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Abstract  16 

Chlorophylls and carotenoids are naturally existing pigments and play a crucial role in the 17 

chemical and sensory quality of vegetable oils. These compounds have at the same time substantial 18 

positive health impacts and can be useful in detecting adulteration. Therefore, this study evaluated 19 

the feasibility of a color sensor (RGB sensor) for predicting the total content of carotenoids and 20 

chlorophylls in avocado and olive oils, two of the vegetable oils that have well documented health 21 

effects. as well as their total spectrophotometric color (TSC). Different color parameters (RGB, 22 

HSV, or L*a*b*) and lighting conditions (white or 395 nm UV light) were compared in order to 23 

identify the best analytical condition. The least-square support vector machine (LS-SVM) models 24 

exhibited superior performance compared to the multiple linear regression (MLR) models. The use 25 

of UV light resulted in an enhanced predictive performance for the total chlorophylls content. In 26 

contrast, white lighting was found to be more suitable for the prediction of total carotenoids and 27 

TSC. The use of HSV or RGB values demonstrated better performance in predicting total 28 

chlorophylls (R² > 0.9, RMSE from 0.99 to 4.13 mg kg-1, and RPD from 4.04 to 3.48). On the other 29 

hand, the L*a*b* values demonstrated the highest accuracy in predicting the total carotenoids 30 

content (R² > 0.8, RMSE from 0.42 to 0.92 mg kg-1, and RPD from 2.02 to 2.22). In conclusion, this 31 

color sensor-based approach has been demonstrated as a cost-effective, accurate, and rapid method 32 

for predicting pigment content in vegetable oils, requiring minimal or no sample preparation. 33 
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1. Introduction 38 

 The quality of vegetable oils, such as olive and avocado oils, is correlated with their 39 

nutritional value, freshness, and functional properties, all of which can be linked to their natural 40 

pigment content (Jimenez-Lopez et al., 2020; Lazzerini & Domenici, 2017; Tena et al., 2015). 41 

These oils have been under intense research interests, due to their health positive effects, and their 42 

production has increased substantially (Chiavarini et al., 2024; Lin & Li, 2024). Their primary 43 

pigments, namely chlorophylls and carotenoids, play a significant role in the chemical and sensory 44 

quality of these vegetable oils (de Carvalho & Nunes, 2021; Tan, 2019). Chlorophylls are the 45 

primary green color pigments, while carotenoids are responsible for the yellowish or reddish color 46 

(Pérez-Gálvez et al., 2020; Tan, 2019; Wong et al., 2008). Chlorophylls have been reported to 47 

possess antioxidant, antimutagenic activity, and have the ability to prevent degenerative diseases 48 

(Ferruzzi & Blakeslee, 2007). Carotenoids are natural antioxidants that inhibit free radicals 49 

propagation (Fernando et al., 2021). The presence of carotenoids in foods is linked to a reduced risk 50 

of diseases of the skin, eyes, and cardiovascular problems, especially those based on oxidation of 51 

low-density cholesterol (LDL) (Fernando et al., 2021). Although limits for chlorophylls and 52 

carotenoids are currently absent in official guidelines or standards for vegetable oils (International 53 

Olive Council, 2024), the measurement of these pigments in virgin vegetable oils is considered of 54 

substantial importance, as they can provide information on the product stability. There are a 55 

important sensorial parameters as well, since the color is usually the first attribute evaluated by the 56 

consumer (Zegane et al., 2015).  The pigment composition also has been used already for the 57 

detection of adulteration of olive oil with other edible oils (Lu et al., 2023). 58 

 There are several well-documented analytical techniques employed for the determination of 59 

natural pigments in oils mainly based on spectrophotometry and chromatography. These techniques 60 

are often time-consuming, costly, and labor-intensive, as they include a number of pre-treatment 61 

steps before their final analysis and chemical reagents (Borello et al., 2021; Jiménez-Sotelo et al., 62 

2016). Nowadays methods based on smartphone cameras and colorimetric sensors have been 63 



proposed as faster oil quality evaluation alternatives (de Carvalho & Nunes, 2021). Carvalho and 64 

Nunes (2021) have proposed a smartphone-based method for the prediction of both chlorophylls 65 

and carotenoids content in olive and avocado oils. The method proposed by them had a relatively 66 

good performance, presenting, for example, a limit of quantification of total chlorophyll (1.86 mg 67 

kg-1). This limit is slightly higher than this of the AOCS Cc 13i-96 spectrophotometric method (1.0 68 

mg kg-1), which have been used as a reference. However, that method had the drawback of requiring 69 

a calibration transfer to mitigate errors from light effects and differences in smartphone cameras. In 70 

addition, image processing presents several challenges, such as interference from external factors, 71 

correction of internal artifacts, and precise definition of the region of interest (Fan et al., 2021), de 72 

Carvalho et al., 2023). These aspects require advanced knowledge to ensure the quality and 73 

reliability of the results. In contrast, portable sensors appear to be a more attractive alternative than 74 

smartphones. 75 

 Optical sensors are designed with a focus on "point-and-shoot" capabilities, with particular 76 

attention paid to their ruggedness (Rodriguez-Saona et al. 2020). These sensors can have some 77 

limitations, such as limited sensitivity and accuracy and the need to control external factors, such as 78 

lighting conditions and angle of measurement. They are also not sensitive to non-visible features 79 

and perform best when the food sample is relatively homogeneous in color (de Carvalho Pires et al., 80 

2024). Nevertheless, these sensors are considered a promising and emerging from an analytical 81 

perspective approach, due to their significantly reduced size, low cost, and their integration of 82 

micro-electro-mechanical systems (Rodriguez-Saona et al., 2020). These color sensor-based 83 

approaches can offer advantages over traditional methods, such as spectroscopy and 84 

chromatography, including no chemical waste, portability, on-site measurement, remote monitoring, 85 

high-throughput testing with minimal effort, and on-site quality control. This approach facilitates 86 

the development of novel devices with a broad range of applications in food analysis, such as 87 

fluorescence-based devices for detecting oil mixtures (Bi et al., 2019), monitoring storage 88 

conditions, and adulteration of extra virgin olive oil (Lastra-Mejias et al., 2019), and the detection 89 



of mixtures of vegetable oils in avocado oil (Lorenzo et al., 2024). To the best of authors’ 90 

knowledge, there is an absence of documented data relevant to colorimetric sensors for natural 91 

pigments determination in vegetable oils. 92 

The food industry uses widely well-established spectrophotometry and chromatography 93 

methods that have been validated over time, particularly in quality control. These methods are 94 

trusted by regulatory agencies and industry professionals, especially the chromatographic ones as 95 

they have low detection limits and they are able to discriminate compounds. Therefore, it is rather 96 

impossible these chromatographic methods to be entirely replaced from other currently available 97 

analytical technologies. Although colorimetric sensors are less expensive and easier to use, they 98 

present a lack of maturity to be considered viable replacements for these more established methods 99 

in contexts that require regulatory accuracy, consistency, or scientific validation. Therefore, 100 

studying the applicability of these sensors is essential for a transition to new analytical technologies, 101 

which can offer an initial quick in-site estimation of the oils quality. 102 

 In this context, the objective of this proof-of-concept study is to evaluate the feasibility of 103 

using a conventional and inexpensive color sensor for the simultaneous prediction of the 104 

carotenoids and chlorophylls content, in addition to the total spectrophotometric color of olive and 105 

avocado oils. This sensor's response with respect to the pigment content was evaluated against the 106 

responses of commonly employed methods for the determination of chlorophylls and carotenoids. 107 

The most appropriate modeling approach (linear or non-linear), color parameters (RGB, HSV, or 108 

L*a*b*), and the type of lighting (white or UV light) were investigated. 109 

 110 

2. Material and Methods  111 

2.1. Samples and instruments 112 

Five virgin avocado oils (Hass, Breda, Margarida, Fortuna, and Quintal avocado cultivars) 113 

and two extra virgin olive oils (Koroneiki and Arbequina cultivars) were collected directly after 114 

extraction from Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG, Brazil) with 115 



guarantee of authenticity and purity. Four commercial extra virgin olive oils (Andorinha, Larambia, 116 

Herdade, and Irarema) and one refined soybean oil (Liza) were obtained from the local market. 117 

