still compute S ′ = (U ∩ A) ∩ Σ−1(V ∩ B)
similarly. The co-heart of (X ,Y) is obtained by localising S ′. Figure 23 illustrates this process.
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Figure 23. Illustration of how to obtain the co-heart of the co-t-structure of
Figure 21 and Figure 22.

In the proposition below we recall that |z0p , xq− | is equal to (z0p , xq−) if p < q− and is equal to

(xq− , z
0
p) if q

− < p, see Section 3.1.

Proposition 9.15. Let (X ,Y) be a co-t-structure in Cm, (P, X) be its associated alternating
non-crossing partition of [m′] ∪ [m] with X = (xp)p∈[m], U = π−1X , and V = π−1Y. Then

(U ∩A)∩Σ−1(V ∩B) = add
{
|z0p , xq− |

∣∣∣p, q ∈ [m′], q = p+B for some B ∈ P, and xq− ∈ Z(q−)
}
.

Proof. First we show that arcs of the form a = |z0p , xq− |, where q = p+B for some block B ∈ P
and xq− ∈ Z(q−), belong to (U ∩ A) ∩ Σ−1(V ∩ B). From Definition 5.2 and Definition 9.4

we have that a ∈ indU ∩ A, we check that a ∈ indΣ−1(V ∩ B). From Lemma 9.12 this is
equivalent to check that a does not cross any arc u ∈ indU ∩ A. Note that z0p ∈ [z0p , xp+ ] and

xq− ∈ [z0q−− , xq− ]. Moreover, since q = p+B for some block B ∈ P, we have that p, q−− ∈ C for

some block C ∈ Pc, see Section 2.4. From Definition 5.10 and Definition 9.10 this implies that
a = |z0p , xq− | ∈ indΣ−1V ∩ B.

Now we show that any arc a ∈ ind(U ∩A) ∩Σ−1(V ∩ B), provided that it exists, is of the form

a = |z0p , xq− | with p, q ∈ [m′] such that q = p+B for some block B ∈ P, and xq− ∈ Z(q−). We
divide the argument into steps.

Step 1. Let z be an endpoint of a. We show that z = zp0 for some p ∈ [m′], or z = xp− for some

p ∈ [m′] such that xp− ∈ Z(p−).

Since a ∈ indU ∩ A, then z ∈ [xp− , z
0
p ] for some p ∈ [m′], and since a ∈ indV ∩ B, then

z ∈ [z0q , xq+ ] for some q ∈ [m′]. If z ∈ (p, z0p ] then q = p and z = z0p . If z ∈ [xp− , p) then q = p−−

and z = xp− . Therefore we have the claim.

Step 2. Let p, q ∈ [m′] be such that one endpoint of a is of the form xp− or z0p , and the other

endpoint is of the form xq− or z0q . We show that a ̸∼= |z0p , z0q | and a ̸∼= |xp− , xq− |.
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If a ∼= |z0p , z0q | then a and Σa are crossing and, since Σa = |z0p − 1, z0q − 1| ∈ indU ∩A, this gives
a contradiction. Similarly, if a ∼= |xp− , xq− | then a is crossed by Σ−1a = |xp− + 1, xq− + 1| ∈
indU ∩ A and we obtain again a contradiction.

Step 3. We know that a ∼= |z0p , xq− | for some p, q ∈ [m′] such that p, q ∈ B for some block B ∈ P
and xq− ∈ Z(q−). We show that q = p+B .

Assume that q ̸= p+B . Then B ̸= {p}, otherwise p = q and q = p+B . If p = q consider
r ∈ B \ {p}. Then there exists an arc in indU ∩ A with an endpoint in (p, z0p ] and the other
endpoint in (r, zr0] which crosses a, and this gives a contradiction. Now assume that p ̸= q, then
there exists r ∈ B \ {p, q} such that p, r, q are in cyclic order. The arc |zr0, z

q
0| ∈ U ∩ A crosses

a, and this gives a contradiction. This concludes the argument. □

The following corollary can be proved with the same argument of Corollary 8.23.

Corollary 9.16. Let (X ,Y) be a co-t-structure in Cm. Consider (P, X) its associated alternat-
ing non-crossing partition of [m′] ∪ [m] with X = (xp)p∈[m]. Then the co-heart S = X ∩ Σ−1Y
is given by

S = add
{
|p, xq− |

∣∣∣p, q ∈ [m′], q = p+B for some B ∈ P, and xq− ∈ Z(q−)
}
.

