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Abstract

Optimal Camera Placement (OCP) problem is a combinatorial optimization problem,

where the aim is to find an optimal placement of cameras, given that a target area is

completely covered. A single-objective OCP is commonly formulated in two possible

ways. The first one is to maximize the area coverage, such that minimal camera cost

is maintained. The second one is to minimize camera cost, such that complete area

coverage is achieved. The idea of the second formulation of OCP can be similar to a

popular NP-hard combinatorial optimization problem, namely, the Set Covering Prob-

lem (SCP). Thus, OCP can be formulated as SCP. However, a special variant of SCP is

used in this paper. This variant is called the unicost SCP (USCP), where the cost is as-

sumed to be unified and, therefore, not a factor. The reason behind using USCP is that

our problem instances do not consider cost as a factor, which makes USCP well-suited

for this study. Thus, the objective of our OCP problem is to minimize the number of

cameras rather than the cost.

Despite the connection between OCP and SCP, not many studies have used techniques

from the former’s literature and applied them to address the latter. This study exploits

this connection by implementing various SCP techniques to address 69 OCP instances

retrieved from the GECCO 2021 competition on “the optimal camera placement prob-

lem and the unicost set covering problem”. First, our OCP problems are solved using

classic exact methods. The initial results seem to be promising, but can be improved.

Next, SCP problem reduction techniques are introduced and implemented to address

the complexity of our problem. A comparison between the results before and after re-

duction is given. After that, the OCP is formulated as a bi-objective problem, where the

two objectives are to, simultaneously, minimize the number of cameras and maximize

the area coverage. An effective multi-objective technique is used to obtain the efficient

solutions of this problem.

Keywords: Combinatorial Optimization, Optimal Camera Placement, Set Covering

Problem, Reduction Techniques, Bi-Objective, Multi-Criteria Decision Making
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Chapter 1

Introduction

Nowadays, installing cameras for various purposes, including security, tracking, or gen-

eral monitoring purposes, has become a very common practice in public places, busi-

nesses, or even personal spaces. Some people install cameras at their homes to track

their children or pets while they are at work, to obtain solid evidence in case of accidents,

or generally just to feel safe. As for businesses, having cameras installed can be very

valuable in tracking employees for performance purposes, ensuring the safety of everyone

in the building, and preventing any potential theft or general assault. Regarding public

places or cities in general, having cameras does not only reduce crime activities, but it

also helps in monitoring large crowds, dealing with traffic, and improving such places

by gathering data.

When people wish to install cameras in their homes, the process is normally not too

complicated. To illustrate more, if a family wants to monitor their two-bedroom apart-

ment, installing three cameras, one in each room, might be enough to monitor most of

the place, depending on the structure of the apartment. However, for big venues, such

as museums or even airports, the process becomes more challenging and costly. The

reason behind this is that an efficient camera placement plan would be needed, where

the minimum number of cameras is used to monitor most, if not all, the venue. This is

where an optimal camera placement can be useful.

Optimal Camera Placement (OCP) is the process of finding a camera placement strategy

that utilizes the cheapest camera plan possible to fully monitor a certain location (i.e.,

rooms, houses, theatres, cities, and so on). OCP is an optimization problem which can

be formulated using two common objectives: maximizing area coverage or minimizing

1



Chapter 1. Introduction 2

camera cost. Using the first objective, the main goal of OCP would be to maximize

area coverage such that the camera cost is minimal; on the other hand, when the second

objective is used, the main goal of OCP would be to minimize camera cost such that

complete area coverage is achieved.

The origins of OCP come from the field of computational geometry in the 70s of the last

century, where Chvátal [1] studied the Art Gallery Problem (AGP). AGP is the process

of finding the optimal guard placement in an art gallery. The main goal of AGP is to

minimize the number of guards in an art gallery, such that the whole gallery is covered

by the selected guards. From an OCP point of view, we employ cameras instead of

guards, and the goal of an OCP problem would be to minimize the number of cameras,

such that the whole target location is covered by the selected cameras. Ever since the

introduction of this problem, AGP has become the source of inspiration for many OCP

studies in various fields, such as robotics ([2]; [3]), motion capture systems ([4]; [5];

[6]) and surveillance ([7]; [8]; [9]). This thesis mainly focuses on OCP for surveillance

purposes; nevertheless, this thesis discusses various applications of OCP to provide the

reader with a better understanding of the idea of camera placement and the recent work

that has been done on this topic. More on this is discussed in chapters 3, 4, 5.

1.1 Research Motivation and Contribution

As mentioned earlier, OCP can be modelled in two common ways, where the the first one

maximizes the area coverage, given that the cost of the camera must be minimal; while

the other one minimizes the camera cost, given that complete coverage of the target area

must be achieved. When adopting the second model, OCP can be formulated as the Set

Covering Problem (SCP). SCP is a widely studied combinatorial optimization problem,

and, in the strong sense, is classified as an NP-hard problem [10]. Given that a binary

matrix containing m number of rows and n number of columns, where a certain cost

cj is assigned to each column j, SCP aims to find a subset of columns that minimizes

the total cost, such that each row i is covered by at least one column j. From an OCP

point of view, columns can be cameras and rows can be the certain locations that must

covered by a subset of the given cameras. In other words, the goal of an OCP problem

formulated as a set covering problem would be to find a subset of cameras (columns) that

minimizes the total cost, such that each location (row) must be covered by at least one

camera. Since more work has been done on SCP than on OCP, the similarity between

the two problems can be exploited by finding techniques from the former’s literature
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and implement them to address the latter. In addition, exploring various SCP methods

could inspire inventing new methods to tackle the OCP problem. More on SCP and its

techniques will be discussed in Chapter 2.

Despite the fact that OCP can be formulated as SCP, not many OCP studies have

exploited this connection [9]. Thus, this thesis explores the SCP literature to find various

techniques that can be used to address the OCP problem. However, this is not as simple

as it sounds. Our problem instances, which will be discussed in detail later, are quite

large, which means that it can be time consuming to solve them using the standard

optimization techniques. To elaborate on that, it can take weeks or even months just

to solve one problem instance, especially the larger instances. Considering that we have

to deal with 69 instances, solving all of them could take years. Therefore, we propose

a reduction algorithm, which was inspired from the SCP literature, to address the size

issue and the NP-hard nature of this problem. We are interested in testing the impact

of our proposed reduction algorithm on our problem instances and then compare that

to other studies from the literature.

In this study, we address 69 problem instances retrieved from the GECCO 2021 compe-

tition on the optimal camera placement problem and the unicost set covering problem

[11]. 32 out of the 69 OCP problem instances are made up instances which are called

academic instances. These academic instances consist of 3-dimensional grids that sam-

ple different sizes of rectangular-shaped rooms, where cameras can be installed on the

ceilings to monitor these rooms. The remaining 37 problem instances are called real-

world instances. As the name implies, these instances are modelled after real areas,

such as urban cities. In real-world instances, different placements are used to install

camera, such as the walls of buildings. Each problem instance, whether it is academic or

real-world, includes two important terms that will be used throughout this thesis. The

first term is called candidates. Each candidate represents a possible camera placement,

which includes its angle and tilt. The other important term is called samples. Given

a 3-dimensional space, samples represent 3-dimensional points within that space. From

an OCP point of view, we can say that candidates can cover different samples; likewise,

we can say that samples can be covered by different candidates. Thus, the goal of the

OCP problem would be to find a subset of candidates that minimizes the total cost,

such that each sample must be covered by at least one candidate.
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The following are the main research questions of this thesis:

• Can we formulate our specific OCP problem using SCP?

• Can we solve the OCP problem using classic exact methods?

• Does reducing the size of our problem instances help in obtaining the solutions

faster?

• Will the reduction algorithm itself be time consuming? If so, is there a way to fix

this issue?

• Can we formulate our OCP problem as a bi-objective OCP and use SCP techniques

to tackle it? If so, does the reduction algorithm have an impact on the bi-objective

OCP problem?

We also list the main contributions of this thesis:

• Exploit the connection between SCP and OCP.

• Improve an already existing SCP reduction algorithm to address the size issue of

our problem instances, then compare the impact of the original reduction algorithm

with our new reduction algorithm.

• Compare our reduction results with other OCP studies that have used reduction

techniques to address the same OCP problem instances we adopted in this thesis.

• Create an extensive OCP study, that focuses on the bi-objective version of the

OCP problem.

• Propose an effective ϵ-constraint approach to tackle the bi-objective OCP problem.

1.2 Thesis Structure

Overall, this thesis consists of six chapters. An introduction to the thesis has already

been given in Chapter 1. In Chapter 2, an extensive introduction optimization is given.

This chapter contains different aspects of optimization that are relevant to this thesis.

This includes discussions on optimization background, optimization concepts, types of

optimization techniques, time complexity, and the different ways to solve optimization
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problems. It also introduces the set covering problem, which will be used throughout

this thesis.

The main goal of this thesis is to exploit the connection between OCP and SCP. There-

fore, the next three chapters study that connection by using techniques from the SCP

literature and implement them to tackle our specific OCP problem instances. In Chap-

ter 3, the connection between the two problems is introduced. This includes discussions

on both problems’ literature, which helps in finding possible ways to address our prob-

lem instances. In this chapter, OCP is formulated as a USCP and then the problem

instances are solved using a Linear Programming solver. For each problem instance,

a certain time-limit is set. The results prove that OCP can be solved using the SCP

formulation. Although, these initial results are promising, the time limit was not enough

to produce all the results. The reasons behind this issue are discussed, but the main

concern is the size of our problem instances, which prevents us from obtaining all the

results in a reasonable time period. For future work, suggestions for addressing this

complication are then discussed.

In Chapter 4, the connection between OCP and SCP is studied in more depth. The

main aim of this chapter is to improve the results of Chapter 3 by addressing the size of

the OCP problem instances. To achieve that, classic problem reduction techniques from

the SCP literature are discussed and implemented to address the size issue. The initial

results showed great promise as the sizes of these problem instances were dramatically

reduced. However, it was still time consuming to reduce our OCP problems. As a

result, we modified the SCP reduction techniques to make this process faster. The

new results were exactly the same in terms of the size of the problems; however, the

time needed to reach that outcome was significantly diminished. All the reduction and

the optimization results are provided. In addition, a comparison between the results

from Chapter 3 and Chapter 4 is given, which proves the effectiveness of the reduction

techniques implemented in this chapter.

Chapter 5 takes a different path in terms of the optimization technique used. In this

chapter, a multi-objective optimization technique, namely the ϵ-constraint method, is

used to address the bi-objective OCP problem. In this chapter, OCP is formulated as

a bi-objective problem, where the two objectives are to minimize the number of cam-

eras and maximize the area coverage, simultaneously. All the relevant multi-objective

terms are introduced and explained later in this thesis. With the help of the classic

ϵ-constraint method, we managed to obtain the efficient solutions of a few problem in-

stances. However, the size of the problem instances was also an issue for the bi-objective
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OCP problem. Therefore, we implemented the reduction techniques used in Chapter 4

to address this issue. The new results show a dramatic improvement in terms of time

consumed to obtain all the efficient solutions for each problem instance.

Finally, Chapter 6 concludes this thesis by providing a comprehensive summary of all

the previous chapters. It also discusses the limitations of this thesis as well as explores

the different possibilities for future work.



Chapter 2

Optimization Background

In this chapter, we start by introducing the field of Operations Research before jumping

into discussing the topic of optimization, which includes its basic form, special types,

techniques, time complexity of optimization problems, and finally an introduction to the

main optimization problem of this thesis, namely, the Set Covering Problem.

2.1 Introduction to Operations Research

Operations Research (OR) is a quantitative field that employs quantitative tools to

help decision makers make better decisions. Some of the popular OR concepts include

statistical analysis, mathematical modelling, and optimization [12]. The purpose of sta-

tistical analysis generally is that it uses data for interpretations and identifying patterns;

whereas, the purpose of mathematical modelling is to convert real-life systems into math-

ematical equations to understand said systems. As for optimization, which is the main

focus of this section and thesis, it is the process of finding the best possible outcome

for a problem that is defined mathematically. There are many other OR techniques

that are not discussed in this thesis, but are widely popular, such as simulation, system

dynamics, problem structuring methods, stochastic programming, artificial intelligence,

machine learning, and many others [13]. The origins of OR come from World War II,

where some OR techniques were invented to enhance military-related operations, such

as radar detection, logistics, and resource allocation [12]. Because of the success of some

of these OR techniques during the war, the OR field became widely popular in other

domains, such as industry, business, and government. Nowadays, OR is still considered

7



Chapter 2. Optimization Background 8

as one of the most important fields, and is used in other domains, such as artificial intel-

ligence, financial planning, healthcare operations, general scheduling, and supply chain

management.

Generally, an OR process that is used for problem solving consists of the following five

steps [12]:

1. Defining the problem.

2. Constructing the model.

3. Solving the problem.

4. Validating the model.

5. Implementing the solution.

In the first step, decision makers clearly define a problem, which would include the

objectives of the problem, the constraints of the problems, and the decision variables.

For example, a transportation company wants to minimize their overall travel time,

while considering factors such as traffic, alternative routes, cost of petrol, number of

vehicles available, and so on. The second step of an OR process is to construct a

mathematical model that portrays the defined problem. After the problem has been

defined and the model has been constructed, the model can be solved using various OR

techniques. This is the third step. In the next step (Step 4), decision makers validate

the model; meaning, they test the accuracy and how representative this solution is to

the real problem. Finally, if all the previous steps are successfully achieved, the solution

can be implemented to address the real problem. This process can be viewed as a

straightforward step by step sequence; however, this is not the case. In each step, errors

can happen, and this creates feedback loops between steps. For instance, in step 4, if the

model cannot be validated, the process loops back to step 2 or even step 1, depending on

the specific circumstances. Similarly, if various challenges appear in the implementation

phase (step 5), then returning to the original model (step 2) might be necessary.

There are numerous OR techniques that have been implemented throughout the years;

one of which is mathematical programming. Mathematical programming is a popular

concept that falls under the umbrella of optimization. There are three main types of

mathematical programming. The first one is called Linear Programming (LP), which

is used to solve problems that consist of linear objectives and constrains. The second
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one is called Nonlinear Programming (NLP), which deals with non-linear objectives

and/or constraints. The third one is called Integer Programming (IP), which deals with

discreet decision variables. Other OR techniques include simulation which is used to

model stochastic systems, decision analysis which is usually adopted to address uncertain

decisions using decision trees, and queuing theory which tries to analyse and optimize

waiting lines.

OR has several benefits as well as some limitations. Starting with the benefits, OR

improves the decision making process and outcome for complex problems, thrives in

maximizing efficiency and minimizing waste, known to be adaptable with change, and,

lastly, effective when it comes to minimizing costs of various operations in different

domains. Moving to the limitations, using OR can sometimes be too challenging, as

sampling real-world operations can be quite complicated. Similarly, applying OR solu-

tions to real-world systems can be a complex process. Another limitation to OR is that

it can be computationally expensive when it comes to the time and resources needed to

solve OR problems. Finally, OR depends on real data, which most of the time is ex-

pensive, hard, or even impossible to obtain. For more details regarding OR in general,

interested readers are advised to refer to [12].

2.2 Introduction to Optimization

Optimization is the process of solving a decision making problem by finding the best

outcome out of a set of feasible outcomes, while taking into account a set of problem con-

straints. Generally, optimization problems focus on reaching certain objectives. These

objectives are usually used to either maximize something (e.g., profit) or minimize some-

thing else (e.g., cost). Therefore, we can introduce the first component of an optimization

problem, which is called the objective function. An example of an objective function for

a business could be to maximize the profit. After deciding whether to maximize or min-

imize an objective function, decision variables can be defined. Decision variables are the

second component of an optimization problem. They represent the parameters where

their values are used in the objective function to find the optimal solution. An example

of a decision variable for a business owner is the number of products that need to be

sold to maximize the profit. The third component in optimization problems is known as

the constraints. Constrains are basically the restrictions of the optimization problem.

For example, the maximum number of products that can be manufactured per day is
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considered as a constraint for a business owner aiming to maximize the profit. The final

component is called the feasible region, from which the best outcome is selected.

Optimization is widely used in various fields, including but not limited to logistics,

transportation, manufacturing, finance, artificial intelligence, and machine learning. Op-

timization is important because it helps businesses to enhance their decision making pro-

cess, resource allocation, competitiveness by maximizing profit or minimizing cost, and

adaptation to change in the nature of their specific business. For more details regarding

optimization background, reader are advised to refer to [12].

A general optimization problem can be formulated as follows [14]:

minimize z(x)

subject to:

gi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , p

x ∈ Rn.

Where z(x) is the objective function that needs to be minimized. The first constraints,

gi(x) ≤ 0, are called inequality constraints, while the second constraints, hj(x) = 0,

are called equality constraints. Finally, x ∈ Rn refers to the decision variable x, which

belongs to the n-dimensional space. The goal of this optimization problem would be to

minimize z(x) by finding the relevant value of x, while considering the restrictions that

gi(x) ≤ 0 where i = 1, 2, . . . ,m and hj(x) = 0 where j = 1, 2, . . . , p.

Commonly, optimization problems are solved using exact methods. Exact methods en-

sure that the solution obtained will be the exact optimal solution (i.e., best outcome).

Examples of exact methods include the Simplex method for LP problems, and Branch-

and-Bound and Branch-and-Cut for IP problems. These methods are popular in OR,

and specifically in optimization, since they provide the optimal solution. However, for

some large problems, such as NP-hard problems, finding the optimal solution can be

computationally expensive in terms of time and resources. As a result, some experts

adopt heuristics. Heuristics are algorithms designed to solve specific problems and aim

to find good enough solutions (not necessarily optimal) in a reasonable time period.

Despite the fact that heuristics do not guarantee optimal solutions, they are still widely

popular as they can dramatically reduce the time needed to solve large-scale problems.

Popular examples of heuristic techniques are the Greedy Algorithm and Local Search
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Algorithms. Another technique used to find near-optimal solutions is called metaheuris-

tic. The main difference between heuristics and metaheuristics is that the former is

usually designed for specific problems, whereas the latter is used for general purposes

(i.e., problem-independent). Popular examples of metaheuristics are Genetic Algorithms

and Simulated Annealing.

2.3 Multi-Objective Optimization

Thus far, we discussed optimization problems assuming that they contain a single ob-

jective, where the solution would represent the best outcome. That being said, opti-

mization problems can also be defined using multiple conflicting objectives. When a

multi-objective optimization problem contains only two objectives, we can also call it as

a ‘bi-objective’ optimization problem.

Generally, Multi-objective Optimization (MO) produces a set of alternatives, instead of

one single solution. This is also known as the feasible set. These feasible solutions (or

alternatives) consist of different combinations of the objective function values. Then,

efficient solutions are selected from these feasible solutions. In MO, a solution is con-

sidered as efficient if there are no other alternatives that offer a“better” value. The next

step would be to represent the solution in a graph which is created by plotting all the

efficient solutions. This is called the efficient frontier, where any point that lies on the

frontier is considered as an efficient solution. After the efficient set, which contains all

the efficient solutions, has been identified and the efficient frontier has been produced, a

solution can be selected by the decision makers based on their personal preference. For

more details regarding MO, readers can refer to [15].

A general example of an MO problem is illustrated below:

minimize (f1(x), . . . , fk(x))

subject to:

x ∈ X .

