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Abstract

Traditional compartmental models capture population-level dynamics but fail to charac-
terize individual-level risk. The computational cost of exact likelihood evaluation for partially
observed individual-based models, however, grows exponentially with the population size, ne-
cessitating approximate inference. Existing sampling-based methods usually require multiple
simulations of the individuals in the population and rely on bespoke proposal distributions
or summary statistics. We propose a deterministic approach to approximating the likelihood
using categorical distributions. The approximate likelihood is amenable to automatic differ-
entiation so that parameters can be estimated by maximization or posterior sampling using
standard software libraries such as Stan or TensorFlow with little user effort. We prove the con-
sistency of the maximum approximate likelihood estimator. We empirically test our approach
on several classes of individual-based models for epidemiology: different sets of disease states,
individual-specific transition rates, spatial interactions, under-reporting and misreporting. We
demonstrate ground truth recovery and comparable marginal log-likelihood values at substan-
tially reduced cost compared to competitor methods. Finally, we show the scalability and
effectiveness of our approach with a real-world application on the 2001 UK Foot-and-Mouth
outbreak, where the simplicity of the CAL allows us to include 162775 farms.
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1 Introduction

The traditional approach to modeling epidemics involves dividing a population into compartments
representing epidemic states through which individuals progress over time. The dynamics of such
models are mathematically represented by, for instance, a Markov chain (Lekone and Finkenstädt,
2006), a system of ODEs (Chowell et al., 2004), or a system of SDEs (Ionides et al., 2006). These
models treat the population as homogeneous in two senses: individuals are equal in their epidemi-
ological attributes, such as susceptibility and infectivity (homogeneous attributes); and individuals
contact each other at equal rates (homogeneous-mixing). These homogeneity assumptions can be
relaxed by stratifying individuals into meta-populations (Whitehouse et al., 2023), where individ-
uals have homogeneous attributes and are homogeneous-mixing within each meta-population but
they have heterogeneous attributes and are heterogeneous-mixing across different meta-populations.
While homogeneous/heterogeneous-mixing is a well-known terminology in the epidemiology litera-
ture (Jewell et al., 2009), homogeneous/heterogeneous attributes is somewhat uncommon but we
use it to emphasize the different levels of heterogeneity we are considering.

Individual-based models (IBMs) fully relax the homogeneity assumptions by modeling each
individual’s disease states explicitly, instead of partitioning and aggregating them across different
compartments. The interpretation of “individual” is context-specific and could refer, for example, to
an individual person (Bu et al., 2024) or farm (Jewell et al., 2009). Whilst stratified compartmental
models may handle covariates taking values in a discrete set, IBMs allow practitioners to work
with both continuous and discrete covariates defined at an individual level, such as physical and
physiological characteristics (age, health records, etc. (Cocker et al., 2023)), location (geographical
and/or community membership (Jewell et al., 2009; Rimella et al., 2023)) or contact networks
(Estrada et al., 2010, Chapter 4). The increasing availability of both epidemiological testing data
and accompanying covariates at an individual level has motivated the development of many fine-scale
IBMs of disease transmission (Cocker et al., 2023). However, the computational cost of performing
exact inference for such IBMs with noisy and incomplete data necessarily grows astronomically in
the population size N , with exact computation of likelihoods having complexity which is exponential
in N (Rimella et al., 2023b). Fast, simple, and theoretically justified calibration of IBMs is one of
the open challenges in infectious disease modeling, motivating the present work.

We now summarize our novel contributions. (1) We propose a new form of approximate, re-
cursive likelihood evaluation in partially observed individual-based epidemic models via categorical
distributions, which involve no simulation from the model. (2) We prove strong consistency of pa-
rameter estimators obtained by maximizing our approximate likelihood when data are generated by
the exact model. (3) The computational simplicity of our methodology allows it to scale up to large
population sizes, even with a simple Python implementation. Moreover, it is particularly suited
to automatic differentiation, for example gradient-based optimization or Hamiltonian Monte Carlo.
(4) We calibrate an individual-based model to the 2001 Aphtovirus (Foot-and-Mouth) outbreak in
the UK, scaling up to include 162775 farms in the study.

The paper is organized as follows. We conclude this section with a motivating example and
related works. In Section 2, we introduce our model, show how the motivating example can be
formulated in that framework, and discuss closed-form likelihood computation. Section 3 presents
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the main algorithm and explains the rationale behind the approximation. In Section 4, we state
our consistency result, Theorem 1, and outline its proof. Numerical results on both synthetic and
real data are reported in Section 5. Section 6 summarizes the paper and discusses limitations and
future work.

1.1 Motivating example

Consider a discrete-time Susceptible-Infective-Susceptible (SIS) model for a population of size N .
At each discrete time step t = 0, 1, . . ., each individual assumes one of the disease states {S, I}. The
following example could easily be extended to models with more than two disease states, we focus
on SIS for ease of presentation. We present alternative building blocks of the model in separate
paragraphs. Similar models incorporating individual-specific covariates have been considered in
previous works, for example, by Ju et al. (2021); Bu et al. (2022); Rimella et al. (2023); Bu et al.
(2024).

Heterogeneous attributes. IBMs allow individuals’ covariates to be reflected in disease state
transition probabilities. Let βnk > 0 denote the rate at which the k-th individual infects the n-th
when they come into contact, assuming the former is infective and the latter is susceptible. One
may consider a regression model for the logarithm of the pairwise individual-specific transmission
rate, e.g. log βnk = log β + c⊤nbS + c⊤k bI , where β is the background infection rate, cn is a vector
of observed covariates associated with the n-th individual, and bS,bI are parameter vectors re-
spectively determining susceptibility to infection and propensity to pass the infection on. Similarly,
one may consider a regression model for the recovery rate γn > 0 at which an infective individual
recovers and returns to being susceptible: log γn = log γ + c⊤nbR, where bR is a parameter vector.

Homogeneous- and heterogeneous-mixing dynamics. Under the assumption that the pop-
ulation mixes homogeneously in discrete time, the n-th individual is equally likely to contact any
one individual, and the probability of the transition S → I at time t > 0 is:

1− exp

− h

N

∑
k∈It−1

βnk

 = 1− exp

−hβ exp{c⊤nbS}
1

N

∑
k∈It−1

exp{c⊤k bI}

 , (1)

where h > 0 is the time period length (set equal to 1 unless stated otherwise) and It−1 is the
set of individuals who are infective at time t − 1. Here exp{c⊤nbS} has the interpretation of the
susceptibility of the n-th individual, while exp{c⊤k bI} is the infectivity. At each time step, the
probability of the n-th individual transitioning I → S is: 1− exp(−hγn).

In some cases, information may be available about the geographic location of individuals, net-
work structure, or other factors that influence transmission rates between pairs of individuals. For
example, if zn denotes the Euclidean position of the n-th individual, then spatial weighting could
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be introduced in the S → I transition probability (1) in the form:

1− exp

−hβ exp{c⊤nbS}
1

N

∑
k∈It−1

1√
2πϕ2

exp

{
−∥zn − zk∥2

2ϕ2
+ c⊤k bI

} ,

where ϕ > 0 is a parameter. Here, the term 1
N

1√
2πϕ2

exp
{
−∥zn−zk∥2

2ϕ2

}
can be interpreted as the

rate at which the n-th individual contacts the k-th individual, whilst the other terms are as in the
homogeneous-mixing case. One could similarly model heterogeneity arising from a known network
rather than spatial structure, by choosing the S → I transition probability for individual n to
reflect its connectivity to other members of the population.

Observations. At each time step t, an individual is either reported in their true state, misreported
in some other state, or not reported at all: in our SIS model, the observed state of each individual
is therefore one of {U, S, I}, where U represents being unreported (e.g. missing test results). For
any individual, let qS (resp. qI) be the probability of either correctly reporting or misreporting their
state, given that they are susceptible (resp. infected). Conditional that the state of the individual
is either reported or misreported, let qSe (resp. qSp) be the probability of observing I if I (resp. S
if S) is the true state. In the context of testing qSe and qSp are the sensitivity and specificity.

Inference challenges. A typical inference task would be to calibrate the model by estimating
the parameters, β,bS,bI , γ,bR, ϕ, qS, qI , qSe, qSp or some subset thereof, allowing us to understand
how the covariates cn and spatial or network interactions contribute to the dynamics of the disease
in question (Rimella et al., 2023; Seymour et al., 2022). Due to the partial observation structure of
the above model, for population size and time horizon N, T ∈ N exact likelihood evaluation would
involve marginalizing over 2NT possible latent states.

1.2 Related work

The literature on IBMs is vast, and a full review would be impossible within the length constraints
of the present work, here we present a brief summary. Inference for partially observed stochastic
epidemic models is difficult, and, even when homogeneity assumptions are permitted, simplifications
(King et al., 2015) or simulation-based procedures (Ionides et al., 2006) are required. Analogously,
many studies of partially observed IBMs make simplifications or approximations, e.g. by deter-
ministic modeling (Sharkey, 2008), mean-field approximations (Sherborne et al., 2018), or noiseless
observation mechanisms (Deardon et al., 2010). Sophisticated simulation-based techniques have
also been developed for inference in IBMs: bespoke proposals for sequential Monte Carlo (Rimella
et al., 2023a), approximate Bayesian computation procedures (McKinley et al., 2018), composite
likelihood methods (Rimella et al., 2023b), data augmentation schemes (Bu et al., 2022, 2024),
neural posterior estimation (Chatha et al., 2024), and intricate Markov chain Monte Carlo samplers
(Touloupou et al., 2020); alongside Bayesian non-parametric approaches (Seymour et al., 2022)
and kernel-linearization with imputation based techniques (Deardon et al., 2010). Typically, when
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applied to noisy observations, it is hard to effectively scale the above methods to large population
sizes.

The approximation techniques in the present work extend ideas for homogeneous population
compartmental models (Whiteley and Rimella, 2021; Whitehouse et al., 2023) to the case of
individual-based models. This approach of making distributional approximations is related to as-
sumed density filtering (Sorenson and Stubberud, 1968) and expectation propagation algorithms
(Minka, 2001, Ch.1), but the details are different and specially designed to exploit the structure
of the individual-based model. Furthermore, as far as the authors are aware, this is the first work
to provide results on the consistency of parameter estimates for IBMs under analysis of the large
population regime.

2 Individual-based compartmental model

2.1 Notation

Given M ∈ N, we use x0:M := x0, . . . , xM for indexing sequences, [M ] := {1, . . . ,M} for the set

of the first M integers, and x :=
[
x(1), . . . ,x(M)

]⊤
for an M -dimensional vector. Given two M -

dimensional vectors x1,x2 we denote with x1 ⊙ x2 the element-wise product and with x1 ⊘ x2 the
element-wise division, and we use [x1,x2] for the vector stacking together x1,x2, i.e. [x1,x2] :=[
x
(1)
1 , . . . ,x

(M)
1 ,x

(1)
2 , . . . ,x

(M)
2

]⊤
. We write 1M for the M -dimensional vector of all ones, ∆M for

the M -dimensional probability simplex, i.e. ∆M :=
{
x ∈ [0, 1]M :

∑M
i=1 x

(i) = 1
}
, and OM for the

set of one-hot encoding vectors with dimension M , i.e. OM := {x ∈ {0, 1}M : ∃j ∈ [M ] : x(j) =
1 and x(i) = 0 if i ̸= j}, with OM ⊂ ∆M . Given π ∈ ∆M we denote with Cat(·|π) the categorical
distribution over OM which assigns probability π(i) to the vector x ∈ OM with x(i) = 1 and x(j) = 0
for j ̸= i.

2.2 Model

We now introduce a generic form of individual-based model. We consider a population of N ∈ N
individuals and assume that a vector of known covariates wn ∈ W is associated with individual
n ∈ [N ], where W is a subset of Euclidean space. We denote by W the collection of covariates of the
entire population, W := (w1, . . . ,wN). These covariates allow us to express heterogeneity in how
the disease propagates through the population. Each individual assumes any one of M ∈ N latent
disease states at any one discrete time step t ≥ 0. We use one-hot encoding vectors to represent the
states of the individuals; this is a little non-standard but will simplify mathematical expressions.
The state of the n-th individual at time t is denoted xn,t ∈ OM , meaning that the i-th component
of xn,t is 1 if and only if the n individual is in state i at time t. The state of the entire population is
written Xt := (x1,t, . . . ,xN,t). With the covariates W fixed, the process (Xt)t≥0 is a Markov chain
and the individual disease states xn,t are distributed as follows.
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Latent dynamics At time step t = 0, the state of each individual is drawn independently from an
initial distribution which is a function of the individual-specific covariates xn,0|wn ∼ Cat ( · |p0(wn)),
for some probability vector p0(wn). At time steps t ≥ 1, conditional on the population state Xt−1,
the n-th individual evolves according to a M ×M row-stochastic transition matrix Kηn,t

(wn):

xn,t|Xt−1,W ∼ Cat

(
·
∣∣∣∣[x⊤

n,t−1Kηn,t−1
(wn)

]⊤)
.

Here ηn,t := η (wn,W,Xt) where η : W × WN × ON
M → [0, C] with C ∈ R+ is a function which

will allow us to express how individuals interact with the population in terms of their respective
covariates and disease states. In this formulation, the transition matrix Kηn,t

(wn) depends on t
only via Xt. We consider this case for ease of presentation; our model, algorithm, and theory can
be extended to transition matrices that evolve over time.

Observations At time t ≥ 1, we observe a collection of vectors Yt := (y1,t, . . . ,yN,t), where
each yn,t is a OM+1-valued random measurement associated with the n-th individual. Given Xt,
y1,t, . . . ,yN,t are conditionally independent and distributed:

yn,t|xn,t,wn ∼ Cat
(
·
∣∣[x⊤

n,tG(wn)
]⊤)

,

whereG(wn) is aM×(M+1)-dimensional row-stochastic matrix. This matrix allows probabilities to
be assigned to the n-th individual being: unreported, representing the extra compartment; correctly
reported as in the disease state specified xn,t; erroneously reported as assuming one of the other
M − 1 disease states. The matrix G(wn) could be allowed to depend on t with only notational
changes to our algorithm and theory needed. We also assume the observations are evenly spaced in
time, i.e. a period length of h = 1, but, once again, this is just for presentation purposes.

2.3 Motivating example

We now show how the motivating example from Section 1.1 can be cast as an instance of the
generic model described in Section 2.2. As it is an SIS model, M = 2, xn,t ∈ {[1, 0]⊤, [0, 1]⊤} is
a 2-dimensional one-hot encoding vector representing disease states {S, I}. The individual-specific
covariates are wn = [cn, zn], where the latter are as in Section 1.1. As initial infection probabilities,
we consider: p0(wn) = [1− p0, p0]

⊤, i.e. each individual has the same probability of being infected
at the beginning of the epidemic.

Homogeneous- and heterogeneous-mixing dynamics. Following the formulation from Sec-
tion 2.2, we can express homogeneous- and heterogeneous-mixing dynamics by reformulating the in-
teraction term ηn,t−1. For the homogeneous-mixing case we can write ηn,t−1 =

1
N

∑
k∈[N ] exp{c⊤k bI}x

(2)
k,t−1,

while for the heterogeneous-mixing case we have ηn,t−1 =
1
N

∑
k∈[N ] exp{c⊤k bI}

exp

{
− ∥zn−zk∥2

2ϕ2

}
√

2πϕ2
x
(2)
k,t−1.

Then in either case we can write:

Kηn,t−1
(wn) =

[
exp

(
−hβ exp{c⊤nbS}ηn,t−1

)
1− exp

(
−hβ exp{c⊤nbS}ηn,t−1

)
1− exp (−hγn) exp (−hγn)

]
. (2)
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Observation model. The observation for each individual yn,t is a 3-dimensional one-hot encoding
vector representing the states: not reported (e.g. missing test results), reported as S, and reported
as I. In this scenario, a stochastic matrix for our observation model is:

G(wn) =

[
1− qS qSqSp qS(1− qSp)
1− qI qI(1− qSe) qIqSe

]
,

where qS, qI , qSe, qSp ∈ [0, 1] represent the reporting probabilities when S and when I, and the
sensitivity and specificity of the test. More generally, these probabilities could be a function of
covariates wn and time-varying.

2.4 Exact likelihood

Under the definitions in Section 2.2 and Section 2.2, with the covariates W fixed, the joint process
of population states (Xt)t≥0 and observations (Yt)t≥1 is a Hidden Markov Model (HMM) (Chopin
and Papaspiliopoulos, 2020). Over a time horizon T , the marginal likelihood of Y1:T is:

p(Y1:T |W) =
∑

X0:T∈ONT
M

p(X0|W)
T∏
t=1

p(Xt|Xt−1,W)p(Yt|Xt,W),

where, using some HMM terminology, the initial distribution is p(X0|W) :=
∏

n∈[N ] x
⊤
n,0p0(wn), the

transition kernel is p(Xt|Xt−1,W) :=
∏

n∈[N ] x
⊤
n,t−1Kηn,t−1

(wn)xn,t, and the emission distribution is

p(Yt|Xt,W) :=
∏

n∈[N ] x
⊤
n,tG(wn)yn,t.

The computation of the marginal likelihood requires a summation over the set ONT
M . The

forward algorithm (Chopin and Papaspiliopoulos, 2020) computes the sum at a cost linear in T ,
by recursively computing the prediction distributions p(Xt|Y1:t−1,W), the filtering distributions
p(Xt|Y1:t,W), and the marginal likelihood increments p(Yt|Y1:t−1,W), via the so-called “predic-
tion” and “correction” steps of the filtering recursion. Indeed, given p(X0|Y1:0,W) := p(X0|W):

Prediction: p(Xt|Y1:t−1,W) :=
∑

Xt−1∈ON
M

p(Xt|Xt−1,W)p(Xt−1|Y1:t−1,W);

Correction: p(Yt|Y1:t−1,W) :=
∑

Xt∈ON
M

p(Yt|Xt,W)p(Xt|Y1:t−1,W) and

p(Xt|Y1:t,W) :=
p(Yt|Xt,W)p(Xt|Y1:t−1,W)

p(Yt|Y1:t−1,W)
;

from which get p(Y1:T |W) = p(Y1|W)
∏T

t=2 p(Yt|Y1:t−1,W). Whilst the forward algorithm sim-
plifies the likelihood computation with respect to time, it still requires summation over the set ON

M ,
making it infeasible for even small population sizes.
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Algorithm 1 Categorical Approximate Likelihood

Require: W,Y1:T , p0(·), K·(·), G(·)
Initialize πn,0 with p0(wn) for all n ∈ [N ]
for t ∈ 1, . . . , T do

Πt−1 = (π1,t−1, . . . ,πN,t−1)
for n ∈ [N ] do

η̃n,t−1 = η(wn,W,Πt−1)

πn,t|t−1 =
[
π⊤
n,t−1Kη̃n,t−1

(wn)
]⊤

µn,t =
[
π⊤
n,t|t−1G(wn)

]⊤
πn,t = πn,t|t−1 ⊙

{[
G(wn)⊘

(
1Mµ⊤

n,t

)]
yn,t
}

end for
end for
Return the approximate likelihood

∏T
t=1

∏
n∈[N ] y

⊤
n,tµn,t

3 CAL: Categorical Approximate Likelihood

Given the state at time t − 1, the transitions and observations of each individual at time t are
independent of each other. The challenge comes from the uncertainty about Xt−1 introducing
dependence. Thus we substitute Xt−1 with its expectation, resulting in p(Xt|Y1:t−1,W) being a
product of each individual’s marginal distribution. We then propagate it through the correction and
likelihood recursions, leading to approximations of likelihood, predictive distribution, and filtering
distribution as products of categorical distributions.

3.1 Approximate filtering algorithm

In this section we propose the approximations p(Xt|Y1:t−1,W) ≈
∏

n∈[N ] Cat(xn,t | πn,t|t−1), and

p(Yt|Y1:t−1,W) ≈
∏

n∈[N ] Cat(yn,t | µn,t), and p(Xt|Y1:t,W) ≈
∏

n∈[N ] Cat(xn,t | πn,t). We then
need to explain how the probability vectors πn,t|t−1,πn,t ∈ ∆M and µn,t ∈ ∆M+1 are computed for
n = 1, . . . N and t ≥ 1. All the derivations of the approximations are available in Section B of the
supplementary material.

Starting with p(X0|Y1:0,W), we have that, for each n ∈ [N ], πn,0 is set to the length-M
probability vector associated with the categorical distribution p0(wn). Note that at the initial time
no approximation is needed as X0 is already a product of categorical distributions.

Moving to a general t ≥ 1, let us assume that we already have computedΠt−1 := (π1,t−1, . . . ,πN,t−1).
We then substitute p(Xt−1|Y1:t−1W) ≈

∏
n∈[N ] Cat(xn,t−1 | πn,t−1) in the prediction step of the ex-

act filtering recursion, with the transition probability p(Xt|Xt−1,W) approximated by substituting
Πt−1 in place of Xt−1 in ηn,t−1 = η(wn,W,Xt−1). Here, because of the categorical approximation,
Πt−1 is simply the expectation of Xt−1, and, after this substitution, the prediction step can be
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computed in closed-form. Precisely:

πn,t|t−1 :=
[
π⊤
n,t−1Kη̃n,t−1

(wn)
]⊤
, for n ∈ [N ],

where η̃n,t−1 := η(wn,W,Πt−1). The correction step is then applied to the categorical approxima-
tion

⊗
n∈[N ] Cat(·|πn,t|t−1) of p(Xt|Y1:t−1W), but using the exact observation model p(Yt|Xt,W).

The latter factorizes across individuals under the conditional independence structure specified in
Section 2.2, giving us:

µn,t :=
[
π⊤
n,t|t−1G(wn)

]⊤
and πn,t := πn,t|t−1 ⊙

{[
G(wn)⊘

(
1Mµ⊤

n,t

)]
yn,t
}

for n ∈ [N ],

where we use the convention 0
0
= 0. By sequentially combining these approximate prediction and

correction steps we get Algorithm 1, which computes all the aforementioned quantities. Algorithm 1
could output all the categorical approximations, but for the sake of presentation we make it output
only the Categorical Approximate Likelihood (CAL):

p(Y1:T |W) ≈
T∏
t=1

∏
n∈[N ]

Cat(yn,t | µn,t) =
T∏
t=1

∏
n∈[N ]

y⊤
n,tµn,t.

3.2 CAL as an exact likelihood in an approximate model

Although the CAL is derived above as an approximation to the marginal likelihood for the model
in Section 2.2, it can be interpreted as an exact marginal likelihood under an approximate model,
where η̃n,t is used instead of ηn,t. Here, as in Section 3.1, η̃n,t−1 = η(wn,W,Πt−1), and Πt−1 is

computed as in Algorithm 1. Indeed we can define the state and observation processes (X̃t)t≥0 and
(Ỹt)t≥1, with X̃t = (x̃1,t, . . . , x̃N,t) and Ỹt = (ỹ1,t, . . . , ỹN,t) distributed as follows:

x̃n,0|wn ∼ Cat (·|p0(wn)) , x̃n,t|X̃t−1, Ỹ1:t−1,W ∼ Cat

(
·|
[
x̃⊤
n,t−1Kη̃n,t−1

(wn)
]⊤)

,

ỹn,t|x̃n,t,wn ∼ Cat
(
·|
[
x̃⊤
n,tG(wn)

]⊤)
,

Under the approximate model above, the marginal likelihood of Ỹ1:T can be computed in closed-
form using Algorithm 1. Indeed, we have p(Ỹ1:T |W) =

∏
n∈[N ]

∏T
t=1 ỹ

⊤
n,tµn,t, which coincides with

the CAL when the observations are Ỹ1, . . . , ỸT .