Prior to storage and analysis, the oils were filtered through qualitative paper filters (Unifil 80g). All 118 

oils were within their expiration dates and were stored in a fridge at 5°C until their analysis (within 119 

a period of three months). 120 

In order to better represent a few common commercial available blends, such as olive and 121 

soybean or olive and avocado oils, as well as to increase the samples size and include a variety of 122 

calibration and validation points, a series of blends were prepared (Table S1) by combining the oil 123 

samples mentioned above, resulting in 43 additional samples. The proportions of the blends were 124 

defined after determining the pigment content of the pure oils in order to obtain a wide and varied 125 

range of concentrations, well distributed over the entire measurements range. The blending was 126 

performed by weighing the respective oils in 10 ml glass vials and then manually shaking them for 127 

approximately 30 seconds until a visually homogeneous mixture was produced. The analyses were 128 

conducted within four hours after the mixture preparation and ensuring that the mixture was bubble-129 

free. The samples were analyzed in triplicate, resulting in a total of 129 points. 130 

All the spectrophotometric analyses were conducted in a UV/Vis spectrophotometer 131 

(Drawell® DV-8200, UV-Pro software ver. 1.0.01) using a 1 cm glass cuvette. 132 

 133 

2.2. Determination of total chlorophylls by spectrophotometry 134 

The three most common spectrophotometric methods reported in the literature to determine 135 

the total chlorophylls content (Tchl) in oil samples were used. 136 

In the first method, the chlorophylls were determined by direct (without solvent) measurement 137 

of the sample's absorbance at 670 nm, 630 nm, and 710 nm (Pokorny et al., 1995). This method was 138 

designated as Tchl – IUPAC. The Tchl value was calculated using the following equation: 139 

𝑇𝑐ℎ𝑙(𝑚𝑔. 𝑘𝑔−1) =  
345.3(𝐴670−0.5×𝐴630−0.5×𝐴710)

𝐿
   1 140 

Where: 141 



Tchl: content of chlorophylls in mg of pheophytin per kg of oil 142 

A: absorbance at the respective wavelength (nm) 143 

L: optical path length (1 cm) 144 

 145 

In the second method, the standard AOCS Cc 13d-55, as described by Sabah (2007), was 146 

employed for the determination of total chlorophyll. This involved the measurement of the 147 

absorbance of the sample (without solvent) at 630 nm, 670 nm, and 710 nm. This method was 148 

designated as Tchl – AOCS. The calculation of Tchl was performed in accordance with the 149 

following equation: 150 

𝑇𝑐ℎ𝑙 (𝑚𝑔. 𝑘𝑔−1) =
𝐴670−0.5 (𝐴630+𝐴710)

0.0964 𝐿
    2 151 

Where: 152 

Tchl: content of chlorophylls in mg of pheophytin per kg of oil 153 

A: absorbance at the respective wavelength (nm) 154 

L: optical path length (1 cm) 155 

 156 

The third method employed the measurement of the absorbance at 670 nm to quantify the 157 

total chlorophylls and their derivatives in the sample (Minguez-Mosquera et al., 1991). This 158 

approach is based on the observation that the absorbance at 670 nm is exclusively attributed to the 159 

fraction of these pigments. The samples were prepared by mixing 0.6 g of oil with 2 ml of n-160 

hexane. This method was designated as Tchl – MM. Tchl was calculated in accordance with the 161 

following equation: 162 

𝑇𝑐ℎ𝑙 (𝑚𝑔. 𝑘𝑔−1) =  
𝐴670×106

613×100×𝐿
     3 163 

  164 

Where:  165 

Tchl: content of chlorophylls in mg of pheophytin per kg of oil 166 

A: absorbance at the respective wavelength (nm) 167 



L: optical path length (1 cm) 168 

 169 

2.3. Determination of total carotenoids  170 

The two most common spectrophotometric methods reported in the literature to determine the 171 

total carotenoids content (Tcar) in oil samples were used. 172 

In the first method, the samples were prepared by mixing 0.6 g of oil and 2 ml of n-hexane, as 173 

described by Goodwin (1952) and adapted by Mba et al. (2017). The total carotenoids content was 174 

determined from the absorbance at 445 nm. This method was designated as Tcar – GW. Tcar was 175 

calculated using the following equation: 176 

𝑇𝑐𝑎𝑟 (𝑚𝑔. 𝑘𝑔−1) =  
𝐴445 × 𝑣 × 106

2500 × 𝑊 × 1000
      4 177 

Where: 178 

Tcar: total carotenoids content in mg per kg of oil 179 

A: absorbance at the respective wavelength (nm) 180 

v: volume of n-hexane in ml 181 

W: weight of sample in g 182 

 183 

In the second method, the absorbance at 470 nm was employed to assess the total content of 184 

carotenoids in virgin oils, given that absorbance at this wavelength is largely attributable to the 185 

absorption of these pigments (Minguez-Mosquera et al. 1991). The samples were prepared by 186 

mixing 0.6 g of oil and 2 ml of n-hexane. This method was designated as Tcar – MM. The Tcar 187 

value was calculated using the following equation: 188 

𝑇𝑐𝑎𝑟(𝑚𝑔. 𝑘𝑔−1) =  
𝐴470×106

2000×100×𝐿
     5 189 

Where: 190 

Tcar: total carotenoids content in mg per kg of oil 191 

A: absorbance at the respective wavelength (nm) 192 

L: optical path length (1 cm) 193 



 194 

2.4. Determination of total spectrophotometric color by spectrophotometry 195 

The total spectrophotometric color (TSC) determination was conducted in accordance with 196 

the Standard PN-A-86934:1995 (Różańska & Namieśnik, 2017). The samples were prepared by 197 

mixing 0.2 g of oil with 2 ml of n-hexane for the measurement at 442 nm and mixing 1.0 g of oil 198 

with 1 ml of n-hexane for the measurement at 668 nm. TSC was calculated using the following 199 

equation: 200 

𝑇𝑆𝐶 = 1000 (𝐴442 +  𝐴668)       6 201 

Where: 202 

TSC: total spectrophotometric color 203 

A442: absorbance at the respective wavelength (nm) 204 

A668: absorbance at the respective wavelength (nm) 205 

 206 

2.5. Analysis using the color sensor 207 

A TCS34725 color sensor (Texas Advanced Optoelectronic Solutions Inc.) was employed to 208 

acquire digital readings of red, green, blue (RGB), and clear light (C) values. This sensor, which is a 209 

color light-to-digital converter, was interfaced with an Arduino Uno (Figure 1). The integration time 210 

was set at 24 ms, and the gain was set at 1x. A sample holder was constructed using white ethylene-211 

vinyl acetate (EVA) material, as previously described (Lorenzo et al., 2024). The samples were 212 

analyzed in 4 ml glass cuvettes under two distinct lighting conditions: ultraviolet light (3V, 395 nm 213 

LED) and white light from the color sensor's light source. The closed sample holder ensured the 214 

lighting standardization. The raw readings for the red (R), green (G), blue (B), and clear light (C) 215 

outputs were acquired by averaging 10 readings using Realterm software (version 2.0.0.70, 216 

i2cchip). The raw RGB values were normalized by dividing them by the C value, resulting in the R, 217 

G, and B values used as descriptors in the models. Furthermore, the RGB values were converted to 218 



HSV and CIE L*a*b using the functions "rgb2hsv" and "rgb2lab" from the Image Processing 219 

package for Octave (Eaton et al., 2024). 220 

 221 

2.6. Predictive models 222 

The color parameters of the oil samples obtained using the color sensor (independent 223 

variables) were calibrated against the total chlorophylls, total carotenoids, and TCS values 224 

determined spectrophotometrically using the different methods (dependent variables). In order to 225 

identify the optimal descriptors, different color systems (RGB, HSV, or L*a*b*) and lighting 226 

conditions (white or UV light) were employed. The dataset is available as supplementary material. 227 

Two modeling approaches were evaluated: Multiple Linear Regression (MLR) and Least-228 

Square Support Vector Machine (LS-SVM) with a radial basis function. The dataset was split into a 229 

calibration set, which encompassed 75% (97 samples) of the total samples, and a test set, which 230 

comprised the remaining 25% (32 samples). This sample division was conducted employing the 231 

Kennard-Stone algorithm (Yun, 2022). The suitability of the model was assessed using the 232 

determination coefficient (R²) and the root mean squared error (RMSE) for calibration, y-233 

randomization, leave-one-out cross-validation, and test set, in addition to Relative Standard 234 

