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Abstract—Cable-driven serpentine manipulators (CSMs), due
to their unique flexibility of movement, have broad applica-
tion prospects in unstructured and confined environments. To
enhance adaptability to different environments and tasks, the
design of variable stiffness structures has long been a research
focus for CSMs. Inspired by spatial folding mechanisms like
umbrellas, we propose a novel variable-diameter-stiffness cable-
driven serpentine manipulator (VDS-CSM). The standout feature
of this innovation is its ability to achieve integrated control over
both the outer diameter and the stiffness of the manipulator.
First, we present the structural design of the novel VDS-CSM,
whose outer diameter and stiffness can be continuously adjusted.
Secondly, we establish the kinematics, statics, and stiffness models
for VDS-CSM. Based on this, we conduct an in-depth study
of the manipulator’s stiffness characteristics. Simulation data
indicate that the change ratio of the manipulator’s end stiffness
is approximately proportional to the square of the change
ratio in the manipulator’s outer diameter. Finally, we build
a VDS-CSM experimental system. Through experiments, the
accuracy of the proposed model for VDS-CSM is verified. The
experimental results show that the outer diameter and stiffness
of the manipulator can vary by 200% and 400%, respectively.

Index Terms—Cable-driven, serpentine manipulator, variable
diameter-stiffness, design and modeling, experiments.

I. INTRODUCTION

CABLE-DRIVEN serpentine manipulators (CSMs) pos-
sess unique structural features, high motion flexibility,

and good safety, making it increasingly vital in diverse fields.
These include medical applications such as minimally invasive
surgery [1], [2], industrial tasks like narrow space repair
and maintenance [3], nuclear equipment maintenance [4], and
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Fig. 1. CSM operation task scene. (a) Before the diameter changes. (b) After
the diameter changes.

aerospace applications such as space station monitoring and
on-orbit services [5], [6]. Therefore, CSMs have become a
research focus in the field of robotics [7]–[9].

A CSM, designed to tackle a broader range of tasks and
navigate through complex work environments, must possess
the adaptability to alter its stiffness characteristics and struc-
tural dimensions. This adaptability is crucial for ensuring that
the manipulator can effectively respond to varying conditions,
such as different payloads, terrains, and spatial constraints. As
shown in Fig.1, when grasping a target within a curved pipe
that has an inner diameter smaller than manipulator’s outer
diameter, the manipulator must have autonomous diameter-
adjustment capability.

A significant amount of research has been conducted on
variable stiffness of CSM. Cheng et al. [10] proposed using
particle jamming technology to adjust the stiffness of manip-
ulator. This method effectively controls local stiffness. Kim et
al. [11] designed a manipulator with a variable neutral line
to adjust stiffness through mechanism changes, which greatly
simplifies the mechanical structure. Kang et al. [12] proposed
the use of shape memory alloy (SMA) to adjust the stiffness
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of manipulator, thereby expanding its range of stiffness. Ren
et al. [13] achieved variable stiffness in manipulator using
a spring-sliding block-based drive system, providing high
payload, accuracy, and flexibility. Additionally, some scholars
have refined stiffness models or optimized control methods
to achieve variable stiffness [14]–[16]. The above variable
stiffness method exhibits a limited stiffness variation range
and poses challenges in achieving accurate control.

In most previous researches, manipulators have maintained
a constant geometric profile and structural form [17]–[19].
Lacking the ability to change their external dimensions, manip-
ulators face significant challenges when operating in complex
environments or navigating narrow, tortuous paths. In response
to this problem, many scholars have studied the transformable
manipulator. Liu et al. [20] presented a new design for
extensible manipulator and demonstrated its extensibility by
performing a pin-hole assembly task. Yuan et al. [21] proposed
a variable cross-section manipulator, which has larger deflec-
tions and is softer than constant cross-section manipulator.
Burgner-Kahrs et al. [22] proposed a tendon-driven continuum
robot with extensible sections, greatly increasing the volume
of workspace. Wang et al. [23] designed a robot with self-
controlled curvature to enhance its adaptability in constrained
environments. However, the above robots have not achieved
integrated adjustment of shape and stiffness.

Regarding the stiffness regulation method of CSM is the
focus of attention, but there are fewer research results on how
the CSM can realize the autonomous change of structural
shape. In the future, CSMs will need to possess the ability
to adjust both their structural shape and stiffness to address
a variety of tasks and complex working environments. In this
article, we propose a novel variable-diameter-stiffness cable-
driven serpentine manipulator (VDS-CSM). Enhancements in
the mechanism design provide manipulator with strong envi-
ronmental adaptability and operational capability. The main
innovations are as follows.