4 Consistency of the maximum CAL estimator

In this section, we state our results about consistency of the maximum CAL estimator of model
parameters, when data are generated from the exact model from Section 2.2. Proofs and supporting
results are given in Section C of the supplementary materials. This theory has links to mean-field
approximations (Sherborne et al., 2018) and propagation of chaos (Sharrock et al., 2023; Le Boudec
et al., 2007) as it relies on the construction of what we call a “saturated” system of independently
evolving individuals.
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4.1 Notation, definitions and assumptions

We denote with Θ the parameter space, with W the covariate space. We assume all the random
variables appearing in our theory to be defined on a common probability space (Ω,F ,P). We
augment our notation from Section 2.2 by writing WN ,xNn,t,X

N
t ,y

N
n,t,Y

N
t for W,xn,t,Xt, yn,t,Yt;

given a parameter vector θ ∈ Θ, the initial distribution, transition matrix, and emission matrix are
denoted: p0(wn, θ), K·(wn, θ), and G(wn, θ), with η(wn,W,X) becoming ηN(wn, θ,W

N ,XN), and
ηn,t becoming ηNt (wn, θ). Similarly, the CAL quantities πn,t|t−1,µn,t,πn,t, η̃n,t in Algorithm 1 be-

come πN
n,t|t−1(wn, θ),µ

N
n,t(wn, θ), π

N
n,t(wn, θ), η̃

N
t (wn, θ). We denote by θ⋆ ∈ Θ the data-generating

parameter (DGP) value, which determines the distributions of (Xt)t≥0 and (Yt)t≥1 under P condi-
tional on W.

We define the following norms. For an M -dimensional vector π and an M ×M -dimensional
matrix K we define ∥π∥∞ := max

i∈[M ]

∣∣π(i)
∣∣ and ∥K∥∞ := maxi∈[M ]

∑M
j=1

∣∣K(i,j)
∣∣ . For an R-valued

random variable x the L4 norm is written: ~x~4 := (E [|x|4])
1
4 .We refer to the non-zero elements of

probability vectors and matrices as the support, which we define as supp(π) := {i ∈ [M ] : π(i) ̸= 0}
for an M -dimensional vector π, and supp(Π) := {(i, j) ∈ [M ]2 : Π(i,j) ̸= 0} for a M ×M matrix
Π.

We next state our assumptions, which we first comment on and then list. Assumption 1 collects
standard compactness and continuity assumptions. Assumption 2 is a random design assumption
on the covariate vectors, which is inspired by classical theoretical analysis of regression models.
Assumption 3 represents a technical assumption on the support of initial distribution, transition
matrix, and emission matrix, which guarantees the invariance of the support when considering
different parameters and covariates. We conclude with Assumption 4 on the structure of η, which
ensures a law of large numbers for this interaction term, and Assumption 5 about the Lipschitz
continuity of the transition matrix in η.

Assumption 1. The parameter space Θ and the covariate space W are compact subsets of Euclidean
spaces. Moreover, the initial distribution p0(w, θ), the transition matrix Kη(w, θ), and the emission
matrix G(w, θ) are all continuous functions in their arguments w, θ.

Assumption 2. The covariates w1,w2, . . . , are independent and identically distributed according
to a distribution Γ on W.

Assumption 3. The following hold: for any w ∈ W and θ, θ′ ∈ Θ we have that supp(p0(w, θ)) =
supp(p0(w, θ

′)); for any w ∈ W, η, η′ ∈ [0, C] and θ, θ′ ∈ Θ we have that supp(Kη(w, θ)) =
supp(Kη′(w, θ

′)); for any w ∈ W and θ, θ′ ∈ Θ we have that supp(G(w, θ)) = supp(G(w, θ′)).

Assumption 4. For any θ ∈ Θ, w ∈ W, N ∈ N, and for any WN = (w1, . . . , wN),Π
N =

(π1, . . . , πN) with wn ∈ W, πn ∈ ∆M for all n ∈ [N ], we have:

ηN(w, θ,WN ,ΠN) =
1

N

∑
n∈[N ]

d(w,wn, θ)
⊤πn,

where d : W ×W × Θ → [0, C]M is a bounded function, i.e. ∥d∥∞ ≤ C < ∞, from which we also
obtain ηN(w, θ,WN ,ΠN) ∈ [0, C] for any N,w, π,WN ,ΠN .
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Assumption 5. For any θ ∈ Θ and w ∈ W, the matrix Kη(w, θ) is Lipschitz continuous in η with
Lipschitz constant L, that is for any η, η′ ∈ [0, C] we have:

∥Kη(w, θ)−Kη′(w, θ)∥∞ ≤ L |η − η′| .

4.2 Main consistency theorem and outline of the proof

Consider a fixed time horizon T ≥ 1, and the log-CAL evaluated at θ ∈ Θ:

ℓN1:T (θ) :=
T∑
t=1

∑
n∈[N ]

log
[(
yNn,t
)⊤

µN
n,t(wn, θ)

]
.

The aim of this section is to outline the proof that the maximum CAL estimator θ̂N := argmaxθ∈Θ ℓ
N
1:T (θ)

is consistent in the large population limit. All the details are available in Section C of the supple-
mentary material. The main challenge is to prove that N−1(ℓN1:T (θ)− ℓN1:T (θ

⋆)) converges uniformly
P-almost surely to a contrast function which is maximised by θ⋆. This then allows standard con-
tinuity arguments to be used in proving almost sure convergence of the maximizer θ̂N to some
equivalence set containing θ⋆. Due to the presence of covariates, the details of the analysis are
substantially richer than those of Whitehouse et al. (2023).

Saturated process and saturated CAL. From Section 2.2 it is clear that all the individuals
are interacting via the interaction term ηNt−1(wn, θ

⋆) in the transition matrix. We can prove that
under Assumptions 2,4,5 for any t ≥ 0 there exists a deterministic function w 7→ η∞

t (w, θ⋆) from
W to [0, C] such that for any n ∈ [N ]:











ηNt (wn, θ
⋆)− η∞

t (wn, θ
⋆)











4

= O
(
N− 1

2

)
, (3)

see Section C.2 of the supplementary material for details. From (3) we observe that when the
system becomes “saturated” with individuals, i.e. N → ∞, the effect from the population has a
deterministic behavior. Substituting η∞

t (·, θ⋆) in our latent dynamic defines a saturated process at
the individual level. Specifically, for an individual with covariate w∞ ∼ Γ the saturated process is:

x∞
0 |w∞ ∼ Cat ( · | p0(w∞, θ⋆)) ,

x∞
t |x∞

t−1,w
∞ ∼ Cat

(
·
∣∣∣∣[(x∞

t−1)
⊤Kη∞

t−1(w
∞,θ⋆)(w

∞, θ⋆)
]⊤)

,

y∞
t |x∞

t ,w
∞ ∼ Cat

(
·
∣∣∣[(x∞

t )⊤G(w∞, θ⋆)
]⊤)

.

(4)

We can observe that in the saturated process the individuals evolve independently, providing an
asymptotic justification for the CAL prediction step.
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Similarly, we can prove that under Assumptions 2,4,5 for any t ≥ 0 there exists a deterministic
function w 7→ η̄∞

t (w, θ) from W to [0, C], which is such that for any w ∈ W we have η̄∞
t−1(w, θ

⋆) =
η∞
t−1(w, θ

⋆) and for any n ∈ [N ]:











η̃Nt (wn, θ)− η̄∞
t (wn, θ)











4

= O
(
N− 1

2

)
,

see Section C.3 of the supplementary material. We can then define the saturated CAL recursion
by substituting individual saturated process observations from (4) and η̄∞

t (wn, θ) into Algorithm
1. Precisely, set π∞

0 (w∞, θ) := p0(w
∞, θ) and then for t ≥ 1:

π∞
t|t−1(w

∞, θ) :=
[
π∞
t−1(w

∞, θ)⊤Kη̄∞
t−1(w

∞,θ)(w
∞, θ)

]⊤
,

µ∞
t (w∞, θ) :=

[
π∞
t|t−1(w

∞, θ)⊤G(w∞, θ)
]⊤
,

π∞
t (w∞, θ) := π∞

t|t−1(w
∞, θ)⊙

{[
G(w∞, θ)⊘

(
1Mµ∞

t (w∞, θ)⊤
)]

y∞
t

}
.

(5)

As, conditional on w∞, the joint process (x∞
t )t≥0, (y

∞
t )t≥1 in (4) is a HMM, Recursion (5) becomes

the forward algorithm associated with this HMM when θ = θ⋆, i.e. at the DGP.

Contrast function and set of maximizers. Under Assumptions 1,2,3,4,5, for any θ ∈ Θ we

prove that
ℓN1:T (θ)

N
− ℓN1:T (θ⋆)

N
converges P-almost surely to a contrast function CT (θ, θ⋆) as N → ∞,

which takes the form of an expected Kullback-Leibler (KL) divergence:

CT (θ, θ⋆) := −
T∑
t=1

E {KL [Cat (·|µ∞
t (w∞, θ⋆)) ||Cat (·|µ∞

t (w∞, θ))]} .

Moreover, we use properties of the KL divergence to show the DGP belongs to the set of maximizers
of the contrast function, i.e. θ⋆ ∈ Θ⋆ := argmaxθ∈Θ CT (θ, θ⋆). Full proof is available in Section C.5
and Section C.4 of the supplementary material.

Convergence of the maximum CAL estimator and identifiability. After proving some
technical results, we can complete the proof of Theorem 1, which states the consistency of the
maximum CAL estimator (see Section C.5 of the supplementary material).

Theorem 1. Let Assumptions 1,2,3,4,5 hold and let θ̂N be a maximizer of ℓN1:T (θ). Then θ̂N con-
verges to Θ⋆ as N → ∞, P-almost surely.

The theorem states that the maximum CAL estimator converges to a set of maximizers Θ⋆, which
is a set of parameters that define statistically indistinguishable one-individual saturated processes.
More formally, denote with Pθ⋆,w∞ the law of (y∞

t )t≥1 conditional on w∞ = w and with DGP θ⋆. We

can show that for any θ⋆1, θ
⋆
2 ∈ Θ⋆ we have Pθ

⋆
1 ,w∞ = Pθ

⋆
2 ,w∞ for Γ-almost all w ∈ W, see Section C.5 of

the supplementary material.
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5 Experiments

We now implement the CAL over a range of IBMs with heterogeneous attributes and different
heterogeneous-mixing behaviors. The results can be reproduced following the GitHub repository
LorenzoRimella/CAL. All the experiments were run on a 32GB Tesla V100 GPU available on “The
High-End Computing” (HEC) facility at Lancaster University.

Computational considerations The CAL is “embarrassingly parallel” in N at each time step,
making it ideal for parallel architectures such as GPUs. The computation of the CAL does not
rely on simulations from the model or permutations of indices. Subsequently, it is well-suited to
just-in-time (JIT) (Aycock, 2003) compilation, enabling efficient execution without requiring com-
plex code design. Moreover, automatic differentiation (AD) libraries can compute the gradient of
the log-CAL with respect to model parameters. Meaning that popular AD Libraries (Abadi et al.,
2015) can be used for efficient optimization, or the CAL can be embedded within a Hamiltonian
Monte Carlo (HMC) sampler for Bayesian inference via probabilistic programming languages (Car-
penter et al., 2017). The latter approach is adopted in Section 5.1, while the former, with Adam
optimizer (Kingma and Ba, 2014), is employed for all other experiments due to its scalability. More
computational considerations can be found in Section D.1 of the supplementary materials.

5.1 CAL-posterior inference using HMC in TensorFlow

We demonstrate Bayesian inference using an HMC sampler in TensorFlow (Abadi et al., 2015) to
target a posterior distribution defined in terms of the CAL. The appeal of this approach is that
once the model is formulated as per Section 2, evaluating the CAL involves no tuning parameters
and can be readily embedded within an “off the shelf” HMC program.

Figure 1: Trace plots for HMC under different population sizes. Solid red lines denote the DGP.

Consider the homogeneous-mixing SIS model from Section 1.1 and Section 2.3 with synthetic
covariates cn ∼ N (·|0, 1). We simulate data from models with increasing population sizes N =
100, 1000, 10000 and time horizon T = 200. The full parameter settings can be found in Section D.2
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of the supplementary materials. The chains show no signs of poor mixing and recovery of the DGP,
with a posterior distribution that becomes increasingly concentrated as the population size grows,
complementing our consistency theory. The running time for the experiment with N = 10000 was
around 0.5s per iteration, see Section D.2 of the supplementary material for full details of the HMC
scheme.

5.2 Gradient-based calibration for heterogeneous-mixing SIS

We consider two heterogeneous-mixing IBMs: one with a continuous spatial interpretation, and the
other with a network interpretation. We demonstrate recovery of the DGP by optimizing the CAL
with Adam (Kingma and Ba, 2014) and with an accuracy that increases in N .

Model 1. Consider the heterogeneous-mixing SIS model from Section 1.1 and Section 2.3. Pre-
cisely, we have an initial infection probabilities and an ηn,t−1 as in Section 2.3, and a transition
matrix as in (2), where we also include the term ϵ to represent a constant rate of infection from the
environment. The covariates wn = [zn, cn] are synthetic, such that zn is the location in space of
each individual and cn ∼ N (·|0, 1). The location zn is drawn from a mixture of 10 bivariate Gaus-
sian distributions, each component of which can be interpreted as a geographic hub, e.g. a city. A
full mathematical description of the model can be also found in Section D.3 of the supplementary
material.

Model 2. We now group individuals into communities. All the quantities are as in Model 1 except
the individuals’ location zn which is now replaced by mn the mean of the mixture component the
n-th individual was assigned to in Model 1. It is important to note that the computational cost of
computing all interaction terms for Model 1 is N2, while this cost can be reduced to N times the
number of communities for Model 2. More details on the model are available in Section D.3 of the
supplementary material.

Even though the two models have different heterogeneous-mixing properties, they share the
same parameters and we set the DGP to the same values for both models. Precisely, p0 = 0.01, β =
2.0,bI = 1.0,bS = 0.5, γ = 0.1,bR = −0.5, ϕ = 1, ϵ = 0.0001, qS = 0.2, qI = 0.5, qSe = 0.9, qSp =
0.95. Given the DGP we can simulate from the two models for a fixed time horizon and population,
see Figure 2 for a graphical representation of disease’s spread for t = 5, 10, 20, 50 and when N =
1000. Here we can observe the effect of the spatial component in both models, with the disease
spreading faster in regions/communities with a higher number of infected, while isolated regions/
communities are difficult to reach, and remain untouched by the disease, see Figure 2.

For the experiment, we consider N = 500, 1000, 2000 for Model 1 and N = 500, 5000, 50000 for
Model 2, where we can use a larger population for Model 2 because of the reduced computational
cost. We then simulate per each population size and per each model 100 realizations according to
the considered dynamics and observation model, with the covariates fixed.

For both models, we treat p0, ϵ, qSe, qSp as known, and infer per each simulated dataset p0, β,bS,bR, ϕ, qS, qI
by running Adam with 10 different initial conditions for 1000 gradients steps. At the end of the
optimization, we choose the best out of the 10 in terms of CAL log-likelihood per each dataset. We
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Figure 2: A realization of the latent process from Model 1 (first row) and Model 2 (second row) when
N = 1000. Different columns are associated with different time steps. For Model 1, blue and red dots refer
to susceptible and infected individuals, respectively. For Model 2, the communities are blue circles with
a radius that is proportional to their population, while the red circles are proportional to the number of
infected inside the communities.

Table 1: The effect of increasing N on the maximum CAL estimator for Model 1 and Model 2. The first
column shows the DGP. In brackets the standard deviation of the maximum CAL estimator computed
over 100 simulations.

Model 1 Model 2

Parameter N = 500 N = 1000 N = 2000 N = 500 N = 5000 N = 50000

log(β)=0.69 0.71(0.21) 0.71(0.17) 0.72(0.085) 0.72(0.2) 0.69(0.08) 0.7(0.03)
bS=0.5 0.45(0.06) 0.48(0.03) 0.49(0.022) 0.42(0.08) 0.5(0.01) 0.5(0.003)
bI=1.0 0.95(0.16) 0.97(0.15) 0.98(0.063) 0.91(0.2) 1.0(0.06) 1.0(0.025)
log(γ)=-2.3 -2.31(0.04) -2.29(0.03) -2.3(0.016) -2.32(0.05) -2.3(0.01) -2.3(0.003)
bR=-0.5 -0.51(0.05) -0.5(0.03) -0.5(0.018) -0.55(0.07) -0.5(0.01) -0.5(0.004)
log(ϕ)=0.0 0.01(0.05) -0.0(0.05) -0.0(0.026) -0.02(0.07) 0.0(0.02) -0.0(0.007)
logit(q·)=-1.39 -1.39(0.01) -1.39(0.01) -1.39(0.005) -1.39(0.01) -1.39(0.004) -1.39(0.001)
logit(q·)=0.0 0.0(0.02) 0.0(0.01) 0.0(0.007) 0.01(0.02) 0.0(0.004) 0.0(0.001)

report the results of this optimization in Table 1. Here, we can observe that, for both models, the
mean of our estimator is close to the true value of the DGP and that the variance of the maximum
CAL estimator is shrinking with the population size.

5.3 Calibration and filtering for heterogeneous-mixing SIR

In this section, we present a simple pipeline explaining how the CAL can be used to track individuals’
disease states within the population when considering an individual-based susceptible-infected-
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removed (SIR) model. We analyze both a scenario where the model is well-specified and a scenario
where the model is misspecified.

Well-specified model. Consider an individual-based SIR where the individuals have the same
covariates as Model 1 from Section 5.2, including the same spatial locations. We consider a p0(wn)
such that the individuals in the top-left of the spatial region become infected with probability
p0, while the others are susceptible with probability 1. The transition matrix is now 3 × 3 with
transition probabilities that are governed by the same parameters as in Model 1 from Section 5.2.
The observation model now needs three parameters qS, qI , qR which represent the probability of
reporting S as S, I as I, R as R, respectively. We do not allow for misreporting and we force
half of the population to be always unreported. Full details are available in Section D.4 of the
supplementary material. We consider this as the model that generates the data and we set the DGP
to p0 = 0.5, β = 3.0,bI = 1.0,bS = 0.5,bR = −0.1, ϕ = 1.5, ϵ = 0.0001, qS = 0.1, qI = 0.2, qR = 0.5.

Misspecified model. We now present a misspecified model, with the same initial distribution as
the well-specified model, but a transition kernel with an interaction term ηn,t that groups individuals
into communities as per Model 2 of Section 5.2. Precisely, we use the same formulation as in Model
2 but an interaction term that considers z̄n, the mean distance between all pairs of individuals
within the community of individual n:

ηn,t−1 =
1

N

∑
k∈[N ]

exp{c⊤k bI}
1√
2πϕ2

exp

{
−∥mn −mk∥2Bn,k + z̄2n(1−Bn,k)

2ϕ2

}
x
(2)
k,t−1,

where Bn,k := I(∥mn − mk∥ ≠ 0). The covariates of the misspecified model are then wn =
[mn, z̄n, cn]. Similarly to Model 2, the computational cost of computing all the interaction terms
is N times the number of communities, making it significantly cheaper to fit compared to the
well-specified model. More details are available in Section D.4 of the supplementary material.

We generate an epidemic from the well-specified model, and we then optimize the parameters of
both the well-specified and the misspecified model by running Adam with a learning rate of 0.1 for
500 iterations. After optimization, we set θ to the maximum CAL estimator and run Algorithm 1
for both models, where the CAL filter πn,t is stored and used as an approximation of the true state.
Figure 3 reports for t = 5, 10, 20, 50 the observations in the first row, the true states in the second
row, the CAL estimate under the well-specified model and the misspecified model in the third and
the fourth rows. The CAL estimate on the state of the n-th individual at time t is obtained as
the argmax of πn,t. It can be observed that the CAL filter is able to reproduce the spread of the
epidemic from top to bottom, and even track infected individuals that are unreported for both
models.

Graphically, it seems we do not lose much with the misspecified model. To verify this, we
consider the prediction performance on xn,t of πn,t for both models. This is measured via two
metrics: the cross-entropy loss (De Boer et al., 2005), or equivalently minus the mean categorical
log-likelihood; the accuracy, which is the percentage of correct estimates of xn,t. We also consider
three baselines: “Random” where we predict individual n randomly unless we report their state;
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Figure 3: CAL filtering for t = 5, 10, 20, 50 under the well-specified and misspecified scenario. Rows
from top to bottom: observed data, true latent disease states, and inferred latent disease states from
CAL filtering under the well-specified and misspecified models. The yellow dots are used for unreported
individuals, while blue, red, black are susceptible, infected, removed.

Table 2: Cross-entropy loss (the lower the better) and accuracy (the higher the better) for the CAL
well-specified and misspecified, along with some baselines. The predicted state for accuracy is the argmax
of the probability vector.

Metric Random Prev. uncertain Prev. certain CAL CAL missp.

Cross-entropy 1.10 1.09 0.67 0.28 0.29
Accuracy 34.85% 65.28% 65.28% 88.48% 88.08%

“Prev. uncertain” where we predict individual n with their latest reported state with probability
0.34 (and the other states with (1−0.34)/2) unless we report their state; and “Prev. certain” where
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we predict individual n with their latest reported state with probability 0.99 (and the other with
(1 − 0.99)/2) unless we report their state. As in Figure 3, the estimate is obtained as the argmax
of the probabilities. All the mathematical definitions of the metrics and the baselines are available
in Section D.4 of the supplementary material. Table 2 reports the results and shows that the CAL
methods perform better than the baselines in both metrics. We observe that, as expected from the
graphical interpretation, little accuracy is lost when switching to the misspecified model.

5.4 Comparing CAL with SMC

In this section, we compare the run time and marginal likelihood values obtained by CAL against
those from: Auxiliary Particle Filter (APF) (Johansen and Doucet, 2008); SMC for individual-
based models with approximate optimal proposals by Rimella et al. (2023a), where α controls the
number of future observations included in the proposal; Block Auxiliary Particle Filter (Block APF)
(Rebeschini and Van Handel, 2015); Simulation Based Composite Likelihood (SimBa-CL) (Rimella
et al., 2023b). The SMC proposed by Rimella et al. (2023a) is exact asymptotically in the number
of particles, providing a suitable proxy for comparison with the “ground-truth”. We report log-
likelihood estimates to ease the visualization, which leads to a negative bias from the Monte Carlo
error Rimella et al. (2023a).

We consider a homogeneous-mixing SIS inspired by Ju et al. (2021). Here the initial dis-
tribution is given by a logistic regression on cn with parameters b0. The interaction term is
ηn,t−1 =

1
N

∑
k∈[N ] x

(2)
k,t−1 and the stochastic transition matrix is given by:

Kηn,t−1(wn) =

 exp
(
−h ηn,t−1+ϵ

1+exp{−b⊤
S cn}

)
1− exp

(
−h ηn,t−1+ϵ

1+exp{−b⊤
S cn}

)
1− exp

(
− h

1+exp{−b⊤
Rcn}

)
exp

(
− h

1+exp{−b⊤
Rcn}

)  ,
where bS,bI have again a logistic regression interpretation. The observation model is as in Section
5.2 but it does not allow for misreporting. A full mathematical description and parameter values
are available in the supplementary material, Section D.5.