9.4. Boundedness. We study the bounded co-t-structures in Cm. We find that for m ≥ 2
there are no bounded co-t-structures.

Proposition 9.17. Let (X ,Y) be a co-t-structure in Cm, (P, X) be its associated alternating
non-crossing partition with X = (xp)p∈[m], and U = π−1X . The following statements are
equivalent.

(1) The co-t-structure (X ,Y) is left bounded in Cm.
(2) We have that

⋃
n∈ZΣ

nU = C2m.
(3) The non-crossing partition P has as unique block {1′, . . . ,m′} and xp ̸= p+ for each

p ∈ [m].

Proof. The equivalence between the statements (1) and (2) is straightforward, we show the
equivalence between (2) and (3). Assume that P = {{1′, . . . ,m′}} and xp ̸= p+ for each
p ∈ [m]. Let a = (a1, a2) ∈ ind C2m, we check that a ∈ ΣnU for some n ∈ Z. There exists n ≥ 0
such that a1 + n ∈ [xp− , p

+) and a2 + n ∈ [xq− , q
+) for some p, q ∈ [m′]. Since p and q belong

to the same block of P, we have that Σ−na = (a1 + n, a2 + n) ∈ U , and then a ∈ ΣnU .
Now assume that

⋃
n∈ZΣ

nU = C2m, we check that (3) holds. Let p, q ∈ [m′], and consider

a ∈ ind C2m with an endpoint in Z(p) and the other in Z(q). By assumption there exists n ∈ Z
such that a ∈ ΣnU , and then Σ−na ∈ U . Since the endpoints of Σ−na still belong to Z(p) and
Z(q), we have that p, q ∈ B for some block B ∈ P. This means that any two elements of [m′]
belong to the same block of P, i.e. P = {{1′, . . . ,m′}}. Now, assume that xp = p+ for some

p ∈ [m]. Consider an arc a ∈ Z(p,p), we observe that Σna /∈ U for each n ∈ Z, and this gives a
contradiction. This concludes the argument. □

Dually, we have the following proposition.

Proposition 9.18. Let (X ,Y) be a co-t-structure in Cm, let (P, X) be its associated alternating
non-crossing partition with X = (xp)p∈[m], and V = π−1X . The following statements are
equivalent.

(1) The co-t-structure (X ,Y) is right bounded in Cm.
(2) We have that

⋃
n∈ZΣ

nV = C2m.
(3) The non-crossing partition P has as blocks {1′}, . . . , {m′}, and xp ̸= p for each p ∈ [m].

Corollary 9.19. For each m ≥ 2 there are no bounded co-t-structures in Cm.
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Proof. Assume that m ≥ 2. If there exists a bounded co-t-structure in Cm, then, by Proposition
9.17 and Proposition 9.18, its associated alternating non-crossing partition (P, X) of [m′]∪ [m]
is such that P = {1′, . . . ,m′} = {{1′}, . . . , {m′}}, giving a contradiction. Therefore, there are
no bounded co-t-structures in Cm if m ≥ 2. □

9.5. Non-degeneracy. We classify the non-degenerate co-t-structures in Cm. We find that for
m ≥ 2 there are no non-degenerate co-t-structures. In general it is straightforward to check
that left or right bounded co-t-structures are also right or left non-degenerate respectively. We
will see that also the converse holds in Cm.

Proposition 9.20. Let (X ,Y) be a co-t-structure in Cm, (P, X) be its associated alternating
non-crossing partition with X = (xp)p∈[m], and U = π−1X . The following statements are
equivalent.

(1) The co-t-structure (X ,Y) is left non-degenerate.
(2) We have that

⋂
n∈ZΣ

nU = D.
(3) The non-crossing partition P has blocks {1′}, . . . , {m′}, and xp ̸= p for each p ∈ [m].

Proof. For the equivalence between the statements (1) and (2) we can use the same argument of
Proposition 8.27. We prove the equivalence between (2) and (3). Assume that

⋂
n∈ZΣ

nU = D
and that there exist p, q ∈ [m′] such that p, q ∈ B for some B ∈ P. Then U contains any arc

having one endpoint in Z(p) and the other endpoint in Z(q). Consider such arc u, then Σnu ∈ U
for each n ∈ Z, i.e. u ∈

⋂
n∈ZΣ

nU . Then u ∈ D and p = q. Now assume that there exists

p ∈ [m] such that xp = p, then U contains any arc u ∈ Z(p,p). Thus, u ∈
⋂

n∈ZΣ
nU = D, and

then u ∈ Z(q,q) for some q ∈ [m′] and this contradicts the fact that p ∈ [m]. This proves that
(3) holds.