1) A CSM with integrated adjustments for outer diameter
and stiffness is designed. This innovative design em-
ploys an umbrella skeleton-type variable diameter unit,
enabling the stiffness of manipulator to vary exponen-
tially with the outer diameter. The synchronous variable
diameter mechanism of driving device prevents coupling
between cable and variable diameter unit, ensuring pre-
cise manipulator control.

2) The kinematic, static, and stiffness models of VDS-CM
are meticulously developed, based on which the stiff-
ness characteristics of VDS-CSM have been thoroughly
investigated.

3) We built an experimental system of VDS-CSM and
verified its ability to change diameter and stiffness. Ad-
ditionally, it has shown significant potential in complex
working conditions and industrial production.

The rest of this article is organized as follows. Section
II introduces the innovative design of VDS-CSM, which
includes the umbrella skeleton type variable diameter unit
and the synchronous variable diameter mechanism of driving
device. The kinematics, statics, and stiffness models of VDS-

Fig. 2. Schematic diagram of VDS-CSM. (a) Umbrella skeleton type variable
diameter unit. (b) Universal joint. (c) Front-synchronous variable diameter
mechanism of driving device. (d) Rear-synchronous variable diameter mech-
anism of driving device.

CSM are derived in Section III. In Section IV, the stiffness
characteristics of VDS-CSM is studied. Section V describes
the construction of prototype and verifies its integrated ad-
justment capabilities for outer diameter and stiffness through
experiments. Finally, Section VI concludes this article.

II. DESIGN

A. Overview of VDS-CSM

The VDS-CSM proposed in this article is shown in Fig. 2,
comprising a diameter-stiffness adjustable arm segment and a
driving box. The functions and characteristics of each part are
outlined as follows.

1) Diameter-stiffness variable manipulator: This part is
composed of two main components in series: the umbrella
skeleton type variable diameter unit [Fig. 2(a)] and the cross
shaft universal joint [Fig. 2(b)]. Each unit is equipped with
springs to enhance the stiffness of manipulator.

2) Driving Control Box: It is primarily composed of syn-
chronous variable diameter mechanisms at both front [Fig.
2(c)] and rear [Fig. 2(d)], cable guide blocks, motors, and other
components. The variable diameter mechanism synchronizes
changes in the driving device and the outer diameter of
manipulator, thereby preventing coupling between cable and
unit due to diameter variations.

The motion of manipulator depends on the coordinated
control of motors located at the back end of driving box.
These motors pull cables to bend manipulator, enabling its
flexible movement. A motor at the front of driving box
connects to a threaded mechanism that adjusts the diameter of
umbrella skeleton type variable diameter unit through screw
transmission. This mechanism allows for integrated adjustment
of the manipulator’s overall outer diameter and stiffness.

B. Diameter-Stiffness Variable Unit

To enable the VDS-CSM to adjust its outer diameter and
stiffness, we conducted in-depth research on the rigid folding
mechanism [24], [25]. The umbrella is widely used in space
folding mechanisms. When umbrella is opened and closed,
the axial size of umbrella bone remains unchanged, while the
radial size changes synchronously with the axial movement
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Fig. 3. The transformation process of umbrella skeleton type variable diameter
unit. (a) Closed state. (b) Expand state.

of sliding sleeve. Inspired by this space-folding concept, we
designed the umbrella skeleton type variable diameter unit
for manipulator. The stiffness of VDS-CSM is adjusted by
changing the distance between springs and threaded rod axis.
Fig. 3 illustrates the schematic diagram of umbrella skeleton
type variable diameter unit.

The umbrella skeleton type variable diameter unit consists
of a central disk, a base disk, three fixed corner blocks, twelve
connecting rods, a threaded rod, and springs. The central disk
has a threaded hole, forming a helical pair with threaded
rod. The base disk contains a through hole, which forms a
sliding pair with the smooth part of threaded rod. In Fig.
2(c), the motor drives threaded rod to rotate forward, causing
the central disk to move along the threaded rod towards the
base disk via screw transmission. This movement reduces the
distance between two disks while increasing the outer diameter
of umbrella skeleton type variable diameter unit. To maintain
stiffness and curvature after bending, we place springs between
variable diameter units and utilize threaded rods and universal
joints for joint support.

To further analyze the variation characteristics and capabil-
ities of the variable diameter unit, we established a theoretical
model of umbrella skeleton type variable diameter unit, as
illustrated in Fig. 4(a). Here, h represents the distance between
two disks, l denotes the length of connecting rod, b denotes
the radius of two disks, and r represents the outer diameter of
manipulator. The outer diameter of VDS-CSM, the length of
the connecting rod of variable diameter unit, and the distance
between two disks satisfy the following relationship:

r =

√
l2 −

(
h

2

)2

+ b (1)

Fig. 4. Characteristic analysis. (a) Theoretical model of variable diameter
unit. (b) Variation of the outer diameter. Eq. (1) illustrates the influence of
distance h between two disks and length l of connecting rod on the outer
diameter.