We consider N = 1000, T = 100, simulate from the model and, for that one realization of the
data, estimate mean and standard deviation of the log-likelihood at the DGP for each method over
100 runs, the CAL requires a single run as it is a deterministic algorithm. The results are reported
in Table 3. As expected, the method by Rimella et al. (2023a) with the highest α has the lowest
variance, but it is computationally intensive as a single run requires more than 5s. The Block APF
performs well in terms of computational cost and likelihood estimate, but having a weight and
performing the resampling per each individual blows up the memory when increasing the number of
particles. SimBa-CL performs well computationally but it is more biased compared to Block APF.
The CAL is the fastest and the log-likelihood estimate is close to the one from Rimella et al. (2023a),
with a running time even dropping to 0.003s when considering just-in-time compilation, which is, as
explained in Section 5, straightforward for the CAL. In Section D.5 of the supplementary material,
we include a comparison in an SEIR model scenario, where both APF and Block APF fail, due to
all the considered particles having zero likelihood.
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Table 3: Log-likelihood means and standard deviations for the SIS model. We denote Rimella et al.
(2023a) with †, with α being the number of future observations included in the lookahead scheme (α = 0
correspond to APF). Log-likelihood results are averages and standard deviations over 100 runs. Running
times are reported for a single run and as averages across particles.

Number of particles P 512 1024 2048 Time (sec)

APF -81103.37 (46.04) -81046.57 (49.65) -80976.34 (36.08) 1.05s
† with α = 5 -79551.92 (1.79) -79552.24 (1.6) -79552.81 (1.57) 3.78s
† with α = 10 -79551.9 (1.81) -79552.22 (1.47) -79553.01 (1.56) 5.61s
Block APF -79565.69 (5.84) -79558.44 (3.95) Out of memory 2.97s
SimBa-CL -79612.74 (3.4) -79612.31 (2.37) -79612.34 (1.55) 1.03s

CAL -79550.69 0.99s
CAL jit compiled -79550.69 0.003s

5.5 2001 UK Foot and Mouth disease outbreak

In 2001 a foot and mouth disease outbreak infected 2026 out of 188361 farms in the United Kingdom,
resulting in damages and costs of about 8 billion pounds. This dataset has been studied in the
context of individual-based models (Jewell et al., 2009; Chis Ster et al., 2009; Deardon et al., 2010),
where farms are considered as individuals with the location and the number of animals forming
the individual-specific covariates. A farm can be susceptible if no animals are infected, infected if
at least one animal is infected, and removed if the farm exits the epidemic due to quarantine or
culling. For this study, we consider 162775 farms, from England, Wales, and the south of Scotland,
see Figure 4. A fully dense spatial kernel model would be costly to run for all farms, hence we adopt
the network model strategy of Section 5.3, and assign each farm to a local authority, full details are
in Section D.6 of the supplementary materials.

We consider a heterogeneous-mixing individual-based SIR model as in Section 5.3, where tran-
sitions from S to R are also allowed, representing the culling/quarantine of healthy farms to create
containment zone around infected farms. In this model, we have two interaction terms: one control-
ling the spread of the disease, the other controlling the intensity of culling/quarantining. For the
observation model, we do not allow for misreporting and we assume that susceptible and removed
are always unreported. We then optimized the parameters with Adam, with a single optimization
taking around 70 minutes (for 10000 gradient steps). Full details on the model and optimization
are available in Section D.6 of the supplementary materials.

Once the parameters are optimized we can study the inferred effects of owning cattle/sheep on
susceptibility/infectivity. The plots on the left and in the center of Figure 5 show that owning
cattle affects more both susceptibility and infectivity, which is a similar conclusion to the literature
Jewell et al. (2009); Rimella et al. (2023b). Moving to the spatial effect we can analyze how distance
affects both the infection and the culling/quarantine processes. Remark that no data about culled
farms are included in the calibration, meaning that the culling/quarantine process is inferred from
the infected farms only. The right plot of Figure 5 shows that the infection process travels as far
as 60km, with a culling/quarantine process that is applied up to a radius of 10km. Following the
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Figure 4: The farms and the local authorities included in the study. On the left, dots represent farms, with
red indicating that the farm was reported infected at some point in time. On the right, the local authorities
are blue circles with a radius proportional to the number of farms. Red inner circles are proportional to
the number of farms within the local authority that were reported infected during the outbreak. Black
contours represent the geometries of the local authorities.

Figure 5: On the left and in the center are the heat maps of the inferred susceptibility and infectivity.
On the right is the inferred spatial kernel effect as a function of the distance in km.

reasoning of Section 5.3, we can plot over time the predicted state via the CAL filter, see Figure
6. We consider t = 20, 25 to show the spatial spread and culling/quarantine process in the short
term, t = 45 to show the spread when we are close to the peak of the epidemic, and t = 100 to
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Figure 6: The CAL prediction over time of susceptible farms (blue), infected farms (red), and removed
farms (black), over t = 20, 25, 45, 100.

show when we are close to the end. We observe that the epidemic rapidly spread in the north of
England, Cumbria in particular, and Cornwall, to then affect at a lower scale Wales. Even though
no information about culling/quarantine was fed to the model, the CAL is able to spatially detect
them and match the locations of confirmed and suspected premises towards the end of the outbreak
(October 2001) reported graphically on the UK government website (data.gov.uk, 2001).

6 Discussion, limitations and future work

We have proposed a computationally and mathematically simple algorithm to enable approximate
likelihood-based inference for a broad class of individual-based models of epidemics, supported by
both theoretical foundations and practical implementations.

One limitation of the CAL is that individuals are updated independently, without accounting
for correlations between them. This becomes problematic when the state of one individual provides
information about others, e.g. household models (Rimella et al., 2023). A smoothing algorithm
could help mitigate this issue, or alternatively, a CAL that propagates higher-order moments could
be designed—though at the cost of increased computational complexity.

Another key consideration is the implicit geometric distribution assumed for compartmental
waiting periods, e.g. infectious periods. Negative binomial waiting times can be approximated by
introducing additional compartments, though this approach is not always satisfactory. A promis-
ing avenue for future research would be to extend our model to higher-order Markovian or semi-
Markovian dynamics (Jewell et al., 2009; Touloupou et al., 2020).

In this study, we adopt an individual-level observation model similar to those in Rimella et al.
(2023); Deardon et al. (2010). Future extensions could explore heterogeneous IBMs with aggregated
count-level observations, as in Ju et al. (2021); Chatha et al. (2024). In this context, auxiliary
variable models might be employed to introduce over-dispersion in the aggregated count process,
following an approach akin to Whitehouse et al. (2023).
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Throughout our examples, we assume W to be static over time, though this assumption could
be relaxed to incorporate dynamic covariates, and even integrate a time-evolving contact network
process (Bu et al., 2022) within the dynamics. Additionally, there are interesting avenues for
extending our methodology to continuous observation spaces, with applications in areas such as
target tracking (Whiteley et al., 2010) and epidemic modeling using continuous serological data
(Hay et al., 2024).
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M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasude-
van, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from
tensorflow.org.

Andrews, D. W. (1992). Generic uniform convergence. Econometric theory 8 (2), 241–257.

Aycock, J. (2003). A brief history of just-in-time. ACM Computing Surveys (CSUR) 35 (2), 97–113.

Bu, F., A. E. Aiello, A. Volfovsky, and J. Xu (2024). Stochastic EM algorithm for partially observed
stochastic epidemics with individual heterogeneity. Biostatistics , kxae018.

22



Bu, F., A. E. Aiello, J. Xu, and A. Volfovsky (2022). Likelihood-based inference for partially ob-
served epidemics on dynamic networks. Journal of the American Statistical Association 117 (537),
510–526.

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker,
J. Guo, P. Li, and A. Riddell (2017). Stan: A probabilistic programming language. Journal of
Statistical Software 76.

Chatha, P., F. Bu, J. Regier, E. Snitkin, and J. Zelner (2024). Neural posterior estimation for
stochastic epidemic modeling. arXiv preprint arXiv:2412.12967 .

Chis Ster, I., B. K. Singh, and N. M. Ferguson (2009). Epidemiological inference for partially
observed epidemics: The example of the 2001 foot and mouth epidemic in great britain. Epi-
demics 1 (1), 21–34.

Chopin, N. and O. Papaspiliopoulos (2020). Introduction to Sequential Monte Carlo. Springer
International Publishing.

Chowell, G., N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore, and J. M. Hyman (2004). The
basic reproductive number of Ebola and the effects of public health measures: the cases of Congo
and Uganda. Journal of Theoretical Biology 229 (1), 119–126.

Cocker, D., M. Sammarro, K. Chidziwisano, N. Elviss, S. Jacob, H. Kajumbula, L. Mugisha, D. Mu-
soke, P. Musicha, A. Roberts, B. Rowlingson, A. Singer, R. Byrne, T. Edwards, R. Lester, C. Wil-
son, B. Hollihead, N. Thomson, C. Jewell, T. Morse, and N. Feasey (2023). Drivers of Resistance
in Uganda and Malawi (DRUM): a protocol for the evaluation of One-Health drivers of Extended
Spectrum Beta Lactamase (ESBL) resistance in Low-Middle Income Countries (LMICs) [version
2; peer review: 1 approved, 1 approved with reservations]. Wellcome Open Res 7, 55.

data.gov.uk (2001). Foot and mouth disease outbreak on the 14th October 2001. http://data.

defra.gov.uk/Agriculture/APHA0912-FMD_Overview_Map_20011014.jpg.

data.gov.uk (2023). Local authority districts (December 2023) boundaries UK
BFE. https://www.data.gov.uk/dataset/288458f7-7789-47d0-80d4-ffdf746c6b75/

local-authority-districts-december-2023-boundaries-uk-bfe.

De Boer, P.-T., D. P. Kroese, S. Mannor, and R. Y. Rubinstein (2005). A tutorial on the cross-
entropy method. Annals of operations research 134, 19–67.

Deardon, R., S. P. Brooks, B. T. Grenfell, M. J. Keeling, M. J. Tildesley, N. J. Savill, D. J. Shaw,
and M. E. Woolhouse (2010). Inference for individual-level models of infectious diseases in large
populations. Statistica Sinica 20 (1), 239.

Estrada, E., M. Fox, D. J. Higham, and G.-L. Oppo (2010). Network science: complexity in nature
and technology. Springer Science & Business Media.

23

http://data.defra.gov.uk/Agriculture/APHA0912-FMD_Overview_Map_20011014.jpg
http://data.defra.gov.uk/Agriculture/APHA0912-FMD_Overview_Map_20011014.jpg
https://www.data.gov.uk/dataset/288458f7-7789-47d0-80d4-ffdf746c6b75/local-authority-districts-december-2023-boundaries-uk-bfe
https://www.data.gov.uk/dataset/288458f7-7789-47d0-80d4-ffdf746c6b75/local-authority-districts-december-2023-boundaries-uk-bfe


Hay, J. A., I. Routledge, and S. Takahashi (2024). Serodynamics: a primer and synthetic review of
methods for epidemiological inference using serological data. Epidemics , 100806.
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A Notation and assumptions

A.1 General notation

Given an integer M ∈ N, we use x0:M := x0, . . . , xM for indexing sequences, [M ] := {1, . . . ,M} for
the set of the firstM positive integers, and x :=

(
x(1), . . . ,x(M)

)
for anM -dimensional vector. Given
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two M -dimensional vectors x1 and x2 we denote with x1 ⊙ x2 the element-wise product and with
x1⊘x2 the element-wise division. We write 1M for theM -dimensional vector of all ones, ∆M for the

M -dimensional probability simplex, i.e. ∆M :=
{
x ∈ [0, 1]M :

∑M
i=1 x

(i) = 1
}
, andOM for the set of

one-hot encoding vectors with dimensionM , i.e. the setOM :=
{
x ∈ {0, 1}M : ∃j ∈ [M ] : x(j) = 1 and x(i) = 0 if i ̸= j

}
.

Note that OM ⊂ ∆M . Given π ∈ ∆M we denote with Cat(·|π) the categorical distribution over
OM which assigns probability π(i) to the vector x ∈ OM with x(i) = 1 and x(j) = 0 for j ̸= i.

We shall work with the following norms. For an M -dimensional vector π and an M ×M -matrix
K we define

∥π∥∞ := max
i∈[M ]

∣∣π(i)
∣∣ , ∥K∥∞ := max

i∈[M ]

M∑
j=1

∣∣K(i,j)
∣∣ .

For a vector-valued function f : S → RM , we write

∥f∥∞ := sup
s∈S

max
i∈[M ]

∣∣f(s)(i)∣∣ ,
For an R-valued random variable x the L4 norm is written:

~x~4 :=
(
E
[
|x|4
]) 1

4 .

We need a notation for the support of probability vectors and matrices. For an M -dimensional
vector π we define supp(π) := {i ∈ [M ] : π(i) ̸= 0}. Similarly for a M ×M matrix Π we define
supp(Π) := {(i, j) ∈ [M ]2 : Π(i,j) ̸= 0}.

A.2 Model and CAL notation

We consider the individual-based model and the CAL algorithm described in the main paper. To
formulate and prove our theoretical results, we need to make explicit the dependence of various
quantities on the parameter vector θ ∈ Θ, covariates wn, and/or the population size N .

We write WN = (w1, ...,wN) for the first N population covariate vectors, xNn,t for the state at
time t of the n-th individual, XN

t = (xN1,t, . . . ,x
N
N,t) for the state of the population at time t, yNn,t

and YN
t for the observations at an individual and population level.

We use for the initial distribution, transition matrix, and emission matrix the notation: p0(wn, θ),
K·(wn, θ), andG(wn, θ), with η(wn,W,X) becoming ηN(wn, θ,W

N ,XN), and ηn,t becoming ηNt (wn, θ).
For the quantities computed in the CAL algorithm, we highlight the functional dependence on the
covariates and the considered parameter value, with πn,t|t−1,µn,t,πn,t, η̃n,t becoming πN

n,t|t−1(wn, θ),µ
N
n,t(wn, θ),

πN
n,t(wn, θ), η̃

N
t (wn, θ). Note that for t ≥ 1 the quantities πN

n,t|t−1(wn, θ),µ
N
n,t(wn, θ) also de-

pend on the population covariates WN and the observations YN
1:t−1, and similarly the quantities

πN
n,t(wn, θ), η̃

N
t (wn, θ) depend on WN and YN

1:t, but these dependencies are not shown in the nota-
tion.

For completeness we write the CAL recursion as in Algorithm 1 with the dependence on wn and
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θ explicit in the notation, for any n ∈ [N ]:

πN
n,0(wn, θ) := p0(wn, θ),

ΠN
t−1 :=

(
πN
n,t−1(w1, θ), . . . ,π

N
n,t−1(wN , θ)

)
,

η̃Nt−1(wn, θ) := ηN(wn, θ,W
N ,ΠN

t−1),

πN
n,t|t−1(wn, θ) :=

[
πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)

]⊤
,

µN
n,t(wn, θ) :=

[
πN
n,t|t−1(wn, θ)

⊤G(wn, θ)
]⊤
,

πN
n,t(wn, θ) := πN

n,t|t−1(wn, θ)⊙
{[
G(wn, θ)⊘

(
1MµN

n,t(wn, θ)
⊤)]yNn,t} .

(6)

A.3 Assumptions

The compactness and continuity in the following assumption are standard conditions in the consis-
tency theory of maximum likelihood estimators.

Assumption 6. The parameter space Θ and the covariate space W are compact subsets of Euclidean
spaces. Moreover, the initial distribution p0(w, θ), the transition matrix Kη(w, θ), and the emission
matrix G(w, θ) are all continuous functions in their arguments w, θ.

For the purposes of our theory, we shall treat the individual-specific covariate vectors as random,
independent, and identically distributed across the population. This can be interpreted as a random
design assumption, of a sort which is commonly adopted in the asymptotic studies of regression
and classification methods.

Assumption 7. The covariates w1,w2, . . . are independent and identically distributed according
to a distribution Γ on W.

The following assumption will be used to establish that the logarithm of the CAL is well-defined
across all possible values of parameters, covariates, and almost all realizations of the data.

Assumption 8. The following hold:

• for any w ∈ W and θ, θ′ ∈ Θ we have that supp(p0(w, θ)) = supp(p0(w, θ
′));

• for any w ∈ W, η, η′ ∈ [0, C] and θ, θ′ ∈ Θ we have that supp(Kη(w, θ)) = supp(Kη′(w, θ
′));

• for any w ∈ W and θ, θ′ ∈ Θ we have that supp(G(w, θ)) = supp(G(w, θ′)).

The following assumption constrains the form of the function η which determines the mechanism
of interaction amongst the population.

Assumption 9. For any θ ∈ Θ, w ∈ W, N ∈ N, and for any WN = (w1, . . . , wN),Π
N =

(π1, . . . , πN) with wn ∈ W, πn ∈ ∆M for all n ∈ [N ], we have:

ηN(w, θ,WN ,ΠN) =
1

N

∑
n∈[N ]

d(w,wn, θ)
⊤πn,
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where d : W ×W × Θ → [0, C]M is a bounded function, i.e. ∥d∥∞ ≤ C < ∞, from which we also
obtain ηN(w, θ,WN ,ΠN) ∈ [0, C] for any N,w, π,WN ,ΠN .

Assumption 10. For any θ ∈ Θ and w ∈ W, the matrix Kη(w, θ) is Lipschitz continuous in η
with Lipschitz constant L, that is for any η, η′ ∈ [0, C] we have:

∥Kη(w, θ)−Kη′(w, θ)∥∞ ≤ L |η − η′| .

A.4 The data-generating process

All the random variables appearing in our theory are assumed to be defined on a common probability
space (Ω,F ,P). Thus in accordance with Assumption 7, under P, w1,w2, . . . are i.i.d.

Let θ⋆ be an arbitrarily chosen but then a fixed member of Θ, which will be referred to as
the data-generating parameter (DGP). For each N ≥ 1, the DGP determines the distributions of
(XN

t )t≥0 and (YN
t )t≥1 under P conditional on WN , in that for each n ∈ [N ],

xNn,0|wn ∼ Cat ( · | p0(wn, θ
⋆)) ,

xNn,t|XN
t−1,W

N ∼ Cat

(
·
∣∣∣∣[(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤)

,

yNn,t|xNn,t,wn ∼ Cat
(
·
∣∣∣[(xNn,t)⊤G(wn, θ

⋆)
]⊤)

.

B Closed-forms under categorical approximations

Proposition 2 and Proposition 3 below show how the formulae appearing in the CAL algorithm
in Section 3.1 of the main paper are derived and can be interpreted as prediction and correction
operations associated with the approximate model specified in Section 3.2 of the main paper.

Proposition 2. If X̃N
t−1|WN ∼

⊗
n∈[N ] Cat(·|πN

n,t−1(wn, θ)) and:

x̃Nn,t|X̃N
t−1,W

N ∼ Cat

(
·|
[
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)

]⊤)
for n ∈ [N ],

then X̃N
t |WN ∼

⊗
n∈[N ] Cat(·|πN

n,t|t−1(wn, θ)) with:

πN
n,t|t−1(wn, θ) =

(
πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)

)⊤
for n ∈ [N ].

Proof. We just want to compute the marginal at time t after applying the approximate transition
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kernel:

P(X̃N
t = X̃N

t |WN)

=
∑

XN=(x1,...,xN )

P(X̃N
t−1 = XN |WN)P(X̃N

t = X̃N
t |WN , X̃N

t−1 = XN)

=
∑

XN=(x1,...,xN )

∏
n∈[N ]

[(
x⊤nπ

N
n,t−1(wn, θ)

) (
x⊤nKη̃N

t−1(wn,θ)(wn, θ)x̃n,t

)]
=
∏
n∈[N ]

∑
xn

[(
x⊤nπ

N
n,t−1(wn, θ)

) (
x⊤nKη̃N

t−1(wn,θ)(wn, θ)x̃
N
n,t

)]

=
∏
n∈[N ]

M∑
i=1

[
πN
n,t−1(wn, θ)

(i)Kη̃N
t−1(wn,θ)(wn, θ)

(i,·)x̃Nn,t

]
=
∏
n∈[N ]

[
πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)

]⊤
x̃Nn,t.

The next proposition considers the correction step, where we perform a Bayes update with a
factorized categorical distribution prior and a likelihood that is given by the emission distribution of
the individual-based model. As the posterior distribution is in the family of the prior distribution,
we say that the factorized categorical distribution is a conjugate prior for the individual-based
model observation model.

Proposition 3. If X̃N
t |WN ∼

⊗
n∈[N ] Cat(·|πN

n,t|t−1(wn, θ)) and:

ỹNn,t|x̃Nn,t,wn ∼ Cat
(
·|
[
(x̃Nn,t)

⊤G(wn, θ)
]⊤)

for n ∈ [N ],

then ỸN
t |WN ∼

⊗
n∈[N ] Cat(·|µN

n,t(wn, θ)) with:

µN
n,t(wn, θ) =

[
πN
n,t|t−1(wn, θ)

⊤G(wn, θ)
]⊤

for n ∈ [N ],

and X̃N
t |ỸN

t ,W
N ∼

⊗
n∈[N ]Cat(·|πN

n,t(wn, θ)) with:

πN
n,t(wn, θ) = πN

n,t|t−1(wn, θ)⊙
{[
G(wn, θ)⊘

(
1MµN

n,t(wn, θ)
⊤)] ỹNn,t} for n ∈ [N ].

29



Proof. We start by computing the marginal likelihood:

P(ỸN
t = Ỹ N

t |WN) =
∑

XN=(x1,...,xN )

P(ỸN
t = Ỹ N

t |WN , X̃N
t = XN)P(X̃N

t = XN |WN)

=
∑

XN=(x1,...,xN )

∏
n∈[N ]

(
x⊤nG(wn, θ)ỹ

N
n,t

) (
x⊤nπ

N
n,t|t−1(wn, θ)

)
=
∏
n∈[N ]

∑
xn

(
x⊤nG(wn, θ)ỹ

N
n,t

) (
x⊤nπ

N
n,t|t−1(wn, θ)

)
=
∏
n∈[N ]

M∑
i=1

(
G(wn, θ)

(i,·)ỹNn,t
)
πN
n,t|t−1(wn, θ)

(i)

=
∏
n∈[N ]

[
πN
n,t|t−1(wn, θ)

⊤G(wn, θ)
]
ỹNn,t,

showing that the observations are marginally distributed as categorical distributions with the desired
parameters. We can now compute the posterior distribution using Bayes theorem:

P(X̃N
t = X̃N

t |WN , ỸN
t = Ỹ N

t ) =
P(ỸN

t = Ỹ N
t |WN , X̃N

t = X̃N
t )P(X̃N

t = X̃N
t |WN)

P(ỸN
t = Ỹ N

t |WN)

=
∏
n∈[N ]

(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

) (
(x̃Nn,t)

⊤πN
n,t|t−1(wn, θ)

)
µN
n,t(wn, θ)⊤ỹNn,t

=
∏
n∈[N ]

(x̃Nn,t)
⊤
(
G(wn, θ)ỹ

N
n,t ⊙ πN

n,t|t−1(wn, θ)
)

µN
n,t(wn, θ)⊤ỹNn,t

=
∏
n∈[N ]

(x̃Nn,t)
⊤ [(G(wn, θ)ỹ

N
n,t ⊙ πN

n,t|t−1(wn, θ)
)
⊘
(
µN
n,t(wn, θ)

⊤ỹNn,t
)]

=
∏
n∈[N ]

M∑
i=1

M∑
j=1

(x̃Nn,t)
(i)
G(wn, θ)

(i,j)(ỹNn,t)
(j)πN

n,t|t−1(wn, θ)
(i)∑

k∈[M ] µ
N
n,t(wn, θ)(k)(ỹNn,t)

(k)

=
∏
n∈[N ]

M∑
i=1

M∑
j=1

(x̃Nn,t)
(i)πN

n,t|t−1(wn, θ)
(i) G(wn, θ)

(i,j)

µN
n,t(wn, θ)(j)

(ỹNn,t)
(j)

=
∏
n∈[N ]

{
πN
n,t|t−1(wn, θ)⊙

{[
G(wn, θ)⊘

(
1MµN

n,t(wn, θ)
⊤)] ỹNn,t}}⊤ x̃Nn,t.