Where (f1(x), . . . , fp(x)) represents a vector of k objective functions that must be min-

imized. As for the constraint, x ∈ X represents the feasible decision space. The goal is

to obtain all the efficient solutions, where each efficient solution x ∈ X .
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When the decision makers’ preference is to obtain a set of efficient alternatives rather

than one optimal solutions, MO is more valuable. MO is often a more realistic approach

to adopt, as a single optimal solution can be too expensive or even infeasible to im-

plement. Moreover, MO gives decision makers several options to choose from. Thus,

if there is an issue with one solution, decision makers have other efficient solutions to

choose from, where the solution could be worse in quality but comes at a lower cost.

There are several MO techniques used to tackle MO problems, one of which is called

the weighted sum method. This method combines all objectives into one objective by

assigning weights to each objective. Then, the new single objective that consists of

all objectives can be optimized. The weighted sum method is a popular MO technique

because it is usually not very difficult to implement. It is also useful for convex problems

as it can obtain all the efficient solutions. However, weighted sum method can fail to

obtain all the efficient solutions in non-convex problems. Another challenge in adopting

this technique is to assign proper values for the weights. More details regarding the

weighted sum method can be found in [15].

ϵ-constraint method is another popular MO technique. In this method, one objective

is optimized, while all the other objectives are transformed into constraints, where each

constraint (objective) is given a specific bound of ϵ. This method can work better than

the weighted sum method when it comes to non-convex problems. However, it can be

time consuming as the problem is solved multiple times based on the values of ϵ. More

details regarding the ϵ-constraint method can be found in [15].

2.4 Combinatorial Optimization

Generally, optimization problems can be classified as continuous or discrete. As the

name implies, continuous optimization problems can only take decision variables that

represent real numbers, or generally any values within a specific range. On the other

hand, decision variables in discrete optimization problems can represent only discrete

values, such as binary values or, generally, any integers. Combinatorial optimization

problems represent a special type of discrete problems.

Combinatorial optimization problems deal with problems that have a discrete nature.

Given a finite set of feasible solutions, the goal, as always, is to find the optimal solu-

tion. The Travelling Salesman Problem (TSP), is a popular example of combinatorial

problems, where the goal is to find the shortest path that passes through all the possible
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locations and returns back to the original starting point. Another example of combi-

natorial problems is the Knapsack Problem, where the goal is to choose the items that

offer the best value possible, subject to a weight capacity limit. SCP is another classic

combinatorial optimization problem. As pointed out earlier, SCP is a major part of this

thesis, which is why it is essential to discuses combinatorial problems in general. More

information regarding SCP is given later in this chapter and generally throughout the

thesis.

Solving combinatorial optimization problems can be a big challenge due to their nature.

In combinatorial problems, the number of possible solutions can grow exponentially

based on the size of the given problem. For instance, if we assume that a specific

TSP has n cities that must be passed through, the number of possible routes to go

through all those cities is (n− 1)!/2. Thus, as the size of the problem grows, solving it

using traditional optimization techniques can become computationally more expensive

or even impossible in some cases. For more details regarding combinatorial optimization

problems, readers are advised to refer to [16].

2.5 Time Complexity

As discussed earlier, combinatorial optimization problems can be computationally com-

plex to be solved, especially when these problems grow in size. More specifically, time

complexity represents the computational time needed by an algorithm based on the size

of its input. In optimization, specifically combinatorial optimization, it is vital to under-

stand the concept of time complexity as it allows us to decide if solving a problem can be

done efficiently. This section focuses on the time complexity of optimization problems.

For more details regarding time complexity, readers are advised to refer to [16].

When an algorithm’s computational time grows at a rate similar to a polynomial function

with an n size input, we say that this algorithm runs in polynomial time. More formally,

we can say that an algorithm’s runtime T (n) is bounded by the big O, O(nk), where k

is a polynomial constant. This can be expressed as:

T (n) = O(nk)
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Generally, optimization problems can be classified into four main classes in terms of

their time complexity:

1. Class P

2. Class NP

3. Class NP-Hard

4. Class NP-Complete

A problem is classified as P when it is possible to solve it in polynomial time using

deterministic algorithms. P problems tend to be efficient to solve. This is because as

the problem size grows, the time to solve these problems remains reasonable. Class NP

problems represent nondeterministic polynomial-time problems. Solving NP problems

may not always be efficient, but once the solution is found, verifying said solution can

be achieved in polynomial time. As for NP-hard problems, they are considered to be

at least as hard as the most difficult NP problem. If all the problem instances of an

NP-hard problem are solved optimally, it means that all NP problems can be solved too.

This would mean that NP = P . However, not all NP-hard problems also belong to the

NP class. Because NP-hard problems normally are not very easy to solve, especially

for large-scale problems, techniques such as approximation algorithms, heuristics, and

metaheuristics are occasionally adopted. Despite the fact that these techniques do not

guarantee an optimal solution, they can solve such complex problems in a reasonable

time. In this thesis, we implemented a different approach to deal with the nature of

our combinatorial problem, OCP formulated as SCP, which is also classified as an NP-

hard problem. More on that will be discussed in the next few chapters. The last time

complexity class to discuss is NP-complete. NP-complete is a special case of the class

NP-hard, that also belongs to the class NP. The main difference between NP-hard and

NP-complete problems is that the former is at least as hard as the most difficult NP

problem, but it does not have to be in NP; whereas the latter exists in both NP and NP-

hard. This means that it may not be possible to verify the solution of NP-hard problems

in polynomial time, whereas it is possible to verify the solution of NP-complete problems

in polynomial time.

Figure 2.1 summarizes the connection between the four classes of optimization problems

in terms of time complexity. The blue circle represents NP-hard problems, whereas the

red circle represents NP problems. We can see that the two circles intersect, because
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NP-Hard
NP

P
NP-Complete

Figure 2.1: A visual illustration of the relationship between the four classes of opti-
mization problems based on time complexity [16]

NP-hard problems may or may not be also NP. NP-complete problems are represented

by the intersection of the blue and the red circles, because an NP-complete problem is

both NP-hard and NP. Finally, class P is represented by the orange circle. It is placed

inside the red circle, because P is part of NP.

2.6 Set Covering Problem

As emphasized in a few occasions earlier, we formulate our OCP problem as a set covering

problem (SCP) and exploit the relationship between the two problems by exploring

techniques from the SCP literature and apply them to solve the OCP problem. SCP is

a classic combinatorial optimization problem, and is classified as an NP-hard problem

[10]. This means that solving SCP optimally may not be efficient in terms of time,

especially when the size of the problem gets larger. Moreover, solving SCP using exact

methods becomes more challenging when n > 1000, as the number of possible solutions

grows exponentially [16]. Given the size of some of our problem instances, solving our

OCP problems using only exact methods is expected to be time consuming. More on

that is discussed in Chapter 4.

Formally, SCP can be defined as follows: firstly, a universal set U , where U = {1, 2, . . . , n},
is given. Secondly, a group of subsets S, where S = {S1, S2, . . . , Sm}, is also given. Each

Si from S is a subset of U , and a cost ci is assigned to each Si. Given that U is covered

by the union of the selected subsets of S (
⋃

Sj∈C Sj = U), the goal of SCP would be to

find a subset with minimum cost (C ⊆ S): minimize
∑

Si∈C ci.
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SCP is a widely studied combinatorial optimization problem and is involved in different

applications, such as crew scheduling ([17]; [18]; [19]), facility location ([20]; [21];[22];

[23]), network design ([24]; [25]; [26]; [27]), and bioinformatics ([28]; [29]; [30]). Table

2.1 lists those studies with the year of publication of each study. It can be noted that

SCP has had various applications throughout the years; however, OCP has not been

explicitly studied in SCP until 2019 [9]. This shows that OCP application in SCP is still

a new research area and there could be numerous possibilities on how to address it.

Table 2.1: Key studies for popular SCP application

Application Key References and Year of Publication

Crew Scheduling (1973 [17]; 1997 [18]; 1997 [19])

Facility Location (1974 [20]; 1976 [21]; 2011 [22]; 2013 [23])

Network Design (2005 [24]; 2010 [25]; 2015 [26]; 2022 [27])

Bioinformatics (2014 [28]; 2014 [29]; 2020 [30])

In the past few decades, various techniques have been implemented to address SCP,

including exact methods, heuristics, and metaheuristics. For finding optimal solutions,

many SCP studies adopted exact methods, despite the fact that SCP is NP-hard and

and could be difficult to solve optimally. Some of the techniques implemented to help

solve SCP using exact methods include branch-and-bound ([31]; [32]) and column gener-

ation ([33]; [34]). Heuristic and metaheuristic techniques have also been implemented to

tackle SCP, but are used mainly to address the NP-hard nature of the problem by find-

ing near-optimal solution in a reasonable time period. Some of the heuristic techniques

include greedy algorithms ([35]; [36]) and local search algorithms ([37]; [38]); while some

of the metaheuristic techniques include genetic algorithms ([39]; [40]) and tabu search

([41]; [42]). An elaboration on some of the key methods from the SCP literature is

provided in the next few chapters.

2.6.1 SCP Single-Objective Formulation

In this subsection, we formulate our single-objective OCP problem as an SCP. Given a

0-1 matrix A with m rows and n columns, where element aij of the matrix A is equal

to 1 when row i can be covered by column j (aij is equal to 0 otherwise), and a specific

cost cj is assigned to each column j, then the SCP model is be expressed as follows:
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minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

(2.1)

Where xj is a decision variable and is equal to 1 when column j is chosen; otherwise,

xj is equal to 0. The goal here is to minimize the total column cost, subject to the

constraint that ensures that each row i is covered by at least one column j. From an

OCP point of view, rows are the samples and columns are the candidates that can cover

those samples. The goal of this OCP problem would be to minimize the total candidate

cost, subject to the constraint that ensures that each sample i is covered by at least one

candidate j.

In this study, our specific instances do not consider camera cost as a factor. As a matter

of fact, this specific OCP problem can be formulated as a special variant of SCP, called

the Unicost SCP (USCP), where columns are not associated with any cost. Hence, the

goal of our specific OCP problems would be to find a subset of candidates that minimizes

the number of candidates used, such that each sample must be covered by at least one

candidate. The only difference between SCP and USCP models is that we do not include

the cost parameter cj in the latter, as cost is assumed to be unified, which means it is

not a factor in our problem. The formulation of USCP is expressed as follows:

minimize
n∑

j=1

xj

subject to

n∑
j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

(2.2)

The goal of this USCP is to minimize the number of columns, subject to the constraint

that ensures that each row i is covered by at least one column j. From an OCP point

of view, the goal would be to minimize the total number of candidates, subject to the
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constraint that ensures that each sample i is covered by at least one candidate j. The

single-objective OCP problem is addressed in Chapter 3 and Chapter 4.

2.6.2 SCP Bi-Objective Formulation

minimize
n∑

j=1

xj

maximize
m∑
i=1

yi

subject to
n∑

j=1

aijxj ≥yi, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

yi ∈ {0, 1}, i ∈ {1, . . . ,m}

(2.3)

After formulating our single objective OCP problem as USCP, now we can transform

this problem into a bi-objective OCP problem. OCP can naturally be considered as a

bi-objective problem with two conflicting objectives: minimize candidates and maximize

samples coverage. Since OCP can be formulated as an SCP, bi-objective OCP can also

be formulated as a bi-objective USCP. Given a 0-1 matrix A with m rows and n columns,

and two binary decision variables named xj and yi, the bi-objective USCP is expressed

in model 2.3 , where xj is the columns decision variables and is equal to 1 if column

j is selected; otherwise, xj is equal to 0. As for yi, it represents the rows decision

variable. This means if row i is covered by at least one column j, yi would be equal to

1; Otherwise, yi would be equal to 0. The goal of this bi-objective USCP problem is

to, simultaneously, minimize the number of columns and maximize the number of rows,

such that if row i is selected, all the relevant columns are also selected. From an OCP

point of view, the goal of this bi-objective OCP problem is to, simultaneously, minimize

the number of candidates and maximize the number of samples, such that if sample i is

selected, all the relevant candidates are also selected. The bi-objective OCP problem is

addressed in Chapter 5.



Chapter 3

Exploring the Optimal Camera

Placement Problem and its

Relationship with the Set

Covering Problem

Optimal Camera Placement (OCP) is the process of finding a subset of cameras that

either maximizes the coverage, such that the cost of cameras is reduced, or minimizes

the total cost of cameras, such that coverage constraints are satisfied. By adopting

the latter formulation, the OCP problem can be formulated as a Set Covering Problem

(SCP), as the concepts of the two problems are inherently similar. Until recently, the

literature has not explicitly discussed this similarity. Hence, this paper examines the

OCP problem by leveraging the formulation established in prior research. Our focus

lies in the practical application, as we implement the model on all instances to derive

meaningful insights. Furthermore, we explore techniques from the SCP literature that

can be applied to address the OCP problem in future studies. In this study, we address

69 problem instances, utilising a benchmark set generated by other researchers. These

instances were employed as part of the GECCO 2021 competition on the optimal camera

placement problem and the unicost set covering problem. We provide detailed results,

and we conclude with recommendations for future research.

19
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3.1 Introduction

In recent years, establishing an optimal camera network for surveillance purposes has

been the subject of interest in several studies. This increased attention is prompted by

the worldwide spread of surveillance systems, which are being employed to address vari-

ous issues, including analysing crowd movements, monitoring transportation systems, or

simply observing certain places for general purposes [9]. The idea of camera placement

was first discussed in computational geometry in the 1970s by Chvátal [1]. The author’s

widely known Art Gallery Problem (AGP) has inspired numerous camera placement

studies since its introduction. AGP is an approach for placing guards in an art gallery,

where the goal is to minimize the number of guards, ensuring that every point in the art

gallery is covered by at least one guard. Transforming this idea to camera placement,

guards become cameras, and the general goal is to select the smallest subset of cameras

that achieves full coverage.

Generally and more formally, OCP is the process of finding a subset of cameras that

either maximizes the coverage, such that the cost (or number) of cameras is reduced;

or minimizes the total cost (or number) of cameras, such that coverage constraints are

satisfied. When working with the minimization objective, the problem can be viewed

as a set covering problem. However, the similarity between the two problems has not

been explicitly discussed in the OCP literature until recently [9]. Therefore, the aim of

our study is to explore the connection between the two problems and discuss techniques

from the SCP literature that can be applied to the OCP problem.

The rest of the paper is structured as follows: Section 3.2 provides a brief summary of

the OCP literature, discussing different techniques that have been used to deal with the

problem. This is followed by a description of SCP in Section 3.3. Section 3.4 provides a

detailed problem description and formulations of our OCP problem. Then, a summary

of the results of the problem is given in Section 3.5. Finally, Section 3.6 concludes our

study and gives a hint of what can be done in future work.

3.2 OCP Literature

Inspired by the AGP, the use of optimal camera networks for surveillance has increased

in the past few decades in order to fully monitor different areas, including public places,
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warehouses, buildings, and so on. The general goal is to maximize coverage or to mini-

mize the cost (or number) of cameras, given a set of constraints [8]. When it comes to

solving OCP, researchers have employed various tools. Some used exact methods to deal

with the problem and find optimal solutions, while others used heuristic methods to find

near-optimal solutions within a reasonable time. To elaborate on the latter, since the

OCP is an NP-hard problem [8, 9], finding optimal solutions can be time-consuming for

sufficiently large instances. Moreover, if a client’s priority is time rather than solution

quality, then it might be sensible to use heuristic methods instead of exact methods

to find a satisfactory solution in a reasonable amount of time. Table 3.1 provides a

summary of some of the key studies that will be discussed in this thesis. This includes,

the objectives used, constraints added, and methods applied to solve every unique OCP

problem.

Table 3.1: A summary of some of the key OCP studies

Study Objective(s) Constraint(s) Methods used

Brévilliers et al. (2018) [43] Minimize number of cameras Full coverage Set-based Differential Evolution

Kritter et al. (2019) [44] Minimize number of cameras Full coverage Row-Weighting Local Search

Jun et al. (2018) [45] Minimize cost of cameras Minimum coverage level Greedy, Genetic Algorithms and ULA

Yang (2018) [46] Minimize cost of cameras Full coverage Branch-and-bound

Yang (2018) [46] Maximize coverage Budget constraint Dynamic programming

Puligandla and Lončarić (2022) [47] Maximize coverage Predefined number of cameras Clustering-based optimization

A study by [45] employed three heuristic algorithms to tackle an OCP. The authors fo-

cused on finding the best algorithm capable of solving OCP problems for the surveillance

of bridges. Their model aimed to minimize the total cost of cameras, while ensuring that

a minimum coverage level is satisfied. Moreover, this study included different types of

cameras to cover specific target points in a three-dimensional space, resulting, for exam-

ple, in an increase in the number of camera locations, which can lead to the expansion

of the size of the problem instances. Because of that, the authors started by examining

their OCP instance using two popular heuristic methods, greedy and genetic algorithms,

as well as a novel heuristic method that is called the Uniqueness Score with Local Search

Algorithm (ULA). For the first method, the greedy algorithm allocates cameras start-

ing from the cheapest one and going up until it reaches the highest possible number of

cameras or achieves the minimum coverage level. At this point, the algorithm halts and

provides the proposed camera network. For the second method, the genetic algorithms

begins by randomly generating a population of chromosomes, where each chromosome

represents a camera placement. This process continues until the minimum coverage level

is reached by each chromosome. Subsequently, a subset of chromosomes that satisfy the

minimum coverage is selected. Mutation and crossover operators are then applied to

this subset, creating new generations and ensuring that the solutions do not become



Chapter 3. Exploring the Optimal Camera Placement Problem and its Relationship
with the Set Covering Problem 22

stuck in a local optimum. As demonstrated in [45], the last method, proven to be more

effective than the other two approaches, begins with the first solution of ULA, inspired

by the uniqueness score. It emphasises specific areas that are left uncovered by other

cameras. Subsequently, a local search is used to enhance the solution by changing the

selected cameras, aiming to find a new solution with a lower cost.

Another study in [46] also examined three different approaches for three OCP cases, one

of which utilized an exact method, while the other two employed heuristic methods. In

the first case, the objective was to maximize the coverage within a limited budget. The

authors formulated the optimization problem as a set covering problem and then applied

dynamic programming to address it. For the second case, the goal was to minimize the

total cost while ensuring full coverage constraints. Similar to the first case, the opti-

mization problem was formulated as an SCP, and branch-and-bound algorithms were

employed. This involved relaxing the binary constraints, solving the new optimization

problem using primal and dual simplex methods, and re-introducing the binary con-

straints through branching. This process is repeated recursively until a feasible (binary)

solution is obtained. Lastly, the third case integrated the previous two cases to form

a multi-objective problem, aiming to both maximize coverage and minimize cost. In-

stead of looking for one optimal solution, the goal was to find a set of optimal trade-offs

(Pareto optimal solutions). In this context, ‘Pareto optimal’ refers to a set of selected

candidate cameras, where no feasible candidate cameras could improve coverage without

worsening the cost simultaneously. To address this problem, the authors suggested using

a heuristic method, specifically the multi-objective genetic algorithm NSGA-II [48].

Another method that was used to address an OCP problem is Differential Evolution

(DE). In [49], this heuristic method was utilized to improve the performance of greedy

algorithms in order to achieve full coverage. Their DE starts by using an array containing

a number of cameras, where each array represents an individual within the population.

The algorithm then uses the vector differential of two individuals from the previous

generation to create a new individual. Consequently, the algorithm continues to generate

improved individuals compared to those in the previous generations.