Fig. 5. Conformational and dimensional parameters of the three transforma-
tion stages of the umbrella skeleton type variable diameter unit. (a) The first
stage. (b) The second stage. (c) The third stage.

From the configuration of variable diameter unit, it is
essential to ensure that the outer diameter of manipulator is
minimized when three fixed angle blocks are closed. There-
fore, the length l of the connecting rod and the distance h
between two disks must satisfy specific criteria: l ≥ h/2. The
simulation results illustrating the relationship between outer
diameter r of VDS-CSM and variables h and l are shown
in Fig. 4(b). As the length l of connecting rod increases, the
distance h between the disks decreases, resulting in a larger
outer diameter r.

To visualize the relationship between outer diameter r and
distance h between two disks, we selected the length of
connecting rod l = 50 mm, and the radius of disk b =
10 mm as variables in three deformation stages of umbrella
skeleton type variable diameter unit. We measured the VDS-
CSM’s outer diameter profile at these stages and compared
the results with those obtained from the calculation using (1).
The findings are presented in Fig. 5.

C. Driving Control Box

The VDS-CSM contains a large number of cable-hole con-
tact structures. As shown in Fig.6, the acute angle ξ between
cable and cable hole axis is too large to cause strong friction.
The friction within the cable hole dissipates energy in the
manipulator system, leading to attenuation of the cable force
during transmission. This affects the length of cable movement
and the control accuracy of VDS-CSM. Additionally, when the
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Fig. 6. Schematic diagram of cable through the hole.

Fig. 7. Sectional view of driving box.

outer diameter of VDS-CSM changes, the distance between
driving cables in each group also changes. This increases the
angle ξ between cable and cable hole, resulting in a coupling
effect.

Based on the mechanism characteristics of VDS-CSM,
we designed a synchronous variable diameter mechanism to
ensure that drive device changes synchronously with the outer
diameter of manipulator, achieving effective decoupling. The
mechanism mainly consists of two sets of sliding pairs on the
front and rear supports of driving box, and a section of variable
diameter unit inside the driving box, as shown in Fig. 7. The
front support of driving box is equipped with a guide rail
slider along both radial and axial directions. The radial slider is
connected to the front part of the ball screw and secured on the
guide rail. The rear support of driving box is fitted with a radial
guide rail slider, with slider connected to the tail of ball screw.
The variable diameter unit inside the driving box is linked to
the front guide rail slider through cable guide block. As the
outer diameter of manipulator changes, the ball screw moves
radially with the slider to achieve synchronous adjustment. The
guide rail slider is selected as the mobile device. Compared to
ball screws, worm gears, and other mechanisms, it enhances
transmission efficiency by approximately 20% and provides
greater ease of installation. Simultaneously, the front support
of the driving box features a fan-shaped groove for cables to
pass through and move, ensuring the smooth operation of the
manipulator.

Fig. 8. Kinematic analysis of the joint. (a) Universal joint. (b) Kinematic
geometric model.

III. MODELING

A. Kinematics Model

As shown in Fig. 8(b), the point P at the center of joint is
identified. The distance from this point to two groups of fixed
corner blocks is noted d

A
, d

B
, and the radius of circumference

of cable hole on the fixed corner block is denoted as rc. In
the kinematics model, a change in the outer diameter of VDS-
CSM causes a corresponding change in circumference radius
(r) of the fixed corner block and the circumference radius
(rc) of the cable hole. The analysis is conducted using one
of the joints of VDS-CSM as an example. Take the center of
three cable holes A1,A2,A3 on a group of fixed corner block
as the origin O1, the normal vector of block surface as the
Z1-axis, and the axis of rotation as the X1-axis. Determine
the Y1-axis according to the right-hand rule, and establish a
coordinate system O1−X1Y1Z1. Take the center of three cable
holes B1,B2,B3 on the other group of fixed corner blocks as
the origin O2, the normal vector of the block surface as the
Z2-axis, and the axis of rotation as the Y2-axis. Determine
the X2-axis according to the right-hand rule, and establish
a coordinate system O2 − X2Y2Z2. The coordinate system
P−X0Y0Z0 is established with point P as the origin. The X0-
axis is parallel to the X1-axis, the Y0-axis is parallel to the Y1-
axis, and the Z0-axis is determined according to the right-hand
rule. The coordinate system O1 − X1Y1Z1 is translated dA

along its Z1-axis, and then rotated φ angle around the X1-axis,
which can coincide with the coordinate system P−X0Y0Z0.
Coordinate system P−X0Y0Z0 rotates ψ angle around its Y0-
axis, and after d