As a consequence of Proposition 2 and 3, we can see the CAL as an exact marginal likelihood
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for the approximate model:

x̃Nn,0|wn ∼ Cat (·|p0(wn, θ)) ,

x̃Nn,t|X̃N
t−1, Ỹ

N
1:t−1,W

N ∼ Cat

(
·|
[
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)

]⊤)
,

ỹNn,t|x̃Nn,t,wn ∼ Cat
(
·|
[
(x̃Nn,t)

⊤G(wn, θ)
]⊤)

,

and we can compute both its joint likelihood and marginal likelihood, see the next proposition.

Proposition 4. Over a time horizon T , the marginal likelihood of ỸN
1:T is given by:

p(ỸN
1:T |WN , θ) :=

T∏
t=1

∏
n∈[N ]

Cat
(
ỹNn,t|µN

n,t(wn, θ)
)
,

which is the marginal of:

p(X̃N
0:T , Ỹ

N
1:T |WN , θ) :=

∏
n∈[N ]

(x̃Nn,t)
⊤p0(wn, θ)

T∏
t=1

[
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)

]

·
T∏
t=1

[
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

]
,

i.e.
∑

X̃N
0:T
p(X̃N

0:T , Ỹ
N
1:T |WN , θ) = p(ỸN

1:T |WN , θ).

Proof. For ease of presentation throughout the proof we omit conditioning onWN from the notation.
We prove the statement of the proposition by induction on T and start by showing that p(ỸN

1 |θ)
satisfies the statement:

p(ỸN
1 |θ) =

∏
n∈[N ]

µN
n,1(wn, θ)

⊤ỹNn,1 =
∏
n∈[N ]

πN
n,0(wn, θ)

⊤Kη̃N
0 (wn,θ)(wn, θ)G(wn, θ)ỹ

N
n,1

=
∏
n∈[N ]

∑
i,j,k

πN
n,0(wn, θ)

(i)Kη̃N
0 (wn,θ)(wn, θ)

(i,j)G(wn, θ)
(j,k)(ỹNn,1)

(k)

=
∏
n∈[N ]

∑
x̃N
n,0,x̃

N
n,1

(
(x̃Nn,0)

⊤πN
n,0(wn, θ)

) (
(x̃Nn,0)

⊤Kη̃N
0 (wn,θ)(wn, θ)x̃

N
n,1

)
·
(
(x̃Nn,1)

⊤G(wn, θ)ỹ
N
n,1

)
=

∑
X̃N

0 ,X̃
N
1

∏
n∈[N ]

(
(x̃Nn,0)

⊤πN
n,0(wn, θ)

) (
(x̃Nn,0)

⊤Kη̃N
0 (wn,θ)(wn, θ)x̃

N
n,1

)
·
(
(x̃Nn,1)

⊤G(wn, θ)ỹ
N
n,1

)
=

∑
X̃N

0 ,X̃
N
1

p(X̃N
0:1, Ỹ

N
1 |θ)
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for X̃N
t = (x̃N1,t, . . . , x̃

N
N,t) and t = 0, 1, which complete the proof for the first time step. From the

above we also get:

πN
n,1(wn, θ) =

∑
x̃N
n,0

(
(x̃Nn,0)

⊤πN
n,0(wn, θ)

)
⊙
(
(x̃Nn,0)

⊤Kη̃N
0 (wn,θ)(wn, θ)

)⊤
⊘

 ∑
x̃N
n,0,x̃

N
n,1

(
(x̃Nn,0)

⊤πN
n,0(wn, θ)

)
⊙
(
(x̃Nn,0)

⊤Kη̃N
0 (wn,θ)(wn, θ)

)⊤
⊙
(
G(wn, θ)ỹ

N
n,1

)
.

Now assume that the statement is valid for T − 1:

p(ỸN
1:T−1|θ) =

∑
X̃N

0:T−1

∏
n∈[N ]

[
(x̃Nn,0)

⊤πN
n,0(wn, θ)

T−1∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

)
·
(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)]
=
∏
n∈[N ]

∑
x̃N
n,0:T−1

(x̃Nn,0)
⊤πN

n,0(wn, θ)
T−1∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

)
·
(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)
,

from which we also get:

πN
n,t−1(wn, θ) =

 ∑
x̃N
n,0:T−2

[
(x̃Nn,0)

⊤πN
n,0(wn, θ)

T−2∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

)
·
(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)] (
(x̃Nn,T−2)

⊤Kη̃N
T−2(wn,θ)(wn, θ)

)⊤}

⊘

 ∑
x̃N
n,0:T−1

(x̃Nn,0)
⊤πN

n,0(wn, θ)
T−1∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

)
·
(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)]
⊙G(wn, θ)ỹ

N
n,T−1.

Consider now time T :

p(ỸN
1:T |θ) = p(ỸN

1:T−1|θ)
∏
n∈[N ]

µN
n,t(wn, θ)

⊤ỹNn,T

= p(ỸN
1:T−1|θ)

∏
n∈[N ]

πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)G(wn, θ)ỹ

N
n,T

= p(ỸN
1:T−1|θ)

∏
n∈[N ]

∑
x̃N
n,T−1,x̃

N
n,T

(
(x̃Nn,T−1)

⊤πN
n,t−1(wn, θ)

)
·
(
(x̃Nn,T−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,T

) (
(x̃Nn,T )

⊤G(wn, θ)ỹ
N
n,T

)
,
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from which we remark that:

(x̃Nn,T−1)
⊤πN

n,t−1(wn, θ)

=

 ∑
x̃N
n,0:T−2

[
(x̃Nn,0)

⊤πN
n,0(wn, θ)

T−2∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

)
·
(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)] (
(x̃Nn,T−2)

⊤Kη̃N
T−2(wn,θ)(wn, θ)x̃

N
n,T−1

)}
/

 ∑
x̃N
n,0:T−1

(x̃Nn,0)
⊤πN

n,0(wn, θ)
T−1∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

)
·
(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)]
· (x̃Nn,T−1)

⊤G(wn, θ)ỹ
N
n,T−1.

As from our inductive hypothesis we have:

p(ỸN
1:T−1|θ) =

∏
n∈[N ]

∑
x̃N
n,0:T−1

(x̃Nn,0)
⊤πN

n,0(wn, θ)
T−1∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

)
·
(
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)
,
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which is the denominator in (x̃Nn,T−1)
⊤πN

n,t−1(wn, θ), we can conclude:

p(ỸN
1:t|θ) = p(ỸN

1:T−1|θ)

·
∏
n∈[N ]

∑
x̃N
n,T−1,x̃

N
n,T

(
(x̃Nn,T−1)

⊤πN
n,t−1(wn, θ)

) (
(x̃Nn,T−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,T

)
·
(
(x̃Nn,T )

⊤G(wn, θ)ỹ
N
n,T

)
=
∏
n∈[N ]

∑
x̃N
n,T−1,x̃

N
n,T

∑
x̃N
n,0:T−2

(x̃Nn,0)
⊤πN

n,0(wn, θ)

·
T−2∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

) (
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)
·
(
(x̃Nn,T−2)

⊤Kη̃N
T−2(wn,θ)(wn, θ)x̃

N
n,T−1

) (
(x̃Nn,T−1)

⊤G(wn, θ)ỹ
N
n,T−1

)
·
(
(x̃Nn,T−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,T

) (
(x̃Nn,T )

⊤G(wn, θ)ỹ
N
n,T

)
=
∏
n∈[N ]

∑
x̃N
n,0:T

(x̃Nn,0)
⊤πN

n,0(wn, θ)

·
T∏
t=1

(
(x̃Nn,t−1)

⊤Kη̃N
t−1(wn,θ)(wn, θ)x̃

N
n,t

) (
(x̃Nn,t)

⊤G(wn, θ)ỹ
N
n,t

)
=
∑
X̃N

0:T

p(X̃N
0:T , Ỹ

N
1:T |θ),

which concludes the proof.

C Consistency of the maximum CAL estimator

With the definition:
ℓNt (θ) :=

∑
n∈[N ]

log
[(
yNn,t
)⊤

µN
n,t(wn, θ)

]
, (7)

our ultimate goal is to prove Theorem 33, which establishes consistency of the maximum CAL
estimator:

θ̂N := argmax
θ∈Θ

T∑
t=1

1

N
ℓNt (θ),

in the sense that θ̂N converges to Θ⋆ as N → ∞, P-almost surely, where Θ⋆ ⊂ Θ is a set of parameter
values which are, in a sense to be made precise, equivalent to the DGP θ⋆.

The main steps are:
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1. prove almost sure pointwise in θ convergence of
∑T

t=1
1
N
ℓNt (θ)− 1

N
ℓNt (θ

⋆) to a contrast function
C(θ, θ⋆), this is the subject of Theorem 29;

2. Use stochastic equi-continuity Andrews (1992) to prove that the almost sure convergence∑T
t=1

1
N
ℓNt (θ)− 1

N
ℓNt (θ

⋆) → C(θ, θ⋆) is uniform in θ, this is the subject of Lemma 32;

3. prove Theorem 33, and so the convergence of the maximum CAL estimator to a set of maxi-
mizers Θ⋆;

4. Characterize the set of maximizers of the contrast function Θ⋆ and prove that Θ⋆ contains θ⋆;
this is the subject of Theorem 29 and Lemma 35.

Step 1. is by far the most complicated of the three. It involves proving L4 bounds for averages
across the population in the data-generating process (Section C.2), averages of various quantities
computed in the CAL algorithm (Section C.3), and comparison to averages across what we call the
saturated processes and saturated CAL algorithm (Section C.4), which are processes we construct
for purposes of our proofs in which members of the population are statistically decoupled. All of
these ingredients are then combined to establish convergence to the contrast function (Theorem
29).

C.1 Preliminaries

C.1.1 L4 bound for conditionally independent random variables

We state and prove a result from Whitehouse et al. (2023), which is useful to find L4 bounds of
averages of random variables that are conditionally independent, bounded, and mean zero. This is
going to be one of the main building blocks in our proof strategy.

Lemma 5. Consider a collection of random variable δn with n ∈ [N ]. Assume that given a filtration
F the random variables δ1, . . . , δN are conditionally independent, bounded by a constant B < ∞,
i.e. |δn| ≤ B almost surely, and satisfy E[δn|F ] = 0, then:











1

N

∑
n∈[N ]

δn











4

≤ B
4
√
6N− 1

2 .

Proof. From the Multinomial theorem we can see that:∑
n∈[N ]

δn

4

=
∑

k1,...,kN∈N:k1+···+kN=4

(
4

k1, . . . , kN

) ∏
n∈[N ]

(δn)
kn ,

hence if we compute expectations with respect to the filtration we have:

E

∑
n∈[N ]

δn

4 ∣∣∣F
 =

∑
k1,...,kN∈N:k1+···+kN=4

(
4

k1, . . . , kN

) ∏
n∈[N ]

E
[
(δn)

kn
∣∣F] ,
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because of the conditionally independence assumption. Remark that we can combine a maximum
of four terms as we are considering a power of 4 and we are constrained to

∑
n∈[N ] kn = 4, meaning

that we have only these possible combinations:

• ki1 + ki2 + ki3 + ki4 = 4;

• ki1 + ki2 + ki3 = 4;

• ki1 + ki2 = 4;

• ki1 = 4;

with all the other k’s being zero. Given that E[δn|F ] = 0 then all the combinations which involve
a ki = 1 can be safely removed, we then end up with:

E

∑
n∈[N ]

δn

4 ∣∣∣F
 =

∑
n∈[N ]

E
[
(δn)

4
∣∣∣F]+ ( 4

2, 2

) ∑
n,n′∈[N ],n ̸=n′

E
[
(δn)

2|F
]
E
[
(δn′)2|F

]
≤
∑
n∈[N ]

(B)4 + 6
∑

n,n′∈[N ],n ̸=n′

(B)2(B)2

= NB4 + 6N(N − 1)B4

= B4(N + 6N2 − 6N) ≤ 6B4N2,

from which the statement of the Lemma follows by the tower rule, dividing byN4 and exponentiating
by 1

4
.

C.1.2 Checking the CAL is almost surely well-defined

If (yNn,t)
⊤µN

n,t(wn, θ) = 0, then (7) would evaluate to log(0). The aim of this section is to prove that
the CAL is almost surely well-defined, in the sense that (yNn,t)

⊤µN
n,t(wn, θ) = 0 happens with zero

probability no matter the values of N and θ.
The main result is Theorem 10, and its proof builds upon propositions 6 - 9 below, which exploit

the recursive nature of the CAL algorithm and the data-generating process.

Proposition 6. Under Assumption 8, for any n ∈ [N ] if there exists θ ∈ Θ, i ∈ [M ] such that
p0(wn, θ)

(i) = 0 then (xNn,0)
(i) = 0, P(·|WN = WN)-almost surely.

Proof. Under Assumption 8 we have that p0(wn, θ)
(i) = 0 implies p0(wn, θ

⋆)(i) = 0, hence P
(
(xNn,0)

(i) = 0|WN = WN
)
=

p0(wn, θ
⋆)(i) = 0, which concludes the proof.

Proposition 7. Under Assumption 8, for any t ≥ 1 and n ∈ [N ] if there exists θ ∈ Θ, i ∈ [M ]
such that πN

n,t−1(wn, θ)
(i) = 0 implies (xNn,t−1)

(i) = 0, P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1)-almost surely,

then, there exists θ ∈ Θ, i ∈ [M ] such that πN
n,t|t−1(wn, θ)

(i) = 0 implies (xNn,t)
(i) = 0, P(·|WN =

WN ,YN
1:t−1 = Y N

1:t−1)-almost surely.
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Proof. Note that for θ ∈ Θ, i ∈ [M ] the following are equivalent:

πN
n,t|t−1(wn, θ)

(i) = 0 ⇐⇒
∑
j

πN
n,t−1(wn, θ)

(j)Kη̃N
t−1(wn,θ)(wn, θ)

(j,i) = 0

⇐⇒ ∀j ∈ [M ] πN
n,t−1(wn, θ)

(j)Kη̃N
t−1(wn,θ)(wn, θ)

(j,i) = 0.

We then have that for any j either:

1. πN
n,t−1(wn, θ)

(j) = 0 which implies (xNn,t−1)
(j) = 0 almost surely in P(·|WN = WN ,YN

1:t−1 =
Y N
1:t−1) by assumption, or

2. Kη̃N
t−1(wn,θ)(wn, θ)

(j,i) = 0, which implies that there exists η = η̃Nt−1(wn, θ) such thatKη(wn, θ)
(j,i) =

0. Then by Assumption 8 we have that Kη(wn, θ)
(j,i) = 0 for all η ∈ [0, C] and θ ∈ Θ mean-

ing KηN
t−1(wn,θ⋆)(wn, θ

⋆)(j,i) = 0, P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1)-almost surely as it holds

for almost any realization of XN
t−1 ∈ ON

M ⊂ ∆N
M , where we remark that XN

t−1 appears in
ηNt−1(wn, θ

⋆) = ηN(wn, θ
⋆,WN ,XN

t−1).

Now given that:

P
(
(xNn,t)

(i) = 0|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
= 1− P

(
(xNn,t)

(i) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
,

and by defining X
N\n
t−1 as XN

t−1 with the n-th individual removed, we can notice that:

P
(
(xNn,t)

(i) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
=
∑
X

N\n
t−1

P
(
X
N\n
t−1 = X

N\n
t−1 |WN = WN ,YN

1:t−1 = Y N
1:t−1

)
∑
xNn,t−1

P
(
xNn,t−1 = xNn,t−1|WN = WN ,X

N\n
t−1 = X

N\n
t−1 ,Y

N
1:t−1 = Y N

1:t−1

)
· P
(
(xNn,t)

(i) = 1|WN = WN ,XN
t−1 = XN

t−1,Y
N
1:t−1 = Y N

1:t−1

)
=
∑
X

N\n
t−1

P
(
X
N\n
t−1 = X

N\n
t−1 |WN = WN ,YN

1:t−1 = Y N
1:t−1

)
∑
j

P
(
(xNn,t−1)

(j) = 1|WN = WN ,X
N\n
t−1 = X

N\n
t−1 ,Y

N
1:t−1 = Y N

1:t−1

)
KηN

t−1(wn,θ⋆)(wn, θ
⋆)(j,i)

= 0,

where the last step follows from the fact that for all j we either have (xNn,t−1)
(j) = 0 almost

surely in P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1), or Kη(wn, θ
⋆)(j,i) = 0 for any η ∈ [0, C] and so

KηN
t−1(wn,θ⋆)(wn, θ

⋆)(j,i) = 0 for any XN
t−1. As P

(
(xNn,t)

(i) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
= 0 we

can conclude P
(
(xNn,t)

(i) = 0|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
= 1, which concludes the proof.
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Proposition 8. Under Assumption 8, for any t ≥ 1 and n ∈ [N ] if there exists θ ∈ Θ, i ∈ [M ] such
that πN

n,t|t−1(wn, θ)
(i) = 0 implies (xNn,t)

(i) = 0 almost surely in P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1),
then:

• there exists θ ∈ Θ, i ∈ [M ] such that µN
n,t(wn, θ)

(i) = 0 implies (yNn,t)
(i) = 0 almost surely in

P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1);

• there exists θ ∈ Θ, i ∈ [M ] such that πN
n,t(wn, θ)

(i) = 0 implies (xNn,t)
(i) = 0 almost surely in

P(·|WN = WN ,YN
1:t = Y N

1:t).

Proof. Let us start with the results regarding the observations. Note that for θ ∈ Θ, i ∈ [M ] the
following are equivalent:

µN
n,t(wn, θ)

(i) = 0 ⇐⇒
∑
j

πN
n,t|t−1(wn, θ)

(j)G(wn, θ)
(j,i) = 0

⇐⇒ ∀j ∈ [M ] πN
n,t|t−1(wn, θ)

(j)G(wn, θ)
(j,i) = 0.

We then have that for all j either:

1. πN
n,t|t−1(wn, θ)

(j) = 0 which implies (xNn,t)
(j) = 0 almost surely in P(·|WN = WN ,YN

1:t−1 =

Y N
1:t−1) by assumption, or

2. G(wn, θ)
(j,i) = 0 which implies G(wn, θ

⋆)(j,i) = 0 because of Assumption 8.

Now given that:

P
(
(yNn,t)

(i) = 0|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
= 1− P

(
(yNn,t)

(i) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
,

and:

P
(
(yNn,t)

(i) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
=
∑
xNn,t

P
(
xNn,t = xNn,t|WN = WN ,YN

1:t−1 = Y N
1:t−1

)
· P
(
(yNn,t)

(i) = 1|WN = WN ,xNn,t = xNn,t,Y
N
1:t−1 = Y N

1:t−1

)
=
∑
j

P
(
(xNn,t)

(j) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
G(wn, θ

⋆)(j,i) = 0,

where the last step follows from the fact that for all j we either have (xNn,t−1)
(j) = 0 almost surely

in P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1) or G(wn, θ
⋆)(j,i) = 0. As

P
(
(yNn,t)

(i) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
= 0,

we can conclude
P
(
(yNn,t)

(i) = 0|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
= 1,
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which concludes the proof of the first part. As a consequence if there exists j ∈ [M ] such that
P((yNn,t)(j) = 1|WN = WN ,YN

1:t−1 = Y N
1:t−1) > 0 then µN

n,t(wn, θ)
(j) ̸= 0, meaning that

P

(∑
j

(yNn,t)
(j)µN

n,t(wn, θ)
(j) ̸= 0|WN = WN ,YN

1:t−1 = Y N
1:t−1

)
= 1. (8)

Consider now πN
n,t(wn, θ)

(i), and observe that:

πN
n,t(wn, θ)

(i) = 0 ⇐⇒ πN
n,t|t−1(wn, θ)

(i)

∑
j G(wn, θ)

(i,j)(yNn,t)
(j)∑

j(y
N
n,t)

(j)µN
n,t(wn, θ)

(j)
= 0

⇐⇒ πN
n,t|t−1(wn, θ)

(i)
∑
j

G(wn, θ)
(i,j)(yNn,t)

(j) = 0 and
∑
j

(yNn,t)
(j)µN

n,t(wn, θ)
(j) ̸= 0.

From the (8), we know that under P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1) we have that the denominator∑
j(y

N
n,t)

(j)µN
n,t(wn, θ)

(j) is almost surely different from 0 hence:

P

(
πN
n,t|t−1(wn, θ)

(i)
∑
j

G(wn, θ)
(i,j)(yNn,t)

(j) = 0

and
∑
j

(yNn,t)
(j)µN

n,t(wn, θ)
(j) ̸= 0|WN = WN ,YN

1:t−1 = Y N
1:t−1

)

= P

(∑
j

(yNn,t)
(j)µN

n,t(wn, θ)
(j) = 0|WN = WN ,YN

1:t−1 = Y N
1:t−1

)
,

as we are considering an intersection with an almost sure event.
We then just need to prove πN

n,t|t−1(wn, θ)
(i)
∑

j G(wn, θ)
(i,j)(yNn,t)

(j) = 0 almost surely. We then
have either:

• πN
n,t|t−1(wn, θ)

(i) = 0, implying (xNn,t)
(i) = 0 almost surely in P(·|WN = WN ,YN

1:t−1 = Y N
1:t−1)

because we consider this statement to be true, or

•
∑

j G(wn, θ)
(i,j)(yNn,t)

(j) = 0, which tells us that there exists k ∈ [M ] such that

P
(
(yNn,t)

(k) = 1|WN = WN ,YN
1:t−1 = Y N

1:t−1

)
> 0 andG(wn, θ)

(i,k) = 0, note that under P(·|WN =
WN ,YN

1:t = Y N
1:t) we know k as we are conditioning on yNn,t.

Now given that:

P((xNn,t)(i) = 0|WN = WN ,YN
1:t = Y N

1:t) = 1− P((xNn,t)(i) = 1|WN = WN ,YN
1:t = Y N

1:t),

we can notice that:

P((xNn,t)(i) = 1|WN = WN ,YN
1:t = Y N

1:t)

∝ P((xNn,t)(i) = 1, (yNn,t)
(k) = 1|WN = WN ,YN

1:t−1 = Y N
1:t−1)

= G(wn, θ)
(i,k)P((xNn,t)(i) = 1|WN = WN ,YN

1:t−1 = Y N
1:t−1) = 0,
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because we have either (xNn,t)
(i) = 0 almost surely in P(·|WN = WN ,YN

1:t−1 = Y N
1:t−1) orG(wn, θ)

(i,k) =
0, which concludes the proof.

We can now combine Proposition 6, Proposition7, and Proposition 8 in the following proposition.