Deviation (RSD) and the ratio of performance to deviation (RPD) for the test set (Bellon Maurel et 235 

al., 2010).  236 

The R²m value was calculated (Equation 7) to confirm that the predicted values obtained 237 

through the test set demonstrate a strong correlation with the observed values and exhibit 238 

congruence as well. A threshold of 0.5 was used as the criterion for validity (Mitra et al., 2010). 239 

𝑅𝑚
2 = 𝑅2  (1 − √𝑅2 − 𝑅0

2)   7 240 

where R² and R²0 represent the quadratic correlation coefficients between the actual and 241 

predicted values, with and without the intercept, respectively. 242 

Furthermore, the robustness of the models was assessed by a y-randomization test, which 243 

consists of fixing the X matrix (independent variables) and shuffling the y vector (dependent 244 



variable) to obtain new models. It is expected that the predictive performance will decrease as the 245 

response is truly related to its predictor, thus validating the relationship between independent and 246 

dependent variables. From this test, the cR²p value was computed, which accounts for the 247 

distinction between the y-randomization R² (R²rand) and calibration R² (R²cal) (Equation 8). A cR²p 248 

> 0.5 was established to attest to the absence of overfitting or random adjustment (Mitra et al., 249 

2010). 250 

𝑐𝑅𝑝
2 = 𝑅𝑐𝑎𝑙

2  (√𝑅𝑐𝑎𝑙
2 − 𝑅𝑟𝑎𝑛𝑑

2 )    8 251 

All computations were conducted using Octave version 9.2.0 (Eaton et al., 2024). The LS-252 

SVM models were implemented via the LS-SVMlab toolbox version 1.8 (Suykens et al., 2002). The 253 

LS-SVMlab toolbox was chosen for its ease of use, mainly due to its automatic tuning of kernel 254 

parameters. Deep learning methods could be effective, but they are generally more suitable for 255 

high-dimensional and large datasets, and may not be able to generalize well and may result in poor 256 

performance when training on small datasets. 257 

 258 

3. Results 259 

The content of total chlorophylls and carotenoids in vegetable oils can be determined by 260 

different spectrophotometric methods. Therefore, the three most common methods for the 261 

determination of chlorophylls and the two most common methods for the determination of 262 

carotenoids were used to obtain the known values for the calibration of the sensor response. This 263 

allows the ability of the sensor to predict the content of these pigments in vegetable oils to be tested 264 

against different analytical approaches. The main performance parameters for calibration and test 265 

are summarized in Table 1(the detailed Tables with information for y-randomization and cross-266 

validation can be found in the supplementary material; Tables S2 and S3).  267 

The MLR models demonstrated good predictive capability for the determination of Tchl in 268 

olive and avocado oils based on both the IUPAC, AOCS, and MM methods, using both lighting 269 

(UV and white) and RGB values as descriptors, with R² values of approximately 0.8. For the test 270 



set, R² values of approximately 0.9 were obtained, in addition to R²m values greater than 0.5, 271 

indicating substantial congruence between actual and predicted values (Figure 2). The high RMSE 272 

values and low R² for the y-randomization test, in addition to the high cR²p value (>0.5), indicated 273 

that there were no overfitting or random adjustments. 274 

The LS-SVM models demonstrated better performance compared to the MLR models, 275 

particularly in models based on IUPAC and AOCS methods utilizing HSV values and UV lighting, 276 

as well as the model based on the MM method under white lighting with RGB values, with R² 277 

values > 0.90 for both calibration and test. The RMSE values resulting from the LS-SVM models 278 

were notably lower than those obtained from the MLR models. Moreover, the elevated R²m values 279 

(R²m > 0.90) indicated excellent congruence between actual and predicted values (Figure 3). The 280 

LS-SVM models exhibited poor performance in the y-randomization test, with cR²p values 281 

exceeding 0.5, suggesting the robustness of these models without overfitting or random 282 

adjustments. 283 

In general, the MLR models exhibited poor performance in predicting Tcar, with R² values for 284 

calibration ranging from 0.59 to 0.67 for white lighting and between 0.47 and 0.52 for UV lighting. 285 

Despite the relatively low R² values for the test set (ranging from 0.62 to 0.72), the R²m values 286 

exceeded 0.5, indicating a certain degree of congruence between the actual and predicted values 287 

when using white light (Figure 2). In contrast, the models exhibited considerably poor performance 288 

when using UV light, with the R²m values falling below 0.5 for the majority of the models. 289 

Furthermore, the cR²p values, which were found to be lower than 0.5 in the y-randomization test, 290 

indicated a possible random adjustment when using UV lighting. 291 

The LS-SVM models demonstrated better performance in predicting Tcar compared to the 292 

MLR models, particularly when using L*a*b* under white lighting. The R² values for the test set 293 

were close to 0.8 for the LS-SVM models, while the RMSE values were lower than those of MLR 294 

models in both lighting conditions. The R²m value exceeded 0.5, indicating a valid congruence 295 

between the actual and predicted values (Figure 3). Additionally, the LS-SVM models exhibited 296 



elevated RMSE and low R² in the y-randomization test, particularly when using L*a*b* and white 297 

light, with cR²p values exceeding 0.5, suggesting no overfitting or random adjustments. 298 

The MLR models demonstrated satisfactory performance in predicting TSC when using white 299 

lighting (Table 1), with calibration R² values close to or exceeding 0.8 for both the calibration and 300 

test. The value of R²m > 0.5 indicated congruence between actual and predicted values (Figure 2). 301 

Additionally, the high RMSE and low R² values, accompanied by cR²p > 0.5, indicated that the 302 

models did not exhibit overfitting or random adjustments. 303 

Similar to the results obtained with the Tchl and Tcar models, the LS-SVM models 304 

demonstrated superior performance in predicting TSC compared to the MLR models. This was 305 

particularly evident under white lighting conditions, where the use of RGB values as descriptors 306 

resulted in an R² of 0.85 for the calibration set and 0.90 for the test set. The RMSE values obtained 307 

from the LS-SVM models were considerably lower than those obtained from the MLR models. The 308 

elevated R²m values (approximately 0.80) indicated a high degree of congruence between actual 309 

and predicted values (Figure 3). Additionally, the LS-SVM models had a poor performance in the y-310 

randomization test, with cR²p values exceeding 0.5, indicating the robustness of these models 311 

without overfitting or random adjustments. 312 

In general, all predicted variables had residuals with apparently random patterns at all levels 313 

of the variables predicted by the LS-SVM models (Figure S2), suggesting homoscedasticity. On the 314 

other hand, some residuals for MLR models (Figure S1), especially for total chlorophylls based on 315 

IUPAC and AOCS methods, had an increasing pattern towards higher values, suggesting some 316 

heteroscedasticity. 317 

The model performances based on RMSE and R² were confirmed by the RSD and RPD 318 

values for the test set (Table 1), suggesting that the LS-SVM models had better precision (lower 319 

RSD) compared to the MLR models. The best LS-SVM models presented RSDs between 9.9% and 320 

14.6% for chlorophylls and between 21.3% and 29.2% for carotenoids. These findings are 321 

comparable to those reported for a smartphone-based method, which presented RSDs of 10.3% for 322 



chlorophylls and 25.4% for carotenoids (Carvalho and Nunes, 2021). In comparison, one of the 323 

collaborative studies reported as satisfactory in the IUPAC method for the determination of 324 

chlorophylls (Pokorny et al., 1995) achieved coefficients of variation up to 9.72% for repeatability 325 

and up to 57.69% for reproducibility. Some of the MLR models for chlorophylls and most for 326 

carotenoids had poor reliability due to RPDs < 2, as recommended by some authors (Bellon Maurel 327 

et al., 2010; Chang et al., 2001). In contrast, the LS-SVM models had RPD between 2.9 and 4 for 328 

chlorophylls and up to 2.7 for carotenoids. 329 

 330 

4. Discussion 331 

The proposed RGB sensor-based method for the determination of pigments in vegetable oils 332 

offers significant cost and time savings compared to conventional spectrophotometric methods. A 333 

typical RGB sensor can cost a few hundred USD depending on quality, brand, and features. These 334 

devices are relatively inexpensive compared to a spectrophotometer, which typically costs between 335 

a few thousand USD. Another advantage of RGB sensors is that they require minimal sample 336 

preparation, often without the need for dilution, resulting in instant analysis and fast results. 337 

Spectrophotometers also require relatively simple oils sample preparation, which may include 338 

dilution or filtration of samples. However, these procedures can increase analysis time. 339 