B
translations along its Z0-axis, it can coincide

with coordinate system O2 −X2Y2Z2.
The homogeneous transformation matrix from the coordi-

nate system O1 − X1Y1Z1 to the coordinate system O2 −
X2Y2Z2 can be obtained:

1T 2 = 1T 0
0T 2

=


cψ 0 sψ dBsψ
sφsψ cφ −sφcψ −dBsφcψ
−cφsψ sφ cφcψ dBcφcψ + dA

0 0 0 1

 (2)

where sφ = sinφ, cφ = cosφ, sψ = sinψ, cψ = cosψ.
Assuming ∠A1O1X1 = ∠B1O2X2 = β, the point A1 in

coordinate system O1 is 1A1 =
[
rc cosβ rc sinβ 0 1

]T
,

and the point B1 in coordinate system O2 is 2B1 =
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TABLE I
D-H PARAMETERS OF THE SEGMENT

Link 1,i ai (mm) αi (degree) di (mm) θ1,i (degree)
1 0 90 0 θ1
2 j 0 0 θ2
3 0 -90 0 θ3
4 j 0 0 θ4
... ... ... ... ...
11 0 -90 0 θ11
12 j 0 0 θ12

[
rc cosβ rc sinβ 0 1

]T
. According to (2), the distance

between the point A1 and the point B1 is:

lA1B1
=

∥∥1B1 −1 A1

∥∥ = f
(
φ,ψ, β

)
(3)

Because the cable holes are evenly distributed on the disk,
it can be concluded that:

lA2B2
=

∥∥1B2 −1 A2

∥∥ = f

(
φ,ψ, β +

2π

3

)
(4)

lA3B3
=

∥∥1B3 −1 A3

∥∥ = f

(
φ,ψ, β − 2π

3

)
(5)

Equations (3), (4), and (5) establish the mapping rela-
tionship between joint angle and cable length. Sometimes,
it is necessary to determine the joint angle given a specific
cable length. Based on above equations, we can obtain the
corresponding cable length from the joint angle and then derive
the cable speed. The mapping between the rate of change in
cable length and the joint angular velocity can be expressed by
(6). Here, Jd is the Jacobian matrix relating the joint angular
velocity to the cable velocity. The total length of the cable can
be determined using the method described in [6].l̇A1B1

l̇A2B2

l̇A3B3

 = Jd

[
φ̇

ψ̇

]
(6)

The mapping from cable length to joint angle can be
expressed by (7), where J+

d is the pseudo-inverse matrix of
the Jacobian matrix Jd. According to (7), the corresponding
joint rotation angle is calculated using an iterative method.

[
φ̇

ψ̇

]
= J+

d

l̇A1B1

l̇A2B2

l̇A3B3

 (7)

The arm segment of VDS-CSM is composed of multiple
orthogonal universal joints and rigid connecting rods in series.
The D-H notation is used to construct the coordinate system at
each joint of manipulator. Three segments of arm (comprising
six joints) in VDS-CSM are considered, with the arm link
simplified into a horizontal line. A coordinate system is
established at each joint, as shown in Fig. 9. Based on the
kinematics model, the D-H parameter table is constructed, as
shown in Table I.

Fig. 9. The coordinate system of segment.

According to D-H parameters, the kinematics of the segment
can be expressed as:

iT i+1 =


ci+1 −λi+1si+1 µi+1si+1 ai+1ci+1

si+1 λi+1ci+1 −µi+1ci+1 ai+1si+1

0 µi+1 λi+1 di+1

0 0 0 1

 (8)

where iT i+1 is the transformation matrix between two neigh-
boring coordinate systems. Also note si+1 = sin θi+1, ci+1 =
cos θi+1, µi+1 = sinαi+1, λi+1 = cosαi+1. Similarly, the
forward kinematics of the remaining sections of VDS-CSM,
including the end, can be derived using the above method. The
end position of VDS-CSM is obtained as follows:

T end = 0T 1
1T 2

2T 3
3T 4 · · ·10 T 11

11T 12

= fCVDM(θ1, θ2, θ3, θ4, · · · , θ11, θ12)
= fCVDM(θ)

(9)

where fCVDM(θ) is the simplified kinematics equation of
VDS-CSM, and θ is the column vector composed of θ1 ∼ θ12.

For the m-segment (a single segment of VDS-CSM contains
two variable diameter units), the position of the end of VDS-
CSM can be expressed as follows:

Tm = fCVDM(θ1, θ2, θ3, θ4, · · · , θ2m) (10)

Inverse kinematics analysis is useful for studying the tra-
jectory planning of VDS-CSM, as well as improving the
control accuracy and response time of manipulator. For the
CSM, the iterative method proposed by Whitney [26] is often
used to solve the inverse kinematics. By solving the Jacobian
matrix for each joint variable, it can be shown that there is a
minimum norm solution in the velocity domain. The desired
position of the end of VDS-CSM in space is calculated, and
the position difference is obtained by subtracting it from the
current position. Through the Jacobian matrix, the position
difference of VDS-CSM is mapped to the joint angles.