The work in [43] used a variant of DE, called set-based DE, inspired by the study in

[50], to address their OCP problem. In contrast to the study in [49], the authors focused

on minimizing the number of cameras (i.e., cost reduction) while ensuring complete

coverage. The difference between set-based DE and the original DE lies in the fact that

the former is primarily utilized to solve permutation-based problems, whereas the latter

can be applied to solve general problems (including set-based problems).
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Other methods employed in recent literature include dynamic algorithms [51], simulated

annealing [5], greedy algorithms [52] and hill climbing [53]. While some OCP studies

have formulated their problem as an SCP, the study in [44] argues that almost none of

these studies have fully exploited this similarity or employed techniques from the SCP

literature to address the OCP problem. As a result, many techniques employed in the

SCP literature have not yet been utilized to address the OCP problem. This suggests

potential opportunities for contributions that can make a difference in the OCP field.

3.3 Set Covering Problem (SCP)

The Set Covering Problem (SCP) is a popular combinatorial optimization problem clas-

sified as NP-hard [10]. Throughout the years, numerous studies have explored the SCP

to tackle a diverse range of real-world applications. These include solving transit crew

scheduling problems [54], optimising transit crew scheduling design with multiple ob-

jectives [26], finding optimal quantity and location of gas detectors [55], assigning fire

stations with ladder trucks [56], and scheduling wireless sensor networks [57], among oth-

ers. For more information regarding the SCP and its applications, readers are advised

to refer to [58].

3.3.1 Introduction to SCP

A brief definition of SCP would be: given a zero-one matrix, the goal is to obtain a

subset of columns that minimizes the total cost associated with the selected columns,

ensuring that all the rows of the matrix are covered by these columns [59]. To elaborate

on that, consider matrix A with three rows and three columns:

A =


1 0 0

0 0 1

1 1 0

 .

In this matrix, the value 1 indicates that a given row is covered by a given column, and

0 otherwise. For example, element a11 shows that row 1 is covered by column 1. While

element a33 shows that row 3 is not covered by column 3. If each column is associated

with a specific cost, the objective of SCP would be to find a subset of columns that

minimizes the total cost while ensuring that all the rows of the matrix are covered by
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this subset. For example, if the cost is the same for all columns, an optimal solution

could be selecting both columns 1 and 3, as this combination covers all given rows.

Formally, given a finite universal set U = {1, 2, . . . , n} and a family of subsets S =

{S1, S2, . . . , Sm} where each Si is a subset of U , and each subset Si has an associated

cost ci, the set covering problem is to find a minimum-cost subset C ⊆ S such that the

union of the selected subsets covers the entire universal set, i.e.,
⋃

Sj∈C Sj = U . The

goal is to minimize
∑

Si∈C ci, the total cost of the selected subsets.

3.3.2 The Connection between SCP and OCP

From an optimization perspective, the study in [9] asserts that the Optimal Camera

Placement (OCP) can be reformulated as a set covering problem after certain pre-

processing steps. In this context, the pre-processing phase involves the transformation

of the OCP problem into a visibility matrix. This matrix matches each location in the

surveillance area with every possible configuration (position and orientation) of the given

cameras, resulting in a 0-1 matrix similar to matrix A. To elaborate, columns in this

matrix represent the cameras, and rows represent the locations that need to be covered

by the cameras. The objective of the transformed OCP problem is to find a subset of

cameras that minimizes the cost, ensuring that all the specified locations are covered by

this subset. In essence, this conversion enables the application of SCP methodologies to

address the OCP challenge effectively.

In the study conducted in [9], an in-depth illustration is provided regarding the possi-

bility of using methods from the SCP literature and applying them to OCP problems.

The study introduces different heuristic and metaheuristic methods that were employed

to address SCP, and consequently, these methods could be adapted for solving OCP

problems. For instance, greedy algorithm is one of the heuristic methods utilized in the

SCP literature to address the problem’s NP-hard nature. As will be pointed out later,

the greedy algorithm was also used in the OCP literature in recent years. Despite being

tailored specifically for OCP problems, the main conceptual framework remains the same

for both domains. Another approach discussed in this study involves the work of [38],

who utilized the Row-Weighting Local Search (RWLS) algorithm for a special type of

SCP known as the Unicost SCP. According to [9], this approach has not been explored in

the OCP literature, and questions arise regarding its potential efficiency in solving OCP

problems. In a subsequent study [44], different approaches from both OCP and SCP

literature were employed on real OCP cases. Notably, they utilized the RWLS algorithm
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and demonstrated its efficacy in solving OCP problems. This illustrates the possibility

of leveraging techniques from the SCP literature to effectively address challenges in the

OCP domain.

3.4 Problem Description and Formulation

In this study, we address 69 three-dimensional problem instances, comprising 32 aca-

demic problem instances and 37 real-world instances. These instances were utilized as

part of the GECCO 2021 competition on the optimal camera placement problem and the

unicost set covering problem [11]. The academic problem instances represent different

sizes of rectangularly modelled rooms, where ceilings are used for camera placement. On

the other hand, the real-world instances represent diverse sizes of actual urban spaces,

with the walls of multiple buildings serving as potential camera locations.

For each problem instance, a set of camera configurations (locations and orientations

coordinates), referred to as candidates, is provided. Additionally, a grid containing a set

of points in three-dimensional space, denoted as samples, must be covered by a subset

of candidates. For each sample, there exists multiple candidates capable of overseeing

it.

Consider the example with two samples (a and b) and four candidates (1, 2, 3, and

4). Suppose sample a can be covered by candidates 1, 2, and 4, while sample b can be

covered by candidates 2 and 3. We can create a visibility matrix A for this example,

where the first row represents sample a, the second row represents sample b, and columns

represent candidates 1, 2, 3, and 4. Matrix A is presented below.

A =

 1 1 0 1

0 1 1 0

 .

The objective of the OCP problem is to cover all the given samples by identifying a

subset of candidates that achieves this goal at the minimum cost. In the presented OCP

example, assuming equal costs for each candidate, the optimal solution would be to

select candidate 2. This choice is optimal because candidate 2 is the only one overseeing

both samples, enabling the coverage of both samples with a single candidate. Other

solutions, such as candidates 1 and 3 or candidates 3 and 4, would require paying for
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two candidates to cover the two samples. However, the optimal solution, in this case, is

achieved by selecting just one candidate (i.e., candidate 2).

As previously mentioned, the OCP problem shares similarities with the set covering

problem. Consequently, we model the OCP problem as an SCP. The formulation involves

a binary matrix A (aij = 1 if row i can be covered by column j, and 0 otherwise)

with m rows and n columns, where each column j is assigned a specific cost cj . The

mathematical model is expressed as follows:

minimize
n∑

j=1

cjxj

subject to

n∑
j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

(3.1)

Here, xj = 1 if column j is selected, and xj = 0 otherwise. The objective function

minimizes the total cost, and the first constraints ensure that each row i is covered by

at least one selected column j.

Now, for our specific OCP problem, all cameras have the same cost [11]. This simplifi-

cation transform our SCP model into a Unicost SCP (USCP), where the cost parameter

cj is omitted:

minimize
n∑

j=1

xj

subject to

n∑
j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

(3.2)

In this formulation, xj = 1 if candidate j is included in the solution, and xj = 0 otherwise.

The objective remains to minimize the total number of selected candidates, ensuring

that each sample is covered by at least one candidate. This transition to a USCP model

simplifies the objective by focusing on minimizing the number of candidates, each having

an equal cost, while maintaining the essential constraints for effective camera placement

in the OCP context.
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Table 3.2: Results for academic problem instances. m is the number of samples, n is
the number of candidates, UB is the upper bound, LB is the lower bound, Gap is the

optimality gap, and Time is the time taken in seconds

Instance m n UB LB Gap Time

AC 01 605 2904 7.00 7.00 0.00% 9.33
AC 02 2205 10584 4.00 4.00 0.00% 140.30
AC 03 4805 23064 3.00 3.00 0.00% 1411.43
AC 04 8405 40344 5.00 5.00 0.00% 7542.09

AC 05 13005 62424 - - - -
AC 06 18605 89304 - - - -
AC 07 32805 157464 - - - -
AC 08 51005 244824 - - - -
AC 09 73205 351384 - - - -

AC 10 605 2904 20.00 17.37 10.00% 10800.00
AC 11 2205 10584 72.00 52.00 26.39% 10800.00
AC 12 4805 23064 168.00 109.81 34.52% 10800.00
AC 13 8405 40344 344.00 187.18 45.35% 10800.00
AC 14 13005 62424 723.00 0.00 100.00% 10800.00

AC 15 18605 89304 - - - -
AC 16 32805 157464 - - - -
AC 17 51005 244824 - - - -
AC 18 73205 351384 - - - -
AC 19 99405 477144 - - - -
AC 20 129605 622104 - - - -
AC 21 163805 786264 - - - -
AC 22 202005 969624 - - - -
AC 23 244205 1172184 - - - -
AC 24 290405 1393944 - - - -
AC 25 340605 1634904 - - - -
AC 26 394805 1895064 - - - -
AC 27 453005 2174424 - - - -
AC 28 515205 2472984 - - - -
AC 29 581405 2790744 - - - -
AC 30 651605 3127704 - - - -
AC 31 725805 3483864 - - - -
AC 32 804005 3859224 - - - -

3.5 Computational Results

For this study, we utilized the PuLP1 package in Python to build the model, which was

then solved using Gurobi, a commercial Linear Programming solver. Experiments were

conducted on an Intel(R) Core(TM) i5-8500T CPU @ 2.10GHz 2.11GHz with 8.00GB

RAM. A time limit of 3 hours was imposed on each problem instance, encompassing both

model building and problem solving. The results for both the academic and real-world

problem instances are presented in Table 3.2 and Table 3.3, respectively. For instances

1https://pypi.org/project/PuLP/

https://pypi.org/project/PuLP/
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Table 3.3: Results for real-world problem instances. m is the number of samples, n is
the number of candidates, UB is the upper bound, LB is the lower bound, Gap is the

optimality gap, and Time is the time taken in seconds

Instance m n UB LB Gap Time

RW 01 153368 32430 - - - -
RW 02 285698 56132 - - - -
RW 03 161099 32040 - - - -
RW 04 304655 59137 - - - -
RW 05 206900 34568 - - - -
RW 06 380420 65691 - - - -
RW 07 214889 42046 - - - -
RW 08 382651 77986 - - - -
RW 09 206816 39003 - - - -
RW 10 368114 71323 - - - -

RW 11 82437 15632 316.00 309.88 1.90% 10800.00

RW 12 136555 28109 - - - -
RW 13 293138 61741 - - - -

RW 14 81062 14916 337.00 334.77 0.59% 10800.00

RW 15 141309 27008 - - - -
RW 16 105829 21063 - - - -
RW 17 180453 35635 - - - -

RW 18 79947 14423 338.00 336.65 0.30% 10800.00

RW 19 141114 26483 - - - -
RW 20 332300 50284 - - - -
RW 21 654068 90050 - - - -

RW 22 83835 17203 399.00 392.93 1.50% 10800.00

RW 23 142326 31038 - - - -
RW 24 201967 33880 - - - -
RW 25 375680 59851 - - - -
RW 26 105566 18043 - - - -
RW 27 181090 32669 - - - -
RW 28 136755 27838 - - - -
RW 29 273964 49267 - - - -
RW 30 263518 49354 - - - -
RW 31 472660 87248 - - - -
RW 32 124289 30189 - - - -
RW 33 229231 55000 - - - -
RW 34 134479 27329 - - - -
RW 35 238546 47590 - - - -
RW 36 135043 28162 - - - -
RW 37 238492 50702 - - - -

where obtaining the optimal solution was unattainable, we provide the upper and lower

bounds along with the calculated optimality gap using the formula:

Gap =
|UB − LB|

|UB|
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where UB is the upper bound, and LB is the lower bound. In cases where the optimal

solution was found, both the upper and lower bounds will have the same value. In-

stances where no results were produced due to insufficient memory or time limitations

are denoted by a dash ‘-’ in the respective table entries.

As seen in both tables, there are many cells filled with a dash ‘-’, mostly because the

three-hour time limit was reached before completing the model building stage, rendering

it impossible to solve the problem. This issue arises mainly due to the substantial size of

these problem instances, requiring hours or even days solely for model building. Another

observation is that, even when the model is built for some instances, an optimal solution

is not always achieved. In such cases, having the upper and lower bounds is particularly

valuable, offering useful information about how close we are to reaching the optimal

solution. For some instances, like RW 18, it appears that we are quiet close to the

optimal solution. For these, extending the runtime may yield the optimal solutions.

However, there are instances, such as AC 13, where the gap is notably large, indicating

the need for an extended runtime to solve them.

If we take a look at the first problem instance in Table 3.2, AC 01 contains 605 samples

and 2904 candidates. The optimal solution for this problem instance involved using

7 candidates to cover all 605 samples, and the computation took 9.33 seconds. If we

compare this with another academic instance, such as AC 02, we can observe that it

takes less time to solve AC 01 than AC 02. This is because the size of the latter is

bigger than that of the former. In other words, AC 02 contains more samples as well

as candidates than AC 01. This is similar when comparing AC 01 with other instances,

such as AC 03, AC 04, AC 05. The bigger the size of the instance, the more time is

needed to solve the given instance. However, if we take a look at AC 10, it contains the

exact same amount of candidates and samples as AC 01, but the former could not obtain

any results within the time-limit. The reason behind this is that even when the number

of samples and candidates is similar, the structure of the problem might be different.

In the case of AC 10, it consists of a more complicated structure than AC 01, which

could not be solved during the given time-limit, unlike in the case of AC 01. Figure 3.1

visualizes this problem instance. The figure represents a rectangular room, where the

yellow points on top of the ”room” represent all candidates and the blue points represent

all the 3-d samples that must be covered by a subset of those candidates. The solution

of AC 01 is also depicted in Figure 3.1, where 7 yellow points on the graph represent

the optimal locations of the candidates that cover all 605 samples.
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Figure 3.1: Visualisation of the AC 01 problem instance (a) and its optimal solution
(b), where yellow points represent candidates and blue points represent samples to be

covered

Similar to AC 01, we visualise another problem instance in Figure 3.2, namely the prob-

lem RW 22. This real-world instance contains 17,203 candidates and 83,835 samples.

A feasible solution was obtained with an upper bound of 399, a lower bound of 392.93,

and a gap of 1.5%. The visual representation of this problem’s solution can be observed

in the same figure.

Figure 3.2: Visualisation of the RW 22 problem instance (a) and its feasible solution
(b), where yellow points represent candidates and blue points represent samples to be

covered

Addressing the time issue is paramount for achieving improved results. One approach

involves tackling the size of the problem; for instance, reducing it by eliminating un-

necessary sets from the visibility matrix. Additionally, exploring different optimization
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methods could be beneficial, such as employing multi-objective optimization. In this ap-

proach, the main objectives would involve maximizing area coverage while minimizing

the number of cameras. Another viable approach is the utilisation of heuristic tech-

niques. By studying various heuristic methods employed in the SCP literature and

applying them to our OCP problem instances, we can potentially obtain near-optimal

results within a reasonable amount of time.

3.6 Conclusions

OCP problem involves determining the optimal locations and orientations for a set of

cameras, with the objective either being to maximize the coverage of a given surveillance

area or to minimize the total cost or number of selected cameras. Although this problem

has been formulated in a manner resembling the SCP, this similarity has only recently

been explicitly discussed in the literature.

This chapter studied the OCP problem by exploring its literature and understanding its

relationship with SCP. Given that OCP is an NP-hard problem, and the majority of

problem instances are large, relying solely on exact methods did not provide solutions for

all instances. Therefore, addressing the NP-hard nature of the problem becomes crucial

for future work. Potential strategies include reducing the size of problem instances,

and/or resorting to heuristic techniques.



Chapter 4

Solving the Optimal Camera

Placement Problem with the

Help of Effective Problem

Reduction Techniques

This paper explores different reduction techniques to address the size of 69 Optimal

Camera Placement (OCP) problem instances, which were obtained from the GECCO

2021 competition on the optimal camera placement problem and the unicost set covering

problem. Given a number of candidate cameras is provided to monitor a specific area

for surveillance purposes, OCP aims to maximize area coverage, such that camera cost

is reduced, or minimize camera cost, such that coverage requirements are met. OCP

can be formulated as a Set Covering Problem (SCP) when using the latter formulation.

The reason behind this is that the basic idea of the two problems would be quite similar,

when minimizing the camera cost in OCP. Thus, techniques from the SCP literature

can be used to address the OCP problem. Despite this similarity, SCP techniques have

not been utilized to address the OCP problem until recently. Therefore, this paper

exploits the relationship between SCP and OCP by studying and improving upon some

SCP reduction techniques and applying them to address OCP problem instances. The

reduction results as well as the impact of the reduction algorithms on the OCP solutions

are provided.

32
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4.1 Introduction

Nowadays, surveillance systems are being used for various reasons, including but not

limited to transportation systems tracking, crowd movement analysis, or general moni-

toring purposes [9]. This has led to an increase in interest in creating an optimal camera

network. Generally, OCP aims to maximize area coverage, such that camera cost is

reduced, or minimize camera cost, such that coverage requirements are achieved. Using

the latter formulation can transform OCP into the popular combinatorial optimization

problem, namely, the Set Covering Problem or SCP. The basic idea of the two problems

would be similar when using the minimization objective. Thus, OCP can be formulated

as an SCP. Nonetheless, many OCP studies have not exploited this similarity by using

techniques from the SCP literature to address different OCP problems. Hence, this

study explores some SCP techniques that can be used to address our OCP problem in-

stances. Moreover, the focus of this paper is using different reduction methods that can

be found in the SCP literature and apply them to our OCP instances. These methods

can be very useful in dealing with the NP-hard nature of our problem instances. To

expand on that, solving the OCP problem can take a significant period of time as the

problem instances get bigger in size. The aim of this paper is to prove that reducing

the sizes of these problem instances would reduce the time needed to solve our OCP

problem instances.

The rest of the paper is organized as follows. Section 4.2 thoroughly discusses OCP then

its relationship with SCP. Section 4.3, then, describes the given problem instances in

depth. Next, Section 4.4 introduces a few reduction techniques from the SCP literature,

and explains how these techniques would work on our OCP instances. After that, Section

4.5 provides an extensive discussion on the reduction as well as the optimization results,

including the impact of the former on the latter. Lastly, Section 4.6 concludes this paper

by summarizing the main points, before suggesting a few recommendations for future

work.

4.2 Optimal Camera Placement (OCP)

This section is divided into two parts. Firstly, we provide a brief background on the OCP

problem. Secondly, we explore the OCP literature, by discussing various techniques used

to address the OCP problem.



Chapter 4. Solving the Optimal Camera Placement Problem with the Help of Effective
Problem Reduction Techniques 34

4.2.1 OCP Background

OCP is an NP-hard optimization problem [9] that originates from the field of computa-

tional geometry from the 70s of the 20th century. The idea of OCP was first introduced

as an Art Gallery Problem (AGP) [1]. AGP is a technique for finding an optimal place-

ment for guards in an art gallery. Given that each location in the gallery must be covered

by at least one guard, the objective of AGP would be to minimize the total number of

guards. From an OCP point of view, guards can be replaced by cameras, and the ob-

jective would be to minimize the number (or cost) of cameras, such that every area in a

given location is covered by at least one camera.