Proposition 9. Under Assumption 8, for any t ≥ 1, n ∈ [N ], the following hold:

• if there exist θ ∈ Θ, i ∈ [M ] such that πN
n,t|t−1(wn, θ)

(i) = 0, then (xNn,t)
(i) = 0 almost surely in

P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1);

• if there exist θ ∈ Θ, i ∈ [M ] such that µN
n,t(wn, θ)

(i) = 0, then (yNn,t)
(i) = 0 almost surely in

P(·|WN = WN ,YN
1:t−1 = Y N

1:t−1);

• if there exist θ ∈ Θ, i ∈ [M ] such that πN
n,t(wn, θ)

(i) = 0, then (xNn,t)
(i) = 0 almost surely in

P(·|WN = WN ,YN
1:t = Y N

1:t).

Proof. Suppose that the third statement is true at time t − 1, which is valid at t − 1 = 0 because
of Proposition 6, which guarantees that if ∃θ ∈ Θ, i ∈ [M ] : πN

n,0(wn, θ)
(i) = 0 =⇒ (xNn,0)

(i) = 0
almost surely in P(·|WN = WN). We can in turn apply Proposition 7 to prove the first statement
and Proposition 8 to prove the second and the third for t. As the third statement is our inductive
hypothesis at the next time step t we can then close the induction and conclude that the three
statements are valid for an arbitrary t.

We finally prove the main result.

Theorem 10. Under assumptions 7,8, for any N ∈ N, t ≥ 1, n ∈ [N ] and θ ∈ Θ we have that∑
iµ

N
n,t(wn, θ)

(i)(yNn,t)
(i) ̸= 0 almost surely in P.

Proof. We can see that:

P

(
∃θ ∈ Θ, t ≥ 1, n ∈ [N ] :

∑
i

µN
n,t(wn, θ)

(i)(yNn,t)
(i) = 0|WN = WN

)
= P

(
∃θ ∈ Θ, t ≥ 1, n ∈ [N ] : ∀i ∈ [M ] µN

n,t(wn, θ)
(i)(yNn,t)

(i) = 0|WN = WN
)

= P
(
∃θ ∈ Θ, t ≥ 1, n ∈ [N ], k ∈ [M ] : µN

n,t(wn, θ)
(k) = 0 and (yNn,t)

(k) = 1|WN = WN
)
,

where the second equality uses the fact that yNn,t is a one-hot encoding vector, i.e. the kth component
is 1 while the others are 0. Moreover:

P

(
∃θ ∈ Θ, t ≥ 1, n ∈ [N ] :

∑
i

µN
n,t(wn, θ)

(i)(yNn,t)
(i) = 0

∣∣∣∣∣WN = WN

)
=
∑
Y N
1:t−1

P (∃θ ∈ Θ, t ≥ 1, n ∈ [N ], k ∈ [M ] :

µN
n,t(wn, θ)

(k) = 0 and (yNn,t)
(k) = 1|WN = WN ,YN

1:t−1 = Y N
1:t−1

)
· P
(
YN

1:t−1 = Y N
1:t−1|WN = WN

)
= 0,
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as from the second statement of Proposition 9 we know that event
{
µN
n,t(wn, θ)

(k) = 0
}
∩
{
(yNn,t)

(k) = 1
}

is probability zero conditionally on WN = WN ,YN
1:t−1 = Y N

1:t−1, indeed:

P (∃θ ∈ Θ, t ≥ 1, n ∈ [N ], k ∈ [M ] :

µN
n,t(wn, θ)

(k) = 0 and (yNn,t)
(k) = 1|WN = WN ,YN

1:t−1 = Y N
1:t−1

)
= 1− P (∀θ ∈ Θ, t ≥ 1, n ∈ [N ], k ∈ [M ] :

if µN
n,t(wn, θ)

(k) = 0 then (yNn,t)
(k) = 0|WN = WN ,YN

1:t−1 = Y N
1:t−1

)
= 0.

We can then conclude the proof of the first statement as:

P

(
∀θ ∈ Θ, t ≥ 1, n ∈ [N ]

∑
i

µN
n,t(wn, θ)

(i)(yNn,t)
(i) ̸= 0

∣∣∣∣∣WN = WN

)

= 1− P

(
∃θ ∈ Θ, t ≥ 1, n ∈ [N ] :

∑
i

µN
n,t(wn, θ)

(i)(yNn,t)
(i) = 0

∣∣∣∣∣WN = WN

)
= 1.

To conclude the proof we need:

P

(
∀θ ∈ Θ, t ≥ 1, n ∈ [N ]

∑
i

µN
n,t(wn, θ)

(i)(yNn,t)
(i) ̸= 0

)
= 1,

which can be proven by observing that:

P

(
∀θ ∈ Θ, t ≥ 1, n ∈ [N ]

∑
i

µN
n,t(wn, θ)

(i)(yNn,t)
(i) ̸= 0

)

=

∫
P

(
∀θ ∈ Θ, t ≥ 1, n ∈ [N ]

∑
i

µN
n,t(wn, θ)

(i)(yNn,t)
(i) ̸= 0

∣∣∣∣∣WN = WN

)
Γ(dw1) . . .Γ(dwN)

= 1,

where we applied Assumption 7 and where the last step follows from what we have just proven.

C.1.3 Checking the CAL is almost surely bounded

In this section, we want to prove that all the non-zero elements of µN
n,t(wn, θ) are almost surely

bounded below by a quantity mt > 0 that does not depend on N , this will be put to use in
establishing L4 bounds in Section C.3.

Proposition 11. Under assumptions 6,8,10, for t ≥ 1 there exists mt > 0 such that for any N ∈ N
and n ∈ [N ] we have:

P
(
µN
n,t(wn, θ)

(i) ≥ mt ∀i ∈ supp
(
µN
n,t(wn, θ)

))
= 1 ∀θ ∈ Θ.
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Proof. For a fixed N ∈ N, consider the following inductive hypothesis. There exists m̄t−1 > 0 such
that:

P
(
πN
n,t−1(wn, θ)

(i) ≥ m̄t−1 ∀i ∈ supp
(
πN
n,t−1(wn, θ)

))
= 1 ∀n ∈ [N ], θ ∈ Θ.

We start by proving that the inductive hypothesis is true when t − 1 = 0. From Assumption
6 we have that p0(w, θ) is continuous in w, θ and both W and Θ are compact, we then get from
Weierstrass theorem that there exists a minimum m0 such that for any realization of WN and for
any i ∈ supp

(
p0(wn, θ)

(i)
)
:

πN
n,0(wn, θ)

(i) = p0(wn, θ)
(i) ≥ min

w∈W,θ∈Θ
min

j∈supp(p0(w,θ)(j))
p0(w, θ)

(j) =: m0,

with m0 > 0 as we are considering a minimum over j ∈ supp
(
p0(w, θ)

(j)
)
which excludes all the

zeros. As m0 does not depend on WN we conclude that there exists m0 > 0 such that:

P
(
πN
n,0(wn, θ)

(i) ≥ m0 ∀i ∈ supp
(
πN
n,0(wn, θ)

))
= 1 ∀n ∈ [N ], θ ∈ Θ.

Let us now work on a general time step t. For i ∈ supp
(
πN
n,t|t−1(wn, θ)

)
,

πN
n,t|t−1(wn, θ)

(i) =
∑
j

πN
n,t−1(wn, θ)

(j)Kη̃N
t−1(wn,θ)(wn, θ)

(j,i)

=
∑

j∈supp(πN
n,t−1(wn,θ))

πN
n,t−1(wn, θ)

(j)Kη̃N
t−1(wn,θ)(wn, θ)

(j,i)

≥ m̄t−1

∑
j∈supp(πN

n,t−1(wn,θ))

Kη̃N
t−1(wn,θ)(wn, θ)

(j,i),

where the inequality holds P-almost surely by the inductive hypothesis. Several other inequalities
in the remainder of the proof hold P-almost surely, but to avoid repetition we don’t state this
explicitly.

As:

i ∈ supp
(
πN
n,t|t−1(wn, θ)

)
⇐⇒

∑
j∈supp(πN

n,t−1(wn,θ))

Kη̃N
t−1(wn,θ)(wn, θ)

(j,i) ̸= 0,

we can conclude that there exists at least one component of Kη̃N
t−1(wn,θ)(wn, θ)

(·,i) which is different
from zero, hence:∑
j∈supp(πN

n,t−1(wn,θ))

Kη̃N
t−1(wn,θ)(wn, θ)

(j,i) ≥ min
j∈supp

(
K

η̃N
t−1(wn,θ)

(wn,θ)(·,i)
)Kη̃N

t−1(wn,θ)(wn, θ)
(j,i) > 0. (9)

Because of Assumption 8 we have:

Kη̃N
t−1(wn,θ)(wn, θ)

(j,i) = 0 ⇐⇒ Kη(wn, θ)
(j,i) = 0 ∀η ∈ [0, C],

42



meaning that

min
j∈supp

(
K

η̃N
t−1(wn,θ)

(wn,θ)(·,i)
)Kη̃N

t−1(wn,θ)(wn, θ)
(j,i) ≥ min

η∈[0,C]
min

j∈supp(Kη(wn,θ)(·,i))
Kη(wn, θ)

(j,i).

We can then conclude:

πN
n,t|t−1(wn, θ)

(i) ≥ m̄t−1 min
θ∈Θ,w∈W,η∈[0,C]

min
j∈supp(Kη(w,θ)(·,i))

Kη(w, θ)
(j,i)

≥ m̄t−1 min
θ∈Θ,w∈W,η∈[0,C]

min
(i,j)∈supp(Kη(w,θ))

Kη(w, θ)
(j,i).

As Kη(w, θ) is continuous in η because of Assumption 10 and also in w, θ because of Assumption
6. Furthermore, the domain of η, [0, C], does not depend on N and is compact. Additionally, W,Θ
are compact by Assumption 6. We can then conclude by the Weirstrass theorem that there exist
ηmin ∈ [0, C], wmin ∈ W, (i, j) ∈ supp (Kη(w, θ)), and θmin ∈ Θ such that:

mK := Kηmin
(wmin, θmin)

(j,i) = min
θ∈Θ,w∈W,η∈[0,C]

min
(i,j)∈supp(Kη(w,θ))

Kη(w, θ)
(j,i) > 0,

where strict positivity follows from the observation made in Equation (9). Hence:

πN
n,t|t−1(wn, θ)

(i) ≥ m̄t−1mK > 0,

where the lower bounding constants do not depend on WN ,YN
1:t−1, θ or N . Therefore we can

conclude that there exist m̄t−1,mK > 0 such that:

P
(
πN
n,t|t−1(wn, θ)

(i) ≥ m̄t−1mK ∀i ∈ supp
(
πN
n,t|t−1(wn, θ)

))
= 1 ∀θ ∈ Θ.

Similarly, for i ∈ supp
(
µN
n,t(wn, θ)

)
,

µN
n,t(wn, θ)

(i) =
∑
j

πN
n,t|t−1(wn, θ)

(j)G(wn, θ)
(j,i)

≥ m̄t−1mK

∑
j∈supp

(
πN

n,t|t−1
(wn,θ)

)G(wn, θ)
(j,i),

where the inequality follows from what we have proven above. Moreover:

i ∈ supp
(
µN
n,t(wn, θ)

)
⇐⇒

∑
j∈supp

(
πN

n,t|t−1
(wn,θ)

)G(wn, θ)
(j,i) ̸= 0,

meaning that there exists at least one component of G(wn, θ)
(·,i) which is different from zero. Hence

following the same reasoning as above:

µN
n,t(wn, θ)

(i) ≥ m̄t−1mK min
w∈W,θ∈Θ

min
j∈supp(G(w,θ)(·,i))

G(w, θ)(j,i)

≥ m̄t−1mK min
w∈W,θ∈Θ

min
(i,j)∈supp(G(w,θ))

G(w, θ)(j,i),
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and as G(w, θ) is continuous in w, θ because of Assumption 6 and W,Θ are compact because of
Assumption 6 we can conclude by Weirstrass theorem that there exists a minimum mG such that:

µN
n,t(wn, θ)

(i) ≥ m̄t−1mKmG > 0,

where the strict inequality follows from considering a minimum on the support of matrix G.
We conclude that there exist m̄t−1,mK ,mG > 0 such that:

P
(
µN
n,t(wn, θ)

(i) ≥ m̄t−1mKmG ∀i ∈ supp
(
µN
n,t(wn, θ)

))
= 1 ∀θ ∈ Θ.

Consider i ∈ supp
(
πN
n,t(wn, θ)

)
then:

πN
n,t(wn, θ)

(i) = πN
n,t|t−1(wn, θ)

(i)

∑
j G(wn, θ)

(i,j)(yNn,t)
(j)∑

j(y
N
n,t)

(j)µN
n,t(wn, θ)(j)

≥ m̄t−1mK

∑
j

G(wn, θ)
(i,j)(yNn,t)

(j),

where the inequality follows from what we have proven above, from
∑

j(y
N
n,t)

(j)µN
n,t(wn, θ)

(j) ≤ 1

by definition and
∑

j(y
N
n,t)

(j)µN
n,t(wn, θ)

(j) ̸= 0 P-almost surely because of Theorem 10. We now
observe that:

i ∈ supp
(
πN
n,t(wn, θ)

)
⇐⇒

∑
j

G(wn, θ)
(i,j)(yNn,t)

(j) ̸= 0,

meaning that there is at least one element of the G(wn, θ)
(i,·) which is different from zero. Following

the same reasoning of µN
n,t(wn, θ)

(i) we can conclude:

πN
n,t(wn, θ)

(i) ≥ m̄t−1mK min
j∈supp(G(wn,θ)(i,·))

G(wn, θ)
(i,j)

≥ m̄t−1mK min
w∈W,θ∈Θ

min
(i,j)∈supp(G(w,θ))

G(w, θ)(i,j)

≥ m̄t−1mKmG > 0.

We can conclude that there exist constants m̄t−1,mK ,mG > 0 such that:

P
(
πN
n,t(wn, θ)

(i) ≥ m̄t−1mKmG ∀i ∈ supp
(
πN
n,t(wn, θ)

))
= 1, ∀θ ∈ Θ.

We can then set m̄t := m̄t−1mKmG and conclude that there exists m̄t > 0 such that:

P
(
πN
n,t(wn, θ)

(i) ≥ m̄t ∀i ∈ supp
(
πN
n,t(wn, θ)

))
= 1, ∀θ ∈ Θ,

which closes the induction, meaning that the above equality holds for an arbitrary t. As a conse-
quence, we also have that for any t ≥ 1 there exists mt > 0 such that:

P
(
µN
n,t(wn, θ)

(i) ≥ mt ∀i ∈ supp
(
µN
n,t(wn, θ)

))
= 1, ∀θ ∈ Θ,

with mt := m̄t−1mKmG, which concludes the proof.
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C.2 L4 bounds for averages of the data-generating process

In Section C.2 we establish L4 bounds for averages across the population of disease states and
observations.

Initial condition. We start by considering the population at t = 0.

Proposition 12. Under Assumption 7, there exists α0 ≥ 0 such that for any bounded function
f : W → [0, B]M , i.e. ∥f∥∞ ≤ B <∞,











1

N

∑
n∈[N ]

f(wn)
⊤xNn,0 −

∫
f(w)⊤p0 (w, θ

⋆) Γ(dw)











4

≤ 2B
4
√
6N− 1

2α0.

Moreover, there exists α̃0 ≥ 0 such that for any bounded function f : W → [0, B]M ,










1

N

∑
n∈[N ]

f(wn)
⊤xNn,0 − f(wn)

⊤p0 (wn, θ
⋆)











4

≤ 2B
4
√
6N− 1

2 α̃0.

Proof. For the first statement note that by Minkowski inequality:










1

N

∑
n∈[N ]

f(wn)
⊤xNn,0 −

∫
f(w)⊤p0 (w, θ

⋆) Γ(dw)











4

≤











1

N

∑
n∈[N ]

f(wn)
⊤xNn,0 − f(wn)

⊤p0 (wn, θ
⋆)











4

(10)

+











1

N

∑
n∈[N ]

f(wn)
⊤p0 (wn, θ

⋆)−
∫
f(w)⊤p0 (w, θ

⋆) Γ(dw)











4

. (11)

Starting from (10), which is also the second statement, we observe that:

E
[
f(wn)

⊤xNn,0|WN
]
=

M∑
i=1

E
[
f(wn)

(i)(xNn,0)
(i)|WN

]
=

M∑
i=1

f(wn)
(i)p0 (wn, θ

⋆)(i) = f(wn)
⊤p0 (wn, θ

⋆) ,

moreover: ∣∣f(wn)
⊤xNn,0 − f(wn)

⊤p0 (wn, θ
⋆)
∣∣

≤
M∑
i=1

[∣∣f(wn)
(i)(xNn,0)

(i)
∣∣+ ∣∣∣f(wn)

(i)p0 (wn, θ
⋆)(i)

∣∣∣]
≤ B

M∑
i=1

[
(xNn,0)

(i) + p0 (wn, θ
⋆)(i)

]
= 2B, P-almost surely,
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as xNn,0 is a one-hot encoding vector and p0 (wn, θ
⋆) is a probability distribution for any wn. As

f(wn)
⊤xNn,0 − f(wn)

⊤p0 (wn, θ
⋆) are also conditionally independent across n given the population

covariates WN because of the factorization of the initial distribution, we can apply Lemma 5 and
conclude:











1

N

∑
n∈[N ]

f(wn)
⊤xNn,0 − f(wn)

⊤p0 (wn, θ
⋆)











4

≤ 2B
4
√
6N− 1

2 ,

which also proves the second statement for α̃0 = 1.
Similarly for (11) we have:

E
[
f(wn)

⊤p0 (wn, θ
⋆)
]
=

∫
f(w)⊤p0 (w, θ

⋆) Γ(dw),

and also: ∣∣∣∣f(wn)
⊤p0 (wn, θ

⋆)−
∫
f(w)⊤p0 (w, θ

⋆) Γ(dw)

∣∣∣∣ ≤ 2B, P-almost surely.

As f(wn)
⊤p0 (wn, θ

⋆)−
∫
f(w)⊤p0 (w, θ

⋆) Γ(dw) are independent because functions of independent
random variables, indeed wn are i.i.d. samples from Γ, we can apply Lemma 5 and conclude:











1

N

∑
n∈[N ]

f(wn)
⊤p0 (wn, θ

⋆)−
∫
f(w)⊤p0 (w, θ

⋆) Γ(dw)











4

≤ 2B
4
√
6N− 1

2 .

By putting everything together we conclude the proof by setting α0 = 2, indeed:










1

N

∑
n∈[N ]

f(wn)
⊤xNn,0 −

∫
f(w)⊤p0 (w, θ

⋆) Γ(dw)











4

≤











1

N

∑
n∈[N ]

f(wn)
⊤xNn,0 − f(wn)

⊤p0 (wn, θ
⋆)











4

+











1

N

∑
n∈[N ]

f(wn)
⊤p0 (wn, θ

⋆)−
∫
f(w)⊤p0 (w, θ

⋆) Γ(dw)











4

≤ 2B
4
√
6N− 1

2 + 2B
4
√
6N− 1

2 = 2B
4
√
6N− 1

22.

Dynamics. We now turn to the behavior of 1
N

∑
n∈[N ] f(wn)

⊤xNn,t, for t ≥ 1. We need the following
definitions, for w ∈ W and t ≥ 1:

λ∞
0 (w, θ⋆) := p0 (w, θ

⋆)

η∞
t−1(w, θ

⋆) :=

∫
d(w, w̃, θ⋆)⊤λ∞

t−1(w̃, θ
⋆)Γ(dw̃)

λ∞
t (w, θ⋆) :=

[
λ∞
t−1(w, θ

⋆)⊤Kη∞
t−1(w,θ

⋆)(w, θ
⋆)
]⊤
.

(12)
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The quantity η∞
t−1 can be loosely interpreted as being ηN(·, ·,WN ,XN

t−1) but with WN and XN
t−1

integrated out in the N → ∞ limit.

Proposition 13. Under assumptions 7,9,10, for any t ≥ 1 there exists αt > 0 such that for any
bounded function f : W → [0, B]M











1

N

∑
n∈[N ]

f(wn)
⊤xNn,t −

∫
f(w)⊤λ∞

t (w, θ⋆)Γ(dw)











4

≤ 2B
4
√
6N− 1

2αt.

Moreover, under assumptions 9,10, for any t ≥ 1 there exists α̃t > 0 such that for any bounded
function f : W → [0, B]M ,











1

N

∑
n∈[N ]

f(wn)
⊤xNn,t − f(wn)

⊤λ∞
t (wn, θ

⋆)











4

≤ 2B
4
√
6N− 1

2 α̃t.

Proof. We prove the first statement by induction on t and start by assuming that there exists
αt−1 ∈ R+ such that for any bounded function f : W → [0, B]M we have:











1

N

∑
n∈[N ]

f(wn)
⊤xNn,t−1 −

∫
f(w)⊤λ∞

t−1(w, θ
⋆)Γ(dw)











4

≤ 2B
4
√
6N− 1

2αt−1,

which is true at the initial time step under α0 = 2 because of the first statement of Proposition 12.
We then look at time step t and decompose the problem into three sub-problems:

f(wn)
⊤xNn,t −

∫
f(w)⊤λ∞

t (w, θ⋆)Γ(dw)

= f(wn)
⊤xNn,t − f(wn)

⊤
[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤

+ f(wn)
⊤
[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤

− f(wn)
⊤
[
(xNn,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤

+ f(wn)
⊤
[
(xNn,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤

−
∫
f(w)⊤

[
λ∞
t−1(w, θ

⋆)⊤Kη∞
t−1(w,θ

⋆)(w, θ
⋆)
]⊤

Γ(dw).
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By the Minkowski inequality, we can conclude that











1

N

∑
n∈[N ]

f(wn)
⊤xNn,t −

∫
f(w)⊤λ∞

t (w, θ⋆)Γ(dw)











4

≤











1

N

∑
n∈[N ]

f(wn)
⊤xNn,t − f(wn)

⊤
[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤









4

(13)

+











1

N

∑
n∈[N ]

f(wn)
⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]⊤

xNn,t−1











4

(14)

+











1

N

∑
n∈[N ]

[
Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)f(wn)

]⊤
xNn,t−1

−
∫
f(w)⊤

[
λ∞
t−1(w, θ

⋆)⊤Kη∞
t−1(w,θ

⋆)(w, θ
⋆)
]⊤

Γ(dw)











4

. (15)

Consider (13), we can notice that:

E
[
f(wn)

⊤xNn,t|XN
t−1,W

N
]
=

M∑
j=1

E
[
f(wn)

(j)(xNn,t)
(j)|XN

t−1,W
N
]

=
M∑
j=1

[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
](j)

f(wn)
(j)

= f(wn)
⊤
[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤
.

Given that we are considering differences of scalar products of f(wn) with probability/one-hot
encoding vectors, we have:∣∣∣∣f(wn)

⊤xNn,t − f(wn)
⊤
[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤∣∣∣∣ ≤ 2B P− almost surely.