Now assume that statement (3) holds, we check that
⋂

n∈ZΣ
nU ⊆ D, the other inclusion is

straightforward. Let u ∈ ind
⋂

n∈ZΣ
nU , then u ∈ U and there exist p, q ∈ [m′] such that u

has one endpoint in [xp− , p
+) and the other endpoint in [xq− , q

+). Then p, q ∈ B for some

block B ∈ P, and as a consequence p = q and u has both endpoints in [xp− , p
+). Assume that

u has an endpoint in [xp− , p), then, since xp ̸= p, there exists n ∈ Z such that Σnu /∈ U , i.e.
u /∈

⋂
n∈ZΣ

nU . Then u ∈ Z(p,p), and as a consequence u ∈ D. This concludes the argument. □

Dually, we have the following proposition.

Proposition 9.21. Let (X ,Y) be a co-t-structure of Cm, (P, X) be its associated alternating
non-crossing partition with X = (xp)p∈[m], and V = π−1X . The following statements are
equivalent.

(1) The co-t-structure (X ,Y) is right non-degenerate.
(2) We have that

⋂
n∈ZΣ

nV = D.
(3) The non-crossing partition P has as unique block {1′, . . . ,m′} and xp ̸= p+ for each

p ∈ [m].

Corollary 9.22. For each m ≥ 2 there are no non-degenerate co-t-structures in Cm.

We also have the following corollary, which combines these results with those in Section 9.4.

Corollary 9.23. Let (X ,Y) be a co-t-structure in Cm. Then (X ,Y) is left bounded if and only
if it is right non-degenerate, and (X ,Y) is right-bounded if and only if it is left non-degenerate.

9.6. Adjacent triples. We classify the co-t-structures in Cm having a left adjacent or right
adjacent t-structure.

Theorem 9.24. Let (X ,Y) be a co-t-structure in Cm and (P, X) be its associated alternating
non-crossing partition with X = (xp)p∈[m]. The following statements hold.
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(1) The co-t-structure (X ,Y) has a right adjacent t-structure if and only if for each p ∈ [m]
if xp = p+ then {p+} ∈ P.

(2) The co-t-structure (X ,Y) has a left adjacent t-structure if and only if for each p ∈ [m]
if xp = p then p−, p+ ∈ B for some block B ∈ P.

Proof. We prove statement (1), statement (2) is dual. Let V = π−1Y and (Q, Y ) = (P, X)c

with Y = (yp)p∈[m]. If (X ,Y) has a right adjacent t-structure, then Y is precovering and V ∩A
satisfies the PC conditions, see Theorem 5.4. Let p ∈ [m] be such that xp = p+, then yp = p+.
We show that p−, p+ ∈ C for some block C ∈ Q. Since yp = p+, V ∩ A contains all the arcs

having one endpoints in (p−, z0p− ] and the other in Z(p), see Definition 5.2 and Definition 9.10.

By (PC3) or (PC3′) there exists an arc of V with an endpoint in Z(p−) and the other in Z(p+).
Thus, p−, p+ ∈ C for some block C ∈ Q. Since Q = Pc, this is equivalent to {p+} ∈ P.
Now assume that (2) holds, i.e. if yp = p+ then p−, p+ ∈ C for some block C ∈ Q. We show that
Y is precovering, i.e. that V ∩A is precovering. We check that V ∩A satisfies (PC1) the other

conditions are analogous. Assume that there exists a sequence {(vn1 , vn2 )}n ⊆ V ∩ A ∩ Z(p,q) for
some p, q ∈ [m′]∪ [m] such that p ̸= q with {vn1 }n and {vn2 }n strictly increasing. Then p, q ∈ [m]

and, since there exist arcs of V in Z(p,q), p−, q− ∈ C for some C ∈ Q. Moreover, yp = p+ and
yq = q+, and then by assumption p−, p+, q−, q+ ∈ C. Then, V ∩ A contains any arc having
one endpoint in (p+, z0p+ ] and the other endpoint in (q+, z0q+ ]. In particular, there exist strictly