Input Stage

Preparing Stage

Solving Stage

Output Stage

Figure 4.1: The main stages of camera placement [8]

As Figure 4.1 suggests, OCP goes through four different stages. The first stage is

called the Input Stage, and it concerns identifying the inputs of the OCP problem. This

includes the types of cameras available and the given surveillance area. In addition, some

requirements can be set, such as the resolution quality of the cameras or the proportion of

the surveillance area that must be monitored by said cameras. Other input information

might be needed if some tasks are given for the camera network, such as object tracking.

The second stage is called the preparing stage. It takes place when it is decided to use

a discrete domain instead of continuous, where the parameters of the targeted area as

well as the camera configurations (locations and orientations) are discretised, and a set

of cameras is created. After generating a pool of candidate cameras, a mathematical

model of the OCP problem can be formulated and solved using any suitable optimization

tools. This is the third stage, and it is called the solving stage. The final stage is the

output stage, which is basically the OCP solution that was obtained. This would be

the optimal camera layout. For more details regarding the four main stages of OCP,

interested readers can refer to [8].
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4.2.2 OCP Literature

In the OCP literature, there are numerous studies that have used a variety of techniques

to solve the OCP problem ([43]; [60]; [45]; [47]; [61]; [46]; [49]). For finding optimal

solutions, exact techniques were implemented. However, to address the NP-hard nature

of the problem, some studies have adopted heuristic techniques to obtain near-optimal

solutions in a shorter period of time. This subsection explores the different techniques,

employed to address various OCP problems.

In a study by [46], three techniques were adopted to tackle three OCP problems. One

problem had a budget limit, and the objective was to maximize area coverage. For

this specific problem, OCP was, in fact, formulated as an SCP. To solve this problem,

dynamic programming was used. Another problem was formulated to minimize cam-

era cost, such that full coverage is achieved. This problem was also formulated as an

SCP, but instead of dynamic programming, branch-and-bound algorithms were used.

The third problem considered the previous two problems and formulated a bi-objective

problem. This means that instead of one objective, the new problem included two ob-

jectives: maximizing area covering and minimizing camera cost. Since a bi-objective

model was used, the aim would be to obtain a set of efficient solutions, rather than one

solution. Each efficient solution in this set represents a combination of coverage and cost

values where no other solution offers a better combination value. For obtaining these

solutions, multi-objective genetic algorithm NSGA-II [48] was adopted.

In another study by [45], three techniques were also used to address one problem. These

techniques are greedy algorithms, genetic algorithms, and a novel heuristic technique,

named the Uniqueness score with Local search Algorithm (ULA). The objective of this

problem was to minimize the camera cost, such that minimum area coverage level is

achieved. For the first technique, a maximum camera limit and a minimum coverage

level are set. Then, a greedy algorithm allocates cameras from the least to the most

expensive and terminates once one of the two requirements is met. When that is done,

a camera placement solution is provided. For the second technique, a genetic algorithm

produces a population that contains a number of camera placement plans, where each

plan is called a ‘chromosome’. Each chromosome should reach a minimum coverage

requirement. Once that is done, a subset of these chromosomes is selected, and mutation

and crossover operations begin. These operations are used to create new ‘generations’ of

chromosomes and to avoid getting stuck in a local optimum. Inspired by the uniqueness

score, the last technique obtains one ULA solution. Then, the process of finding a new
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solution that costs less begins. For achieving this, local search is used and the locations

that are not covered by other cameras are emphasized.

Differential Evolution (DE) is another technique mentioned in the OCP literature [49].

This specific method was used to enhance the greedy algorithm performance. In this

study, DE creates individuals, in the form of arrays, where each individual includes

a number of cameras. New and improved individuals are, then, created using vector

differential between two individuals. In another study, by [43], DE was also the main

technique used to address an OCP problem. This study was inspired by [50] to create a

special type of DE, named set-based DE, which can solve general problems, unlike the

original DE which can mainly solve permutation-based problems.

There are many other techniques used to address the OCP problem. A clustering-

based optimization method was used to tackle their specific OCP problem [47]. The

authors utilized a clustering approach to implement branch-and-bound algorithms. The

reason behind that is that traditional branch-and-bound can be time consuming when

addressing large real-life problems and using a clustering method can significantly reduce

the time needed to solve such problems. Last but not least, grey wolf algorithm is

yet another optimization technique implemented to deal with an OCP problem [60].

This population based metaheuristic approach, inspired by the behaviour of wolves,

was proven to be effective when compared with other algorithms, such as the Particle

Swarm Optimization and the Moth Flame Optimization methods. There are still more

techniques in the OCP literature that have been studied, including simulated annealing

[5], hill climbing [53], greedy algorithms [52], dynamic algorithms [51], and more.

A study, by [9], emphasised on the fact that despite the clear similarity between the

two problems, work from the SCP literature has not been applied to address the OCP

problem (until recently). As a result, they discuss several techniques from the SCP

literature that can be used to solve OCP problems. An example of these techniques

is greedy algorithm, which we have already pointed out that it is being used in the

OCP literature. Another technique that they discussed from the SCP literature is Row-

Weighting Local Search (RWLS) [38], which was successfully utilized to address an OCP

problem in a later study [44]. This proves that techniques from the SCP literature can

be used to tackle the OCP problem. Thus, we exploit this similarity by implementing

some reduction techniques, which were discussed in the SCP literature, and apply them

to our OCP problem instances.
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As for reduction techniques, there are some OCP papers that have used these methods

in their work to improve their results. A paper by [61] proposed a neighbourhood search

algorithm, named weighting-based variable neighborhood search (WVNS). This method

was used to address the OCP problem instances taken from the GECCO 2020 Competi-

tion. This algorithm performs four different reduction methods before transforming the

main OCP problem into smaller sub-problems. These sub-problems are, then, addressed

using local search techniques. In another study, [62] have also utilised a reduction tech-

nique, known as the dominated column reduction method. In their study, this reduction

algorithm was applied to a number of instances from the GECCO 2020 Competition,

which we are using in this thesis. Their results are discussed later in this chapter, where

we compare our reduction results with theirs. After reducing the problem instances, the

authors solved them using CPLEX solver, greedy algorithm, and RWLS. After that, the

authors proposed two hybrid DE methods to address the OCP instances.

4.3 Problem Description

The problem instances that we used in this study were obtained from the GECCO 2021

competition on the optimal camera placement problem and the unicost set covering prob-

lem [11]. These problem instances introduce two main terms: candidates and samples.

a candidate is a set of camera configurations, which includes location and orientation.

A sample is a point in a three-dimensional space. Each sample can be covered by a

number of candidates. Likewise, each candidate can cover a number of samples. In this

paper, we use 69 problem instances. 32 of which are called academic and 37 are called

real-world. We start with describing academic instances.

Each academic instance represents a three-dimensional rectangle (rectangular box),

where, in a three-dimensional space, the point coordinates in meters start from (0,

0, 0) and reach up to (Xmax, Ymax, Zmax). Using a grid that consists of points repre-

senting the samples, the space is discretized. In addition, a step size (U) between every

neighbouring pair of samples is defined. This means that a unified distance is assigned

between each two neighbouring sample points. Regarding the cameras, each one can be

distinguished by specific features such as the vertical resolution (Vres), the horizontal

resolution (Hres), and the horizontal field of view (Hfov).

Regarding candidates, which represent camera configurations, their locations are defined

by point coordinates that go from (0, 0, Zcam) and reach up to (Xmax, Ymax, Zcam). Note
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Table 4.1: Academic problem instances specifications

Name Xmax Ymax Zmax Zcam Samples Candidates

AC 01 5 5 2 2.5 605 2904
AC 02 10 10 2 2.5 2205 10584
AC 03 15 15 2 2.5 4805 23064
AC 04 20 20 2 2.5 8405 40344
AC 05 25 25 2 2.5 13005 62424
AC 06 30 30 2 2.5 18605 89304
AC 07 40 40 2 2.5 32805 157464
AC 08 50 50 2 2.5 51005 244824
AC 09 60 60 2 2.5 73205 351384
AC 10 5 5 2 2.5 605 2904
AC 11 10 10 2 2.5 2205 10584
AC 12 15 15 2 2.5 4805 23064
AC 13 20 20 2 2.5 8405 40344
AC 14 25 25 2 2.5 13005 62424
AC 15 30 30 2 2.5 18605 89304
AC 16 40 40 2 2.5 32805 157464
AC 17 50 50 2 2.5 51005 244824
AC 18 60 60 2 2.5 73205 351384
AC 19 70 70 2 2.5 99405 477144
AC 20 80 80 2 2.5 129605 622104
AC 21 90 90 2 2.5 163805 786264
AC 22 100 100 2 2.5 202005 969624
AC 23 110 110 2 2.5 244205 1172184
AC 24 120 120 2 2.5 290405 1393944
AC 25 130 130 2 2.5 340605 1634904
AC 26 140 140 2 2.5 394805 1895064
AC 27 150 150 2 2.5 453005 2174424
AC 28 160 160 2 2.5 515205 2472984
AC 29 170 170 2 2.5 581405 2790744
AC 30 180 180 2 2.5 651605 3127704
AC 31 190 190 2 2.5 725805 3483864
AC 32 200 200 2 2.5 804005 3859224

that ‘cam’ in Zcam refers to the ceiling, which is the only place cameras can be placed in

the academic instances. Each candidate has two types of angles (orientations). The first

type concerns the Z-axis rotation and is called the pan angle α; whereas the second type

concerns the Y-axis rotation and is called the tilt angle β. Finally, Table 4.1 presents

some information regarding the academic problem instances, which provides an idea of

the type of data used in this study. This includes the name of each academic instance,

the coordinates: Xmax, Ymax, Zmax, and Zcam, the total number of samples, and the

total number of candidates, respectively. For more details regarding the information

from the table, interested readers are advised to refer to [11].

As for the real-world data, urban areas were opted to generate the instances. This was

accomplished by using two types of data from the selected locations: maps and elevation

data. Unlike the academic instances, real-world instances cannot be represented by a

specific shape (e.g., rectangle). Instead, sample points do not follow any specific pat-

tern, as sampling these points relies on the infrastructure of the location that needs to
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Table 4.2: Real-world problem instance specifications

Name Samples Candidates

RW 01 153368 32430
RW 02 285698 56132
RW 03 161099 32040
RW 04 304655 59137
RW 05 206900 34568
RW 06 380420 65691
RW 07 214889 42046
RW 08 382651 77986
RW 09 206816 39003
RW 10 368114 71323
RW 11 82437 15632
RW 12 136555 28109
RW 13 293138 61741
RW 14 81062 14916
RW 15 141309 27008
RW 16 105829 21063
RW 17 180453 35635
RW 18 79947 14423
RW 19 141114 26483
RW 20 332300 50284
RW 21 654068 90050
RW 22 83835 17203
RW 23 142326 31038
RW 24 201967 33880
RW 25 375680 59851
RW 26 105566 18043
RW 27 181090 32669
RW 28 136755 27838
RW 29 273964 49267
RW 30 263518 49354
RW 31 472660 87248
RW 32 124289 30189
RW 33 229231 55000
RW 34 134479 27329
RW 35 238546 47590
RW 36 135043 28162
RW 37 238492 50702

be monitored. Nevertheless, real-world instances also follow a Cartesian coordinate sys-

tem in a three-dimensional space. More information regarding the real-world instances

can be found in [44], where the authors provide a detailed explanation. For instance,

the academic and real-world instances were taken from two different sources, namely,

OpenStreetMap (OSM) and NASA’s Shuttle Radar Topography Mission (SRTM). The

former was used for sampling the target location (i.e., surveillance area), while the latter

was used to create three-dimensional models from the flat OSM models.

Regarding the modelling of the candidate cameras, the process is identical to the aca-

demic instances. However, the way the configurations are presented at the end is quite

different. The reason behind this is that for real-world instances, cameras are installed

on buildings. This means that, contrary to academic instances, a grid cannot be used

in real-world instances. As a result, a candidate camera configuration is defined by the
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position (xp, yp, zp) as well as the orientation (xo, yo, zo). Real-world instance specifica-

tions are presented in Table 4.2. This includes the name of each real-world instance, the

total number of samples, and the total number of candidates, respectively. For more

details regarding the information from the table, interested readers are advised to refer

to [11]. Also, for more details regarding the sampling process, readers can refer to [44].

To solve both academic and real-world instances, the USCP model (Model 3.2, which

was introduced in Chapter 3, is adopted in this chapter as well. The reason behind

choosing USCP is the fact that our problem instances do not contain any cost values.

This is because that it is assumed that the cost of installing a camera is the same for all

cameras. Thus, cost should not be considered when making a decision.

4.4 Reduction Techniques

As can be noted in Table 4.1 and Table 4.2, the size of the majority of the problem

instances can be quite large. This means that the period of time needed to solve some of

these instances can be very long. Thus, reducing the size of these problems might help

in solving them in a significantly shorter period of time. Therefore, in this part of our

study, we focus on three reduction techniques that were studied in the SCP literature

to reduce the size of different SCP instances. Since OCP can be formulated as an SCP,

we can use such techniques to reduce the sizes of our OCP instances.

A study by [63] suggested a number of reduction algorithms that work for SCP. Some

of which were discussed in the literature, while others were novel. Three of the reduc-

tion techniques discussed in [63] were taken from [64], which are implemented in this

study. The first reduction technique is called the essential site. This reduction technique

examines if a given row can only be covered by one column after reducing the size of

the problem. If so, then that column has to be included in the optimal solution and,

therefore, all rows covered by said column can be excluded from the problem instance.

To demonstrate further, E can be used as an example of an essential site case. Assume

that E is a row taken from a matrix for illustrative purposes. In this row, any value of

‘1’ indicates that this row is covered by a specific column; ‘0’ otherwise. It is evident

that this row is covered by column 3 only. Thus, column 3 has to be included in the

solution, and, therefore, all rows that can be covered by column 3 can be eliminated

from the problem.
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E =
[
0 0 1 0

]
,

The second reduction technique is called dominated columns. This method states that if

one column covers a number of rows and another column covers the exact same rows and

more, then the first column can be removed from the problem instance. In other words,

we eliminate the subset. Assume that we are comparing two columns from a matrix,

and these columns are presented in Matrix C. Since column 1 is a subset of column 2, it

can be excluded from the problem. To illustrate more, both columns cover row 2, in this

example. However, column 2 covers row 3 as well. This means that selecting column

2 only would always be the optimal strategy, as selecting column 1 as well would be

redundant. As a result, we can eliminate column 1 from the matrix to reduce the size

of the problem.

C =


0 0

1 1

0 1

0 0

 ,

The third and final reduction technique implemented in this study is called row domi-

nation. This method can be viewed as an opposite of the dominated columns method.

Row domination is used when one row includes a number of columns, and another row

includes the same columns and more. Then, the second row can be excluded from the

solution. In other words, we eliminate the superset. Assume that we are comparing two

rows from a matrix, and these rows are presented in matrix R. Since row 2 is a super-

set of row 1, it can be excluded from the problem. The reason behind eliminating the

superset in this method is that if we decide to keep row 2 and eliminate row 1 instead,

column 2 becomes an option and selecting said column would not be optimal as it does

not cover the first row. Eliminating the superset, row 2, and keeping row 1 would mean

that column 3 is the only choice in this example and it does cover both rows. Therefore,

selecting column 3 is the optimal move and having row 2 in the problem instance would

be unnecessary.
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R =

[
0 0 1 0

0 1 1 0

]
.

Based on the previous three reduction methods, a reduction algorithm can be created

[64]. The following are the four stages of the algorithm: (1) the algorithm starts with

the essential site method, by going through all the rows of the matrix. (2) Then, the

dominated columns method is implemented. In an attempt to find and eliminate all the

subsets, we compare one column with all the other columns of the matrix, until we go

through all the columns. (3) After that, the row domination method takes place. In

this step, we compare one row with all the other rows, until we go through all the rows

and all the supersets are found and removed. (4) Finally, we repeat the previous three

stages until no further reduction can be made.

For our study, we decided to use this reduction algorithm from the SCP literature and

apply it to our OCP instances. A significant difference between this and other reduction

algorithms used in the OCP literature, such as [62], is that the algorithm we are using

goes through three different stages and keeps doing that until no more reduction is

possible. This can be useful because, when we go through the first three stages for the

first time, a new reduced problem is formed with a possibility to be further reduced.

Thus, we go through the first three stages again for as many times as needed, until no

further reduction can be done.

One issue with this reduction algorithm is that it can be time consuming. For example, if

we decide to use the column domination method, from the discussed reduction algorithm,

to reduce the columns (candidates) in instance AC 32 from Table 4.1, we would need to

compare each candidate with all the other 3,859,223 candidates. As one can imagine,

this would take a significant period of time. The idea of using the reduction algorithm is

to reduce the sizes of our problem instances and ultimately to reduce the time consumed

to solve these problems; not to add more computational time. If reducing the size of

the problem is also time consuming, then we might be better off solving the original

problem instances. As a result, we implemented a minor, yet significant, alteration to

the reduction algorithm we introduced earlier. This change had a huge impact on the

time consumed to reduce the problem instances. As far as we are aware, this small

change has not been discussed in the OCP literature.
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Figure 4.2: An example of the improved reduction algorithms

In the new improved reduction algorithm, we eliminate some unnecessary steps. To

expand on that, when selecting one column, for example, and comparing it with all

the other columns, some of these other columns have nothing in common with the

selected column and, therefore, can never be subsets. In order to avoid comparing

that column with any of these non-comparable columns, we developed the following

algorithm: Firstly, we select a random row from the selected column. Then, we find other

columns that cover the randomly selected row. This ensures that the given column and

all the other considered columns have that row in common, and, therefore, a subset might

be found. Finally, we check if any subsets exist. If so, remove them from the problem.

We repeat this process for all the other columns. In this improved algorithm, we remove

unnecessary steps as we only compare one column with specific columns instead of

comparing it with all the other columns. The impact of the improved algorithm is

discussed in Section 3.5. In this study, we employed a random selection decision in step

1, which could be later improved in future studies by employing a more sophisticated,

non-random decision. This could yield even better results than the ones that will be

discussed later in Section 3.5.

Figure 4.2 provides a visual example of this new and improved algorithm using the

dominated columns method. In step 1, a random row is selected in column a. In this

case, the third row was selected. In step 2, we check if any of the other columns also

cover the third row. Here, column c is selected. In step 3, we check whether column c is

a subset of column a. In this case, it is, in fact, a subset. Therefore, we remove column c
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from the problem. In step 4, we have a new reduced problem after removing candidate c.

In this example, we did not need to compare column a with columns b and d as neither

b nor d had row 3 in common with column a. This eliminated two unnecessary steps,

and, therefore, saved us some computational time. For the large problem instances, this

small change can make a huge difference. The example in Figure 4.2 used columns, but

the same concept applies to the rows.

The main conclusion we can make on the new reduction algorithm is that we do not

need to compare one column/row with all the other columns/rows. By avoiding that,

we obtain the same reduction results in a shorter period of time. The stages of the

new and improved reduction algorithms are as follow: In step (1) the algorithm starts,

as usual, with the essential site method, by going through all the rows of the matrix.

If any essential site is found, that specific column is added to the solution and all the

rows covered by that column are removed from the problem. The new changes to the

algorithm are applied to the next two steps. In step (2), the dominated column method

is implemented, by comparing one column with all the other comparable columns only,

until we go through all the columns and all the subsets are found and removed. In step

(3) the row domination method is implemented. Similarly, we compare one row with all

the other comparable rows, until we go through all the rows and all the supersets are

found and removed. In step (4) we go back to the previous three steps until no further

reduction can be made. This reduction algorithm is applied to all 69 problem instances,

and the results are provided in section 3.5. This includes a comparison between our

reduction results and other reduction results from the literature as well as the impact

of the reduction algorithm on the OCP problem.