As xNn,t are conditionally independent across n given the population covariates and the state of the
population at the previous time step we can apply Lemma 5 and get:











1

N

∑
n∈[N ]

f(wn)
⊤xNn,t − f(wn)

⊤
[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤









4

≤ 2B
4
√
6N− 1

2 .
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We now consider (14) and note that:∣∣∣∣f(wn)
⊤
[
(xNn,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤

− f(wn)
⊤
[
(xNn,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]⊤∣∣∣∣

≤
M∑
i=1

M∑
j=1

∣∣∣∣(xNn,t−1)
(i)
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
](i,j)

f(wn)
(j)

∣∣∣∣
≤ B

∥∥∥KηN
t−1(wn,θ⋆)(wn, θ

⋆)−Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
∥∥∥
∞

≤ BL
∣∣ηNt−1(wn, θ

⋆)− η∞
t−1(wn, θ

⋆)
∣∣ ,

where the final steps follow from the boundedness of f , the definition of one-hot encoding vectors,
and the Lipschitz-continuity assumption on the transition matrix stated in Assumption 10. We now
use the structure of ηNn,t−1 given in Assumption 9:∣∣ηNt−1(wn, θ

⋆)− η∞
t−1(wn, θ

⋆)
∣∣

=

∣∣∣∣∣∣ 1N
∑
k∈[N ]

d(wn,wk, θ
⋆)⊤xNk,t−1 −

∫
d(wn,w, θ

⋆)⊤λ∞
t−1(w, θ

⋆)Γ(dw)

∣∣∣∣∣∣ , (16)

hence we get the following bound for (14):











1

N

∑
n∈[N ]

f(wn)
⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]⊤

xNn,t−1











4

≤ 1

N

∑
n∈[N ]











f(wn)
⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]⊤

xNn,t−1











4

≤ BL

N

∑
n∈[N ]











1

N

∑
k∈[N ]

d(wn,wk, θ
⋆)⊤xNk,t−1 −

∫
d(wn, w, θ

⋆)λ∞
t−1(w, θ

⋆)Γ(dw)











4

.

As for almost any realization wn ∈ W of wn the function d(wn, ·) is a bounded function because of
Assumption 9 we can apply our inductive hypothesis and get:











1

N

∑
k∈[N ]

d(wn,wk, θ
⋆)⊤xNk,t−1 −

∫
d(wn, w, θ

⋆)λ∞
t−1(w, θ

⋆)Γ(dw)











4

≤ 2C
4
√
6N− 1

2αt−1.

Since the above bound holds for any wn ∈ W, the same inequality holds P-almost surely when the
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random covariate wn is substituted in place of wn. We then conclude:










1

N

∑
n∈[N ]

f(wn)
⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]⊤

xNn,t−1











4

≤ BL

N

∑
n∈[N ]











1

N

∑
k∈[N ]

d(wn,wk, θ
⋆)⊤xNk,t−1 −

∫
d(wn, w, θ

⋆)λ∞
t−1(w, θ

⋆)Γ(dw)











4

≤ BL

N

∑
n∈[N ]

2C
4
√
6N− 1

2αt−1 = 2BLC
4
√
6N− 1

2αt−1.

where the first step follows fromMinkowski inequality, the second one from our previous calculations,
and the final one from the inductive assumption and the fact that ∥d(wn, ·)∥∞ ≤ C, P-almost surely
from Assumption 9.

The last term that is left to bound is (15). Given that it can be easily proven that for any
row-stochastic matrix K the function Kf(·) given by w 7→ Kf(w) is such that ∥Kf(·)∥∞ ≤ ∥f∥∞,

we can conclude that
∥∥∥Kη∞

t−1(·,θ⋆)(·, θ
⋆)f(·)

∥∥∥
∞

≤ B. We can then apply our inductive assumption

and conclude:










1

N

∑
n∈[N ]

[
Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)f(wn)

]⊤
xNn,t−1

−
∫ [

Kη∞
t−1(w,θ

⋆)(w, θ
⋆)f(w)

]⊤
λ∞
t−1(w, θ

⋆)Γ(dw)











4

≤ 2B
4
√
6N− 1

2αt−1.

By putting everything together we have:










1

N

∑
n∈[N ]

f(wn)x
N
n,t −

∫
f(w)⊤λ∞

t (w, θ⋆)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 + 2BLC
4
√
6N− 1

2αt−1 + 2B
4
√
6N− 1

2αt−1

≤ 2B
4
√
6N− 1

2 [1 + (1 + LC)αt−1] ,

from which we can conclude the proof of the first statement by setting αt = [1 + (1 + LC)αt−1].
The proof of the second statement follows similarly by induction on t. Start by assuming that

there exists α̃t−1 ∈ R+ for any f : W → [0, B]M bounded function such that for time t− 1 we have:










1

N

∑
n∈[N ]

f(wn)
⊤xNn,t−1 − f(wn)

⊤λ∞
t−1(wn, θ

⋆)











4

≤ 2B
4
√
6N− 1

2 α̃t−1,

which is true at the initial time step under α̃0 = 1 because of the second statement of Proposition
12. We then follow the same steps as the previous proof, but we substitute (15) with:











1

N

∑
n∈[N ]

[
Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)f(wn)

]⊤ [
xNn,t−1 − λ∞

t−1(wn, θ
⋆)
]






4

≤ 2B
4
√
6N− 1

2 α̃t−1,
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which is bounded because of the induction hypothesis. We can then conclude:











1

N

∑
n∈[N ]

f(wn)
⊤xNn,t − f(wn)

⊤λ∞
t (wn, θ

⋆)⊤











4

≤ 2B
4
√
6N− 1

2 + 2BC
4
√
6N− 1

2αt−1 + 2B
4
√
6N− 1

2 α̃t−1

≤ 2B
4
√
6N− 1

2 [1 + Cαt−1 + α̃t−1] ,

from which we can conclude the proof of the second statement by setting α̃t = [1 + Cαt−1 + α̃t−1].

The following corollary tells us that in the large population limit, the interaction term ηNt−1(wn, θ
⋆)

converges to the quantity η∞
t−1(wn, θ

⋆) defined in (12) which depends on individual-specific covariate
wn, but not on the covariates or diseases states of the rest of the population. This can be interpreted
as meaning that individuals become statistically decoupled as the population size grows.

Corollary 14. Under assumptions 7,9,10, for any t ≥ 1 there exists αt−1 > 0 such that:











ηNt−1(wn, θ
⋆)− η∞

t−1(wn, θ
⋆)











4

≤ 2C
4
√
6N− 1

2αt−1.

Proof. The result is a byproduct of the proof of Proposition 13. In particular, the passage proving
the bound on Equation (16) proves exactly the statement of the present corollary.

Observations. Using Proposition 13, we next establish an L4 bound for averages across the
population of observations. We need the following definition, for w ∈ W and t ≥ 1:

ν∞
t (w, θ⋆) :=

[
λ∞
t (w, θ⋆)⊤G(w, θ⋆)

]⊤
. (17)

Proposition 15. Under assumptions 7,9,10, for any t ≥ 1 there exists αt > 0 such that for any
bounded f : W → [0, B]M+1











1

N

∑
n∈[N ]

f(wn)
⊤yNn,t −

∫
f(w)⊤ν∞

t (w, θ⋆)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 (1 + αt) .

Moreover, under assumptions 9,10, for any t ≥ 1 there exists α̃t > 0 such that for bounded function
f : W → [0, B]M+1:











1

N

∑
n∈[N ]

f(wn)
⊤yNn,t − f(wn)

⊤ν∞
t (wn, θ

⋆)











4

≤ 2B
4
√
6N− 1

2 (1 + α̃t) .
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Proof. To prove the first statement, the first step is to note that by Minkowski inequality:










1

N

∑
n∈[N ]

f(wn)
⊤yNn,t −

∫
f(w)⊤ν∞

t (w, θ⋆)Γ(dw)











4

≤











1

N

∑
n∈[N ]

f(wn)
⊤yNn,t − f(wn)

⊤ [(xNn,t)⊤G(wn, θ
⋆)
]⊤









4

+











1

N

∑
n∈[N ]

f(wn)
⊤ [(xNn,t)⊤G(wn, θ

⋆)
]⊤ −

∫
f(w)⊤

[
λ∞
t (w, θ⋆)⊤G(w, θ⋆)

]⊤
Γ(dw)











4

,

as by definition
∫
f(w)⊤ν∞

t (w, θ⋆)Γ(dw) =
∫
f(w)⊤

[
λ∞
t (w, θ⋆)⊤G(w, θ⋆)

]⊤
Γ(dw). For the first

term, we notice that:

E
[
f(wn)

⊤yNn,t

∣∣∣XN
t ,W

N
]
= f(wn)

⊤ [(xNn,t)⊤G(wn, θ
⋆)
]
= [G(wn, θ

⋆)f(wn)]
⊤ xNn,t,

meaning that the arguments of the sum are all conditionally independent and with mean zero.
Moreover, given that [(xNn,t)

⊤G(wn, θ
⋆)]⊤ is a probability vector and yNn,t is a one-hot encoding

vector, we can also conclude that the arguments of the sums are all bounded by 2B, hence we can
apply Lemma 5 and conclude:











1

N

∑
n∈[N ]

f(wn)
⊤yNn,t − f(wn)

⊤ [(xNn,t)⊤G(wn, θ
⋆)
]⊤









4

≤ 2B
4
√
6N− 1

2 .

For the second term we just need some refactoring:










1

N

∑
n∈[N ]

f(wn)
⊤ [(xNn,t)⊤G(wn, θ

⋆)
]⊤ −

∫
f(w)⊤

[
λ∞
t (w, θ⋆)⊤G(w, θ⋆)

]⊤
Γ(dw)











4

=











1

N

∑
n∈[N ]

[G(wn, θ
⋆)f(wn)]

⊤ xNn,t −
∫

[G(w, θ⋆)f(w)]⊤ λ∞
t (w, θ⋆)Γ(dw)











4

.

As ∥G(·, θ⋆)f(·)∥∞ ≤ ∥f∥∞ because G(·, θ⋆) is a row-stochastic matrix, we can just apply the first
statement of Proposition 13 and conclude:











1

N

∑
n∈[N ]

f(wn)
⊤ [(xNn,t)⊤G(wn, θ

⋆)
]⊤ −

∫
f(w)⊤

[
λ∞
t (w, θ⋆)⊤G(w, θ⋆)

]⊤
Γ(dw)











4

≤ 2B
4
√
6N− 1

2αt.

We then conclude the proof by putting everything together:










1

N

∑
n∈[N ]

f(wn)
⊤yNn,t −

∫
f(w)⊤ν∞

t (w, θ⋆)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 (1 + αt) .
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Given the above proof strategy, it is trivial to establish the second statement by simply substi-
tuting the last term of the Minkowski inequality with:











1

N

∑
n∈[N ]

f(wn)
⊤ [(xNn,t)⊤G(wn, θ

⋆)
]⊤ − f(wn)

⊤λ∞
t (wn, θ

⋆)











4

,

and by applying the second statement of Proposition 13.

C.3 L4 bounds for the CAL filtering algorithm

The aim of this section is to establish L4 bounds for averages across the population of the various
probability vectors computed in the CAL filtering recursion, (6). In Proposition 16 and Proposition
18 below, we shall see that the large-population behavior of these averages is determined by the
following quantities. Specifically, for w ∈ W:

π̄∞
0 (w, θ) := p0(w, θ),

η̄∞
t−1(w, θ) :=

∫
d(w, w̃, θ)⊤π̄∞

t−1(w̃, θ)Γ(dw̃),

π̄∞
t|t−1(w, θ) :=

[
π̄∞
t−1(w, θ)

⊤Kη̄∞
t−1(w,θ)

(w, θ)
]⊤
,

µ̄∞
t (w, θ) :=

[
π̄∞
t|t−1(w, θ)

⊤G(w, θ)
]⊤
,

π̄∞
t (w, θ) := π̄∞

t|t−1(w, θ)⊙
{[
G(w, θ)⊘

(
1M µ̄∞

t (w, θ)⊤
)]

ν∞
t (w, θ⋆)

}
,

(18)

where ν∞
t (w, θ⋆) is defined in (17).

Proposition 16. Under Assumption 7, for any bounded function f : W → [0, B]M it holds that:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,0(wn, θ)−
∫
f(w)⊤π̄∞

0 (w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 .

Moreover, for any bounded function f : W → [0, B]M :










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,0(wn, θ)− f(wn)
⊤π̄∞

0 (wn, θ)











4

= 0.

Proof. The first statement follows the same reasoning of Proposition 12, but we include it here for
completeness. As:

E
[
f(wn)

⊤πN
n,0(wn, θ)

]
=

∫
f(w)⊤π̄∞

0 (w, θ)Γ(dw),

and we have a sequence of independent and bounded random variables:∣∣∣∣f(wn)
⊤πN

n,0(wn, θ)−
∫
f(w)⊤π̄∞

0 (w, θ)Γ(dw)

∣∣∣∣ ≤ 2B,

we can conclude the proof by applying Lemma 5. The second statement follows trivially from the
definition of the limiting process, indeed πN

n,0(wn, θ) = π̄∞
0 (wn, θ).
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Proposition 17. If there exists a constant γt−1 > 0 such that for any f : W → [0, B]M











1

N

∑
n∈[N ]

f(wn)
⊤ [πN

n,t−1(wn, θ)− π̄∞
t−1(wn, θ)

]






4

≤ 2B
4
√
6N− 1

2γt−1,

then under assumptions 9,10 there exists γt|t−1 > 0 such that for any bounded function f : W →
[0, B]M ,











1

N

∑
n∈[N ]

f(wn)
⊤ [πN

n,t|t−1(wn, θ)− π̄∞
t|t−1(wn, θ)

]






4

≤ 2B
4
√
6N− 1

2γt|t−1.

Moreover, under assumptions 7,9,10, for any bounded function f : W → [0, B]M it also holds:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t|t−1(wn, θ)−
∫
f(w)⊤π̄∞

t|t−1(w, θ)Γ(dw))











4

≤ 2B
4
√
6N− 1

2

(
γt|t−1 + 1

)
.

Proof. As a preliminary notice that:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t−1(wn, θ)−
∫
f(w)⊤π̄∞

t−1(w, θ)Γ(dw)











4

≤











1

N

∑
n∈[N ]

f(wn)
⊤ [πN

n,t−1(wn, θ)− π̄∞
t−1(wn, θ)

]






4

+











1

N

∑
n∈[N ]

f(wn)
⊤π̄∞

t−1(wn, θ)−
∫
f(w)⊤π̄∞

t−1(w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 (γt−1 + 1),

(19)

as we can apply Minkowski inequality and then bound the first quantity with our assumption at
time t−1 and the second quantity with Lemma 5, as we are dealing with an average of independent
random variables that are mean zero and bounded (this follows the same steps as the proof of
Proposition 16).

As a consequence, we have the following implication of our assumption:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t−1(wn, θ)−
∫
f(w)⊤π̄∞

t−1(w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 (γt−1 + 1),

and we know that if we prove the first statement it is enough to follow the above reasoning to prove
the second one.

We now start the proof of the first statement by noting:

f(wn)
⊤πN

n,t|t−1(wn, θ)− f(wn)
⊤π̄∞

t|t−1(wn, θ)

= f(wn)
⊤
[
πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)

]⊤
− f(wn)

⊤
[
πN
n,t−1(wn, θ)

⊤Kη̄∞
t−1(wn,θ)(wn, θ)

]⊤
+ f(wn)

⊤
[
πN
n,t−1(wn, θ)

⊤Kη̄∞
t−1(wn,θ)(wn, θ)

]⊤
− f(wn)

⊤
[
π̄∞
t−1(wn, θ)

⊤Kη̄∞
t−1(wn,θ)(wn, θ)

]⊤
.
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Hence we can apply Minkowski inequality:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t|t−1(wn, θ)− f(wn)
⊤π̄∞

t|t−1(wn, θ)











4

≤











1

N

∑
n∈[N ]

f(wn)
⊤
[
Kη̃N

t−1(wn,θ)(wn, θ)−Kη̄∞
t−1(wn,θ)(wn, θ)

]⊤
πN
n,t−1(wn, θ)











4

(20)

+











1

N

∑
n∈[N ]

[
Kη̄∞

t−1(wn,θ)(wn, θ)f(wn)
]⊤ [

πN
n,t−1(wn, θ)− π̄∞

t−1(wn, θ)
]






4

. (21)

On (20) we can apply Assumption 10 and get:










1

N

∑
n∈[N ]

f(wn)
⊤
[
Kη̃N

t−1(wn,θ)(wn, θ)−Kη̄∞
t−1(wn,θ)(wn, θ)

]⊤
πN
n,t−1(wn, θ)











4

≤ B

N

∑
n∈[N ]











η̃Nt−1(wn, θ)− η̄∞
t−1(wn, θ)











4

,

which follows the same steps as the proof of Proposition 13. Again, similarly to Proposition 13, we
can apply Assumption 10 on the Lipschitz continuity of the transition matrix, Assumption 9 on the
structure of ηN and, given the definition of η̃Nt , η̄

∞
t , we get:











η̃Nt−1(wn, θ)− η̄∞
t−1(wn, θ)











4

=











1

N

∑
k∈[N ]

d(wn,wk, θ)
⊤πN

k,t−1(wk, θ)−
∫
d(wn, w, θ)

⊤π̄∞
t−1(w, θ)Γ(dw)











4

≤ 2LC
4
√
6N− 1

2 (γt−1 + 1),

(22)

because of the inductive assumption, and which holds P-almost surely following the same reasoning
of Proposition 13. Hence:











1

N

∑
n∈[N ]

f(wn)
⊤
[
πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)− πN

n,t−1(wn, θ)
⊤Kη̄∞

t−1(wn,θ)(wn, θ)
]⊤









4

≤ B

N

∑
n∈[N ]











1

N

∑
k∈[N ]

d(wn,wk, θ)
⊤πN

k,t−1(wk, θ)−
∫
d(wn, w, θ)

⊤π̄∞
t−1(w, θ)Γ(dw)











4

≤ B

N

∑
n∈[N ]

2LC
4
√
6N− 1

2 (γt−1 + 1) = 2BLC
4
√
6N− 1

2 (γt−1 + 1),

(23)

where the last step follows from (19) and from the same reasoning of Proposition 13, i.e. we prove
the inequality P-almost surely.
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On (21), we can observe that the vectorial function w 7→ Kη̄∞
t−1(w,θ)

(w, θ)f(w) is bounded,

i.e.
∥∥∥Kη̄∞

t−1(·,θ)(·, θ)f
∥∥∥
∞

≤ B, as Kη̄∞
t−1(w,θ)

is a row-stochastic matrix, hence we can apply our

assumption on the time step t− 1 and conclude:










1

N

∑
n∈[N ]

[
Kη̄∞

t−1(wn,θ)(wn, θ)f(wn)
]⊤ [

πN
n,t−1(wn, θ)− π̄∞

t−1(wn, θ)
]






4

≤ 2B
4
√
6N− 1

2γt−1.

By putting everything together we get:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t|t−1(wn, θ)− f(wn)
⊤π̄∞

t|t−1(wn, θ)











4

≤ 2BLC
4
√
6N− 1

2 (γt−1 + 1) + 2B
4
√
6N− 1

2γt−1 = 2B
4
√
6N− 1

2 [LC(γt−1 + 1) + γt−1] ,

by setting γt|t−1 = [C(γt−1 + 1) + γt−1] we conclude the proof of the first statement.
Remark that as we already mentioned at the beginning of the proof we have:

E
[
f(wn)

⊤π̄∞
t|t−1(wn, θ)

]
=

∫
f(w)⊤π̄∞

t|t−1(w, θ)Γ(dw),

and the random variables f(wn)
⊤π̄∞

t|t−1(wn, θ) −
∫
f(w)⊤π̄∞

t|t−1(w, θ)Γ(dw) are all bounded by 2B
and independent, hence by Lemma 5:











1

N

∑
n∈[N ]

f(wn)
⊤π̄∞

t|t−1(wn, θ)−
∫
f(w)⊤π̄∞

t|t−1(w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 ,

which proves the second statement.

Proposition 18. There exists γt|t−1 > 0 for any f : W → [0, B]M bounded function such that










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t|t−1(wn, θ)− f(wn)
⊤π̄∞

t|t−1(wn, θ)











4

≤ 2B
4
√
6N− 1

2γt|t−1,

then under assumptions 6,8,9,10 for any f : W → [0, B]M bounded function we have:










1

N

∑
n∈[N ]

f(wn)
⊤µN

n,t(wn, θ)− f(wn)
⊤µ̄∞

t (wn, θ)











4

≤ 2B
4
√
6N− 1

2γt|t−1,

and there exists γt > 0 such that for any bounded function f : W → [0, B]M ,










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t(wn, θ)− f(wn)
⊤π̄∞

t (wn, θ)











4

≤ 2B
4
√
6N− 1

2γt.
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Moreover, under assumptions 6,7,8,9,10, for any f : W → [0, B]M bounded function











1

N

∑
n∈[N ]

f(wn)
⊤µN

n,t(wn, θ)−
∫
f(w)⊤µ̄∞

t (w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 (1 + γt|t−1),

and:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t(wn, θ)−
∫
f(w)⊤π̄∞

t (w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2 (1 + γt).

Proof. The first statement is straightforward, indeed:











1

N

∑
n∈[N ]

f(wn)
⊤µN

n,t(wn, θ)− f(wn)
⊤µ̄∞

t (wn, θ)











4

=











1

N

∑
n∈[N ]

f(wn)
⊤ [πN

n,t|t−1(wn, θ)
⊤G(wn, θ)

]⊤ − f(wn)
⊤ [π̄∞

t|t−1(wn, θ)
⊤G(wn, θ)

]⊤









4

=











1

N

∑
n∈[N ]

[G(wn, θ)f(wn)]
⊤ πN

n,t|t−1(wn, θ)− [G(wn, θ)f(wn)]
⊤ π̄∞

t|t−1(wn, θ)











4

.

As G(w, θ) is a row-stochastic matrix the function w 7→ G(w, θ)f(w) is bounded, and precisely
∥G(·, θ)f(·)∥∞ ≤ B, meaning that the proof of the statement follows simply by the assumption on
step t− 1:











1

N

∑
n∈[N ]

f(wn)
⊤µN

n,t(wn, θ)− f(wn)
⊤µ̄∞

t (wn, θ)











4

≤ 2B
4
√
6N− 1

2γt|t−1. (24)

The proof of the second statement is more involved and we need to start by reformulating
f(wn)

⊤πN
n,t(wn, θ):

f(wn)
⊤πN

n,t(wn, θ) =
M∑
i=1

f(wn)
(i)πN

n,t(wn, θ)
(i)

=
M∑
i=1

f(wn)
(i)πN

n,t|t−1(wn, θ)
(i)

M∑
j=1

G(wn, θ)
(i,j)

µN
n,t(wn, θ)(j)

(yNn,t)
(j)

=
[
f(wn)⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
,

(25)

where we define Gµ(w, θ) as the matrix with elements Gµ(w, θ)
(i,j) = G(w,θ)(i,j)

µ(j) where 0
0
= 0 by

convention. Remark that, because of Theorem 10, the CAL is well-defined P-almost surely. Also
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a similar reformulation to the one in (25) can be done on π̄∞
t (w, θ) meaning: f(w)⊤π̄∞

t (w, θ) =[
f(w)⊙ π̄∞

t|t−1(w, θ)
]⊤ [

Gµ̄∞
t (w,θ)(w, θ)ν

∞
t (w, θ⋆)

]
. Then we note that:

f(wn)
⊤πN

n,t(wn, θ)− f(wn)
⊤π̄∞

t (wn, θ)

=
[
f(wn)⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
+
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]
+
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]
−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)ν

∞
t (wn, θ

⋆)
]
.