decreasing sequences {wn
1 }n ⊆ Z(p+) and {wn

2 }n ⊆ Z(q+) such that {|wn
1 , w

n
2 |}n ⊆ V ∩ A. This

concludes the argument. □

9.7. Recollements. We recall that in a triangulated category recollements are in bijection with
TTF triples, which are triples (X ,Y,Z) such that (X ,Y) and (Y,Z) are t-structures, we refer
to [NS, Section 2.2] for more details. Since Cm is Hom-finite and Krull–Schmidt, by Proposition
2.2, TTF triples are in bijection with functorially finite thick subcategories, which we classify
here. Thick subcategories of Cm and Cm were classified in [GZ] and [M] respectively. By [ZZ,
Proposition 4.6], Cm and 0 are the only precovering or preenveloping thick subcategories of Cm,
but this is no longer the case in Cm, see Figure 20 for an example.

The following theorem follows directly from Theorem 9.2.

Theorem 9.25. Let (X ,Y) be a co-t-structure of Cm and (P, X) be its associated alternating
non-crossing partition with X = (xp)p∈[m]. The following statements are equivalent.

(1) X is a precovering thick subcategory.
(2) Y is a preenveloping thick subcategory.
(3) For each p ∈ [m] either xp = p or xp = p+.

The following corollary combines Theorem 9.24 and Theorem 9.25.

Corollary 9.26. Let X be a subcategory of Cm. The following statements are equivalent.

(1) X is a functorially finite thick subcategory.
(2) The alternating non-crossing partition of [m′] ∪ [m] associated to the co-t-structure

(X ,X⊥), which we denote by (P, X) with X = (xp)p∈[m], satisfies the following con-

dition: for each p ∈ [m] either xp = p or xp = p+, and if xp = p then p−, p+ ∈ B for
some block B ∈ P.

10. Lattice structures

The t-structures and co-t-structures in a triangulated category form a partially ordered sets
under inclusion of aisles. In this section we prove that both t-structures and co-t-structures
in Cm form a lattice similarly as the t-structures in Cm, see [GZ, Section 5]. In Section 8
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and Section 9 we proved that the t-structures and the co-t-structures in Cm are in bijection
with, respectively, the half-decorated non-crossing partitions and the alternating non-crossing
partitions of [m′] ∪ [m]. We prove that these sets have lattice structures. We recall that the
non-crossing partitions forms a lattice under refinement, see Section 2.4.

We introduce some notation. Given m-tuples X = (xp)p∈[m] and X ′ = (x′p)p∈[m], we write
X ≤ X ′ if xp ≤ x′p for each p ∈ [m]. We write

min{X,X ′} = (min{xp, x′p})p∈[m] and max{X,X ′} = (max{xp, x′p})p∈[m].

For (P, X) and (P ′, X ′) half-decorated non-crossing partitions of [m′]∪ [m], we define (P, X) ≤
(P ′, X ′) if P ≤ P ′ and X ≤ X ′, as in [GZ, Section 5]. If (P, X) and (P ′, X ′) are alternating
non-crossing partitions of [m′] ∪ [m], then we define (P, X) ≤ (P ′, X ′) if P ≤ P ′ and X ′ ≤ X.

Lemma 10.1. The following statements hold.

(1) The half-decorated non-crossing partitions of [m′] ∪ [m] form a lattice where, for each
(P, X) and (P ′, X ′), we have that

(P, X) ∧ (P ′, X ′) = (P ∧ P ′,min{X,X ′}) and
(P, X) ∨ (P ′, X ′) = (P ∨ P ′,max{X,X ′}).

(2) The alternating non-crossing partitions of [m′]∪[m] form a lattice where, for each (P, X)
and (P ′, X ′), we have that

(P, X) ∧ (P ′, X ′) = (P ∧ P ′,max{X,X ′}) and
(P, X) ∨ (P ′, X ′) = (P ∨ P ′,min{X,X ′}).

Proof. We prove statement (1). Let (P, X) and (P ′, X ′) be half-decorated non-crossing par-
titions of [m′] ∪ [m]. It is straightforward to check that (P ∧ P ′,min{X,X ′}) and (P ∨
P ′,max{X,X ′}) are respectively the greater lower bound and the least upper bound of (P, X)
and (P ′, X ′), provided that they are well defined. We check that they both are half-decorated
non-crossing partitions of [m′] ∪ [m].