4.5 Results

This section is divided into two parts. The first part is focused on the results of the

reduction techniques. This includes both reduction methods that were explained ear-

lier. After comparing the two algorithms, we compare our reduction results with other

reduction results from the literature. For the second part of the section, the focus is

on the solutions of the 69 problem instances. This includes a summary of the results

as well as a comparison between the solutions before and after applying the reduction

techniques.
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Table 4.3: Academic problem instances reduction results

Reduced Reduced Old New
Instance Samples Candidates Samples Candidates Time Time

AC 01 605 2904 600 1292 2.28 0.57
AC 02 2205 10584 225 404 11.36 2.84
AC 03 4805 23064 64 92 26.30 14.09
AC 04 8405 40344 513 2580 193.47 46.72
AC 05 13005 62424 1929 6636 558.17 110.13
AC 06 18605 89304 3069 12292 1398.94 239.48
AC 07 32805 157464 5909 28452 6866.49 1189.01
AC 08 51005 244824 9549 51012 108332.65 3156.02
AC 09 73205 351384 - - - -
AC 10 605 2904 605 1672 2.58 0.34
AC 11 2205 10584 2205 7352 39.72 1.47
AC 12 4805 23064 4805 17032 200.22 3.92
AC 13 8405 40344 8405 30712 676.13 7.92
AC 14 13005 62424 13005 48392 1722.56 10.67
AC 15 18605 89304 18605 70072 3619.67 13.69
AC 16 32805 157464 32805 125432 11294.15 24.46
AC 17 51005 244824 51005 196792 29314.98 43.00
AC 18 73205 351384 73205 284152 58306.98 54.61
AC 19 99405 477144 99405 387512 110520.42 82.15
AC 20 129605 622104 129605 506872 184500.38 98.32
AC 21 163805 786264 163805 642232 315057.75 146.97
AC 22 202005 969624 202005 793592 464491.45 194.67
AC 23 244205 1172184 244205 960952 677793.17 256.96
AC 24 290405 1393944 290405 1144312 953569.75 426.80
AC 25 340605 1634904 340605 1343672 1366794.47 688.34
AC 26 394805 1895064 394805 1559032 - 936.63
AC 27 453005 2174424 453005 1790392 - 943.46
AC 28 515205 2472984 515205 2037752 - 1338.29
AC 29 581405 2790744 581405 2301112 - 1657.96
AC 30 651605 3127704 651605 2580472 - 2014.11
AC 31 725805 3483864 725805 2875832 - 2217.76
AC 32 804005 3859224 804005 3187192 - 1231.94

4.5.1 Reduction Results

We start this subsection by summarizing the reduction results of the 69 problem in-

stances. We, then, compare the two reduction methods we applied in terms of time

consumption. Finally, we compare our reduction results with other results from the

literature.

Table 4.3 provides the reduction results of the academic problem instances. The ta-

ble includes the instance number, number of samples and candidates, reduced number

of samples and candidates, and reduction time using the old algorithm as well as the

improved algorithm. For example, problem instance AC 08 originally included 51,005

samples and 244,834 candidates. After applying the reduction algorithm, the new re-

duced version of problem AC 08 included 9,549 samples and 51,012 candidates. This

is about 80% less samples and candidates, which is a significant difference. To achieve

this result, the old reduction algorithm took 108,332.65 seconds, while the improved
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Table 4.4: Real-world problem instances reduction results

Reduced Reduced Old New
Instance Samples Candidates Samples Candidates Time Time

RW 01 153368 32430 28675 22754 13600.70 44.89
RW 02 285698 56132 69844 42310 57815.67 178.51
RW 03 161099 32040 27066 19713 13351.54 43.52
RW 04 304655 59137 70727 39639 62152.28 231.89
RW 05 206900 34568 26271 19813 22416.03 45.87
RW 06 380420 65691 80140 45363 88951.40 252.26
RW 07 214889 42046 35373 26965 25519.06 53.06
RW 08 382651 77986 90204 54846 134757.20 389.00
RW 09 206816 39003 31778 24238 22391.55 48.22
RW 10 368114 71323 82511 48189 90996.49 271.56
RW 11 82437 15632 14820 10334 3145.24 21.97
RW 12 136555 28109 37404 20696 14986.07 123.41
RW 13 293138 61741 51908 40503 58412.29 94.97
RW 14 81062 14916 13997 9887 3253.30 20.26
RW 15 141309 27008 37332 20288 13539.79 96.75
RW 16 105829 21063 15225 12726 6052.12 23.57
RW 17 180453 35635 37308 25465 36319.61 129.21
RW 18 79947 14423 13144 9575 4113.01 25.18
RW 19 141114 26483 33426 18976 19479.75 135.97
RW 20 332300 50284 40146 29811 40883.70 63.01
RW 21 654068 90050 105051 61268 313201.40 534.86
RW 22 83835 17203 12162 10673 3632.83 18.58
RW 23 142326 31038 32832 22300 13861.27 73.45
RW 24 201967 33880 27854 21025 17845.31 39.27
RW 25 375680 59851 69866 40434 72299.78 195.82
RW 26 105566 18043 12990 10366 4255.11 20.81
RW 27 181090 32669 36071 22149 27391.31 126.50
RW 28 136755 27838 20317 18239 7937.01 24.65
RW 29 273964 49267 52044 36163 37585.62 114.79
RW 30 263518 49354 48499 34016 48082.67 92.39
RW 31 472660 87248 116789 63266 205780.86 664.57
RW 32 124289 30189 22405 20277 9560.98 31.68
RW 33 229231 55000 56706 41191 52572.57 168.96
RW 34 134479 27329 21793 17419 9326.81 32.78
RW 35 238546 47590 52324 33072 40133.96 152.50
RW 36 135043 28162 22055 17751 10158.12 40.46
RW 37 238492 50702 57305 35563 53716.19 254.11

version of this algorithm took only 3,156.02 seconds. It is quite obvious that the im-

proved reduction algorithm is far more effective than the original one, when it comes to

the computational time. This time cut can be extremely valuable when solving a big

number of problem instances, especially when those problem instances are not small in

size.

For reducing each problem instance, a random time-limit of 16 days was set. As can

be seen from Table 4.3, from problem instance AC 26 until AC 32, the reduced version

could not be obtained within 16 days using the original reduction algorithm. Whereas,

it took around only 25 minutes on average to obtain the reduced problems, using the

improved algorithms. As for problem instance AC 09, the file was simply too large to

be opened. In other words, the machine we worked on could not access this file due to

the size of instance, which was too large for a notepad, where our problem instances
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Table 4.5: Our reduction results compared with another study [62]

Instance Original [62] Our Work Difference %

AC 01 2904 1292 1292 0%
AC 02 10584 908 404 56%
AC 03 23064 924 92 90%
AC 04 40344 4572 2580 44%
AC 05 62424 9852 6636 33%
AC 06 89304 16732 12292 27%
AC 07 157464 35291 28452 19%
AC 08 244824 60251 51012 15%
AC 09 - - - -
AC 10 2904 1672 1672 0%
AC 11 10584 7352 7352 0%
AC 12 23064 17032 17032 0%
AC 13 40344 30712 30712 0%
AC 14 62424 48392 48392 0%
AC 15 89304 70072 70072 0%
AC 16 157464 125431 125432 0%
AC 17 244824 193791 196792 -2%
AC 18 351384 284151 284152 0%
AC 19 477144 387511 387512 0%

are stored. This is why we could not obtain any results regarding this instance. Thus,

the entries of this respective instance are presented by a dash ‘-’. In another study that

discussed these instances [62], the authors did not provide results regarding instance

AC 09; whereas results regarding AC 08 and AC 10 were presented. This shows that

others have faced the same issue while accessing this instance.

Table 4.4 provides the reduction results of the real-world problem instances. Similar to

Table 4.3, it includes the instance number, original number of samples and candidates,

reduced number of samples and candidates, and reduction time using the old method

as well as the new method. For example, problem instance RW 08 originally included

382,651 samples and 77,986 candidates. After applying the reduction algorithm, the

new reduced version of problem RW 08 included 90,204 samples and 54,846 candidates.

This is about 76% less samples and 30% less candidates, which, again, is a significant

difference. To achieve this result, the first reduction algorithm took 134,757.20 seconds,

while the improved version of this algorithm took only 389.00 second. Again, this

big difference can save us a significant amount of computational time, especially when

experimenting with larger problem instances.
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We can also compare our reduction results with another study from the literature which

used the same OCP instances. In their paper, [62] implemented one type of reduction

methods, namely, the dominated columns method, on the first 19 academic problem

instances. Based on this approach, they produced new versions of the OCP instances

with a reduced number of candidates. Therefore, We compare the reduced candidates

between the two studies in Table 4.5. The table includes the name of the instance, the

original number of candidates, the reduced number of candidates by [62], our reduced

number of candidates, and, finally, the difference, in percentage, between the two studies.

Our reduction algorithms worked significantly better in 7 out of 19 instances. For the

rest, there was almost no difference, except for instance AC 17, where their method

worked slightly better. In addition, in instance AC 16, AC 18 and AC 19, there is a

difference of just ‘1’ candidate between our results and their results. This is probably

a small computational error as this pattern cannot be a coincidence, and both results

should be identical in those three instances.

The main reason that our reduction algorithm yielded better results than [62], overall,

is that we have used more reduction methods. More specifically, the row domination

method helped in creating a new reduced problem each time, which can possibly be

reduced again. To illustrate more, a problem is reduced only once when using one re-

duction method. When adding another reduction method, such as the row domination

method, a new problem is generated. Meaning, the column domination method can be

implemented once again as more subsets can possibly be found. This way, the reduction

algorithm keeps going on until no further reduction can be made. Therefore, we be-

lieve that implementing more than one reduction method can be extremely useful and,

evidently, produces better results.

4.5.2 Solutions

For solving all 69 problem instances, we used PuLP1 package in python to build our

models, and within python used Gurobi as our commercial Linear Programming solver.

For solving each problem instance, we set a three-hours time-limit. The machine used to

conduct these experiments is an Intel(R) Core(TM) i5-8500T CPU @ 2.10GHz 2.11GHz

with 8.00GB RAM. Table 4.6 and Table 4.7 provide the solutions of the problem in-

stances after applying the reduction algorithms. Both tables include the instance name,

number of samples, number of candidates, upper bound, lower bound, gap, and the time

1https://pypi.org/project/PuLP/

https://pypi.org/project/PuLP/
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Figure 4.3: Visualisation of AC 02 problem instance (top), its reduced version (bot-
tom left), and the solution of the reduced version (bottom right)

needed in seconds. However, Table 4.6 also includes results of another study [62], which

includes their UB, LB, and gap.

We can focus on AC 02 from Table 4.6 for illustrative purposes. This academic problem

instance contains 2,205 samples and 10,584 candidates. It took only 0.54 seconds to

obtain an optimal solution of 4 candidates that cover all samples. The same solution was

obtained in 140.30 seconds when solving the problem before implementing the reduction

algorithm. The solution is given in Figure 4.3, where the blue points represent the

samples and the yellow points represent the candidates. The graph on top of the figure

represents the original problem instance. The graph on the lower left represents the

reduced problem instance. Finally, the graph on the lower right represents the solution

to the reduced problem instance.

We can also compare our results with the work of [62] using Table 4.6, where they used

a CPLEX solver to obtain their optimal solutions. Overall, we managed to obtain better
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Figure 4.4: Visualisation of RW 14 problem instance (top), its reduced version (bot-
tom left), and the solution of the reduced version (bottom right)

results. For the first 5 instances, both this work and their work managed to obtain a

gap of 0%. As for instance AC 06, we managed to obtain the optimal solution, where

they were far from that with a 100% gap. For AC 07, we managed to obtain a gap of

11.76%, where they have not managed to obtain any results. For AC 10 to AC 15, our

gap remained smaller. This, overall, shows that our reduction methods helped us obtain

better results than the work of [62].

As for the real-world instances, we can focus on instance RW 14 from Table 4.7. The

problem instance originally consisted of 14,916 candidates and 81,062 samples. For this

real-world problem, an optimal solution was obtained, with an objective value of 337

candidates to cover all the samples. This problem is also visualised in Figure 4.4. The

graph on top represents the original problem of RW 14, the graph on the lower left

represents the reduced problem, and the lower right graph represents the solution of the

reduced problem. It can be noted that, unlike in instance AC 02, the points are not

distributed in a uniform shape. This happens because RW 14 is a real-world problem
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Table 4.6: Academic problem instances results

Instance Samples Candidates UB [62] LB [62] Gap [62] UB LB Gap Time

AC 01 605 2904 7 7 0.00% 7 7 0.00% 5.15
AC 02 2205 10584 4 4 0.00% 4 4 0.00% 0.54
AC 03 4805 23064 3 3 0.00% 3 3 0.00% 0.05
AC 04 8405 40344 5 5 0.00% 5 5 0.00% 9.92
AC 05 13005 62424 7 7 0.00% 7 7 0.00% 193.16
AC 06 18605 89304 16,732 0 100% 10 10 0.00% 3300.00
AC 07 32805 157464 - - - 17 14.95 11.76% 10800.00
AC 08 51005 244824 - - - - - - -
AC 09 73205 351384 - - - - - - -
AC 10 605 2904 21 17.02 18.97% 20 17.63 10.00% 10800.00
AC 11 2205 10584 71 52.21 26.47% 72 52.92 26.38% 10800.00
AC 12 4805 23064 17,032 0 100% 168 109.91 34.52% 10800.00
AC 13 8405 40344 30,712 0 100% 347 187.17 45.82% 10800.00
AC 14 13005 62424 48,392 0 100% 650 286.59 55.84% 10800.00
AC 15 18605 89304 70,072 0 100% 933 407.22 56.27% 10800.00
AC 16 32805 157464 - - - - - - -
AC 17 51005 244824 - - - - - - -
AC 18 73205 351384 - - - - - - -
AC 19 99405 477144 - - - - - - -
AC 20 129605 622104 - - - - - - -
AC 21 163805 786264 - - - - - - -
AC 22 202005 969624 - - - - - - -
AC 23 244205 1172184 - - - - - - -
AC 24 290405 1393944 - - - - - - -
AC 25 340605 1634904 - - - - - - -
AC 26 394805 1895064 - - - - - - -
AC 27 453005 2174424 - - - - - - -
AC 28 515205 2472984 - - - - - - -
AC 29 581405 2790744 - - - - - - -
AC 30 651605 3127704 - - - - - - -
AC 31 725805 3483864 - - - - - - -
AC 32 804005 3859224 - - - - - - -

where the surveillance area represents an actual place. The yellow points in Figure

4.4 are the candidates placed on the walls of different buildings. The blue points, as

discussed earlier, are the sample points that must be covered by the candidates.

Looking at tables 4.6 and 4.7, we can observe that the information of some problem

instances is not provided. This is due to the fact that we set a three-hour time-limit.

This means that, in some cases, three hours were not enough to even build the model,

which usually is time consuming due to the size of some problem instances. If the model

is not built within three hours, then it cannot be solved. Hence, there are some empty

rows in the tables. This computational issue can be dealt with in the future by finding

an intelligent way to speed up the model-building process. An easier way to deal with

this problem is to increase the time-limit. Of course, the latter will make the overall

computational time longer, but it will provide results for more instances and improve

the results we have already obtained.

Generally, we believe these results are excellent, especially when we compare them to

our previous work [65], In that study, we tried to solve the 69 problem instances without

addressing the instance size issue. As a result, we had less optimal solutions and much

more gaps in the tables. A comparison between the two studies is summarised in Table
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Table 4.7: Real-world problem instances results

Instance Samples Candidates UB LB Gap Time

RW 01 153368 32430 665.00 652.00 1.80& 10800.00
RW 02 285698 56132 - - - -
RW 03 161099 32040 745.00 742.43 0.26% 10800.00
RW 04 304655 59137 - - - -
RW 05 206900 34568 934.00 934.00 0.00% 10404.92
RW 06 380420 65691 - - - -
RW 07 214889 42046 989.00 982.96 0.61% 10800.00
RW 08 382651 77986 - - - -
RW 09 206816 39003 966.00 961.58 0.41% 10800.00
RW 10 368114 71323 - - - -
RW 11 82437 15632 315.99 313.20 0.63% 10800.00
RW 12 136555 28109 322.00 313.40 2.48% 10800.00
RW 13 293138 61741 - - - -
RW 14 81062 14916 337.00 337.00 0.00% 6237.76
RW 15 141309 27008 342.00 336.20 1.46% 10800.00
RW 16 105829 21063 508.00 505.39 0.39% 10800.00
RW 17 180453 35635 519.00 507.27 2.11% 10800.00
RW 18 79947 14423 338.00 338.00 0.00% 3548.61
RW 19 141114 26483 349.00 341.37 2.01% 10800.00
RW 20 332300 50284 1467.00 1453.73 0.88% 10800.00
RW 21 654068 90050 - - - -
RW 22 83835 17203 398.00 396.66 0.25% 10800.00
RW 23 142326 31038 417.00 411.07 1.19% 10800.00
RW 24 201967 33880 887.00 877.98 1.01% 10800.00
RW 25 375680 59851 - - - -
RW 26 105566 18043 464.00 461.19 0.43% 10800.00
RW 27 181090 32669 489.00 484.05 0.81% 10800.00
RW 28 136755 27838 648.00 644.76 0.46% 10800.00
RW 29 273964 49267 - - - -
RW 30 263518 49354 - - - -
RW 31 472660 87248 - - - -
RW 32 124289 30189 651.00 646.83 0.61% 10800.00
RW 33 229231 55000 - - - -
RW 34 134479 27329 609.00 605.93 0.49% 10800.00
RW 35 238546 47590 - - - -
RW 36 135043 28162 609.00 606.50 0.32% 10800.00
RW 37 238492 50702 - - - -

4.8. The comparison includes the number of optimal solutions found, the number of

instances with no results, and the average gap. It is evident that this study yielded

better results in all categories of comparison in both academic and real-world instances.

Firstly, the current study found 9 optimal solutions in total, whereas the previous study

found 4 only. Secondly, there was a total of 56 instances where no results were obtained

in the previous study, compared to 33 in the current study. Finally, the average gap

of the current study is noticeably smaller than the average gap of the previous study

for both types of problem instances. For a fair comparison, only instances that yielded

results in the previous study were used in the average gap comparison.

All of these facts prove that the reduction algorithms that we implemented improve the

OCP results. For more details regarding the results before implementing the reduction

algorithms, readers are advised to refer to [65]
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Table 4.8: A comparison between the results of the current study and the previous
study [65]

Comparison Previous Work Current Work

Optimal solutions found (Academic) 4 6
Optimal solutions found (Real-world) 0 3
No results (Academic) 23 19
No results (Real-world) 33 14
Average Gap (Academic) 24.03% 19.17%
Average Gap (Real-world) 1.07% 0.33%

4.5.3 Further Experimentations, Limitations, and Future Work

There are a couple of limitations that can be discussed in this section. Firstly, starting

from the academic instance AC 10 until we reach AC 32 in Table 4.3, the number of

samples is not reduced. This cannot be a coincidence, as this issue occurs in more than

half the academic problem instances. To address this issue, new reduction methods might

be needed to be used. This means that further reduction techniques can be explored from

the SCP literature and applied to address the same OCP problem instances. This could

reduce the number of samples for instances AC 10 to AC 32, but also might, generally,

yield better reduction results. That being said, this might not be an issue at all, and

the samples phenomena exists because of the nature of these problem instances. To

elaborate more, the academic problem instances are not based on real-world locations,

which means they are made up. In addition, these problems seem to be made to be

complicated and difficult to address, so having this issue might be because of that.