Optical or colorimetric sensors have been employed to evaluate the properties of oils that 340 

depend on their chlorophyll or carotenoid content. The primary applications of this technology 341 

involve the authentication of oils, particularly blends of extra virgin oils (high natural pigment 342 

content) with other vegetable oils (commonly refined and with low or no pigment content). Lorenzo 343 

et al. (2024) demonstrated the same color sensor competence in detecting blends of vegetable oils in 344 

avocado oil. In another study by Huang et al. (2022), a colorimetric sensor array combined with 345 

linear discriminant analysis was employed to distinguish extra virgin olive oil from its mixtures 346 

with soybean and corn oil. A photonics sensor was utilized by Weesepoel et al. (2021) to 347 

differentiate between extra virgin olive oil adulterated with other edible oils using one-class 348 



classification modeling. This study's results are in agreement with those of the studies mentioned 349 

earlier. 350 

MLR is simpler to use than SVM methods, which are more complex and susceptible to 351 

overfitting for small datasets. Based on parsimonious principles, complex modeling methods should 352 

be considered as a last option, preferring simpler and more robust approaches when these are 353 

sufficient. However, a better performance of LS-SVM over MLR was supported for all the 354 

predictive models of this study, including Tchl, Tcar, and TSC. SVM-based algorithms can offer 355 

advantages over MLR in terms of regularization, stability, and robustness to outliers. SVM is 356 

generally more robust to outliers due to its regularization and penalty mechanisms, which reduce 357 

the influence of extreme data points. On the other hand, MLR is more sensitive to outliers, as it 358 

minimizes the sum of squared residuals, meaning large outliers can disproportionately affect the 359 

model. Its ability to produce reliable solutions can make SVM a good choice in many regression 360 

scenarios, especially when noisy data is present (Othman et al., 2023). Indeed, the potential of 361 

machine learning or deep-learning techniques, such as SVM, to enhance the implementation of 362 

cost-effective sensors, compensating for their inherent limitations in terms of design and 363 

manufacture has been highlighted in the literature (Payette et al., 2023; Lorenzo et al., 2024), which 364 

have been a trend in food product quality evaluation based on spectroscopy techniques (Ahmed et 365 

al., 2025; Chang et al., 2001; Zhang et al., 2021). 366 

The performance of a color-based predictive model can be influenced by the color space used 367 

to predict the desired response (Anconi et al., 2022; de Carvalho & Nunes, 2021; Resende et al., 368 

2023). This effect occurs due to the manner in which the color space describes the observed color. 369 

For instance, L*a*b* is a three-dimensional color space that encompasses the entire range of human 370 

color perception. The L* value (lightness) is a scale that ranges from black to white. The a* and b* 371 

values represent chromatic components, with a* representing green-red opponent colors and b* 372 

representing blue-yellow opponent colors (Ibraheem et al., 2012). The RGB system describes a 373 

color by an additive model, in which the linear combination of the three primary colors, red (R), 374 



green (G), and blue (B), is used. Consequently, the diverse systems employed to describe a color 375 

influence its correlation with a particular property, such as the content of pigments in oils. This 376 

effect results in discrepancies in modeling performance depending on the color system utilized as a 377 

descriptor, which is consistent with the findings of other studies. Carvalho and Nunes (2021) 378 

presented several effective models for predicting Tchl in olive and avocado oils using RGB or HSV 379 

values obtained with a smartphone camera. Moyano et al. (2008) found that L*a*b* had a strong 380 

correlation with carotenoids content in olive oils when using complex regression models, with R² > 381 

0.86. These reports are in line with the results of the present study. 382 

The models for predicting Tchl based on solvent-free methods (IUPAC and AOCS) exhibited 383 

superior performance when UV light was used. In contrast, the predictive models for Tcar or TSC 384 

(which encompass carotenoids absorption) demonstrated enhanced performance when employing 385 

white light. When chlorophylls molecules in oils are exposed to UV light (including 400 nm), they 386 

absorb the UV radiation and transit into an excited state. After a very short period (typically 387 

nanoseconds), the molecules return to their ground state and release the absorbed energy in the form 388 

of fluorescence, typically in the red region (around 650–750 nm) of the electromagnetic spectrum 389 

(Fan et al., 2021). This effect was indeed captured by the sensor, as can be seen by comparing the 390 

redder color of one of the olive oil samples under UV light (R = 238, R = 95, R = 98) with a 391 

browner color under white light (R = 223, G= 132, B= 96). As reported by Hakonen and Beves 392 

(2018), fluorescence may cause inner-filter effects when detected at a 90° angle from the excitation 393 

light due to the presence of particles in a liquid medium. This effect would be even more 394 

pronounced in oils rich in chlorophylls (fluorescent species), such as olive and avocado oils. The 395 

researchers reported that this phenomenon when employing an excitation light with a wavelength of 396 

approximately 400 nm, could provide supplementary information for differentiating vegetable oils 397 

based on color parameters. This hypothesis may explain the enhanced performance observed when 398 

predicting Tchl based on solvent-free methods, given that the more concentrated medium may be 399 



more susceptible to inner-filter effects, thereby contributing to a stronger correlation between the 400 

color parameters and the chlorophylls content. 401 

The prediction of Tchl based on solvent-free methods also demonstrated superior outcomes 402 

when using the HSV values as descriptors, which can also be attributed to the effects of 403 

fluorescence. As demonstrated by Hakonen and Beves (2018), the hue (H) parameter (from the 404 

HSV color model) has been identified as a reliable signal for optical chemical sensors, particularly 405 

when analyzing samples exhibiting fluorescence effects. The researchers observed that oils rich in 406 

chlorophylls, such as olive oils, exhibited significantly higher hue values than those with low 407 

chlorophylls content when illuminated by LED at approximately 400 nm, indicating a strong 408 

correlation between hue and the content of fluorescent species, such as chlorophylls. 409 

 410 

5. Conclusion 411 

This proof-of-concept study demonstrated that the device based on a conventional color 412 

sensor and chemometrics models was able of predicting the levels of carotenoids and chlorophylls 413 

in olive and avocado oils, in addition to their TSC. Despite a relatively small dataset, the validation 414 

techniques, such as y-randomization, cross-validation, and predictions for a test set, suggested that 415 

the models provided reliable predictions for pigment content in olive and avocado oils. 416 

A better performance of LS-SVM over MLR was observed for all the predictive models. This 417 

can be attributed to the mathematical assumptions of each method regarding data processing 418 

abilities to describe the predicted response. The use of UV lighting was demonstrated to improve 419 

the performance of these models in respect to total chlorophylls content, when the response is based 420 

on solventless methods (IUPAC and AOCS methods). White lighting was appropriate in the rest 421 

cases. 422 

The color space used as a descriptor also influenced the predictive accuracy, depending on the 423 

type of variable and reference method. HSV predicted better total chlorophylls referenced on 424 

solventless methods. RGB was found to be a more suitable color space for predicting TSC and total 425 



chlorophylls referenced on solvent dilution methods. Finally, total carotenoids content was better 426 

predicted using L*a*b* values as descriptors. 427 

The color sensor-based approach has been demonstrated to provide a viable and cost-effective 428 

alternative to traditional methods for predicting pigment content in vegetable oils. This technique 429 

requires negligible sample preparation, thereby indicating significant potential for implementation 430 

in industrial applications that require a fast, reliable, and cheap estimation of food based on colorful 431 

compound concentrations. The improvement of the predictivity for carotenoids is necessary in near 432 

future additional studies, perhaps considering the use of more powerful modeling methods and 433 

additional color descriptors. This study can further expand and include oils from various olive and 434 

avocado cultivars and investigate the effect of interferences from other color sources, including 435 

artificial colorants. These points that future studies should address, they could contribute to the 436 

implementation of such techniques in food quality control and simplify the analytical procedures, 437 

once they proven robust with these additional considerations. 438 
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Tables 592 

Table 1. Performance parameters for the best MLR and LS-SVM models to predict the total chlorophylls 593 
(Tchl), total carotenoids (Tcar), and total spectrophotometric color (TSC) in olive and avocado oils based on 594 
different methods using the color sensor. 595 