Let (P, X̃) and (P, X̃ ′) be the decorated non-crossing partitions of [m′] ∪ [m] obtained respec-
tively from (P, X) and (P ′, X ′) by adding the decoration z0p for each p ∈ [m′], see Remark 8.4.
The set of decorated non-crossing partitions has a partial order defined in [GZ, Section 5]. By

[GZ, Theorem 5.2] the meet and join of (P, X̃) and (P ′, X̃ ′) are respectively (P∧P ′,min{X̃, X̃ ′})
and (P ∨ P ′,max{X̃, X̃ ′}). Note that (P ∧ P ′,min{X̃, X̃ ′}) and (P ∨ P ′,max{X̃, X̃ ′}) have z0p
as decoration for each p ∈ [m′]. Thus, (P ∧ P ′,min{X,X ′}) and (P ∨ P ′,max{X,X ′}) are
their correspondent half-decorated non-crossing partitions under the bijection of Remark 8.4.
Therefore, (P ∧ P ′,min{X,X ′}) and (P ∨ P ′,max{X,X ′}) are well defined.

Now we prove (2). Let (P, X) and (P ′, X ′) be alternating non-crossing partitions of [m′]∪ [m].
Since P ∧ P ′ and P ∨ P ′ are non-crossing partitions of [m′], then, by Definition 9.1, (P ∧
P ′,max{X,X ′}) and (P ∨P ′,min{X,X ′}) are alternating non-crossing partitions of [m′]∪ [m].
Moreover, it is straightforward to check that these are respectively the greater lower bound and
the least upper bound of (P, X) and (P ′, X ′). □

The following lemma is the analogue of [GZ, Proposition 5.3]. We recall that a co-aisle of a
t-structure or of a co-t-structure is related to the Kreweras complement of the corresponding
non-crossing partition, see Section 8.2 and Section 9.2. The complements of half-decorated
non-crossing partitions and of alternating non-crossing partitions are defined in Definition 8.16
and Definition 9.9.

Lemma 10.2. The following statements hold.
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(1) Let (X ,Y) and (X ′,Y ′) be t-structures in Cm, (P, X) and (P ′, X ′) be their correspondent
half-decorated non-crossing partitions of [m′]∪[m], and (Q, Y ) = (P, X)c and (Q′, Y ′) =
(P ′, X ′)c be their complements. Then

X ∩ X ′ = πU(P∧P ′,min{X,X′}) and Y ∩ Y ′ = πV(Q∧Q′,max{Y,Y ′}).

(2) Let (X ,Y) and (X ′,Y ′) be co-t-structures in Cm, (P, X) and (P ′, X ′) be their corre-
spondent alternating non-crossing partitions of [m′] ∪ [m], and (Q, Y ) = (P, X)c and
(Q′, Y ′) = (P ′, X ′)c be their complements. Then

X ∩ X ′ = πU(P∧P ′,max{X,X′}) and Y ∩ Y ′ = πV(Q∧Q′,min{Y,Y ′}).

Proof. We prove (1), statement (2) is analogous. We check that X ∩ X ′ = πU(P∧P ′,min{X,X′}),
for the equality Y ∩ Y ′ = πV(Q∧Q′,max{Y,Y ′}) we can proceed analogously. By Theorem 8.5,
X = πU(P,X) and X ′ = πU(P ′,X′). We denote U = U(P,X) and U ′ = U(P ′,X′). By applying a
similar argument to the one of [GZ, Proposition 5.3], we obtain that U ∩U ′ = U(P∧P ′,min{X,X′}).
We prove that πU ∩ πU ′ = π(U ∩ U ′).

Let x ∈ πU ∩ πU ′, then x ∼= π(u) and x ∼= π(u′) for some u ∈ U and u′ ∈ U ′. Thus,
π(u) ∼= π(u′) and, by Lemma 2.9, u, u′ ∈ U ∩ U ′. Then, x ∈ π(U ∩ U ′). This implies that
πU∩πU ′ ⊆ π(U∩U ′), the other inclusion in straightforward. It follows that X∩X ′ = π(U∩U ′) =
πU(P∧P ′,min{X,X′}). □

We can now describe the lattice structures of the t-structures and co-t-structures in Cm. We
refer to [GZ, Theorem 5.2, Proposition 5.3] for the non-completed case.