Nevertheless, further experiments should be conducted to prove this theory.

Generally, although our reduction algorithms proved to be effective in improving the

OCP results, we wondered if we can further improve them in an easy way. In an attempt

to achieve that, we conducted a new simple experiment. In short, we changed the order

of our reduction methods in the reduction algorithm. Meaning, instead of starting with

the essential site method, then moving to the dominated columns, and finally to the

row domination method, we switched the order by starting from the row domination

method, moving to the dominated columns, and finally to the essential site method.

This was a simple attempt to improve the results. However, the new reduction results

were exactly the same in terms of reduced problem size and time consumption.

For future work, there are a few possibilities to address the OCP problem. The first

possibility has already been discussed in this paper, which is to simply try new reduction
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techniques. If we ever succeed in finding better techniques, especially techniques that

reduce the problem instance size even further, the OCP results should be further im-

proved. Another possibility for future work is to apply different optimization methods.

Different heuristic techniques can be used to produce more optimal or near-optimal so-

lutions in a reasonable time. Methods, such as greedy algorithms, simulated annealing,

genetic algorithms and a few more, can be considered. In a different direction, we could

formulate the OCP problem as a bi-objective problem with two objective, namely, max-

imizing coverage and minimizing cameras. This would be another possibility, where we

would focus on offering more realistic results. To illustrate more, instead of one optimal

solution, bi-objective OCP would produce multiple efficient solutions. Each efficient

solution would represent a combination of the two objectives. For example, one efficient

solution could achieve 90% coverage using a number of cameras and another efficient

solution could achieve 70% coverage using less cameras. In this case, the second solution

offers less coverage, but it is cheaper to implement, whereas the first solution offers bet-

ter coverage, but it is more expensive. Both efficient solutions are viable as they both

offer different combinations, where none of them is better than the other. In real-life,

decision makers might not want the optimal solution, as they might prefer something

that is good enough at a cheaper price. Using bi-objective techniques, decision makers

can have multiple efficient solutions and choose the one that is most suitable to their

needs. This is the reason that bi-objective optimization can be more realistic. For fu-

ture work, there are several bi-objective methods that can be implemented to obtain

the efficient solutions of the OCP instances. The epsilon-constraint method as well as

the weighted Sum method, two of the most popular multi-objective techniques, can be

considered.

4.6 Conclusions

To sum up, OCP is an optimization problem that either maximizes area coverage, such

that camera cost is reduced, or minimizes camera cost, such that coverage requirements

are achieved. When using the latter objective, OCP can be formulated as an SCP. This

means that techniques from the SCP literature can be used to address the OCP problem.

Hence, this chapter exploited this relationship, by finding techniques from the literature

of SCP to tackle our 69 OCP problem instances. More specifically, we studied a few

SCP reduction techniques, improved on them, and then applied them to reduce the sizes

of our OCP problem instances. Not only we were able to show that our reduction results



Chapter 4. Solving the Optimal Camera Placement Problem with the Help of Effective
Problem Reduction Techniques 55

are better than other reduction results from the literature, but also we proved that the

OCP problem solutions can be obtained significantly faster when reducing the size of

the problems.

For future work, more reduction techniques from the SCP literature can be explored and

applied to our OCP problem instances. In addition, different optimization techniques

from the SCP literature can be used to solve our instances. This can include multi-

objective optimization, where the two main objectives would be to minimize the number

of cameras and maximize the area coverage. Heuristic techniques can also be used to

obtain near-optimal solutions in a reasonable time. This chapter has mentioned some

heuristic techniques that could be used to deal with our problem instances.



Chapter 5

An Effective Approach in

Generating the Efficient Frontier

of the Bi-Objective Optimal

Camera Placement Problem

Using the ϵ-Constraint Method

Optimal camera placement (OCP) problem is a modern combinatorial optimization

problem, which tries to find the optimal placement of cameras to ensure complete cov-

erage of certain locations, usually for surveillance purposes. Traditionally, OCP is for-

mulated as a single-objective problem. Most studies employ one of the following two

formations: minimize the camera cost, such that complete coverage is reached; or max-

imize coverage such that the cheapest camera plan is utilized. Since there are two main

factors that concern this problem, OCP is naturally a bi-objective problem with two

contradicting objectives. One objective is to minimize the camera cost, while the other

is to maximize the area coverage. Even though this formulation can be obvious, not

many studies have tackled the OCP problem as a bi-objective problem. This paper

addresses the bi-objective OCP problem using an affective ϵ-constraint approach. In

order to accomplish that, academic and real-world instances, published in the GECCO

2021 competition on “the optimal camera placement problem and the unicost set cov-

ering problem”, are adopted. The results appear to be promising, especially when the

complex nature of these problem instances is handled.

56
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5.1 Introduction

Various real-life optimization problems are addressed using different techniques for ob-

taining optimal or near-optimal solutions. Often, the focus is on the quality of the

solution and the time needed to obtain that solution. In single objective problems, re-

searchers aim to find optimal solutions in a reasonable period of time. If the latter is

difficult to achieve, especially when dealing with NP-hard problems, some tend to uti-

lize different heuristic and metaheuristic techniques to obtain optimal or near-optimal

solutions in a shorter time period. For many real-life optimization problems, however,

having multiple efficient solutions is more desirable than one single optimal solution, as

this provides the decision makers the option to choose the solution that best suits their

needs. Therefore, this study converts the traditional single-objective OCP problem into

a bi-objective problem. OCP is an NP-hard combinatorial optimization problem, and

its goal is to find the cheapest camera placement plan that fully monitors a target area

for several purposes, including monitoring and surveillance purposes. More formally,

single-objective OCP has two main formulations: one is to maximize area coverage such

that camera cost is reduced, while the other is to minimize camera cost such that full

coverage is achieved. In bi-objective OCP, which is the main topic of this study, the

goal is to simultaneously maximize area coverage and minimize camera cost. The idea

of OCP was first implemented in the 1970s, when [1] attempted to fully monitor an art

gallery using a minimal number of guards. To achieve that, the author introduced the

Art Gallery Problem (AGP) to minimize the number of guards, such that the gallery

is fully monitored. This idea has then influenced the OCP field, where guards are sub-

stituted by cameras. In recent years, it was pointed out that the OCP problem can be

formulated as the popular set covering problem [9], and because of that, SCP techniques

can be used to address OCP problems. This paper exploits this feature and formulates

the bi-objective OCP problem as a bi-objective SCP. This study employs an effective

approach to solve the bi-objective OCP problem and generate the full efficient frontier

using the ϵ-constraint method, which is a well-known approach in the multi-objective

optimization field.

Most researchers have addressed the OCP problem using single-objective optimization

techniques; only a few have adopted multi-objective techniques (e.g., [66]; [67]; [46]).

Before jumping into some of these applications, a brief introduction to the relevant multi-

objective terms might be needed. Firstly, instead of a single optimal solution, a multi-

objective problem produces a set of alternatives, known as the feasible set. Feasible sets

consist of different combinations of the objective values. For example, an OCP problem
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that has two objectives, such as maximizing coverage and minimizing camera cost, would

produce a feasible set where each feasible solution represents a combination of coverage

and cost values. From those feasible solutions, efficient solutions are identified, which

brings us to the second point. A solution is considered as efficient if there are no other

solutions offering ‘better’ values. Going back to the OCP example, no other solution

would have a better combination of coverage and cost values than an efficient solution.

This means we could have several efficient solutions with different combinations. For

instance, one efficient solution could have better coverage but worse cost value than

another efficient solution which has worse coverage but better cost. Correspondingly,

if a solution is worse in both coverage and cost, then it would not be identified as an

efficient solution. After all the efficient solutions have been obtained, the next step is to

plot those solution to present the efficient frontier. Any point that lies on an efficient

frontier is considered as an efficient solution. Finally, and after all the efficient solutions

have been obtained and the efficient frontier has been generated, decision makers can

select the efficient solution that works best for their specific problem. For more details

regarding multi-objective optimization, readers can refer to [15].

[67] is an example of a study that used multiple objectives to deal with the OCP problem.

The authors aimed to use sensor cameras to monitor 3-d surveillance areas. Their

model consisted of two contradicting objectives: minimizing the cost of the camera

network and maximizing the coverage quality of the network. The first objective can be

achieved by selecting the needed camera sensors and choosing their optimal positions,

whereas the second objective concerns the quality of the coverage, which is assessed by

the importance of the covered points. To illustrate more on the latter, points on the

surveillance area are given a specific score that reflects their importance. For instance,

a more important point would be given a higher score than a less important one. These

are called the weighted points. Therefore, the goal here is to maximize the sum of

the weighted covered points, which can provide a better network coverage quality. For

this problem, the authors added a security constraint, which means that all cameras

from the camera network must be observed by other cameras (at least by one camera).

To deal with this OCP problem, the authors formulated a bi-objective binary integer

programming model. After formulating the bi-objective problem in [67], the authors

used three different bi-objective methods to produce the efficient frontier. These three

methods are: the weighted sum scalarization, ϵ-constraint, and a two-phase method. In

another study, [66] used OCP to maximize the visibility from heavy machinery, while also

minimizing the number of cameras needed. Using these two objectives, they formulated

their problem as a bi-objective OCP problem. The authors addressed this problem using



Chapter 5. An Effective Approach in Generating the Efficient Frontier of the
Bi-Objective Optimal Camera Placement Problem Using the ϵ-Constraint Method 59

the lexicographic method. This method solves the bi-objective problem in a hierarchical

manner. To elaborate more, one objective can be set as the priority objective, and, then,

is optimized. The solution produced from solving this objective is, then, set as a fixed

value, and based on that value, the other objective is solved. For example, if the priority

objective is minimizing the number of cameras, that objective is solved then is fixed.

After that, the other objective, i.e., maximizing coverage, is solved by searching for the

maximum coverage value from all the minimal cost solutions. Finally, yet another study

employed the typical two OCP objectives to formulate a bi-objective OCP problem:

minimizing camera cost and maximizing coverage. [46] used bi-objective OCP to find

several camera placement plans (i.e., efficient solutions) for surveillance purposes. The

authors addressed their bi-objective OCP problem by using a multi-objective genetic

algorithm, called NSGA-II [48], to obtain the complete efficient set.

Since the OCP problem is formulated as a set covering problem in our study, a few

relevant multi-objective SCP studies are discussed next. a study by [26] used SCP to ad-

dress a transit route network problem with multiple objectives. Before formulating their

problems, the authors implemented a Route Constructive Genetic Algorithm (RCGA),

which was tailored to their defined objectives, to generate a big set of candidates (transit

routes). Then, they applied a heuristic algorithm, called the Meta-heuristic for Random-

ized Priority Search (Meta-RaPS), to generate the feasible set. From that feasible set,

efficient solutions were identified. In a study by [68], the authors adopted a combined

multi-objective SCP and knapsack problem to deal with database queries. To solve this

problem, Hill Climbing and Genetic algorithms were implemented. In another study,

[69] focused on bi-objective SCP and used ten multi-objective metaheuristic methods on

the problem to evaluate their performances. Nine of these multi-objective metaheuris-

tic methods have been used in the literature, and they are mainly based on Simulated

Annealing, Genetic Algorithms, Hybrid Genetic Algorithms, and Multiple Start Local

Search. The remaining method is a novel algorithm based on Hybrid Genetic Algorithm.

Finally, a study by [70] focused on generating all the efficient solutions for two multi-

objective problems, one of which was a set covering problem. To obtain the efficient

solutions, the authors applied a method called AUGMECON2, which is an enhanced

version of the original augmented ϵ-constraint method [71]. There are other studies that

worked with multi-objective SCP and are worth mentioning in this paper such as [72],

[73], and [74]. Each one of these multi-objective SCP studies, mentioned and discussed

in this paper, offers a glimpse of what can be done to address our bi-objective OCP

problem.
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Table 5.1: Academic problem instances specifications

Name Xmax Ymax Zmax Zcam Samples Candidates

AC 01 5 5 2 2.5 605 2904
AC 02 10 10 2 2.5 2205 10584
AC 03 15 15 2 2.5 4805 23064
AC 04 20 20 2 2.5 8405 40344
AC 05 25 25 2 2.5 13005 62424
AC 06 30 30 2 2.5 18605 89304
AC 07 40 40 2 2.5 32805 157464
AC 08 50 50 2 2.5 51005 244824
AC 09 60 60 2 2.5 73205 351384
AC 10 5 5 2 2.5 605 2904
AC 11 10 10 2 2.5 2205 10584
AC 12 15 15 2 2.5 4805 23064
AC 13 20 20 2 2.5 8405 40344
AC 14 25 25 2 2.5 13005 62424
AC 15 30 30 2 2.5 18605 89304
AC 16 40 40 2 2.5 32805 157464
AC 17 50 50 2 2.5 51005 244824
AC 18 60 60 2 2.5 73205 351384
AC 19 70 70 2 2.5 99405 477144
AC 20 80 80 2 2.5 129605 622104
AC 21 90 90 2 2.5 163805 786264
AC 22 100 100 2 2.5 202005 969624
AC 23 110 110 2 2.5 244205 1172184
AC 24 120 120 2 2.5 290405 1393944
AC 25 130 130 2 2.5 340605 1634904
AC 26 140 140 2 2.5 394805 1895064
AC 27 150 150 2 2.5 453005 2174424
AC 28 160 160 2 2.5 515205 2472984
AC 29 170 170 2 2.5 581405 2790744
AC 30 180 180 2 2.5 651605 3127704
AC 31 190 190 2 2.5 725805 3483864
AC 32 200 200 2 2.5 804005 3859224

The rest of the paper is structured as follows: Section 5.2 provides a summary of the

problem instances used in this study. Section 5.3 introduces all the relevant mathe-

matical models, including the bi-objective OCP formulation. Section 5.4 discusses the

first set of results, and is followed by Section 5.5 which introduces techniques from the

SCP literature to improve the initial results. Section 5.6, then, discusses the improved

results, which is followed by further experimentations in Section 5.7. Finally, Section

5.8 reflects on and concludes this paper.

5.2 Problem Description

Each problem instance used in this study consists of two main components. The first

component is a set of candidates, where each candidate represents a possible camera

position as well orientation (i.e., angle and tilt). This means, multiple candidates can

share the same position but have different angles and/or tilts. The second component is

a set of samples, where each sample represents a 3-dimensional point in a 3-dimensional
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Table 5.2: Real-world problem instance specifications

Name Samples Candidates

RW 01 153368 32430
RW 02 285698 56132
RW 03 161099 32040
RW 04 304655 59137
RW 05 206900 34568
RW 06 380420 65691
RW 07 214889 42046
RW 08 382651 77986
RW 09 206816 39003
RW 10 368114 71323
RW 11 82437 15632
RW 12 136555 28109
RW 13 293138 61741
RW 14 81062 14916
RW 15 141309 27008
RW 16 105829 21063
RW 17 180453 35635
RW 18 79947 14423
RW 19 141114 26483
RW 20 332300 50284
RW 21 654068 90050
RW 22 83835 17203
RW 23 142326 31038
RW 24 201967 33880
RW 25 375680 59851
RW 26 105566 18043
RW 27 181090 32669
RW 28 136755 27838
RW 29 273964 49267
RW 30 263518 49354
RW 31 472660 87248
RW 32 124289 30189
RW 33 229231 55000
RW 34 134479 27329
RW 35 238546 47590
RW 36 135043 28162
RW 37 238492 50702

space. Samples can be covered by candidates and candidates can cover samples. The

goal of a bi-objective OCP problem would be to simultaneously minimize the cost of

candidates and maximize the coverage of the sample points.

69 problem instances are used in this paper. These problem instances are divided into

two parts. First, 32 made-up instances, called academic. Each academic instance is

represented by a 3-dimensional grid, which is supposed to sample a rectangular room.

Moreover, each room is modelled with a different size and different camera placement

possibilities. In these rooms, cameras can only be placed on the ceilings. The second

part of these problem instances consists of 37 instances, which are called real-world.

Real-world instances are modelled after real urban locations, where cameras can be

placed on different spots, such as walls of buildings. All the problem instances that

are utilized in this study are published online by the GECCO 2021 competition on the

optimal camera placement problem and the unicost set covering problem [11]. Table
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5.1 and Table 5.2 summarize all the information regrading the academic and real-world

instances, respectively. Some of this information is discussed next, but for a more

detailed discussion regarding the creation of these problem instances, readers can refer

to [11] and [44].

Table 5.1 and Table 5.2 provide all the information regrading the academic and real-

world instances, respectively. For instance, in the second, third, and fourth columns

of Table 5.1, the values Xmax, Ymax, and Zmax represent the maximum width, depth,

and height of each sample point, respectively. In other words, each sample can be

located anywhere between (0, 0, 0) and (Xmax, Ymax, Zmax) in any 3-dimensional grid.

In addition, Zcam, in the fifth column of Table 5.1, is the unified height for all candidates.

This would be the ceiling of a room. The numbers of samples and candidates for both

academic and real-world instances are also given in the last two columns of both tables.

Other relevant information from the two tables could be the characteristics of the candi-

dates, and they are: (Vres) representing the vertical resolution, (Hres) representing the

horizontal resolution, and (Hfov) representing the horizontal field of view. Figure 5.1

provides a visual illustration of two problem instances: an academic instance on the left

and a real-world instance on the right. In both graphs, the yellow points represent the

candidates, whereas the blue points represent the samples that must be covered by a

subset of those candidates.

Figure 5.1: Two visual examples of two OCP instances: acadmeic instances (AC 01)
on the left and real-world instance (RW 14) on the right

For this study, we believe that the details that have been discussed in this section should

be sufficient to understand the idea of these problem instances. However, for a more

in-depth discussion, including a complete description of the information in Table 5.1 and

Table 5.2, readers are encouraged to refer to [11].
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5.3 Mathematical Models

In this section, we will introduce several mathematical models in regards to OCP. Each

model will serve a different purpose and will build onto the next one. This section is

divided into three subsections. The first subsection will introduce and briefly discuss the

single objective formulation of the OCP problem. The second subsection will introduce

and discuss the bi-objective formulations of the OCP problem. The third and final

subsection will focus on the ϵ-constraint formulations, which will be used to solve the

bi-objective OCP problem.