 
MLR LS-SVM  MLR LS-SVM 

 
 Tchl – IUPAC (mg kg-1)  Tcar – GW (1951) (mg kg-1) 

 
lighting white uv  white white 

 
color system RGB HSV  HSV Lab 

calibration 
RMSE 6.68 2.1  0.57 0.53 

R² 0.77 0.98  0.61 0.67 

test 

RMSE 5.32 4.13  0.59 0.42 

R² 0.89 0.94  0.67 0.79 

RSD 12.83 9.97  41.32 29.24 

RPD 2.7 3.48  1.43 2.02 

  
Tchl – AOCS (mg kg-1)  Tcar – MM (mg kg-1) 

 
lighting  white uv  white white 

 
color system RGB HSV  RGB Lab 

calibration 
RMSE 2.01 0.64  1.21 1.06 

R² 0.77 0.98  0.63 0.7 

test 

RMSE 1.6 1.23  1.12 0.92 

R² 0.89 0.94  0.72 0.82 

RSD 12.83 9.9  33.12 27.22 

RPD 2.7 3.5  1.83 2.22 

  
Tchl – MM (mg kg-1)  TSC 

 
lighting  white white  white white 

 
color system RGB RGB  RGB RGB 

calibration 
RMSE 1.63 1.31  326.6 268.5 

R² 0.81 0.88  0.78 0.85 

test 

RMSE 1.54 0.99  300 251.2 

R² 0.88 0.94  0.86 0.9 

RSD 22.84 14.65  25.49 21.34 

RPD 2.59 4.04  2.3 2.75 

IUPAC: based on Pokorny et al. (1995). AOCS: based on AOCS Cc 13i-96 method. 

MM: based on Minguez-Mosquera et al. (1991). 
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Figure 1. Device used to read color parameters of oils based on the TCS34725 color sensor interfaced 

with an Arduino. 
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Figure 2. Measured vs. predicted total chlorophylls (Tchl), total carotenoids (Tcar), and total 

spectrophotometric color (TSC) in olive and avocado oils based on different methods using the color sensor 

and the best MLR models. 

IUPAC: based on Pokorny et al. (1995) method. AOCS: based on AOCS Cc 13i-96 method. MM: based on 

Minguez-Mosquera et al. (1991) method. GW: based on Goodwin (1952) method. 
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Figure 3. Measured vs. predicted total chlorophylls (Tchl), total carotenoids (Tcar), and total 

spectrophotometric color (TSC) in olive and avocado oils based on different methods using the color sensor 

and the best LS-SVM models. 

IUPAC: based on Pokorny et al. (1995) method. AOCS: based on AOCS Cc 13i-96 method. MM: based on 

Minguez-Mosquera et al. (1991) method. GW: based on Goodwin (1952) method. 
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oil % m/m R G B R G

avocado breda 100 178 106 81 249 116

avocado breda 100 178 106 82 248 116

avocado breda 100 179 107 83 249 117

avocado margarida 100 180 107 85 249 121

avocado margarida 100 172 102 80 249 121

avocado margarida 100 172 102 80 249 120

avocado fortuna 100 191 114 88 248 117

avocado fortuna 100 180 107 82 247 102

avocado fortuna 100 193 115 89 247 103

avocado quintal 100 183 109 86 250 114

avocado quintal 100 174 105 82 249 110

avocado quintal 100 184 110 87 249 107

avocado hass 100 189 113 86 248 111

avocado hass 100 183 109 83 248 111

avocado hass 100 191 114 88 247 111

olive A 100 185 112 87 249 118

olive A 100 178 107 83 249 117

olive A 100 184 111 86 249 118

olive B 100 179 108 84 250 120

olive B 100 180 109 85 249 118

olive B 100 183 111 87 249 119

olive andorinha 100 211 126 92 241 101

olive andorinha 100 218 130 95 241 105

olive andorinha 100 208 123 91 241 104

olive larambia 100 218 129 95 241 101

olive larambia 100 214 126 91 240 102

olive larambia 100 222 131 96 240 101

olive herdade 100 223 132 96 238 95

olive herdade 100 223 132 95 237 94

olive herdade 100 214 127 93 238 93

olive Irarema 100 215 127 94 241 103

olive Irarema 100 209 124 92 240 101

olive Irarema 100 215 127 95 240 100

margarida + andorinha 25:75 181 108 84 248 106

margarida + andorinha 25:75 184 109 85 248 106

margarida + andorinha 25:75 177 106 82 248 111

margarida +Larambia 50:50 185 110 85 246 110

margarida +Larambia 50:50 188 112 86 247 107

margarida +Larambia 50:50 183 109 85 246 105

margarida + herdade 75:25 199 117 88 244 101

margarida + herdade 75:25 197 117 87 243 101

margarida + herdade 75:25 186 110 82 244 96

margarida +Larambia 80:20 197 120 87 237 91

margarida +Larambia 80:20 196 119 88 237 91

white light UV light
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margarida +Larambia 80:20 204 123 90 237 91