Ẋ = Jθ(θ)θ̇ (11)

where Jθ is the Jacobian matrix of the joint velocity to
the end velocity, and from (11), the relationship between the
differential of the joint angle and the differential of the end
position is given by:

∆θ = J+
θ ∆Xend (12)
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In (12), J+
θ is the pseudo-inverse matrix of Jθ. Iteratively

calculate the position variation to obtain the angle of each
joint, enabling the VDS-CSM to complete the target motion.
By comparing the difference between the current position and
the expected position, when the difference is less than the
threshold value, it is considered that VDS-CSM has reached
the target position.

B. Statics Model
Due to the low velocity during the movement of VDS-CSM,

it is considered to be in a state of static equilibrium. According
to (6), the transfer relationship between cable tension and joint
torque can be derived from the principles of duality and virtual
work:

τ = JT
d f (13)

where τ = [τφ, τψ]
T, f =

[
f1, f2, f3

]T
indicates the joint

torque and the tension of three cables, and JT
d is the transpose

of the velocity Jacobian matrix Jd. Similarly, the transfer
relationship between joint torque of VDS-CSM and the end
operating force can also be obtained by the above method:

τ = JT
θ F e (14)

where JT
θ indicates the force Jacobian matrix, which is the

transpose of the velocity Jacobian matrix Jθ, F e represents
the generalized end force vector.

The VDS-CSM experiences various forces during its op-
eration, including its own gravity, end loads, driving cable
tension, spring elasticity, and friction between cable and
cable hole. Considering that lubrication measures can reduce
friction between cable and cable hole, the friction coefficient
is neglected in the static model. By applying the principle of
virtual work, we obtain:

FT
e δX − TT

c δLc − TT
s δLs −GTδH = 0 (15)

T s = T a + T b (16)

where X is the generalized coordinate, T c is the generalized
tension vector consisting of all cable tensions, and T s is the
generalized elastic force vector consisting of all spring elastic
forces. The spring elastic forces T s includes the axial elastic
force T a when the spring is stretched or compressed, and
bending elastic force T b when it is bent. Lc is the generalized
cable length vector, Ls is the generalized spring length vector,
G is the generalized gravity vector, and H is the generalized
vector composed of the center of gravity position of each
section of VDS-CSM.
δX = ∂X

∂θ δθ, δLc =
∂Lc

∂θ δθ, δLs =
∂Ls

∂θ δθ, δH = ∂H
∂θ δθ

are all substituted into (15) to yield (17)

FT
e

∂X

∂θ
δθ−TT

c

∂Lc

∂θ
δθ−TT

s

∂Ls

∂θ
δθ−GT ∂H

∂θ
δθ = 0 (17)

δθ on both sides of the equation is simultaneously simplified,
and the Jacobian matrixes (JX = ∂X/∂θ, JLc

= ∂Lc/∂θ,
JLc

= ∂Ls/∂θ, JH = ∂H/∂θ) are introduced into (17). We
obtain:

FT
e JX − TT

c JLc − TT
s JLs −GTJH = 0 (18)

where JX , JLc
, JLs

, JH are the Jacobian matrixes of end
effector, cables, springs, and gravity, respectively.

Fig. 10. Stiffness model. (a) Single segment of VDS-CSM. (b) Simplified
theoretical models.

C. Stiffness Model

The VDS-CSM adjusts its stiffness by changing the distance
between driving cable and spring relative to the central axis
of manipulator. This adjustment is achieved by varying the
outer diameter of arm segment. The stiffness of VDS-CSM is
primarily provided by spring and driving cable. To model the
stiffness of manipulator, we assume that the spring conforms
to the constant curvature model during bending and that
the manipulator does not twist during operation. The single-
segment model of VDS-CSM is shown in Fig. 10(b). Springs
are placed outside the driving cables at holes 1, 2, and 3, while
only driving cables are present at holes 4, 5, and 6, with no
spring connections.