5.3.1 OCP Single Objective Mathematical Models

When formulating the OCP problem using the minimization objective, the nature of

the problem becomes identical to the set covering problem (SCP). Given that a binary

matrix A consists of a number of rowsm, a number of columns n, and a cost cj associated

to each column j, SCP aims to find a subset of columns that minimizes the total cost

while ensuring each row i is covered by at least one column j. This process can be

applied to OCP as well. Given that a coverage matrix A consists of a number of samples

m, a number of candidates n, and a cost cj associated to each candidate j, OCP aims

to find a subset of candidates that minimizes the total cost, such that each sample i is

covered by at least one candidate j. In this paper, we formulate our OCP problem as

an SCP. First, we introduce a binary decision variable xj , where xj = 1 if candidate j

is selected; Otherwise, xj = 0. The complete OCP formulation can be found in Model

5.1.

minimize

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

(5.1)

There is one issue with the formulation in Model 5.1. As discussed in Section 5.2, our

problem instances contain a number of samples and a number of candidates, and there

is no cost associated with each candidate. This means that our objective must be to
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minimize the number of candidates, instead of the cost. To address this issue, we resort

to a variant of SCP, called the Unicost Set Covering Problem (USCP). In USCP, the

cost is not a factor as it is assumed to be unified for all candidates. Thus, our objective

would be to minimize the number of candidates, such that each sample is covered by at

least one candidate. The updated OCP model can be referred to in Model 5.2. The only

difference between Model 5.1 and Model 5.2 is that we do not include the cost parameter

cj in Model 5.2.

minimize
n∑

j=1

xj

subject to
n∑

j=1

aijxj ≥1, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

(5.2)

We can use client C as a hypothetical example for illustrative purposes. Client C is a

small company that wants to install some cameras in the CEO’s office to monitor the

CEO’s desk as it contains some confidential documents that should not be seen by anyone

else. The client shared a camera placement plan, which includes the possible positions

of the cameras (candidates) and the areas that they want them to be fully monitored

(samples). In addition, the client informed us that the cost of placing cameras in any

of the suggested locations is always the same. Based on the given camera placement

plan, a visibility matrix, called matrix V , is created. In matrix V , columns represent

candidates, and rows represent the samples that must be covered by a subset of those

candidates. In this example, cost is unified; hence, we can use the USCP formulation

from Model 5.2 to solve this problem.

V =


1 0 1 0

0 1 0 1

1 0 0 1

0 0 1 0

 .

Before solving this problem, we can analyze this visibility matrix first. Candidate 1

(column 1) covers sample 1 (row 1) and sample 3 (row 3), candidate 2 (column 2) covers
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sample 2 (row 2) only, candidate 3 (column 3) covers sample 1 (row 1) and sample 4 (row

4), and candidate 4 (column 4) covers sample 2 (row 2) and sample 3 (row 3). Likewise,

sample 1 (row 1) can be covered by candidate 1 (column 1) and candidate 3 (column 3),

sample 2 (row 2) can be covered by candidate 2 (column 2) and candidate 4 (column 4),

sample 3 (row 3) can be covered by candidate 1 (column 1) and candidate 4 (column

4), and sample 4 (row 4) can be covered by candidate 3 (column 3) only. Solving this

optimization problem using model 5.2 gives the following result: The minimum number

of candidates that can be used to cover all the samples is two. These candidates are:

candidate 3 (column 3) and candidate 4 (column 4). Looking back at matrix V , there is

no other similar or better solutions, which means this one indeed is the optimal solution

and client C should use it. However, there could other feasible solutions that are not

optimal. For instance, selecting candidate 1 (column 1), candidate 2 (column 2), and

candidate 3 (column 3) achieves full coverage of the samples (rows) of matrix V . This

solution is feasible as all the samples are covered. That being said, this solution costs

more that the first solution since three candidates are used to achieve the same coverage

outcome, which would not make sense for the client to adopt. Thus, we can conclude

that the solution of using two candidates, namely candidates 3 and 4, is the only optimal

solution.

5.3.2 OCP Bi-Objective Mathematical Models

In this subsection, we transform Model 5.2 into a bi-objective model. Firstly, a binary

matrix A, which consists of a number of samples m and a number of candidates n, is

given. Secondly, two binary decision variables, namely, xj and yi, are given. Similar to

models 5.1 and 5.2, xj = 1 if candidate j is selected; otherwise, xj = 0. yi, on the other

hand, represents the coverage decision variable. This means if sample i is covered by at

least one candidate, yi would be 1; otherwise, yi would be 0. Therefore, the bi-objective

OCP problem aims to minimize the number of cameras and maximize the coverage,

simultaneously, while ensuring that if a sample i is selected (yi = 1), all the relevant

candidates are also selected. The bi-objective OCP problem can be refereed to in Model

5.3. The next subsection explains how this bi-objective OCP problem is tackled.
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minimize
n∑

j=1

xj

maximize
m∑
i=1

yi

subject to
n∑

j=1

aijxj ≥yi, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

yi ∈ {0, 1}, i ∈ {1, . . . ,m}

(5.3)

5.3.3 OCP ϵ-Constraint Mathematical Models

In this subsection, we demonstrate how the ϵ-constraint is utilized to address the bi-

objective OCP that is represented in Model 5.3. Before jumping into the mathematical

formulations, a brief introduction to the ϵ-constraint method is given. ϵ-constraint is

one of, if not the most, well-known techniques used to tackle general multi-objective

problems. What makes this method different from other popular multi-objective meth-

ods, such as the weighted sum method, is that ϵ-constraint transforms all objectives,

except for one, into constraints. The bound of each constraint is represented by a value

of epsilon ϵ. Since all objectives except for one are transformed into constraints, the

bi-objective problem is converted into several single objective sub-problems. These sub-

problems are solved by systematically changing the values of ϵ until it reaches a certain

limit. Both the starting value of ϵ as well as the limit of the bound are selected based on

the nature of each problem instance. Each sub-problem’s output represents a feasible

solution, which consists of the selected value ϵ and the objective value. Once all the

sub-problems are solved and the feasible set is obtained, all the efficient solutions are

identified and the complete efficient frontier is generated.

One of the main reasons the ϵ-constraint method was selected for this study is that it

guarantees that the complete efficient frontier will be generated, unlike other popular

methods that were considered, such as the weighted sum method. In the weighted sum

method, both objectives would be combined into one objective, where each objective

would be assigned a specific weight. This would result in a new single-objective problem

that consists of both objectives. Despite the fact that the weighted sum method may

seem simpler to implement, it does not guarantee a complete efficient frontier, which
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is one of the reasons ϵ-constraint method was adopted in this study, as stated earlier.

Another reason why the ϵ-constraint method was selected instead of the weighted sum

method, is the fact that it is easy to assign a value to ϵ for the former, where as it is

a challenge to determine the weights for the latter. To elaborate on that, the value of

ϵ can be easily assigned for our specific problem, which will be explained more later;

while the weights can be subjective or case-dependent. For more details regarding the

ϵ-constraint method, readers are advised to refer to [15].

After we have introduced the ϵ-constraint method, now we can discuss how it is going to

be used to address our bi-objective OCP problem instances. Since our OCP problem is

bi-objective, which means that it contains only two objectives, we only need to transform

one objective into a constraint; Consequently, the other objective will serve as the main

objective. As a result, our bi-objective OCP problem can be formulated in two opposite

ways when using the ϵ-constraint method. One way with transforming the coverage

objective into a constraint, while keeping the candidates objective as the main and only

objective. The other way with transforming the candidates objective into a constraint,

while keeping the coverage objective as the main and only objective. Both formulations

are presented by models 5.4 and 5.5, respectively.

minimize
n∑

j=1

xj

subject to
m∑
i=1

yi ≥ ϵ

n∑
j=1

aijxj ≥yi, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

yi ∈ {0, 1}, i ∈ {1, . . . ,m}

(5.4)

Model 5.4 represents the first ϵ-constraint formulation, where the main objective is to

minimize the number of cameras. This means that the coverage objective is transformed

into a constraint. In Model 5.4, the first constraint represents the coverage objective.

This constraint is given a bound value of ϵ. Once the value of ϵ is set, the problem

is solved several times until ϵ reaches the limit. If we take problem instance AC 01

as an example, the limit of ϵ can be set to 605, which is the total number of samples
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available. Once the limit of ϵ is set, the first sub-problem can be solved by setting ϵ = 1,

producing the first feasible solution. Once the first feasible solution is obtained, a new

sub-problem can be solved. For the next sub-problem, we increase the ϵ value by 1 and

set ϵ = 2. This new sub-problem is then solved, and a new feasible solution is obtained.

This process continues until ϵ = 605 and all the sub-problems are solved, obtaining all

the feasible solutions. From those feasible solutions, efficient solutions are identified and

the complete efficient frontier is generated.

maximize
m∑
i=1

yi

subject to

n∑
j=1

xj ≤ ϵ

n∑
j=1

aijxj ≥yi, ∀i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

yi ∈ {0, 1}, i ∈ {1, . . . ,m}

(5.5)

The second ϵ-constraint formulation is represented by Model 5.5. In this model, the main

objective is to maximize the area coverage, while the number of cameras objective is

transformed into the first constraint. Similar to Model 5.4, the value of ϵ is set using the

number of candidates available in the given problem instance. For example, the limit of

ϵ for problem instance AC 01 would be set to 2904. Once this is set, all the sub-problems

are solved starting from ϵ = 1 until the value of ϵ reaches the limit (ϵ = 2904), obtaining

all the feasible solutions. Similar to Model 5.4, the efficient solutions are filtered out

and the complete efficient frontier is found.

After introducing the bi-objective OCP model and the two ϵ-constraint formulations,

we can, again, take client C, as an example. Assume that client C informed us that

they decided to be more flexible and are willing to to accept a solution that does not

guarantee that all the spots on their CEO’s desk are monitored, if it meant they can use

less cameras, and therefore pay less money. In other words, they want to receive other

camera placement solutions, and then make a decision on which one they are willing

to adopt. This means we can solve this problem as as a bi-objective problem. Looking
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Table 5.3: A list of the alternatives produced by solving the bi-objective OCP problem
represented by matrix V (Efficient solutions are in bold)

Solution Candidates Uncovered Samples ϵ Value

a 1 3 1
b 1 2 2
c 2 1 3
d 2 0 4

Figure 5.2: Efficient frontier produced by solving the bi-objective OCP problem rep-
resented by matrix V

back at matrix V , we have 4 samples and 4 candidates available and we want to find

all the efficient solutions of this problem using the ϵ-constraint method. The first step

would be to select which formulation of ϵ-constraint to use. In this case, we are going

to select model 5.4, where the coverage objective is transformed into a constraint. The

second step would be to select the limit of ϵ. In this case, we can set it as ϵ = 4, which

is the maximum number of samples. The third step would be to systematically solve all

the sub-problems, starting from ϵ = 1 and then adding 1 to the value of ϵ each time we

solve a new sub-problem. We stop when ϵ reaches 4, which is the predetermined upper

limit. To elaborate more, the first time we solve the problem, the value of ϵ will be 1 and

the solution of this problem would be added to the feasible set. In this case, the solution

is 1 and the first alternative is to use 1 candidates to have only 1 sample covered (3

samples uncovered). After that, we set the value of ϵ to 2, solve the new problem, and

add the new results to the feasible set. This process continues until ϵ reaches and solves

the upper limit (i.e, ϵ = 4). Table 5.3 lists all the alternatives obtained from solving this
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example. Once the feasible set has been obtained, the efficient solutions can be identified

and the efficient frontier can be generated. This would be the fourth and final step. The

efficient solutions are formatted in bold in Table 5.3 and the efficient frontier is presented

in Figure 5.2. The highlighted blue region in the latter contains feasible solutions, while

the two dark blue points represent the efficient solutions. Based on these results, client

C can now make a decision based on their priorities. If a complete coverage of the desk

is essential no matter what the cost is, then efficient solution d would be their choice. If

they want to save some money and are willing to adopt a camera placement plan that

does not cover every spot on the CEO’s desk, then efficient solution b would be their

choice. In the next sections, this process will be applied to much bigger problems and

the results will be presented and discussed.

5.4 Initial Results

Up to this point, this paper has introduced the camera placement problem, the bi-

objective version of this problem, and how to solve the latter using the ϵ-constraint

method. This section discusses the first set of results obtained by using the ϵ-constraint

method to address some of the OCP problem instances introduced in Section 5.2. The

main solver which was used to obtain the results was Gurobi within Python. In addition,

the following machine was used for solving all the problem instances: Intel(R) Core(TM)

i5-8500T CPU @ 2.10GHz 2.11GHz with 8.00GB RAM.

Table 5.4: A summary of the optimal results obtained from solving the bi-objective
OCP problem instances using the first formulation of the ϵ-constraint method

Instance Samples Candidates Efficient solutions Time in seconds (minutes)

AC 01 605 2904 7 5571.55 (92.85)
AC 02 2205 10584 4 344842.71 (5747.37)
AC 03 4805 23064 - -
AC 04 8405 40344 - -

The first set of results can be summarized in Table 5.4. The table contains the instance

name, number of samples, number of candidates, number of efficient solutions, and the

time needed to obtain those solution. The results were obtained by solving the problem

instances using Model 5.4. Initially, a time limit of two weeks was enforced when solving

each instance. We ran the experiment for the first 4 academic problem instances as they

are the smallest and least complicated to solve, according to our first OCP paper [65].
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Table 5.5: A list of the efficient solutions produced by solving AC 01

Solution Candidates Uncovered Samples

1 7 0
2 6 1
3 5 26
4 4 56
5 3 127
6 2 224
7 1 394

Table 5.6: A list of the efficient solutions produced by solving AC 02

Solution Candidates Uncovered Samples

1 4 0
2 3 9
3 2 200
4 1 826

In that study, we tried to solve all the 69 single objective OCP problem instances using

exact methods with a time-limit of 3 hours. The only optimal solutions obtained from

that study were from AC 01, AC 02, AC 03, and AC 04; thus, they were also used for

experimentation in the current study.

What can be observed from Table 5.4 is that only AC 01 and AC 02 have managed

to produce some results in the table. The efficient frontiers of both problem instances

can be referred to in Figure 5.3, where the highlighted blue regions contains feasible

solutions, while the dark blue points represent the efficient solutions. To obtain all the

efficient solutions, and to produce the respective efficient frontiers, AC 01 and AC 02

needed about 92 minutes and 5,747 minutes, respectively. We can focus on AC 01 for

illustrative purposes. In AC 01, 7 efficient solutions were obtained, which can be found

in Table 5.6. From those results, decision makers can select the plan (i.e., efficient

solution) that suits their specific case. If they do not care about complete coverage and

do not want to use more than 4 cameras, then solution number 4 or even 5 could be

their choice. An interesting observation from Table 5.6 is that efficient solution 2 is only

one sample short from achieving complete coverage with one less candidate than efficient

solution 1. If the spot represented by that specific uncovered sample is not too important

to the clients, then they can adopt efficient solution 2 as it is cheaper than solution 1 and

offers almost the same coverage quality as efficient solution 1. This is something that
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Figure 5.3: The graph on top of this figure represents the efficient frontier produced by
solving AC 01, while the graph on the bottom represents the efficient frontier produced

by solving AC 02

would not appear when solving this problem instance as a single-objective problem that

produces one optimal solution. This is why, generally, multi-objective optimization can

be more useful when making real-life business decisions. The efficient frontier, generated

by solving AC 01, is represented by the top graph in Figure 5.3, where the highlighted

area contains feasible solutions.

As for instances AC 03 and AC 04, two weeks time-limit for each was not enough to

provide all the results. We believe that the cause of the time consumption issue is the size

of each of these problem instances. Moreover, each problem has to be solved multiple

times, which can be time-consuming as well. To elaborate more, in the ϵ-constraint

method, each problem is converted into a number of single-objective sub-problems based

on the starting value of ϵ, which is also the number of samples in the case of Model 5.4.

For example, AC 01, AC 02, AC 03 and AC 04 were converted into 605, 2205, 4805,

and 8405 sub-problems, respectively. If AC 02 needed 5,747 minutes to be solved, then

AC 03 and AC 04 might need much more time as they are bigger in size and contain

more samples. An even bigger and potentially much more time-consuming example is

instance AC 32. From Table 5.1, we can see that instance AC 32 contains 804,005,

which means we would need to solve 804,005 sub-problems. For an instance as big as
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this one, solving even just one sub-problem can take weeks or even months. As a results,

we decide to adopt a few techniques to reduce the size of these problems instance.

5.5 Addressing the Size of the Problem Instances

In Section 5.4, we talked about our first OCP study, where we experimented in solving

all the 69 problem instances using single-objective exact methods with a time-limit of

3 hours. We also mentioned that the only optimal solutions found from in that study

were from AC 01, AC 02, AC 03, and AC 04. To deal with this issue, we conducted a

second study, where we addressed the large size of most of these instances by reducing

the size of all 69 problems. To achieve that, we employed and improved on a three

instance reduction techniques, which were introduced by [64] and were cited in [63].

These techniques were created to address set covering problems. Since our bi-objective

OCP problem was formulated as a bi-objective set covering problem, these techniques

were adopted and they are: the essential site method, the dominated columns method,

and the row domination method. These reduction techniques are explained next.

Firstly, essential site states that if there exists a row in a matrix where that row is covered

by one column only, then said column is forced to be part of the solution and every row

that is covered by this column is removed from the matrix. Secondly, dominated columns

is a reduction method that eliminates all subsets in a matrix. In other words, it removes

any column that is dominated by other columns. This means if a certain column covers

a number of rows, and said column is compared with another column that covers the

same rows in addition to a few more, then the former column can removed from the

matrix. Lastly, row domination acts exactly as the opposite of dominated columns,

where supersets are eliminated from a matrix. To elaborate more, if a certain row is

covered by a number of columns, and it was compared to another row that is covered

by the same columns in addition to a few more, then the latter row is removed from the

matrix. In other words, we eliminate the dominant rows.

Using these three techniques, the reduction algorithm works as follows: We start by

initializing the reduction algorithm. Then, we check if any essential site exists in a given

matrix. If yes, then the essential site method is activated; otherwise, no changes occur.

Subsequently, we check if there are any subsets. If yes, the dominated columns method

is activated; otherwise, no changes occur. After that, we check if there are any supersets.

If yes, the row domination method is activated; otherwise, no changes occur. Finally, we
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Initialize

(1) Essential Site

(2) Dominated Column

(3) Row Domination

Further Reduction?

Terminate

Yes

No

Figure 5.4: A summary of the reduction algorithm used in Chapter 4

check if any further reduction can be made. If yes, we repeat the previous three steps.

If no, the algorithm is terminated, and the reduced problem instance is provided. This

process keeps going until no further reduction is possible. A summary of the reduction

algorithm is provided in Figure 5.4.

We can go back to the example of client C and use matrix V to apply those reduction

techniques. First, we check for any essential sites. In this case, row 4 is covered by

column 3 only. As a result, column 3 is added to the solution of the single-objective set

covering problem, and rows 1 and 4 are removed. To make this example easier to follow,

we can convert all the values in row 1 and 4 to ‘0’ instead of removing them from the

matrix. This creates a new matrix, which we can call matrix v1.

v1 =


0 0 0 0

0 1 0 1

1 0 0 1

0 0 0 0

 .
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Now we can move on to the next step, which is investigating if there are any subsets,

using the dominated columns method. In matrix v1, we can see that columns 1 and 2

are each subsets of column 4. Therefore, we should remove columns 1 and 2 from the

matrix. Again, instead of doing that, we will convert all the values in said columns to

‘0’. This creates another matrix, which we can call matrix v2.

v2 =


0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0

 .

In the next step, we will use the row domination method and investigate if there are

any supersets in the matrix. Here, rows 2 and 3 are both supersets to each other,

which means we can remove either of them. For this example, we will remove row 3 by

converting all the value to 0. The new matrix can be called v3.

v3 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 .