oliva A + Irarema 25:75 179 108 83 248 104

oliva A + Irarema 25:75 186 112 85 248 104

oliva A + Irarema 25:75 175 106 80 248 104

oliva A +herdade 50:50 185 111 83 246 101

oliva A +herdade 50:50 191 115 86 246 101

oliva A +herdade 50:50 182 110 83 247 102

oliva A + andorinha 75:25 189 114 83 245 98

oliva A + andorinha 75:25 194 117 86 244 102

oliva A + andorinha 75:25 197 119 88 246 97

oliva A + soybean 50:50 185 111 83 245 100

oliva A + soybean 50:50 183 110 82 245 101

oliva A + soybean 50:50 186 113 85 245 101

oliva A +herdade 80:20 187 112 82 245 96

oliva A +herdade 80:20 189 113 84 244 96

oliva A +herdade 80:20 191 115 86 245 96

oliva B + larambia 24:75 175 105 81 248 118

oliva B + larambia 24:75 176 106 81 248 119

oliva B + larambia 24:75 173 105 81 248 117

oliva B + soybean 50:50 183 111 84 247 116

oliva B + soybean 50:50 180 109 82 247 114

oliva B + soybean 50:50 181 109 82 247 113

oliva B + herdade 50:50 178 108 81 247 113

oliva B + herdade 50:50 181 109 83 247 117

oliva B + herdade 50:50 186 113 86 247 118

oliva B + soybean 85:15 192 115 85 242 98

oliva B + soybean 85:15 189 113 84 242 98

oliva B + soybean 85:15 192 115 86 241 98

fortuna + irarema 50:50 194 116 87 244 122

fortuna + irarema 50:50 191 114 86 244 123

fortuna + irarema 50:50 192 114 85 245 128

fortuna + larambia 75:25 206 122 90 242 119

fortuna + larambia 75:25 203 121 91 242 117

fortuna + larambia 75:25 196 116 85 242 116

fortuna + andorinha 75:25 197 118 88 243 116

fortuna + andorinha 75:25 202 120 89 242 116

fortuna + andorinha 75:25 197 117 88 243 116

fortuna + soybean 50:50 192 114 86 243 120

fortuna + soybean 50:50 192 114 86 243 117

fortuna + soybean 50:50 201 119 89 243 117

fortuna + herdade 80:20 193 116 84 243 95

fortuna + herdade 80:20 195 117 86 243 95

fortuna + herdade 80:20 195 118 88 242 94

fortuna + irarema 80:20 197 117 87 241 100

fortuna + irarema 80:20 194 116 87 242 99

fortuna + irarema 80:20 195 116 86 242 99



quintal + herdade 25:75 174 104 81 248 122

quintal + herdade 25:75 180 108 84 248 121

quintal + herdade 25:75 174 104 81 248 122

quintal + andorinha 50:50 182 110 85 248 119

quintal + andorinha 50:50 179 108 83 247 117

quintal + andorinha 50:50 180 108 82 247 118

quintal + soybean 50:50 188 113 86 247 117

quintal + soybean 50:50 181 108 83 247 116

quintal + soybean 50:50 189 113 87 247 115

quintal + larambia 50:50 185 111 85 248 117

quintal + larambia 50:50 188 112 86 247 116

quintal + larambia 50:50 182 109 84 247 118

quintal + larambia 85:15 193 115 86 244 101

quintal + larambia 85:15 187 112 84 244 100

quintal + larambia 85:15 190 113 84 244 102

breda + herdade 50:50 192 115 86 245 116

breda + herdade 50:50 180 107 81 245 122

breda + herdade 50:50 185 111 83 245 121

breda + irarema 25:75 182 109 84 247 119

breda + irarema 25:75 185 111 85 247 121

breda + irarema 25:75 180 108 83 246 120

breda + soybean 50:50 188 113 85 245 121

breda + soybean 50:50 190 113 85 245 119

breda + soybean 50:50 195 117 89 244 119

breda + andorinha 50:50 185 110 83 245 122

breda + andorinha 50:50 186 111 84 245 122

breda + andorinha 50:50 192 115 88 246 118

breda + andorinha 85:15 202 120 89 241 99

breda + andorinha 85:15 198 118 88 242 99

breda + andorinha 85:15 193 115 85 241 99

breda + soybean 85:15 194 115 85 241 98

breda + soybean 85:15 193 115 85 241 96

breda + soybean 85:15 203 121 89 241 97

hass + soybean 50:50 200 118 88 243 105

hass + soybean 50:50 196 116 86 244 107

hass + soybean 50:50 198 117 87 244 109

hass + herdade 75:25 196 116 85 243 104

hass + herdade 75:25 198 117 84 243 104

hass + herdade 75:25 192 114 85 243 104



B IUPAC AOCS MM GW MM

112 57.53 17.28 12.01 3.06 6.83 2324.50

112 57.31 17.22 11.74 3.04 6.75 2306.10

113 58.00 17.42 12.18 3.05 6.93 2248.50

116 53.18 15.98 16.09 3.01 8.16 2727.90

117 53.48 16.07 14.35 3.05 7.33 2701.90

116 54.01 16.22 15.29 3.05 7.55 2714.50

114 57.19 17.18 9.28 2.95 6.50 1921.10

98 57.68 17.33 8.57 2.96 6.09 1873.10

99 57.49 17.27 9.02 2.97 6.25 1978.30

109 54.69 16.43 15.81 3.09 8.94 2986.10

105 54.40 16.34 15.84 3.04 8.84 2993.20

102 54.69 16.43 16.24 3.07 8.81 2922.40

108 54.72 16.44 12.07 1.45 4.19 1403.60

108 54.61 16.41 9.13 1.58 3.20 1465.00

108 55.13 16.56 8.61 1.59 3.02 1408.50

114 55.47 16.66 10.69 2.04 3.35 1703.30

113 55.53 16.68 11.04 1.98 3.51 1706.50

114 55.44 16.66 10.95 2.00 3.44 1721.00

115 54.69 16.43 13.52 1.45 4.01 1918.50

112 54.72 16.44 13.64 1.45 4.04 1923.50

114 54.55 16.39 13.64 1.42 4.03 1841.60

102 18.44 5.54 2.94 0.54 1.62 441.40

106 18.41 5.53 2.21 0.49 1.42 453.50

105 18.64 5.60 2.34 0.49 1.44 443.80

102 14.30 4.30 1.83 0.51 1.20 308.30

103 14.56 4.37 1.94 0.53 1.23 305.30

102 14.49 4.35 1.96 0.52 1.19 280.90

98 8.78 2.64 1.70 0.47 1.39 280.50

98 8.75 2.63 1.59 0.52 1.39 282.90

97 9.06 2.72 1.36 0.59 1.33 292.60

104 18.49 5.55 1.49 0.55 0.94 247.60

103 18.07 5.43 1.29 0.54 0.93 276.90

101 18.31 5.50 1.36 0.46 0.89 280.40

100 55.70 16.73 12.53 2.92 6.60 2176.60

101 55.84 16.77 11.80 2.77 6.24 1830.50

106 55.40 16.64 10.51 2.53 5.62 1874.80

106 55.00 16.52 7.21 1.71 3.83 1437.80

102 55.01 16.53 7.58 1.85 4.06 1587.30

102 55.25 16.60 7.07 1.65 3.70 1571.60

98 36.33 10.91 5.57 1.47 3.40 944.60

98 36.69 11.02 4.55 1.27 2.98 959.40

93 36.29 10.90 5.34 1.41 3.27 933.10

91 37.72 11.33 4.42 1.07 2.46 814.30

92 37.57 11.29 5.41 1.30 2.99 818.50

UV light Tchl (mg/kg) Tcar (mg/kg)
TSC



92 37.48 11.26 4.90 1.19 2.68 844.50

99 54.11 16.26 7.46 0.99 2.70 1517.80

99 53.81 16.17 8.72 1.15 3.08 1406.00

99 54.18 16.28 9.58 1.24 3.33 1487.90

98 46.42 13.94 6.65 0.95 2.63 1003.30

98 46.48 13.96 7.15 1.02 2.80 1061.60

98 46.58 13.99 6.82 0.96 2.66 1006.40

95 36.28 10.90 5.03 0.74 2.10 733.50

100 36.15 10.86 4.38 0.68 1.90 716.90

95 36.27 10.90 4.40 0.68 1.93 746.10

98 43.72 13.13 5.69 0.72 1.89 975.80

98 44.01 13.22 5.92 0.75 1.96 1022.60

98 43.90 13.19 6.72 0.83 2.23 1051.10

94 26.64 8.00 3.82 0.71 2.02 593.90

94 26.36 7.92 4.12 0.75 2.11 645.30

94 26.20 7.87 3.91 0.73 2.05 706.70

114 55.56 16.69 9.19 1.13 2.86 1535.90

115 55.67 16.72 10.52 1.30 3.24 1523.30

112 55.45 16.66 10.40 1.27 3.25 1464.20

113 51.05 15.34 6.85 0.80 1.99 1011.00

110 50.94 15.30 6.80 0.79 2.04 996.80

110 50.83 15.27 6.67 0.80 1.96 988.90

110 51.99 15.62 7.64 1.01 2.72 1009.50

114 52.34 15.72 8.36 1.12 2.89 1103.80

115 52.23 15.69 7.72 1.03 2.68 1181.80

95 19.39 5.82 1.97 0.25 0.68 385.10

96 19.19 5.76 2.62 0.32 0.87 393.50

96 19.62 5.89 2.26 0.28 0.71 363.40

120 46.89 14.09 6.09 1.88 3.89 1282.00

121 46.92 14.10 5.84 1.87 3.82 1298.10

126 47.07 14.14 6.27 1.91 3.96 1265.10

117 31.49 9.46 4.23 1.19 2.64 792.70

115 31.70 9.52 4.08 1.19 2.64 776.20

114 31.80 9.55 4.54 1.31 2.91 832.90

114 34.48 10.36 4.05 1.22 2.64 769.00

114 34.27 10.30 4.31 1.24 2.76 823.10

113 34.28 10.30 4.77 1.26 2.85 848.30

117 40.83 12.27 5.60 1.90 3.61 1178.10

114 41.13 12.36 5.65 1.92 3.63 1153.60

115 40.64 12.21 5.51 1.83 3.53 1198.50

94 25.06 7.53 3.21 1.08 2.43 715.30

94 25.10 7.54 3.79 1.28 2.91 756.90

94 24.93 7.49 4.00 1.27 2.93 708.60

97 31.58 9.49 4.03 1.07 2.51 818.20

96 31.28 9.40 4.09 1.08 2.52 805.20

96 31.37 9.43 4.63 1.20 2.82 780.20



118 55.99 16.82 12.18 3.30 6.94 2817.10

118 56.25 16.90 13.31 3.25 7.71 2764.80

119 56.33 16.92 13.60 3.38 7.74 2845.40

115 56.01 16.83 9.77 2.36 5.80 2157.20

114 55.89 16.79 10.88 2.73 6.50 2053.70

114 56.20 16.88 11.38 2.50 6.56 2226.40

114 55.21 16.59 9.74 3.50 5.46 1941.50

113 55.29 16.61 9.16 3.59 5.15 2095.90

112 55.51 16.67 11.76 4.30 6.69 2052.90

114 55.92 16.80 9.03 2.42 5.17 1633.60

112 55.94 16.81 8.30 2.32 4.73 1644.10

115 55.84 16.78 8.27 2.25 4.71 1664.50

98 34.36 10.32 4.58 1.13 2.56 740.50

97 34.22 10.28 4.47 1.12 2.55 760.00

99 34.02 10.22 4.20 1.09 2.46 822.10

113 49.94 15.00 6.39 1.87 3.76 1250.80

120 49.87 14.98 6.32 1.81 3.67 1223.70

119 49.81 14.96 6.58 1.87 3.83 1368.60

116 56.17 16.88 10.16 2.57 5.47 1924.30

118 55.91 16.80 9.79 2.56 5.24 1845.60

117 56.26 16.90 9.86 2.46 5.15 1847.40

119 48.07 14.44 6.51 1.76 3.47 1115.60

116 47.93 14.40 6.06 1.75 3.33 1144.70

117 47.70 14.33 6.34 1.76 3.38 1158.70

120 51.68 15.53 8.16 2.04 4.41 1358.50

119 51.65 15.52 7.22 1.93 4.05 1469.40

115 52.02 15.63 7.31 1.98 4.11 1340.20

97 30.52 9.17 3.76 0.92 2.12 651.00

97 30.33 9.11 3.62 0.91 2.10 663.50

97 30.32 9.11 3.67 0.90 2.08 697.00

96 17.09 5.13 1.74 0.58 1.05 418.00

94 17.02 5.11 2.33 0.62 1.22 434.40

95 17.13 5.15 2.30 0.64 1.27 416.60

104 35.13 10.55 3.98 0.61 1.37 598.50

105 35.02 10.52 4.26 0.64 1.38 623.50

108 35.12 10.55 3.98 0.60 1.33 598.00

103 24.98 7.50 2.77 0.56 1.44 523.20

103 25.23 7.58 3.18 0.60 1.59 551.70

103 25.05 7.53 3.32 0.62 1.65 516.90
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Table S1. Samples of avocado and olive oil with their respective blends.  