With the above decomposition we can apply Minkowski inequality and conclude:











1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t(wn, θ)− f(wn)
⊤π̄∞

t (wn, θ)











4

≤











1

N

∑
n∈[N ]

[
f(wn)⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]

−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

(26)

+











1

N

∑
n∈[N ]

[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]

−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]









4

(27)

+











1

N

∑
n∈[N ]

[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]
−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)ν

∞
t (wn, θ

⋆)
]









4

. (28)
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Starting from (26), we notice that:










1

N

∑
n∈[N ]

[
f(wn)⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]

−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

=











1

N

∑
n∈[N ]

[
πN
n,t|t−1(wn, θ)− π̄∞

t|t−1(wn, θ)
]⊤ [

f(wn)⊙GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]






4

=











1

N

∑
n∈[N ]

[
f(wn)⊙GµN

n,t(wn,θ)(wn, θ)y
N
n,t

]⊤ [
πN
n,t|t−1(wn, θ)− π̄∞

t|t−1(wn, θ)
]






4

,

as GµN
n,t(wn,θ)(wn, θ)y

N
n,t is a vector of probabilities, i.e. elements that are less or equal than 1, we

can conclude that: ∥∥∥f(·)⊙GµN
n,t(·,θ)(·, θ)y

N
n,t

∥∥∥
∞

≤ B, P-almost surely,

hence, similarly to what we do with d(wn, ·) in the proof of Proposition 13, we can apply our
assumption on time step t− 1 for almost any realization of yNn,t, and conclude:











1

N

∑
n∈[N ]

[
f(wn)⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]

−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

≤ 2B
4
√
6N− 1

2γt|t−1.

As we define Gµ as the matrix with elements G(i,j)/µ(j), we can notice that given two vectors
a, b with the same dimensions of Gµ we have:

x⊤Gµb− x⊤Gµ̃b =
∑
i,j

x(i)y(j)
G(i,j)µ̃(j) −G(i,j)µ(j)

µ̃(j)µ(j)
=
∑
i,j

x(i)
y(j)

µ̃(j)µ(j)
G(i,j)

(
µ̃(j) − µ(j)

)
Hence we can reformulate (27):











1

N

∑
n∈[N ]

[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]

−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]









4

=











1

N

∑
n∈[N ]

{[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤
G(wn, θ)

}⊤
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̄∞
t (wn, θ)

]⊤
[
µ̄∞
t (wn, θ)− µN

n,t(wn, θ)
]









4

,
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from which we can notice that for any wn:∥∥∥{[f(wn)⊙ π̄∞
t|t−1(wn, θ)

]⊤
G(wn, θ)

}
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̄∞
t (wn, θ)

]∥∥∥
∞

≤ ∥f∥∞
∥∥yNn,t ⊘ µN

n,t(wn, θ)
∥∥
∞ , P-almost surely,

where the first step follows from µ̄∞
t (w, θ) =

[
π̄∞
t|t−1(w, θ)

⊤G(w, θ)
]⊤

and the elementwise ratio

yNn,t ⊘ µN
n,t(wn, θ) is well-defined because of Theorem 10.

Because of Proposition 11 we know that there exists mt > 0 such that µN
n,t(wn, θ) ≥ mt almost

surely. We can then conclude that for any n ∈ [N ]:∥∥∥{[f(wn)⊙ π̄∞
t|t−1(wn, θ)

]⊤
G(wn, θ)

}
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̄∞
t (wn, θ)

]∥∥∥
∞

≤ ∥f∥∞
mt

≤ B

mt

, P-almost surely.

Hence we can apply to (27) the same reasoning that we do with d(wn, ·) in the proof of Proposition
13 and apply (24) for almost any realization of YN

1:t−1,y
N
n,t, i.e. P-almost surely, and conclude:











1

N

∑
n∈[N ]

[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]

−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]









4

≤ 2B
4
√
6N− 1

2
γt|t−1

mt

.

Finally, we notice that for (28):











1

N

∑
n∈[N ]

[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]
−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)ν

∞
t (wn, θ

⋆)
]









4

=











1

N

∑
n∈[N ]

{[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤
Gµ̄∞

t (wn,θ)(wn, θ)
} [

yNn,t − ν∞
t (wn, θ

⋆)
]









4

,

from which we can see that:∥∥∥[f(·)⊙ π̄∞
t|t−1(·, θ)

]⊤
Gµ̄∞

t (·,θ)(·, θ)
∥∥∥
∞

≤ ∥f∥∞
∥∥∥[π̄∞

t|t−1(·, θ)
]⊤
Gµ̄∞

t (·,θ)(·, θ)
∥∥∥
∞

≤ ∥f∥∞

∥∥∥∥∥∑
i

π̄∞
t|t−1(·, θ)(i)

G(·, θ)(i,j)

µ̄∞
t (·, θ)(j)

∥∥∥∥∥
∞

= ∥f∥∞ ,
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where the last step follows from π̄∞
t|t−1(·, θ), G(·, θ), µ̄∞

t (·, θ) being almost surely positive and from

[µ̄∞
t (·, θ) = π̄∞

t|t−1(·, θ)⊤G(·, θ)]⊤. We can then apply Proposition 15 and conclude











1

N

∑
n∈[N ]

[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)y

N
n,t

]
−
[
f(wn)⊙ π̄∞

t|t−1(wn, θ)
]⊤ [

Gµ̄∞
t (wn,θ)(wn, θ)ν

∞
t (wn, θ

⋆)
]









4

≤ 2B
4
√
6N− 1

2 (1 + αt) .

By putting everything together we then have:










1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t(wn, θ)− f(wn)
⊤π̄∞

t (wn, θ)











4

≤ 2B
4
√
6N− 1

2γt|t−1 + 2B
4
√
6N− 1

2
γt|t−1

mt

+ 2B
4
√
6N− 1

2 (1 + αt)

= 2B
4
√
6N− 1

2

[
γt|t−1 +

γt|t−1

mt

+ (1 + αt)

]
,

which concludes the proof for γt =
[
γt|t−1 +

γt|t−1

mt
+ (1 + αt)

]
.

The third and the fourth statements are simple consequences of the first and the second state-
ment, Minkowski inequality and Lemma 5, see the reasoning to prove the second statement of
Proposition 17.

We now combine propositions 16 - 18.

Proposition 19. Under assumptions 6,7,8,9,10, for any t ≥ 1 there exist γt|t−1 > 0 and γt > 0
such that for any bounded function f : W → [0, B]M











1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t|t−1(wn, θ)−
∫
f(w)⊤π̄∞

t|t−1(w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2γt|t−1,











1

N

∑
n∈[N ]

f(wn)
⊤µN

n,t(wn, θ)−
∫
f(w)⊤µ̄∞

t (w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2γt|t−1,











1

N

∑
n∈[N ]

f(wn)
⊤πN

n,t(wn, θ)−
∫
f(w)⊤π̄∞

t (w, θ)Γ(dw)











4

≤ 2B
4
√
6N− 1

2γt.

Proof. Assume that the third statement is true at time t− 1, which is verified for t− 1 = 0 because
of Proposition 16. Then we can in turn apply Proposition 17 to prove the first statement, and
Proposition 18 to prove the second and the third. As the third statement is also our inductive
hypothesis and we have proven it to hold for the next time step t we can state that the three
statements hold for an arbitrary time step t.
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The following corollary is analogous to Corollary 14, but addresses the quantity η̃Nt−1(·, ·) com-
puted in the CAL algorithm (recall 6). Corollary 20 can be interpreted as meaning that the
probability vectors computed in the CAL algorithm become decoupled across the population as
N → ∞. Recall from (12) and (18) the definitions of η∞

t−1(·, ·) and η̄∞
t−1(·, ·).

Corollary 20. Under assumptions 7,9,10, for any t ≥ 1 there exists γt−1 > 0 such that for any
w ∈ W and θ ∈ Θ,











η̃Nt−1(w, θ)− η̄∞
t−1(w, θ)











4

≤ 2LC
4
√
6N− 1

2 (γt−1 + 1).

Moreover, η̄∞
t−1(w, θ

⋆) = η∞
t−1(w, θ

⋆).

Proof. The first statement is a byproduct of Proposition 19 and Equation (22) in the proof of
Proposition 17. Indeed, Proposition 19 ensures that the assumptions of Proposition 17 hold.

The second statement follows by induction, indeed π̄∞
0 (w, θ⋆) = λ∞

0 (w, θ⋆) by definition hence
π̄∞
t−1(w, θ

⋆) = λ∞
t−1(w, θ

⋆) holds for t = 1. Suppose now π̄∞
t−1(w, θ

⋆) = λ∞
t−1(w, θ

⋆) is true, then we
get that for any i ∈ [M ]:

π̄∞
t (w, θ⋆)(i) = π̄∞

t|t−1(w, θ
⋆)(i)

{[
G(w, θ⋆)⊘

(
1M µ̄∞

t (w, θ⋆)⊤
)]

ν∞
t (w, θ⋆)

}(i)
= π̄∞

t|t−1(w, θ
⋆)(i)

{[
G(w, θ⋆)⊘

(
1Mν

∞
t (w, θ⋆)⊤

)]
ν∞
t (w, θ⋆)

}(i)
= π̄∞

t|t−1(w, θ
⋆)(i)

M∑
j=1

G(w, θ⋆)(i,j)

ν∞
t (w, θ⋆)(j)

ν∞
t (w, θ⋆)(j)

=
M∑
j=1

π̄∞
t−1(w, θ

⋆)(j)Kη̄∞
t−1(w,θ

⋆)(w, θ
⋆)(j,i)

=
M∑
j=1

λ∞
t−1(w, θ

⋆)(j)Kη∞
t−1(w,θ

⋆)(w, θ
⋆)(j,i) = λ∞

t (w, θ⋆)(i),

which concludes the proof.

C.4 The saturated processes and saturated CAL algorithm

In Section C.4 we introduce key objects which will allow us to understand the large-population
behavior of the data-generating process and the CAL algorithm. The first is what we call the one-
individual saturated process. This process can be interpreted as describing the evolution of a single
individual in an infinite population, where the covariate vector associated with this one individual
is drawn from the distribution Γ appearing in Assumption 7. The term “saturated” refers to the
fact that the law of the process is defined in terms of the limiting interaction terms η∞

t (·, ·), t ≥ 0,
cf. Corollary 14.

We then introduce the population saturated process, which consists of independent individuals,
each of which is distributed in the same way as the one-individual saturated process, but with
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covariate vectors (wn)n∈[N ] which are shared with those in the data-generating process specified
in Section A.4. In Proposition 24 we shall show that averages across the population in the data-
generating process approximate averages across the population saturated process.

Lastly, we introduce the saturated CAL algorithm, which is very similar to the CAL algorithm,
but uses a model that is decoupled across individuals. Proposition 27 below will tell us that the
logarithm of the CAL approximates the logarithm of the corresponding quantity from the saturated
CAL algorithm.

One-individual saturated process. We define the one-individual saturated process as:

w∞ ∼ Γ,

x∞
0 |w∞ ∼ Cat ( · | p0(w∞, θ⋆)) ,

x∞
t |x∞

t−1,w
∞ ∼ Cat

(
·
∣∣∣∣[(x∞

t−1)
⊤Kη∞

t−1(w
∞,θ⋆)(w

∞, θ⋆)
]⊤)

,

y∞
t |x∞

t ,w
∞ ∼ Cat

(
·
∣∣∣[(x∞

t )⊤G(w∞, θ⋆)
]⊤)

.

(29)

Conditional on w∞, the joint process (x∞
t )t≥0, (y

∞
t )t≥1 described in (29) is a HMM. If in Re-

cursion (30) below w∞ and θ⋆ are substituted in place of w and θ, then (30) becomes the forward
algorithm associated with this HMM.

Recall from (18) the definition of η̄∞
t−1(·, ·), and define for w ∈ W and t ≥ 1:

π∞
0 (w, θ) := p0(w, θ),

π∞
t|t−1(w, θ) :=

[
π∞
t−1(w, θ)

⊤Kη̄∞
t−1(w,θ)

(w, θ)
]⊤
,

µ∞
t (w, θ) :=

[
π∞
t|t−1(w, θ)

⊤G(w, θ)
]⊤
,

π∞
t (w, θ) := π∞

t|t−1(w, θ)⊙
{[
G(w, θ)⊘

(
1Mµ∞

t (w, θ)⊤
)]

y∞
t

}
.

(30)

Recall from (30) the definition of µ∞
t (·, ·).

Proposition 21. Over a time horizon T , let w ∈ W and y1:T ∈ OM+1:

p(y∞
1:T |w∞, θ⋆) :=

T∏
t=1

Cat (y∞
t |µ∞

t (w∞, θ⋆)) =
T∏
t=1

(y∞
t )⊤µ∞

t (w∞, θ⋆),

and it is obtained as a marginal distribution over x0:T ∈ OM of:

p(x∞
0:T ,y

∞
1:T |w∞, θ⋆) :=

Cat (x∞
0 |p0(w∞, θ⋆))

T∏
t=1

Cat

(
x∞
t |
[
(x∞

t−1)
⊤Kη∞

t−1(w
∞,θ⋆)(w

∞, θ⋆)
]⊤)

·
T∏
t=1

Cat
(
y∞
t |
[
(x∞

t )⊤G(w∞, θ⋆)
]⊤)

=
(
(x∞

0 )⊤p0(w
∞, θ⋆)

) T∏
t=1

[(
(x∞

t−1)
⊤Kη∞

t−1(w
∞,θ⋆)(w

∞, θ⋆)x∞
t

) (
(x∞

t )⊤G(w∞, θ⋆)y∞
t

)]
.

63



Moreover, we have
x∞
t |y∞

1:t−1,w
∞ ∼ Cat

(
·|π∞

t|t−1(w
∞, θ⋆)

)
,

x∞
t |y∞

1:t,w
∞ ∼ Cat (·|π∞

t (w∞, θ⋆)) ,

y∞
t |y∞

1:t−1,w
∞ ∼ Cat (·|µ∞

t (w∞, θ⋆)) .

Proof. Note that because of Corollary 20 we have η∞
t (w∞, θ⋆) = η̄∞

t (w∞, θ⋆). The proof of the
first statement follows then the same calculation of the proof of Proposition 4, with the infinite
transition matrix Kη∞

t (w∞,θ⋆)(w
∞, θ⋆). The proof of the remaining statements is trivial by noting

that (x∞
t )t≥0, (y

∞
t )t≥1 given w∞ is a HMM. Indeed, Recursion 30 can be interpreted as the forward

algorithm for the HMM (x∞
t )t≥0, (y

∞
t )t≥1 given w∞.

Proposition 22. Under assumptions 7,8, for any t ≥ 1 and θ ∈ Θ we have that∑
iµ

∞
t (w∞, θ)(i)(y∞

t )(i) ̸= 0 P− almost surely.

Proof. The proof follows the same steps as the proof of Theorem 10, but we work with the one-
individual saturated process.

We can note that because of Assumption 8 if there exists θ ∈ Θ, i ∈ [M ] such that π∞
0 (w, θ)(i) =

p0(w, θ)
(i) = 0, then p0(w, θ

⋆)(i) = 0 and so:

P((x∞
0 )(i) = 0|w∞ = w) = p0(w, θ) = π∞

0 (w, θ)(i) = 0,

meaning that (x∞
0 )(i) = 0 almost surely in P(·|w∞ = w).

Assume now by induction that if there exists θ ∈ Θ, i ∈ [M ] such that π∞
t−1(w, θ)

(i) = 0, then
(x∞

t−1)
(i) = 0 almost surely in P(·|w∞ = w,y∞

1:t−1 = y1:t−1), which is satisfied at time t = 1 because
of our previous reasoning.

We can note that:

π∞
t|t−1(w, θ)

(i) = 0 ⇐⇒
∑
j

π∞
t−1(w, θ)

(j)Kη̄∞
t−1(w,θ)

(wn, θ)
(j,i) = 0

⇐⇒ ∀j ∈ [M ] π∞
t−1(w, θ)

(j)Kη̄∞
t−1(w,θ)

(wn, θ)
(j,i) = 0,

hence for all j ∈ [M ] we either have:

1. π∞
t−1(w, θ)

(j) = 0 which implies (x∞
t−1)

(j) = 0 almost surely in P(·|w∞ = w,y∞
1:t−1 = y1:t−1) by

our inductive assumption, or

2. Kη̄∞
t−1(w,θ)

(w, θ)(j,i) = 0, which implies that there exists η such that Kη(w, θ)
(j,i) = 0 and so, by

Assumption 8, Kη(w, θ)
(j,i) = 0 for all η ∈ [0, C] and θ ∈ Θ meaning Kη̄∞

t−1(w,θ
⋆)(w, θ

⋆)(j,i) = 0.

from which we conclude:

P((x∞
t )(i) = 0|w∞ = w,y∞

1:t−1 = y1:t−1)

= 1−
∑
xt−1

P((x∞
t )(i) = 1|w∞ = w,x∞

t−1 = xt−1,y
∞
1:t = y1:t)

· P(x∞
t−1 = xt−1|w∞ = w,y∞

1:t−1 = y1:t−1)

= 1−
∑
j

Kη̄∞
t−1(w,θ)

(w, θ)(j,i)P((x∞
t−1)

(j) = 1|w∞ = w,y∞
1:t−1 = y1:t−1) = 1,
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hence if π∞
t|t−1(w, θ)

(i) = 0 then (y∞
t )(i) = 0 almost surely in P(·|w∞ = w,y∞

1:t−1 = y1:t−1).
Moving to:

µ∞
t (w, θ)(i) = 0 ⇐⇒

∑
j

π∞
t|t−1(w, θ)

(j)G(w, θ)(j,i) = 0

⇐⇒ ∀j ∈ [M ] π∞
t|t−1(w, θ)

(j)G(w, θ)(j,i) = 0,

we then have that for all j either:

1. π∞
t|t−1(w, θ)

(j) = 0 which implies (x∞
t )(j) = 0 almost surely in P(·|w∞ = w,y∞

1:t−1 = y1:t−1)
because of what we have proven above, or

2. G(w, θ)(j,i) = 0 which implies G(w, θ⋆)(j,i) = 0 because of Assumption 8,

meaning that:

P
(
(y∞

t )(i) = 0|w∞ = w,y∞
1:t−1 = y1:t−1

)
= 1− P

(
(y∞

t )(i) = 1|w∞ = w,y∞
1:t−1 = y1:t−1

)
= 1−

∑
xt

P
(
x∞
t = xt|w∞ = w,y∞

1:t−1 = y1:t−1

)
· P
(
(y∞

t )(i) = 1|w∞ = w,x∞
t = xt,y

∞
1:t−1 = y1:t−1

)
= 1−

∑
j

P
(
(x∞

t )(j) = 1|w∞ = w,y∞
1:t−1 = y1:t−1

)
G(w, θ⋆)(j,i) = 1,

hence if µ∞
t (w, θ)(i) = 0 then (y∞

t )(i) = 0 almost surely in P(·|w∞ = w,y∞
1:t−1 = y1:t−1).

Consider now:

π∞
t (w, θ)(i) = 0 ⇐⇒ π∞

t|t−1(w, θ)
(i)

∑
j G(w, θ)

(i,j)(y∞
t )(j)∑

j(y
∞
t )(j)µ∞

t (w, θ)(j)
= 0

⇐⇒ π∞
t|t−1(w, θ)

(i)
∑
j

G(w, θ)(i,j)(y∞
t )(j) = 0 and

∑
j

(y∞
t )(j)µ∞

t (w, θ)(j) ̸= 0.

Similarly to Theorem 10 we have
∑

j(y
∞
t )(j)µ∞

t (w, θ)(j) ̸= 0 being an almost sure event under
P(·|w∞ = w,y∞

1:t−1 = y1:t−1), hence:

P

(
π∞
t|t−1(w, θ)

(i)
∑
j

G(w, θ)(i,j)(y∞
t )(j) = 0

and
∑
j

(y∞
t )(j)µ∞

t (w, θ)(j) ̸= 0|w∞ = w,y∞
1:t−1 = y1:t−1

)

= P

(
π∞
t|t−1(w, θ)

(i)
∑
j

G(w, θ)(i,j)(y∞
t )(j) = 0|w∞ = w,y∞

1:t−1 = y1:t−1

)
.

We then just need to work on the event π∞
t|t−1(w, θ)

(i)
∑

j G(w, θ)
(i,j)(y∞

t )(j) = 0.
We then have either:
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• π∞
t|t−1(w, θ)

(i) = 0, implying (x∞
t )(i) = 0 almost surely in P(·|w∞ = w,y∞

1:t−1 = y1:t−1) because
of what we have proven above, or

•
∑

j G(w, θ)
(i,j)(y∞

t )(j) = 0, which tells us that there exists k ∈ [M ] such that

P
(
(y∞

t )(k) = 1|w∞ = w,y∞
1:t−1 = y1:t−1

)
> 0 and G(w, θ)(i,k) = 0, note that under P(·|w∞ =

w,y∞
1:t = y1:t) we know k as we are conditioning on y∞

t ;

as:

P((x∞
t )(i) = 1|w∞ = w,y∞

1:t = y1:t)

∝ P((x∞
t )(i) = 1, (y∞

t )(k) = 1|w∞ = w,y∞
1:t−1 = y1:t−1)

= G(w, θ)(i,k)P((x∞
t )(i) = 1|w∞ = w,y∞

1:t−1 = y1:t−1) = 0,

we can then conclude (x∞
t )(i) = 0 almost surely in P(·|w∞ = w,y∞

1:t = y1:t).
With this final result we have shown that our inductive assumption is true a time t, hence by

induction we can conclude that for any t ≥ 1:

• if there exist θ ∈ Θ, i ∈ [M ] such that π∞
t|t−1(w, θ)

(i) = 0, then (x∞
t )(i) = 0 almost surely in

P(·|w∞ = w,y∞
1:t−1 = y1:t−1);

• if there exist θ ∈ Θ, i ∈ [M ] such that µ∞
t (w, θ)(i) = 0, then (y∞

t )(i) = 0 almost surely in
P(·|w∞ = w,y∞

1:t−1 = y1:t−1);

• if there exist θ ∈ Θ, i ∈ [M ] such that π∞
t (w, θ)(i) = 0, then (x∞

t )(i) = 0 almost surely in
P(·|w∞ = w,y∞

1:t = y1:t).

To prove that the random asymptotic CAL is a well-defined algorithm in P we need to prove
that:

P

(
∀θ ∈ Θ, t ≥ 1

∑
i

µ∞
t (w∞, θ)(i)(y∞

t )(i) ̸= 0

)
= 1,

which can be proven by observing that:

P

(
∀θ ∈ Θ, t ≥ 1,

∑
i

µ∞
t (w∞, θ)(i)(y∞

t )(i) ̸= 0

)

= P

(
∀θ ∈ Θ, t ≥ 1,

∑
i

µ∞
t (w∞, θ)(i)(y∞

t )(i) ̸= 0

)

=

∫
P

(
∀θ ∈ Θ, t ≥ 1

∑
i

µ∞
t (w, θ)(i)(y∞

t )(i) ̸= 0|w∞ = w

)
Γ(dw)

=

∫ ∑
y1:t−1

P

(
∀θ ∈ Θ, t ≥ 1

∑
i

µ∞
t (w, θ)(i)(y∞

t )(i) ̸= 0|w∞ = w,y∞
1:t−1 = y1:t−1

)
· P(y∞

1:t−1 = y1:t−1|w∞ = w)Γ(dw)

= 1.
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Proposition 23. Under assumptions 6,8,10, there exists mt > 0 as in Proposition 11 for any
t ≥ 1such that:

P
(
µ∞
t (w∞, θ)(i) ≥ mt ∀i ∈ supp (µ∞

t (w∞, θ))
)
= 1 ∀θ ∈ Θ.