As Simaan stated in [27] and [28], after transposing (18),
the joint angle θ is fully differentiated and the Hessian matrix
is retained to obtain the following results (the gravity of VDS-
CSM is constant, JT

H
∂G
∂θ = 0):

Kr =
(
JT
X

)−1

 HJT
Lc
T c + JT

Lc
KcJLc

+HJT
Ls
T s + JT

Ls
KsJLs

+HJT
H
G−HJT

X
F e

(
JX

)−1
(19)

where Kr ∈ R6×6 is the stiffness matrix of the end of VDS-
CSM in Cartesian space, Kc ∈ R3m×3m, Ks ∈ R3×3 rep-
resent the diagonal matrix of the cables and springs stiffness.
The end stiffness of manipulator is composed of two parts. The
first part, referred to as the end active stiffness, is related to the
tension of the cable and the spring. The second part, known as
the end passive stiffness, is related to the tensile stiffness of the
cable and spring. In fact, the elements in the Hessian matrix
HJT

X
, HJT

Lc
, HJT

Ls
, and HJT

H
are very small. Therefore, the

Hessian matrix is not the main factor influencing the stiffness
matrix in (19). To simplify the calculation, the stiffness model,
after ignoring the Hessian matrix, can be written as:

Kr =
(
JT
X

)−1 (
JT
Lc
KcJLc + JT

Ls
KsJLs

)
(JX)

−1 (20)

From (20), the main factors determining the stiffness of
VDS-CSM are JX , JLc , JLs (related to joint angle and outer
diameter) and Kc, Ks (related to cable and spring stiffness).
The joint angle and outer diameter are structural parameters
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Fig. 11. (a) and (b) show the influence of radius on the axial generalized
force Qa and the bending generalized force Qb. (c) and (d) illustrate the
influence of joint angle on the axial generalized force Qa and the bending
generalized force Qb. (take Ka = Kb)

of VDS-CSM, and their values and variation characteristics
are easily determined. Therefore, we primarily discuss the
influence of cable and spring stiffness on the stiffness of VDS-
CSM. Typically, the stiffness of cable significantly exceeds
that of spring. As indicated in (20), the stiffness of cable is
highly sensitive to variations in diameter. The stiffness of cable
is usually directly determined by its structural parameters,
whereas the stiffness of the spring is more complex.

As seen in Ks = ∂T s/∂θ, T s = T a + T b, the spring’s
elastic force comprises the axial elastic force generated dur-
ing stretching or compression, and the bending elastic force
produced during bending. These forces give the spring both
axial stiffness Ka and bending stiffness Kb. Due to the
bending characteristics of spring, the axial stiffness and the
bending stiffness are coupled, making it difficult to determine
the stiffness of VDS-CSM. To address this issue, we propose
a stiffness simplification method for VDS-CSM.

To analyze the influence of the axial and bending elastic
forces of spring on the movement of VDS-CSM, we inves-
tigate the energy of spring in tension/compression Ea and
bending Eb. Assuming that the spring conforms to the constant
curvature model in bending, the energy change of the spring
is only related to its stiffness Ka, Kb, the joint angle θ, and
the radius r of VDS-CSM. The energy of spring is obtained
by taking the partial derivatives with respect to the joint angle
θ and radius r of VDS-CSM, and the relationship between the
axial generalized force Qa and the bending generalized force
Qb of spring, as well as the joint angle θ and radius r, is
determined: {

Qa,r =
∂Ea

∂r

Qb,r =
∂Eb

∂r

,

{
Qa,θ =

∂Ea

∂θ

Qb,θ =
∂Eb

∂θ

(21)

From the longitudinal axis data presented in Fig. 11, it
is evident that when θ and r change, the axial generalized
force Qa differs from the bending generalized force Qb by
five orders of magnitude (105). Therefore, the bending elastic
force Qb during bending can be ignored. In (21), the diagonal

matrix of cable and spring stiffness can be simplified as (the
number of segments, m, is 2):Kc = diag

[
EA
ls

EA
ls

EA
ls

EA
ls

EA
ls

EA
ls

]
Ks = Ka = diag

[
ka ka ka 0 0 0

] (22)

where E and A represent the elastic modulus and the cross-
sectional area of the cable, respectively, ls is the initial length
of the cable, and ka is the axial stiffness coefficient of a single
spring.

IV. STIFFNESS CHARACTERISTICS ANALYSIS

According to (20), the stiffness at the end of VDS-CSM
depends on the joint angle, manipulator’s radius, cable stiff-
ness, and spring stiffness. Cable and spring stiffness are
inherent material properties that remain constant throughout
the manipulator’s operation. To further analyze the stiffness
variations of VDS-CSM, we examine the joint angle and
manipulator’s radius as variables affecting the end stiffness.
Given the assumption that the VDS-CSM is free of torsion,
torsional stiffness at the end is not considered, and the number
of segments, m, is 3.

A. The Impact of Arm Radius on End Stiffness

We define the X-axis along the axial direction of the
manipulator, the Z-axis along the radial direction, and the Y -
axis according to the right-hand rule. Due to the manipulator
being in a singular configuration when joint angle θ = 0, an
approximate value is chosen for verification instead.

Firstly, in the configuration where the joint angle θ ≈ 0
[Fig. 12(a)], the radius of VDS-CSM is continuously adjusted
from 29.6 mm to 60 mm, and the change in end stiffness is
depicted in Fig. 12(b). Since the manipulator is in a singular
configuration, the stiffness along the X-axis approaches infin-
ity. The rate of stiffness increase along the Y -axis and Z-axis
is approximately 400%.