Theorem 10.3. The t-structures and the co-t-structures in Cm have lattice structures under
inclusion of aisles. For each pair of t-structures, or of co-t-structures, (X ,Y) and (X ′,Y ′), we
have that

(X ,Y) ∧ (X ′,Y ′) = (X ∩ X ′, (X ∩ X ′)⊥) and

(X ,Y) ∨ (X ′,Y ′) = (⊥(Y ∩ Y ′),Y ∩ Y ′).

Proof. We prove the statement for the t-structures in Cm. For the co-t-structures we can proceed
similarly. We divide the proof into steps.

Step 1. We prove that the t-structures form a lattice under inclusion of aisles.

By Corollary 7.2 there is an inclusion preserving bijection between the aisles of t-structures
in Cm and the suspended subcategories U of C2m such that D ⊆ U and U ∩ A is precovering.
Moreover, by Proposition 8.6 this set of subcategories of C2m is in bijection with the set of
half-decorated non-crossing partitions of [m′]∪ [m], which is a lattice by Lemma 10.1. We prove
that the latter bijection is order preserving. Let U and U ′ be suspended subcategories of C2m as
above, and let (P, X) and (P ′, X ′) be their associated half-decorated non-crossing partitions.
We prove that U ⊆ U ′ if and only if (P, X) ≤ (P ′, X ′).

Assume that U ⊆ U ′ and consider p, q ∈ [m′] ∪ [m] such that p, q ∈ B for some block B of
P. We prove that p and q belong to the same block of P ′. There is an arc u ∈ indU with an
endpoint in Z(p) and the other in Z(q). Since u ∈ U ′, we obtain that p, q ∈ B′ for some block
B′ of P ′. Thus, P ≤ P ′. Moreover, since x′p ≥ z′ for each z′ ∈ Z(p) which is an endpoint of

an arc of U ′, then x′p ≥ z for each z ∈ Z(p) which is an endpoint of an arc of U . Therefore,

xp ≤ x′p because xp is the least upper bound of the set of such elements z ∈ Z(p). We obtain
that (P, X) ≤ (P ′, X ′).

Now assume that (P, X) ≤ (P ′, X ′) and consider u ∈ indU , we show that u ∈ indU ′. There
exists a block B of P such that each endpoint of u belongs to (p, xp] for some p ∈ B ∩ [m], or

to Z(p) for some p ∈ B ∩ [m′]. Since B ⊆ B′ and (p, xp] ⊆ (p, x′p] for p ∈ [m], each endpoint of u
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belongs to (p, x′p] for some p ∈ B′∩ [m], or to Z(p) for some p ∈ B′∩ [m′]. Therefore, u′ ∈ indU ′.
We conclude that U ⊆ U ′ if and only if (P, X) ≤ (P ′, X ′).

Step 2. We compute the meet of two t-structures.

Consider (X ,Y) and (X ′,Y ′) t-structures in Cm and their corresponding half decorated non-
crossing partitions (P, X) and (P ′, X ′). The meet of (X ,Y) and (X ′,Y ′) corresponds to the
meet of (P, X) and (P ′, X ′), which is equal to (P ∧ P ′,min{X,X ′}) by Lemma 10.1. Thus,
the aisle of (X ,Y) ∧ (X ′,Y ′) is equal to πU(P∧P ′,min{X,X′}). By Lemma 10.2 we obtain that

(X ,Y) ∧ (X ′,Y ′) = (X ∩ X ′, (X ∩ X ′)⊥).

Step 3. We compute the join of two t-structures.

The join of (X ,Y) and (X ′,Y ′) corresponds to the join of (P, X) and (P ′, X ′), which is equal
to (P ∨ P ′,max{X,X ′}) by Lemma 10.1. We denote (Q, Y ) = (P, X)c, (Q′, Y ′) = (P ′, X ′)c,
and (R, Z) = (P ∨ P ′,max{X,X ′})c. By Remark 2.10, R = (P ∨ P ′)c = Q ∧ Q′, and then
(R, Z) = (Q ∧ Q′,max{Y, Y ′}). Since the co-aisle of (X ,Y) ∨ (X ,Y) is equal to πV(R,Z), by
Lemma 10.2 we have that πV(R,Z) = Y ∩ Y ′. □

The lattice structures described above restrict to certain classes of t-structures and of co-t-
structures in Cm. We recall that a sublattice of a lattice is a subposet which contains the join
and meet of any pair of elements.