The final step would be to check if the matrix can be further reduced. In this case, the

answer is yes. Row 2 is covered by only one column, which is column 4. This means

we can use the essential site method to add column 4 to the solution and remove row 2

from the matrix. The final matrix can be called matrix v4.

v4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .
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Table 5.7: Academic problem instances reduction results

Reduced Reduced Time
Instance Samples Candidates Samples Candidates in seconds

AC 01 605 2904 600 1292 0.57
AC 02 2205 10584 225 404 2.84
AC 03 4805 23064 64 92 14.09
AC 04 8405 40344 513 2580 46.72
AC 05 13005 62424 1929 6636 110.13
AC 06 18605 89304 3069 12292 239.48
AC 07 32805 157464 5909 28452 1189.01
AC 08 51005 244824 9549 51012 3156.02
AC 09 73205 351384 - - -
AC 10 605 2904 605 1672 0.34
AC 11 2205 10584 2205 7352 1.47
AC 12 4805 23064 4805 17032 3.92
AC 13 8405 40344 8405 30712 7.92
AC 14 13005 62424 13005 48392 10.67
AC 15 18605 89304 18605 70072 13.69
AC 16 32805 157464 32805 125432 24.46
AC 17 51005 244824 51005 196792 43
AC 18 73205 351384 73205 284152 54.61
AC 19 99405 477144 99405 387512 82.15
AC 20 129605 622104 129605 506872 98.32
AC 21 163805 786264 163805 642232 146.97
AC 22 202005 969624 202005 793592 194.67
AC 23 244205 1172184 244205 960952 256.96
AC 24 290405 1393944 290405 1144312 426.8
AC 25 340605 1634904 340605 1343672 688.34
AC 26 394805 1895064 394805 1559032 936.63
AC 27 453005 2174424 453005 1790392 943.46
AC 28 515205 2472984 515205 2037752 1338.29
AC 29 581405 2790744 581405 2301112 1657.96
AC 30 651605 3127704 651605 2580472 2014.11
AC 31 725805 3483864 725805 2875832 2217.76
AC 32 804005 3859224 804005 3187192 1231.94

Now we check matrix v4 for any dominated column cases then we move to the row

domination method. In this case, neither cases occur. Finally, we check again if any

more reduction can be made. Here, matrix v4 only contains zeros, so no further reduction

can be made. Since matrix v4 is empty, this means we do not need to solve the problem.

Moreover, the solution has already been obtained during both essential site stages. The

two columns that were added to the solution were columns 3 and 4. To prove that this

reduction method works perfectly, we can go back to matrix V in Section 5.3, where

we have already established that the optimal solution to this problem was to select

candidate 3 (column 3) and candidate 4 (column 4) to achieve full coverage.

This reduction algorithm was applied to the 69 problem instances and a summary of

the reduction results can be viewed in Table 5.7 for the academic instances and Table

5.8 for the real-world instances. Both tables contain the original size, the reduced size,
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Table 5.8: Real-world problem instances reduction results

Reduced Reduced Time
Instance Samples Candidates Samples Candidates in seconds

RW 01 153368 32430 28675 22754 44.89
RW 02 285698 56132 69844 42310 178.51
RW 03 161099 32040 27066 19713 43.52
RW 04 304655 59137 70727 39639 231.89
RW 05 206900 34568 26271 19813 45.87
RW 06 380420 65691 80140 45363 252.26
RW 07 214889 42046 35373 26965 53.06
RW 08 382651 77986 90204 54846 389
RW 09 206816 39003 31778 24238 48.22
RW 10 368114 71323 82511 48189 271.56
RW 11 82437 15632 14820 10334 21.97
RW 12 136555 28109 37404 20696 123.41
RW 13 293138 61741 51908 40503 94.97
RW 14 81062 14916 13997 9887 20.26
RW 15 141309 27008 37332 20288 96.75
RW 16 105829 21063 15225 12726 23.57
RW 17 180453 35635 37308 25465 129.21
RW 18 79947 14423 13144 9575 25.18
RW 19 141114 26483 33426 18976 135.97
RW 20 332300 50284 40146 29811 63.01
RW 21 654068 90050 105051 61268 534.86
RW 22 83835 17203 12162 10673 18.58
RW 23 142326 31038 32832 22300 73.45
RW 24 201967 33880 27854 21025 39.27
RW 25 375680 59851 69866 40434 195.82
RW 26 105566 18043 12990 10366 20.81
RW 27 181090 32669 36071 22149 126.5
RW 28 136755 27838 20317 18239 24.65
RW 29 273964 49267 52044 36163 114.79
RW 30 263518 49354 48499 34016 92.39
RW 31 472660 87248 116789 63266 664.57
RW 32 124289 30189 22405 20277 31.68
RW 33 229231 55000 56706 41191 168.96
RW 34 134479 27329 21793 17419 32.78
RW 35 238546 47590 52324 33072 152.5
RW 36 135043 28162 22055 17751 40.46
RW 37 238492 50702 57305 35563 254.11

and the time needed to reduce each problem. In most of these instances, the difference

between the size of the original problem and the reduced problem is quite significant.

In addition, most instances were successfully reduced within seconds or a few minutes

in the worst case scenarios. For more details regarding the reduction algorithm, how it

works, and the reduction results, readers are advised to refer to Chapter 4.

5.6 Improved Results

After reducing our OCP problem instances, we can try again solving the problem in-

stances discussed in Section 5.4. The new results are presented in Table 5.9. We can

first focus on instance AC 01. Before applying the reduction techniques on this instance,

obtaining all the efficient solutions took more than 90 minutes (see Table 5.4). After
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Table 5.9: A summary of the post-reduction optimal results obtained from solving
the bi-objective OCP problem instances using the first formulation of the ϵ-constraint

method

Instance Samples Candidates Efficient solutions Time in seconds (minutes)

AC 01 605 2904 7 2638.03 (43.96)
AC 02 2205 10584 4 23393.83 (389.89)
AC 03 4805 23064 3 190314.49 (3171.90)
AC 04 8405 40344 5 2460077 (41001.28)

applying the reduction algorithms, it took less than 45 minutes, which is more the half

the original time, to achieve the same results. This is a noticeable improvement in terms

of time-consumption. Now we can move on to instance AC 02. Originally, AC 02 took

more than 5,700 minutes to obtain all the efficient solutions, whereas now it takes only

389 minutes after having applied the reduction algorithm. In other words, it used to

take us about four days and now it takes us only six and a half hours to achieve the same

result. The difference here is much more significant. This was achieved because instance

AC 02 moved from containing 2205 samples and 10,584 candidates to 225 samples and

404 candidates. The difference in size here is tremendous, and that is why it takes much

less time now to solve this instance. This is because each time we solve a sub-problem

in AC 02, we only have to navigate through 225 samples and 404 candidates instead of

2205 samples and 10,584 candidates. It is important to note that the reduction algorithm

does not remove any efficient solutions. This is true because the reduction algorithm

eliminates unnecessary columns only, which would never be part of the efficient frontier.

The results, thus far, prove that, as we managed to produce the same exact efficient

frontiers for AC 01 and AC 02 before and after applying the reduction algorithm. The

only change here is the time needed to obtain the same results (i.e., efficient frontiers).

In Section 5.4, we only managed to obtain results for two instances. After we reduced

the size of the problem instances, we managed to obtain all the efficient solutions for

instance AC 03 in less than two weeks. In fact, it took about two days to produce

those results. This could not be achieved within the two-weeks time-limit using the

original problem. As for AC 04, we managed to obtain all the efficient solutions in

around 28 days. This exceeds the time-limit we set before implementing the reduction

techniques; however, considering the significant improvements in terms of time needed

to solve the first three academic instances, solving AC 04 without implementing the

reduction techniques should take much longer than 28 days. All these facts prove that

our reduction algorithm transformed ϵ-constraint into a more effective multi-objective
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Figure 5.5: Efficient frontiers of the reduced instances, using the first formulation of
the ϵ-constraint method

technique. The efficient frontier of each one of these reduced instances is given in Figure

5.5, where the highlighted blue regions contains feasible solutions, while the dark blue

points represent the efficient solutions. It is worth pointing out that both efficient

frontiers of the reduced problems AC 01 and AC 02 are identical to the efficient frontiers

obtained before reducing the problem instances.

5.7 Further Experimentations

After proving that our reduction algorithm significantly reduces the time needed to

obtain the complete efficient frontier, the next step is to solve our OCP instances using

the second formulation of the ϵ-constraint method. Presented in Model 5.5, the main

objective of the second formulation is to maximize the area coverage, while the number

of candidates objective is transformed into the first constraint. The results of solving

the same academic instances are given in Table 5.10.

As can be observed in Table 5.10, the time needed to obtain the same efficient solutions

has dramatically dropped, both before and after reducing the instances. To elaborate

more, before implementing the reduction algorithms, the time needed to obtain all the
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Table 5.10: A summary of the results obtained from solving the bi-objective OCP
problem instances using the second formulation of the ϵ-constraint method

Efficient Before Reduction After Reduction
Instance Samples Candidates Solutions Time (seconds) Time (seconds)

AC 01 605 2904 7 48.50 42.08
AC 02 2205 10584 4 76.71 39.74
AC 03 4805 23064 3 368.48 130.86
AC 04 8405 40344 5 2071.54 1215.92

efficient solutions of instance AC 01 for the first formulation is about an hours and

half (5,571.55 seconds), compared to 48.5 seconds for the second formulation. Simi-

larly, the time needed to obtain all the efficient solutions of instance AC 02 using the

first formulation is almost 4 days (344,842.71 seconds), compared to 76.71 seconds us-

ing the second formulation. As for AC 03 and AC 04, we could not even obtain the

efficient solutions within two weeks; whereas, it only took 368.48 seconds and 2,071.54

seconds, respectively, using the second ϵ-constraint formulation. After implementing

the reduction algorithms, the time needed to obtain all the efficient solutions of AC 01,

AC 02, AC 03, and AC 04 using the the first formulation of the ϵ-constraint method

dropped when using the second formulation. More specifically, the time (in seconds)

dropped from 2,638.03, 23,393.83, 190,314.49, and 2,460,077 to 42.08, 39.74, 130.86, and

1,215.92, respectively.

The difference in time is quite significant, but it should not be a surprise. To elaborate

on that, in the second formulation, we convert the candidates number objective into a

constraint. This means that we solve this problem systematically based on the values of

the candidates (ϵ). When we start with ϵ = 1, the problem will maximize the coverage

using 1 candidate only, which would make that solution efficient as it achieves that max-

imum coverage possible using 1 candidate. Then, we continue the process by increasing

the value of ϵ by 1, and solving the new sub-problem with ϵ = 2. Similarly, the new

solution is also efficient because it achieves the maximum coverage given the selected

number of candidates. This process continues until the coverage objective cannot be

improved any further. In other words, we can terminate the algorithm when we reach

the maximum coverage possible (i.e., number of samples). This is because all the solu-

tions of the remaining sub-problems will have the same exact coverage objective value,

but the number of candidate will be higher. This means all the remaining solutions are

not efficient (i.e., alternatives). Therefore, the algorithm can be terminated, and the

efficient solutions can be obtained. This is the main reason why the time needed to
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solve our OCP instances using the second formulation is much lower; we do not need to

solve all the sub-problems.

Lastly, it is worth noting that even when using the second ϵ-constraint formulation, solv-

ing the problems after implementing the reduction algorithms is less time consuming,

especially when the instances sizes get larger (see Table 5.10). This proves the effective-

ness of our reduction algorithm on both formulations of the ϵ-constraint method.

5.8 Conclusions and Recommendations

This paper introduced an effective ϵ-constraint approach to solve 69 bi-objective OCP

problem instances. Firstly, an introduction to as well as the background of camera

placement was given. This was followed by a brief description of the problem instances

used in this study. Then, all the relevant OCP formulations were introduced, where each

formulation was accompanied by a detailed description. After that, the initial results

were provided and discussed. This was followed by a discussion on using a few reduction

techniques to address the size of the problem instances, which proved to be affective

later in the paper.

Even though this paper proved the impact of the reduction techniques on the bi-objective

OCP problem, more experiments should be considered. The reason behind this is that it

still takes a significant amount of time for most instances. This is because of the nature of

these instances, as we believe they were created to be challenging. This could be a good

thing, as researches could get inspired by trying to come up with novel ways to improve

the quality of the results of these instances. For future work, other multi-objective

techniques could be considered, such as the weighted sum method, goal programming,

and lexicographic ordering, as they might be more effective in obtaining the results,

especially when it comes to the time consumed. Generally, since time consumption

is the main concern, multi-objective heuristic and metaheuristic techniques could be

helpful in obtaining more results.



Chapter 6

Conclusion

In this chapter, a summary of the thesis and a discussion of the limitations as well as

possibilities for future work are given.

6.1 Thesis Summary

This thesis tackled the OCP problem using various optimization techniques. OCP is

an NP-hard combinatorial optimization problem, where the goal is to find the cheapest

camera placement plan, such that the given location is completely covered by said plan.

OCP can be formulated in two possible ways. The first one is to maximize the area

coverage, given that a minimal camera cost is used; while the second one is to minimize

the cost of cameras, given that complete coverage is achieved. When adopting the latter,

the OCP problem can be formulated as a set covering problem, which is another NP-

hard combinatorial optimization problem. This work exploited the connection between

OCP and SCP, as not many studies have made use of that connection. It adopted

techniques from the SCP literature to address the given OCP problem. Those techniques

were employed to tackle 69 OCP instances available at the GECCO 2021 competition

on “the optimal camera placement problem and the unicost set covering problem”.

6.1.1 Chapter 1 Summary

This thesis started with an introduction to the main idea of the OCP problem in Chapter

1. This included the main research motivation and contribution, which was mainly

82
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inspired by exploiting the connection between OCP and SCP and finding techniques

from the latter to solve the former and address its NP-hard nature. This introductory

chapter also discussed the the nature of the problem instances used in this study. Firstly,

OCP problem did not consider the camera cost as a factor in the decision making process,

which is why the OCP problem was formulated a special type of SCP, namely the unicost

SCP (USCP). Secondly, there were two types of problem instances to deal with: one is

called academic which was created based on made-up data, while the other it called real-

world which was created based on real data. Thirdly, each problem instance, whether it

is academic or real-world, consisted of two main terms: one is called candidates which

represents the cameras (including location and orientation), while the other is called

samples which represents 3-dimensional sample points that can be covered by those

candidates.

6.1.2 Chapter 2 Summary

In Chapter 2, we provided an extensive introduction to operations research, generally,

and optimization, specifically. Various relevant and crucial concepts were discussed

in this chapter. After we introduced operations research in general, we introduced

the concept of optimization, which included definitions, general formulation of single-

objective problems, and common ways to solve it. In the next part of this chapter, we

introduced multi-objective optimization (MO), discussed its general formulation, and

explained a couple of common MO methods. After that, we discussed the concept of

combinatorial optimization and time complexity, respectively, as in this thesis, we are

dealing with a classic combinatorial optimization problem, which is called as NP-hard in

terms of time complexity. Finally, we introduced the topic of SCP, and briefly discussed

the different formulations that were used in this study.

6.1.3 Chapter 3 Summary

In Chapter 3, the main focus was to address the first two research questions, which were

introduced in Chapter 1: ”Can we formulate our specific OCP problem using SCP?” and

”Can we solve the OCP problem using classic exact methods?”. We first started this part

of the thesis by understanding the relationship between OCP and SCP, which involved

studying both concepts individually and finding the connection between them. In this

chapter, we formulated OCP as a single-objective USCP, which is a special variant of the

well-known SCP. The goal of this problem was to minimize the number of candidates,
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such that a full coverage of the samples is achieved. This problem was then solved

using classic exact methods and the results obtained showed some promise. However,

the results could have been better; therefore, we proposed a few possible reasons behind

this. The main issue was the size of our problem instances. As the problems grew in

size, it became much more computationally expensive. This is because of the NP-hard

nature of this problem. We, then, discussed a few possible ways to approach this problem

in future work.

6.1.4 Chapter 4 Summary

In Chapter 4, the main focus was to address the second two research questions: ”Does

reducing the size of our problem instances help in obtaining the solutions faster?” and

”Will the reduction algorithm itself be time consuming? If so, is there a way to fix this

issue?”. We started this chapter by we resuming studying the connection between OCP

and SCP. However, the main goal of this chapter was to improve the results obtained in

Chapter 3. This was achieved by addressing the size of the given OCP problem instances.

Moreover, classic SCP problem reduction techniques were implemented to address the

size issue. The first set of results were very promising as we managed to greatly reduce

the size of our problem instances. One issue regarding this reduction algorithm was

that it was time consuming to reduce the problem itself. Therefore, a small yet effective

modification to the reduction algorithm was implemented. The new results were much

more promising as the time needed for reduction was basically negligible. Solving those

reduced versions of the OCP problem instance was also significantly faster compared to

Chapter 3. This proved that our reduction algorithm does not only work better than

other reduction algorithms, but it also helped in providing better OCP results.

6.1.5 Chapter 5 Summary

Finally, in Chapter 5, the focus was to address the last research question: ”Can we

formulate our OCP problem as a bi-objective OCP and use SCP techniques to tackle it?

If so, does the reduction algorithm have an impact on the bi-objective OCP problem?”.

First, we formulated our OCP problem as a bi-objective problem. Similar to the previous

chapters, we used USCP to formulate this problem, where the two objective were to

minimize the number of candidates and maximize the number of samples. To address

this bi-objective problem, we adopted a popular multi-objective optimization method,

namely the ϵ-constraint method. From the first set of results, we noticed how time
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consuming it was to solve each problem instance. This makes sense, since using this

method means solving the problem multiple times based on the value of ϵ. To address

this issue, we used the reduction algorithm introduced in Chapter 4. The new results

showed much more promise, as the time needed to solve each problem and obtain all the

efficient solutions was dramatically reduced.

Overall, in this thesis, different techniques inspired from the SCP literature were im-

plemented to address our 69 OCP problem instances. Even though the results showed

great promise, there are still some limitations in this thesis that must be discussed. In

addition, possible ways to approach these OCP problems should also be discussed for

future work.

6.2 Limitations and Future Work

As mentioned earlier this thesis has some limitations that must be addressed. Each

chapter discussed some specific issues, thus, the overall limitations are discussed here

and ways to address them for future work is discussed.

1. Solving the single-objective OCP problem is still time consuming, even after having

the problem instances reduced: Since the main issue stems from the fact that

this problem is NP-hard, which means the problem is hard to solve optimally

using classic exact methods, heuristic and metaheuristic techniques, such as greedy

algorithms or genetic algorithms, can be adopted, where near-optimal or even

optimal solutions can be obtain in a reasonable time.

2. Solving the multi-objective OCP problem is still time consuming, even after hav-

ing the problem instances reduced: Multi-objective heuristic and metaheuristic

techniques can be adopted to address the bi-objective OCP problem. That being

said, the main reason that the bi-objective OCP problem is still time consuming

to solve, is that we used the ϵ-constraint method to address it. To elaborate more,

using this method means solving the problem multiple times based on the value

of ϵ, which naturally is time consuming. For future work, other MO techniques,

such as the weighted sum method, can be adopted.

3. Only three reduction techniques are used in this study to create the reduction algo-

rithm: There are many other reduction techniques discussed in the SCP literature
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that could potentially reduce our problem instances even more. For future work,

these techniques can be experimented with.

4. Generally, not enough results are obtained across the three main studies: As men-

tioned in the first and second point, we can use other optimization techniques,

such as heuristic and metaheuristic, to obtain more results, even if those results

may not actually be optimal. But the main issue here is the time factor. These

studies had to be conducted within a certain time-frame, which is why we had to

set a time-limit for solving these studies. For future work, time might not be a

factor, and conducting studies such as this one would get enough time to obtain

most, if not all, of the results.
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