Then, under the configuration where the joint angle θ =
π/18 [Fig. 13(a)], the radius of VDS-CSM is continuously
adjusted from 29.6 mm to 60 mm, and the change in end
stiffness is shown in Fig. 13(b). The analysis shows that
the stiffness increase rate at the end of VDS-CSM reaches
approximately 400% in all directions.

According to the analysis above, adjusting the manipulator’s
radius can effectively increase the end stiffness.

B. The Impact of Joint Angle on End Stiffness

To verify the influence of joint angle on the end stiffness
of VDS-CSM, the joint angle is incrementally increased from
θ = π/36 to θ = π/12 under conditions where the radius is set
to r = 30 mm and r = 45 mm , respectively. The simulation
results for the end stiffness are depicted in Fig. 14 and Fig.
15.

Based on the above analysis, the stiffness characteristics of
VDS-CSM are primarily influenced by the radius and joint an-
gle, which continuously vary with actual working conditions.
The manipulator exhibits the following characteristics.
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Fig. 12. Radius-stiffness variation characteristics (a) Radius variation of VDS-
CSM in joint angle θ ≈ 0 configuration. (b) Variation of stiffness at the end
of VDS-CSM. (c) The X-axis stiffness. (d) The Y -axis stiffness. (e) The Z-
axis stiffness.

Fig. 13. Radius-stiffness variation characteristics (a) Radius variation of VDS-
CSM in joint angle θ = π/18 configuration. (b) Variation of stiffness at the
end of VDS-CSM. (c) The X-axis stiffness. (d) The Y -axis stiffness. (e) The
Z-axis stiffness.

Fig. 14. Joint angle-stiffness variation characteristics (a) Under the config-
uration where radius r = 30 mm, joint angle of VDS-CSM changes. (b)
Variation of stiffness at the end of VDS-CSM. (c) The X-axis stiffness. (d)
The Y -axis stiffness. (e) The Z-axis stiffness.

1) The change ratio of VDS-CSM’s end stiffness is approx-
imately proportional to the square of the change ratio in
VDS-CSM’s outer diameter.

2) The change in joint angle is positively correlated with
the change in end stiffness and negatively correlated with

Fig. 15. Joint angle-stiffness variation characteristics (a) Under the config-
uration where radius r = 45 mm, joint angle of VDS-CSM changes. (b)
Variation of stiffness at the end of VDS-CSM. (c) The X-axis stiffness. (d)
The Y -axis stiffness. (e) The Z-axis stiffness.

the tensile properties of VDS-CSM.
The VDS-CSM’s excellent ability to integrate adjustments

between outer diameter and stiffness equips it with versatile
functionality, making it adaptable to a wide range of task
requirements.

V. PROTOTYPE AND EXPERIMENTS

A. Prototype and Experiment Setup

To verify the novel mechanical design, a CSM prototype
with an adjustable arm diameter and synchronous stiffness
adjustment was developed, as shown in Fig. 16. The proto-
type arm is divided into two segments, each containing two
umbrella skeleton type variable diameter units. The overall
structure is constructed from aluminum alloy. The specific
dimensions of prototype are as follows: the total length of the
arm is 650 mm, and the length of driving box is 415 mm. The
driving strategy for the arm involves using a motor to drive
and control the cable. Three cables, spaced 120 degrees apart,
are used as a group to control each section of joint movement.
The motor model is Maxon DCX22S (rated torque: 15.3 mNm,
rated speed: 10800 r/min, rated power: 24 W, mass: 66.8 g),
the motor planetary gear reducer model is GPX22 A (reduction
ratio: 62, mass: 67 g). All motors and reducers are installed
inside driving box and controlled by the RoboModule driver.
We use a ThinkPad (Core i7, Intel Xe Graphics) as the upper
computer and the communication protocol is CAN.

B. Variable Stiffness Model Validation

To verify the diameter-stiffness integrated adjustment capa-
bility of VDS-CSM, as shown in Fig. 17, we conducted a load
test on manipulator. First, with the manipulator radius set to 32
mm, a 200 g weight was suspended at the end, and the driving
force of cable was adjusted to maintain the manipulator in a
horizontal position. Next, the manipulator radius was adjusted
to 46 mm while keeping it horizontal, allowing it to support
a 500 g weight at the end. Finally, the radius was adjusted to
the critical state of 58 mm, and the end was able to support a
1000 g weight. As the VDS-CSM’s load increases, the end of
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Fig. 16. Prototype and experimental system of VDS-CSM.