Corollary 10.4. The following statements hold.

(1) The left bounded and the right bounded t-structures form sublattices of the lattice of
t-structures in Cm.

(2) The left bounded, the right bounded, the left non-degenerate, and the right non-degenerate
co-t-structures form sublattices of the lattice of co-t-structures in Cm.

(3) The co-t-structures having a left adjacent t-structure, and the co-t-structures having a
right adjacent t-structure form sublattices of the lattice of co-t-structures in Cm.

Proof. The statements (1) and (2) are straightforward and follow directly from the combina-
torial descriptions of Proposition 8.24, Proposition 8.25, Proposition 9.17, Proposition 9.18,
Proposition 9.20, and Proposition 9.21. We prove (3).

Let (X ,Y) and (X ′,Y ′) be co-t-structures in Cm admitting left adjacent t-structures, we check
that their join and meet admit left adjacent t-structures. If (X ,Y) and (X ′,Y ′) admit right
adjacent t-structures the proof is similar. Let (P, X) and (P ′, X ′) be the corresponding alter-
nating non-crossing partitions of [m′]∪ [m] with X = (xp)p∈[m] and X ′ = (x′p)p∈[m]. By Lemma
10.1, (P, X) ∧ (P ′, X ′) = (P ∧ P ′,max{X,X ′}) and (P, X) ∨ (P ′, X ′) = (P ∨ P ′,min{X,X ′}).
Therefore, by Theorem 9.24 it is enough to prove that: for each p ∈ [m], if max{xp, x′p} = p

then p−, p+ ∈ C for some block C of P ∧ P ′, and if min{xp, x′p} = p then p−, p+ ∈ C for some
block C of P ∨ P ′.

Let p ∈ [m]. If max{xp, x′p} = p then xp = x′p = p. Thus, p−, p+ ∈ B for some block B of P,
and p−, p+ ∈ B′ for some block B′ of P ′. Therefore, p−, p+ ∈ B ∩B′ which is a block of P ∧P ′.
Now assume that min{xp, x′p} = p, and assume that xp = p, for the case x′p = p we can proceed

in the same way. We have that p−, p+ ∈ B for some block B of P. Since P ≤ P ∨ P ′, there
exists a block C of P ∨ P ′ such that B ⊆ C and then p−, p+ ∈ C. We conclude that the join
and meet of (X ,Y) and (X ′,Y ′) admit left adjacent t-structures. □

We observe that the non-degererate t-structures in Cm do not form a sublattice, below we have
a counterexample. The same holds for the left non-degenerate and the right non-degenerate
t-structures.

Example 10.5. Let P = {{1′, 1}, {2′, 2}} and P ′ = {{1′}, {2′}, {1, 2}} be non-crossing parti-

tions of [2′] ∪ [2]. Let X = (xp)p∈[2] and X ′ = (x′p)p∈[2] be such that xp, x
′
p ∈ Z(p) for each
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p ∈ [2]. Then (P, X) and (P, X ′) are half-decorated non-crossing partitions of [2′] ∪ [2] such
that their corresponding t-structures are non-degenerate, see Corollary 8.29. Note that P ∨ P ′

has as unique block {1′, 1, 2′, 2} and then the t-structures associated to (P, X)∨ (P ′, X ′) is not
left non-degenerate. Moreover, P ∧P ′ has as blocks {1′}, {1}, {2′}, {2} and then the t-structure
associated to (P, X) ∧ (P ′, X ′) is not right non-degenerate.

We know from [GZ, Theorem 3.7] and [M, Theorem 4.9] that the thick subcategories of Cm and
of Cm form lattice structures. We observe that the functorially finite thick subcategories of Cm
also form a lattice.

Corollary 10.6. The functorially finite thick subcategories of Cm form a lattice under inclusion.

Proof. A functorially finite thick subcategory X of Cm can be regarded as the aisle of the co-
t-structure (X ,X⊥) which admits a left adjacent t-structure and is such that ΣX ⊆ X . By
the combinatorial description of Theorem 9.25 and Corollary 10.4, both these classes of co-t-
structures are closed under taking finite joins and meets. We conclude that the lattice structure
of the co-t-structures in Cm restricts to the functorially finite thick subcategories. □
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