Oil % m/m 

Breda (avocado) 100 

Margarida (avocado) 100 

Fortuna (avocado) 100 

Quintal (avocado) 100 

Hass (avocado) 100 

Olive A 100 

Olive B 100 

Andorinha (olive) 100 

Larambia (olive) 100 

Herdade (olive) 100 

Irarema (olive) 100 

Margarida + Andorinha  25:75 

Margarida +Larambia 50:50 

Margarida + Herdade 75:25 

Margarida +Larambia 80:20 

Olive A + Irarema 25:75 

Olive A +Herdade 50:50 

Olive A + Andorinha 75:25 

Olive A + Soybean 50:50 

Olive A +Herdade 80:20 

Olive B + Larambia 24:75 

Olive B + Soybean 50:50 

Olive B + Herdade 50:50 

Olive B + Soybean 85:15 

Fortuna + Irarema 50:50 

Fortuna + Larambia 75:25 

Fortuna + Andorinha  75:25 

Fortuna + Soybean 50:50 

Fortuna + Herdade 80:20 

Fortuna + Irarema 80:20 

Quintal + Herdade 25:75 

Quintal + Andorinha 50:50 

Quintal + Soybean 50:50 

Quintal + Larambia  50:50 

Quintal + Larambia  85:15 

Breda + Herdade 50:50 

Breda + Irarema  25:75 

Breda + Soybean  50:50 

Breda + Andorinha 50:50 

Breda + Andorinha 85:15 

Breda + Soybean  85:15 

Hass + Soybean 50:50 

Hass + Herdade 75:25 

  



Table S2. Performance parameters for MLR and LS-SVM models to predict the total chlorophylls (Tchl) in 

olive and avocado oils based on different methods using the color sensor. 

Tchl – IUPAC (mg kg-1) 

  
MLR 

 
LS-SVM 

  
white light 

 
uv light 

 
white light 

 
uv light 

  
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

calibration 
RMSE 6.68 6.46 6.47 

 
6.08 5.63 5.96 

 
5.30 5.00 4.82 

 
2.03 2.10 1.94 

R² 0.77 0.78 0.79 
 

0.82 0.85 0.82 
 

0.86 0.87 0.88 
 

0.98 0.98 0.98 

y-rand 

RMSE 18.75 18.59 19.03 
 

18.95 19.87 19.13 
 

12.35 11.57 12.80 
 

13.03 13.53 12.09 

R² 0.01 0.01 0.01 
 

0.02 0.01 0.02 
 

0.34 0.46 0.25 
 

0.30 0.19 0.45 

cR²p 0.77 0.78 0.79 
 

0.81 0.84 0.81 
 

0.67 0.60 0.75 
 

0.81 0.88 0.73 

loo-cv 
RMSE 6.95 6.70 6.72 

 
6.46 6.05 6.35 

 
6.68 6.19 6.22 

 
3.68 5.00 3.27 

R² 0.75 0.77 0.77 
 

0.79 0.82 0.80 
 

0.77 0.80 0.81 
 

0.93 0.88 0.95 

test 

RMSE 5.32 7.01 7.06 
 

7.25 9.24 7.26 
 

5.03 4.85 4.90 
 

4.21 4.13 4.49 

R² 0.89 0.85 0.83 
 

0.77 0.64 0.77 
 

0.90 0.91 0.91 
 

0.93 0.94 0.91 

R²m 0.86 0.81 0.78 
 

0.62 0.57 0.68 
 

0.85 0.88 0.90 
 

0.76 0.90 0.81 

RSD 12.83 16.91 17.02 

 

17.49 22.27 17.51 
 

12.14 11.70 11.81 

 

10.16 9.97 10.83 

RPD 2.70 2.05 2.04 

 

1.98 1.56 1.98 
 

2.86 2.96 2.94 

 

3.41 3.48 3.20 

Tchl – AOCS (mg kg-1) 

  
MLR 

 
LS-SVM 

  
white light 

 
uv light 

 
white light 

 
uv light 

  
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

calibration 
RMSE 2.01 1.94 1.94 

 
1.83 1.69 1.79 

 
1.59 1.50 1.45 

 
0.61 0.64 0.59 

R² 0.77 0.78 0.79 
 

0.82 0.85 0.82 
 

0.86 0.87 0.88 
 

0.98 0.98 0.98 

y-rand 

RMSE 5.64 5.51 5.76 
 

5.74 5.89 5.67 
 

3.52 3.83 3.52 
 

3.72 4.16 3.67 

R² 0.01 0.01 0.01 
 

0.00 0.02 0.01 
 

0.39 0.37 0.39 
 

0.43 0.23 0.41 

cR²p 0.76 0.78 0.79 
 

0.81 0.84 0.82 
 

0.64 0.66 0.66 
 

0.73 0.89 0.75 

loo-cv 
RMSE 2.09 2.01 2.02 

 

1.94 1.82 1.91 
 

2.01 1.85 1.86 

 

1.12 1.51 0.98 

R² 0.75 0.77 0.77 

 

0.79 0.82 0.80 
 

0.77 0.80 0.81 

 

0.93 0.88 0.95 

test 

RMSE 1.60 2.11 2.12 
 

2.18 2.77 2.18 
 

1.51 1.46 1.47 
 

1.27 1.23 1.34 

R² 0.89 0.85 0.83 
 

0.77 0.64 0.77 
 

0.90 0.91 0.91 
 

0.93 0.94 0.91 

R²m 0.86 0.81 0.78 
 

0.62 0.57 0.68 
 

0.86 0.88 0.90 
 

0.75 0.90 0.81 

RSD 12.83 16.91 17.02 

 

17.49 22.27 17.52 

 

12.12 11.73 11.81 

 

10.22 9.90 10.78 

RPD 2.70 2.05 2.04 

 

1.98 1.56 1.98 

 

2.86 2.96 2.94 

 

3.39 3.50 3.22 

Tchl – MM (mg kg-1) 

  
MLR 

 
LS-SVM 

  
white light 

 
uv light 

 
white light 

 
uv light 

  
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

calibration 
RMSE 1.63 1.40 1.46 

 
1.78 1.63 1.69 

 
1.31 1.06 1.33 

 
0.82 0.79 1.06 

R² 0.81 0.85 0.84 
 

0.77 0.81 0.78 
 

0.88 0.91 0.87 
 

0.95 0.96 0.91 

y-rand 

RMSE 4.95 4.79 4.98 
 

4.93 5.01 4.82 
 

3.62 3.06 3.18 
 

3.51 3.60 3.16 

R² 0.00 0.01 0.01 
 

0.01 0.02 0.01 
 

0.19 0.51 0.31 
 

0.24 0.14 0.32 

cR²p 0.81 0.84 0.84 
 

0.77 0.80 0.77 
 

0.77 0.60 0.70 
 

0.82 0.88 0.74 

loo-cv 
RMSE 1.72 1.46 1.53 

 

1.89 1.73 1.79 
 

1.51 1.45 1.42 

 

1.16 1.33 1.28 

R² 0.79 0.83 0.83 

 

0.74 0.79 0.75 
 

0.84 0.84 0.85 

 

0.90 0.88 0.87 

test 

RMSE 1.54 1.89 2.05 
 

2.10 2.36 2.33 
 

0.99 1.40 1.56 
 

1.44 1.40 1.16 

R² 0.88 0.86 0.83 
 

0.72 0.66 0.72 
 

0.94 0.91 0.88 
 

0.89 0.88 0.94 

R²m 0.82 0.79 0.74 
 

0.55 0.56 0.49 
 

0.91 0.89 0.83 
 

0.85 0.87 0.81 

RSD 22.84 28.00 30.36 

 

31.12 35.09 34.50 

 

14.65 20.78 23.10 

 

21.35 20.76 17.21 

RPD 2.59 2.11 1.95 

 

1.90 1.69 1.71 

 

4.04 2.85 2.56 

 

2.77 2.85 3.44 

y-rand: y-randomization test. loo-cv: leave-one-out cross-validation 

IUPAC: based on Pokorny et al. (1995). AOCS: based on AOCS Cc 13i-96 method. MM: based on Minguez-Mosquera et al. 