Fig. 17. Diameter-stiffness integrated adjustment test. (a) Load 200 g. (b)
Load 500 g. (c) Load 1000 g. (d) Radius is 32 mm. (e) Radius is 46 mm. (f)
Radius is 58 mm.

manipulator moves upward by 5 mm, and motor’s peak current
rises from 109 mA to 175 mA.

When the VDS-CSM is placed horizontally, the theoretical
end stiffness calculated using (20) is compared with the
end stiffness of VDS-CSM, directly measured using (23). To
minimize the influence of external forces and gravity on the
experimental results, a 200 g weight was suspended vertically
at the end of VDS-CSM to simulate the external force, as
shown in Fig. 18(c). During the experimental validation of the
theoretical stiffness model and the direct measurement method,
the stiffness in the Z-axis direction was used for calculation
and comparison. Where Kp is the measured stiffness. ∆F
is the external force applied on the end of VDS-CSM. ∆z
represents the displacement change at the end of VDS-CSM.

Kp =
∆F

∆z
(23)

In the experiment, the NOKOV optical motion capture
system was used to measure the displacement change at the
end of VDS-CSM after external force was applied at different
radius states. Based on the measurement data, the theoretical
stiffness, measured stiffness, and error at the end of VDS-
CSM are presented in Fig. 19. These experiments validate the
accuracy of the stiffness model for VDS-CSM and demonstrate
its effective outer diameter-stiffness integration adjustment
capability.

Fig. 18. Experimental validation of theoretical stiffness and measured stiffness
comparison. (a) Radius is 30 mm. (b) No-load state. (c) 200 g-load state. (d)
Radius is 40 mm. (e) No-load state. (f) 200 g-load state. (g) Radius is 50
mm. (h) No-load state. (i) 200 g-load state.

Fig. 19. Theoretical stiffness, measured stiffness, and error.

C. Demonstration of Prototype Functions

To verify the manipulator’s performance in complex work-
ing conditions, we set up two circles with different radii, as
shown in Fig. 20. When VDS-CSM encounters the first circle
(70 mm), it adjusts its radius to 55 mm to pass through. For
the second circle (40 mm), the radius is adjusted to 35 mm
to complete the crossing. For instance, in the maintenance
of aerospace equipment characterized by complex structural
dimensions, the manipulator can achieve precise operations
on the target by dynamically adjusting its outer diameter.

In the handling of medical supplies, VDS-CSM can grasp
and move the target using its structural characteristics without
relying on an end effector. As illustrated in Fig. 21, we use a
cup with an inner diameter of 32 mm and a height of 100 mm
as the target, moving it from the white circle to the black circle
by utilizing the VDS-CSM’s transformation capabilities. First,
the VDS-CSM approaches the target, and its end is bent into
the cup. The VDS-CSM’s outer diameter is then adjusted to
match the cup’s inner diameter. As the manipulator’s stiffness
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Fig. 20. Variable diameter crossing circulars experiment. (a) When VDS-
CSM’s radius is 55 mm, it successfully passes through a circle with a radius
of 70 mm. (b) Through the first circle. (c) Through the second circle. (d)
When VDS-CSM’s radius is 35 mm, it successfully passes through a circle
with a radius of 40 mm.

Fig. 21. Target grabbing experiment. (a) Initial state of VDS-CSM. (b) VDS-
CSM approaches the target. (c) The end of VDS-CSM bends and extends
into the target. (d) The outer diameter of VDS-CSM increases to complete
the grab. (e) Adjust the pose of VDS-CSM to move the target. (f) The outer
diameter of VDS-CSM decreases.

increases, it grasps the target through friction between the arm
segment and the inner wall of the cup, adjusting its position so
that the target is placed at the black circle. Finally, the VDS-
CSM’s outer diameter is reduced to be smaller than the cup’s
inner diameter, completing the grasping and movement of the
target.

VI. CONCLUSION

In order to enhance the navigation and operation capa-
bility of CSM in the narrow space with variable constraint
dimensions, this article proposes a novel VDS-CSM, which
achieves the continuous adjustment of the outer diameter
of the manipulator and exponential change of the stiffness
by borrowing the umbrella folding mechanism. The detailed
kinematics, statics, and stiffness models of VDS-CSM are
established, and the relationship between outer diameter and
stiffness is analyzed. Furthermore, experiments are designed
to verify the variable stiffness model and demonstrate the
prototype’s functionality. The experimental data demonstrate
that the stiffness adjustment range of manipulator is approx-
imately 400%. The VDS-CSM proposed in this article can
handle a wider range of tasks and navigate through complex
working environments. Changes in diameter alter the inertia

and dynamic characteristics of VDS-CSM, thereby modifying
its control parameters and introducing challenges for achieving
precise control. In the future, we will continue to study the
control issues of VDS-CSM and application exploration for
specific mission requirements.
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