(1991). 

  



Table S3. Performance parameters for MLR and LS-SVM models to predict the total carotenoids (Tcar) and 

total spectrophotometric color (TSC) in olive and avocado oils based on different methods using the color 

sensor. 

Tcar – GW (1951) (mg kg-1) 

  
MLR 

 
LS-SVM 

  
white light 

 
uv light 

 
white light 

 
uv light 

  
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

calibration 
RMSE 0.56 0.57 0.57 

 
0.64 0.66 0.66 

 
0.48 0.50 0.53 

 
0.41 0.51 0.44 

R² 0.59 0.61 0.61 
 

0.50 0.48 0.47 
 

0.70 0.70 0.67 
 

0.80 0.69 0.76 

y-rand 

RMSE 1.11 1.16 1.17 
 

1.11 1.11 1.06 
 

0.76 0.75 0.87 
 

0.85 0.84 0.77 

R² 0.00 0.01 0.01 
 

0.01 0.01 0.02 
 

0.44 0.46 0.24 
 

0.24 0.31 0.48 

cR²p 0.59 0.60 0.61 
 

0.50 0.47 0.47 
 

0.43 0.41 0.54 
 

0.67 0.51 0.46 

loo-cv 
RMSE 0.59 0.59 0.60 

 

0.66 0.68 0.68 
 

0.57 0.57 0.59 

 

0.60 0.65 0.57 

R² 0.55 0.58 0.58 

 

0.47 0.44 0.44 
 

0.59 0.61 0.59 

 

0.57 0.49 0.59 

test 

RMSE 0.62 0.59 0.62 
 

0.70 0.66 0.64 
 

0.61 0.44 0.42 
 

0.72 0.57 0.49 

R² 0.62 0.67 0.64 
 

0.39 0.48 0.50 
 

0.63 0.77 0.79 
 

0.50 0.62 0.73 

R²m 0.49 0.62 0.62 
 

0.12 0.28 0.24 
 

0.50 0.64 0.79 
 

0.40 0.50 0.53 

RSD 43.57 41.32 43.79 

 

49.07 46.27 44.98 

 

42.80 30.88 29.24 

 

50.37 40.11 34.54 

RPD 1.36 1.43 1.35 

 

1.21 1.28 1.31 

 

1.38 1.91 2.02 

 

1.17 1.47 1.71 

Tcar – MM (mg kg-1) 

  
MLR 

 
LS-SVM 

  
white light 

 
uv light 

 
white light 

 
uv light 

  
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

calibration 
RMSE 1.21 1.09 1.15 

 
1.31 1.36 1.29 

 
1.03 0.92 1.06 

 
0.76 0.93 1.01 

R² 0.63 0.67 0.65 
 

0.52 0.52 0.52 
 

0.73 0.77 0.70 
 

0.85 0.77 0.71 

y-rand 

RMSE 2.40 2.47 2.59 
 

2.32 2.42 2.25 
 

1.70 1.72 1.73 
 

1.81 1.87 1.70 

R² 0.01 0.01 0.01 
 

0.01 0.01 0.00 
 

0.38 0.34 0.35 
 

0.29 0.18 0.25 

cR²p 0.62 0.67 0.65 
 

0.52 0.51 0.51 
 

0.50 0.58 0.50 
 

0.69 0.68 0.57 

loo-cv 
RMSE 1.27 1.14 1.21 

 

1.37 1.41 1.34 
 

1.18 1.16 1.18 

 

1.18 1.20 1.37 

R² 0.58 0.64 0.62 

 

0.48 0.48 0.48 
 

0.64 0.64 0.64 

 

0.62 0.63 0.47 

test 

RMSE 1.12 1.33 1.29 
 

1.62 1.50 1.65 
 

1.02 1.09 0.92 
 

1.28 1.13 1.11 

R² 0.72 0.67 0.70 
 

0.44 0.48 0.48 
 

0.76 0.76 0.82 
 

0.65 0.71 0.78 

R²m 0.68 0.61 0.68 
 

0.13 0.28 0.17 
 

0.73 0.62 0.81 
 

0.41 0.63 0.51 

RSD 33.12 39.32 38.23 

 

47.81 44.36 48.66 

 

30.17 32.06 27.22 

 

37.87 33.38 32.91 

RPD 1.83 1.54 1.58 

 

1.27 1.36 1.24 

 

2.01 1.89 2.22 

 

1.60 1.81 1.84 

TSC 

  
MLR 

 
LS-SVM 

  
white light 

 
uv light 

 
white light 

 
uv light 

  
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

 
RGB HSV Lab 

calibration 
RMSE 326.6 285.9 298.6 

 
366.8 369.7 365.6 

 
268.5 258.8 267.8 

 
206.5 206.4 233.3 

R² 0.78 0.82 0.81 
 

0.70 0.71 0.70 
 

0.85 0.85 0.85 
 

0.91 0.91 0.88 

y-rand 

RMSE 922.9 936.2 912.6 
 

862.3 884.7 867.5 
 

632.4 629.8 603.5 
 

623.9 627.5 625.1 

R² 0.01 0.01 0.02 
 

0.01 0.01 0.00 
 

0.28 0.19 0.36 
 

0.36 0.27 0.21 

cR²p 0.78 0.82 0.80 
 

0.70 0.71 0.69 
 

0.70 0.75 0.64 
 

0.70 0.77 0.76 

loo-cv 
RMSE 345.9 299.4 313.0 

 

384.2 386.6 383.2 
 

307.9 298.2 289.0 

 

303.6 287.4 347.3 

R² 0.76 0.80 0.79 

 

0.67 0.68 0.67 
 

0.81 0.81 0.82 

 

0.80 0.83 0.73 

test 

RMSE 300.0 366.3 391.3 
 

464.1 456.2 458.6 
 

251.2 263.9 294.4 
 

363.1 296.1 263.7 

R² 0.86 0.83 0.82 
 

0.63 0.64 0.67 
 

0.90 0.90 0.88 
 

0.79 0.85 0.89 

R²m 0.79 0.77 0.70 
 

0.39 0.51 0.44 
 

0.85 0.89 0.80 
 

0.75 0.81 0.77 

RSD 25.49 31.12 33.24 

 

39.43 38.76 38.96 

 

21.34 22.42 25.01 

 

30.84 25.16 22.40 

RPD 2.30 1.88 1.76 

 

1.49 1.51 1.50 

 

2.75 2.61 2.34 

 

1.90 2.33 2.62 

y-rand: y-randomization test. loo-cv: leave-one-out cross-validation 

GW: based on T.W. Goodwin (1951). MM: based on Minguez-Mosquera et al. (1991). 

 

  



Figure S1. Residuals vs. predicted for total chlorophylls (Tchl), total carotenoids (Tcar), and total 

spectrophotometric color (TSC) in olive and avocado oils based on different methods using the color sensor 

and the best MLR models. 

  

  

  

IUPAC: based on Pokorny et al. (1995) method. AOCS: based on AOCS Cc 13i-96 method. MM: based on Minguez-Mosquera et al. 

(1991) method. GW: based on Goodwin (1952) method. 
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Figure S2. Residuals vs. predicted for total chlorophylls (Tchl), total carotenoids (Tcar), and total 

spectrophotometric color (TSC) in olive and avocado oils based on different methods using the color sensor 

and the best LS-SVM models. 

  

  

  

IUPAC: based on Pokorny et al. (1995) method. AOCS: based on AOCS Cc 13i-96 method. MM: based on Minguez-Mosquera et al. 

(1991) method. GW: based on Goodwin (1952) method. 
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