Proof. Consider the following inductive hypothesis. There exists m̄t−1 > 0 such that:

P
(
π∞
t−1(w

∞, θ)(i) ≥ m̄t−1 ∀i ∈ supp
(
π∞
t−1(w

∞, θ)
))

= 1 ∀n ∈ [N ], θ ∈ Θ.

As for Proposition 11, from Assumption 6 we have that p0(w, θ) is continuous in w, θ and both
W and Θ are compact, we then get from Weierstrass theorem that there exists a minimum m0 such
that for any realization of w∞ and for any i ∈ supp

(
p0(w

∞, θ)(i)
)
:

π∞
0 (w∞, θ)(i) = p0(w

∞, θ)(i) ≥ min
w∈W,θ∈Θ

min
j∈supp(p0(w,θ)(j))

p0(w, θ)
(j) =: m0,

with m0 > 0 as we are considering a minimum over j ∈ supp
(
p0(w, θ)

(j)
)
which excludes all the

zeros. As m0 does not depend on w∞ we conclude that the inductive hypothesis holds for t−1 = 0.

We now move to π∞
t|t−1(w

∞, θ), and let i ∈ supp
(
π∞
t|t−1(w

∞, θ)
)
then:

π∞
t|t−1(w

∞, θ)(i) ≥ m̄t−1

∑
j∈supp(π∞

t−1(w
∞,θ))

Kη̄∞
t−1(w

∞,θ)(w
∞, θ)(j,i),

where the inequality holds with probability 1 under the inductive hypothesis. Several of the re-
maining inequalities in the proof also hold with probability 1, although to avoid repetition we do
not state this explicitly. Similarly to Proposition 11:∑

j∈supp(π∞
t−1(w

∞,θ))

Kη̄∞
t−1(w

∞,θ)(w
∞, θ)(j,i) ≥ min

j∈supp
(
Kη̄∞

t−1(w
∞,θ)(w

∞,θ)(·,i)
)Kη̄∞

t−1(w
∞,θ)(w

∞, θ)(j,i).

Because of Assumption 8 we have:

Kη̄∞
t−1(w

∞,θ)(w
∞, θ)(j,i) = 0 ⇐⇒ Kη(w

∞, θ)(j,i) = 0 ∀η ∈ [0, C],

meaning that

min
j∈supp

(
Kη̄∞

t−1(w
∞,θ)(w

∞,θ)(·,i)
)Kη̄∞

t−1(w
∞,θ)(w

∞, θ)(j,i) ≥ min
η∈[0,C]

min
j∈supp(Kη(w∞,θ)(·,i))

Kη(w
∞, θ)(j,i).

We can then conclude:

π∞
t|t−1(w

∞, θ)(i) ≥ m̄t−1 min
θ∈Θ,w∈W,η∈[0,C]

min
j∈supp(Kη(w,θ)(·,i))

Kη(w, θ)
(j,i)

≥ m̄t−1 min
θ∈Θ,w∈W,η∈[0,C]

min
(i,j)∈supp(Kη(w,θ))

Kη(w, θ)
(j,i).
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As Kη(w, θ) is continuous in η because of Assumption 10 and also in w, θ because of Assumption 6,
and both [0, C] is compact by definition and W,Θ are compact because of Assumption 6, we can
conclude by Weirstrass theorem that there exists a minimum mK , hence:

π∞
t|t−1(w

∞, θ)(i) ≥ m̄t−1mK > 0,

where the strictly greater than zero follows from considering the minimum on the support of the
transition matrix. As there is no dependence on w∞,y∞

1:t−1 we conclude that there exist m̄t−1,mK >
0 such that:

P
(
π∞
t|t−1(w

∞, θ)(i) ≥ m̄t−1mK ∀i ∈ supp
(
π∞
t|t−1(w

∞, θ)
))

= 1 ∀θ ∈ Θ.

Following again the same steps as in Proposition 11, we have that for an arbitrary realization
of w∞,y∞

1:t−1, and i ∈ supp (µ∞
t (w∞, θ)):

µ∞
t (w∞, θ)(i) ≥ m̄t−1mK

∑
j∈supp

(
π∞

t|t−1
(w∞,θ)

)G(w∞, θ)(j,i),

where the inequality follows from what we have proven above. Moreover:

µ∞
t (w∞, θ)(i) ≥ m̄t−1mK min

w∈W,θ∈Θ
min

(i,j)∈supp(G(w,θ))
G(w, θ)(j,i),

and as G(w, θ) is continuous in w, θ because of Assumption 6 and W,Θ are compact because of
Assumption 6 we can conclude by Weirstrass theorem that there exists a minimum mG:

µ∞
t (w∞, θ)(i) ≥ m̄t−1mKmG > 0,

where the strictly greater than zero follows from considering a minimum on the support of the
emission matrix. As there is no dependence on w∞,y∞

1:t−1 we can then conclude that there exist
m̄t−1,mK ,mG > 0 such that:

P
(
µ∞
t (w∞, θ)(i) ≥ m̄t−1mKmG ∀i ∈ supp (µ∞

t (w∞, θ))
)
= 1 ∀θ ∈ Θ.

Finally, consider a realization of w∞,y∞
1:t and i ∈ supp (π∞

t (w∞, θ)) then:

π∞
t (w∞, θ)(i) ≥ m̄t−1mK

∑
j

G(w∞, θ)(i,j)(y∞
t )(j),

where the inequality follows from what we have proven above and we know that by definition and
by Proposition 22:∑

j

G(w∞, θ)(i,j)(y∞
t )(j) ≤ 1 and

∑
j

G(w∞, θ)(i,j)(y∞
t )(j) ̸= 0,

68



P-almost surely. Following the same steps as in Proposition 11 we can conclude that there exist
m̄t−1,mK ,mG > 0 such that:

P
(
π∞
t (w∞, θ)(i) ≥ m̄t−1mKmG ∀i ∈ supp (π∞

t (w∞, θ))
)
= 1 ∀θ ∈ Θ.

We can then set m̄t := m̄t−1mKmG and conclude that there exists m̄t > 0 such that:

P
(
π∞
t (w∞, θ)(i) ≥ m̄t ∀i ∈ supp (π∞

t (w∞, θ))
)
= 1 ∀θ ∈ Θ,

which closes the induction, meaning that the above statement holds for an arbitrary t. As a
consequence, we also have that for any t ≥ 1 there exists mt > 0 such that:

P
(
µ∞
t (w∞, θ)(i) ≥ mt ∀i ∈ supp (µ∞

t (w∞, θ))
)
= 1 ∀θ ∈ Θ,

with mt := m̄t−1mKmG, which concludes the proof.

Population saturated process. The population saturated process consists of OM -valued disease
states (x∞

n,t)t≥0 and OM+1-valued observations (y∞
n,t)t≥1, for each n ∈ N.

Given w1,w2, . . . , (which are the same covariate vectors as in the data-generating process), the
individuals and observations (x∞

n,t)t≥0, (y
∞
n,t)t≥1, are defined to be conditionally independent across

n, and distributed as follows:

x∞
n,0|wn ∼ Cat (·|p0(wn, θ

⋆)) ,

x∞
n,t|x∞

n,t−1,wn ∼ Cat

(
·|
[
(x∞

t−1)
⊤Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]⊤)

,

y∞
n,t|x∞

n,t,wn ∼ Cat
(
·|
[
(x∞

t )⊤G(wn, θ
⋆)
]⊤)

.

(31)

where η∞
t−1 is as in Corollary 14.

Proposition 24. Under Assumption 7,9,10, for any t ≥ 1 there exists constants ξt > 0 and Bt > 0
such that for any function ft with ft(wn,y

N
n,1:t) ∈ [−Bt, Bt] and ft(wn,y

∞
n,1:t) ∈ [−Bt, Bt] almost

surely we have:










1

N

∑
n∈[N ]

ft(wn,y
N
n,1:t)− ft(wn,y

∞
n,1:t)











4

≤ 2Bt
4
√
6N− 1

2 ξt.

Proof. Remark that both xNn,t and x∞
n,t are random variables that take values on OM , and similarly

yNn,t and y∞
n,t take values on OM+1. We often write expectations over xNn,t or x

∞
n,t (resp. y

N
n,t or y

∞
n,t)

as summations over “x” (resp. “y”), implicitly it should be understood that we are marginalizing
over x ∈ OM (resp. y ∈ OM+1).

Consider the following inductive hypothesis. There exists ξt−1 > 0 such that for any function
ft−1 with ft−1(wn,x

N
n,1:t−1) ∈ [−Bt−1, Bt−1] and ft−1(wn,x

∞
n,1:t−1) ∈ [−Bt−1, Bt−1] we have:











1

N

∑
n∈[N ]

ft−1(wn,x
N
n,0:t−1)− ft−1(wn,x

∞
n,0:t−1)











4

≤ 2Bt−1
4
√
6N− 1

2 ξ̄t−1.
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We start by proving it at t− 1 = 0, and specifically we want:











1

N

∑
n∈[N ]

f0(wn,x
N
n,0)− f0(wn,x

∞
n,0)











4

≤ 2B0
4
√
6N− 1

2 ξ̄0.

Observe that f0(wn,x
N
n,0) − f0(wn,x

∞
n,0) are conditionally independent given WN and mean zero

because:

E
[
f0(wn,x

N
n,0)|WN

]
=
∑
x0

f0(wn, x0)p0(wn, θ
⋆) = E

[
f0(wn,x

∞
n,0)|WN

]
.

Moreover, they are almost surely bounded because we are assuming f0(wn,x
N
n,0) ∈ [−B0, B0] and

f0(wn,x
∞
n,0) ∈ [−B0, B0] almost surely, hence:∥∥f0(wn,x

N
n,0)− f0(wn,x

∞
n,0)
∥∥
∞ ≤ 2B0.

meaning that by Lemma 5:











1

N

∑
n∈[N ]

f0(wn,x
N
n,0)− f0(wn,x

∞
n,0)











4

≤ 2B0
4
√
6N− 1

2 ,

meaning that our inductive hypothesis it true at t− 1 = 0 for ξ̄0 = 1.
Consider now a general time t, we can rewrite:

ft(wn,x
N
n,0:t)− ft(wn,x

∞
n,0:t)

= ft(wn,x
N
n,0:t)−

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)x

+
∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]
x

+
∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x

−
∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)

+
∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x− ft(wn,x
∞
n,t),
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meaning that by Minkowski inequality:










1

N

∑
n∈[N ]

ft(wn,x
N
n,0:t)− ft(wn,x

∞
n,0:t)











4

=











1

N

∑
n∈[N ]

ft(wn,x
N
n,0:t)−

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)x











4

(32)

+













1

N

∑
n∈[N ]

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)

−Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]
x







4
(33)

+













1

N

∑
n∈[N ]

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x

−
∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x











4

(34)

+











1

N

∑
n∈[N ]

∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x− ft(wn,x
∞
n,t)











4

. (35)

Starting from (32) we can notice that:

E
[
ft(wn,x

N
n,0:t)|WN ,xN0:t−1

]
=
∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)x,

moreover the random variables ft(wn,x
N
n,0:t)−

∑
x ft(wn, (x

N
n,0:t−1, x))(x

N
n,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)x

are conditionally independent across n given WN ,XN
t−1 and almost surely bounded by 2Bt, we can

then conclude by Lemma 5:










1

N

∑
n∈[N ]

ft(wn,x
N
n,0:t)−

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤KηN
t−1(wn,θ⋆)(wn, θ

⋆)x











4

≤ 2Bt
4
√
6N− 1

2 .

Moving to (33) we note that by Minkowski inequality:












1

N

∑
n∈[N ]

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)

−Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]
x







4

≤ 1

N

∑
n∈[N ]











∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)

−Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]
x







4
.
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Remark that:∣∣∣∣∣∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]
x

∣∣∣∣∣
≤ Bt

∑
x

∣∣∣(xNn,t−1)
⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]
x
∣∣∣

≤ Bt

∥∥∥KηN
t−1(wn,θ⋆)(wn, θ

⋆)−Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
∥∥∥
∞
,

hence by Assumption 10 we have:∣∣∣∣∣∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)−Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)
]
x

∣∣∣∣∣
≤ BtL

∣∣ηNt−1(wn, θ
⋆)− η∞

t−1(wn, θ
⋆)
∣∣ .

We can then rewrite:












1

N

∑
n∈[N ]

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)

−Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]
x







4

≤ BtL

N

∑
n∈[N ]











ηNt−1(wn, θ
⋆)− η∞

t−1(wn, θ
⋆)











4

,

and because of Corollary 14 and Assumption 10, we can conclude:













1

N

∑
n∈[N ]

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤
[
KηN

t−1(wn,θ⋆)(wn, θ
⋆)

−Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)
]
x







4

≤ 2BtLC
4
√
6N− 1

2αt−1.

Consider (34), it is just enough to apply our inductive hypothesis with test function ft−1 given
by:

ft−1(wn, x0:t−1) =
∑
x

ft(wn, (x0:t−1, x))x
⊤
t−1Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)x,
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indeed wether we have x0:t−1 = xNn,0:t−1 or x0:t−1 = x∞
n,0:t−1 in both cases:∣∣∣∣∣∑

x

ft(wn, (x0:t−1, x))x
⊤
t−1Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)x

∣∣∣∣∣
≤
∑
x

∣∣∣ft(wn, (x0:t−1, x))x
⊤
t−1Kη∞

t−1(wn,θ⋆)(wn, θ
⋆)x
∣∣∣

≤ Bt

∑
x

∣∣∣x⊤t−1Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x
∣∣∣ = Bt.

Hence:












1

N

∑
n∈[N ]

∑
x

ft(wn, (x
N
n,0:t−1, x))(x

N
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x

−
∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x











4

≤ 2Bt
4
√
6N− 1

2 ξ̄t−1.

The final term to work on is (35), but:

E
[
ft(wn,x

∞
n,0:t)|WN

]
= E

{
E
[
ft(wn,x

∞
n,0:t)|x∞

n,0:t−1,W
N
]
|WN

}
= E

[∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x|WN

]
,

and the random variables:∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x− ft(wn,x
∞
n,0:t),

are defined to be conditionally independent given WN and bounded by 2Bt. We can then apply
Lemma 5 and conclude:











1

N

∑
n∈[N ]

∑
x

ft(wn, (x
∞
n,0:t−1, x))(x

∞
n,t−1)

⊤Kη∞
t−1(wn,θ⋆)(wn, θ

⋆)x− ft(wn,x
∞
n,0:t)











4

≤ 2Bt
4
√
6N− 1

2 .

By putting everything together we can conclude:










1

N

∑
n∈[N ]

ft(wn,x
N
n,0:t)− ft(wn,x

∞
n,0:t)











4

≤ 2Bt
4
√
6N− 1

2 + 2BtLC
4
√
6N− 1

2 ξ̄t−1 + 2Bt
4
√
6N− 1

2 ξ̄t−1 + 2Bt
4
√
6N− 1

2

= 2Bt
4
√
6N− 1

2

[
2 + (LC + 1)ξ̄t−1

]
.
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Hence we have proven that our inductive hypothesis is valid at time t with the constant ξ̄t :=[
2 + (LMC + 1)ξ̄t−1

]
, which tells us that for any t ≥ 1 we have:










1

N

∑
n∈[N ]

ft(wn,x
N
n,0:t)− ft(wn,x

∞
n,0:t)











4

≤ 2Bt
4
√
6N− 1

2 ξ̄t,

which also implies:










1

N

∑
n∈[N ]

ft(wn,x
N
n,1:t)− ft(wn,x

∞
n,1:t)











4

≤ 2Bt
4
√
6N− 1

2 ξ̄t, (36)

as we can rewrite ft(wn,x
N
n,1:t) as ft(wn,x

N
n,1:t)I(xn,0 ∈ OM), where the indicator condition is always

satisfied.
We can now move to prove the statement of the proposition, with ft as therein:











1

N

∑
n∈[N ]

ft(wn,y
N
n,1:t)− ft(wn,y

∞
n,1:t)











4

≤ 2Bt
4
√
6N− 1

2 ξt.

Observe that:

ft(wn,y
N
n,1:t)− ft(wn,y

∞
n,1:t)

= ft(wn,y
N
n,1:t)−

∑
y1:t

ft(wn, y1:t)
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys

+
∑
y1:t

ft(wn, y1:t)

[
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys −
t∏

s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys

]

+
∑
y1:t

ft(wn, y1:t)
t∏

s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys − ft(wn,y

∞
n,t),

then by Minkowski inequality:










1

N

∑
n∈[N ]

ft(wn,y
N
n,1:t)− ft(wn,y

∞
n,1:t)











4

=











1

N

∑
n∈[N ]

ft(wn,y
N
n,1:t)−

∑
y1:t

ft(wn, y1:t)
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys











4

(37)

+











1

N

∑
n∈[N ]

∑
y1:t

ft(wn, y1:t)

[
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys −
t∏

s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys

]









4

(38)

+











1

N

∑
n∈[N ]

∑
y1:t

ft(wn, y1:t)
t∏

s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys − ft(wn,y

∞
n,1:t)











4

. (39)
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Starting from (37) we can notice that:

E
[
ft(wn,y

N
n,1:t)|WN ,XN

1:t

]
=
∑
y1:t

ft(wn, y1:t)
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys,

moreover the random variables:

ft(wn,y
N
n,1:t)−

∑
y1:t

ft(wn, y1:t)
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys,

are conditionally independent given WN ,XN
1:t and bounded by 2Bt, hence we can apply Lemma 5

and conclude:










1

N

∑
n∈[N ]

ft(wn,y
N
n,1:t)−

∑
y1:t

ft(wn, y1:t)
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys











4

≤ 2Bt
4
√
6N− 1

2 .

Consider now (38) and notice that if we consider the test function:

ht(wn, x0:t) =
∑
y1:t

ft(wn, y1:t)
t∏

s=1

(xs)
⊤G(wn, θ

⋆)ys,

wether we have x0:t = xNn,0:t or x0:t = x∞
n,0:t in both cases:∣∣∣∣∣∑

y1:t

ft(wn, y1:t)
t∏

s=1

(xs)
⊤G(wn, θ

⋆)ys

∣∣∣∣∣ ≤ Bt

∑
y1:t

∣∣∣∣∣
t∏

s=1

(xs)
⊤G(wn, θ

⋆)ys

∣∣∣∣∣ = Bt.

The term (38) is then an application of (36):










1

N

∑
n∈[N ]

∑
y1:t

ft(wn, y1:t)

[
t∏

s=1

(xNn,s)
⊤G(wn, θ

⋆)ys −
t∏

s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys

]









4

≤ 2Bt
4
√
6N− 1

2 ξ̄t.

The last term we need to work on is (39), but:

E
[
ft(wn,y

∞
n,1:t)|WN

]
= E

{
E
[
ft(wn,y

∞
n,1:t)|WN ,x∞

n,0:t

]
|WN

}
=
∑
y1:t

E

[
ft(wn, y1:t)

t∏
s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys|WN

]
,

and the random variables:∑
y1:t

ft(wn, y1:t)
t∏

s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys − ft(wn,y

∞
n,1:t),

75



are defined to be conditionally independent given WN and bounded by 2Bt, hence we can apply
Lemma 5 and conclude:











1

N

∑
n∈[N ]

∑
y1:t

ft(wn, y1:t)
t∏

s=1

(x∞
n,s)

⊤G(wn, θ
⋆)ys − ft(wn,y

∞
n,1:t)











4

≤ 2Bt
4
√
6N− 1

2 .

By putting everything together we get:










1

N

∑
n∈[N ]

ft(wn,y
N
n,1:t)− ft(wn,y

∞
n,1:t)











4

≤ 2Bt
4
√
6N− 1

2 + 2Bt
4
√
6N− 1

2 ξ̄t + 2Bt
4
√
6N− 1

2

= 2Bt
4
√
6N− 1

2 (2 + ξ̄t),

which conclude the proof under ξt := (2 + ξ̄t).

Saturated CAL algorithm. We refer to the following recursion as the “saturated CAL algo-
rithm”.

π̂∞
n,0(wn, θ) := p0(wn, θ),

π̂∞
n,t|t−1(wn, θ) :=

[
π̂∞
n,t−1(wn, θ)

⊤Kη̄∞
t−1(wn,θ)(wn, θ)

]⊤
,

µ̂∞
n,t(wn, θ) :=

[
π̂∞
n,t|t−1(wn, θ)

⊤G(wn, θ)
]⊤
,

π̂∞
n,t(wn, θ) := π̂∞

n,t|t−1(wn, θ)⊙
{[
G(wn, θ)⊘

(
1M µ̂∞

n,t(wn, θ)
⊤)]yNn,t} ,

(40)

where η̄∞
t−1(·, ·) is defined in (18).

Proposition 25. Under assumptions 7,8, for any N ∈ N, t ≥ 1, n ∈ [N ] and θ ∈ Θ we have that∑
i µ̂

∞
n,t(wn, θ)

(i)(yNn,t)
(i) ̸= 0 P-almost surely.

Proof. The proof follows the same steps as Theorem 10, where we can replicate the same of Propo-
sition 6, Proposition 7, Proposition 8, and Proposition 9 for the saturated CAL. The only dif-
ference can be found in the prediction step where instead of Kη̃N

t−1(wn,θ)(wn, θ)
(j,i) = 0 we have

Kη̄∞
t−1(wn,θ)(wn, θ)

(j,i) = 0 which similarly implies that there exists η = η̄∞
t−1(wn, θ) such that

Kη(wn, θ)
(j,i) = 0, which allows us to follow the same argument as in Proposition 7.

Proposition 26. Under assumptions 6,8,10, for any t ≥ 1 there exists mt > 0 as in Proposition
11 for any N ∈ N and n ∈ [N ] such that:

P
(
µ̂N
n,t(wn, θ)

(i) ≥ mt ∀i ∈ supp
(
µN
n,t(wn, θ)

))
= 1 ∀θ ∈ Θ.

Proof. The proof follows the same steps as the proof of Proposition 11, indeed the only difference
between the CAL and the saturated CAL is the use of the saturated dynamic from which we still
get:

min
j∈supp

(
Kη̄∞

t−1(wn,θ)(wn,θ)(·,i)
)Kη̄∞

t−1(wn,θ)(wn, θ)
(j,i) ≥ min

η∈[0,C]
min

j∈supp(Kη(wn,θ)(·,i))
Kη(wn, θ)

(j,i),

as in the proof of Proposition 11.
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To conclude the section we establish that the incremental terms in the logarithm of the CAL
approximated the corresponding quantities from the saturated CAL algorithm.

Proposition 27. Under assumptions 6,7,8,9,10, there exists χt > 0 such that for any t ≥ 1,
n ∈ [N ]:











log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− log

(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)






4

≤ 2
4
√
6N− 1

2χt.

Proof. Using Proposition 11 and Proposition 26 for the lower bound, together with the fact that
yNn,t is a one hot encoding vector and the µ·

· are probability vectors for the upper bound, we can
conclude that both (yNn,t)

⊤µN
n,t(wn, θ) and (yNn,t)

⊤µ̂∞
n,t(wn, θ) are such that:

0 < mt ≤ (yNn,t)
⊤µN

n,t(wn, θ) ≤ 1, 0 < mt ≤ (yNn,t)
⊤µ̂∞

n,t(wn, θ) ≤ 1,

P-almost surely.
As the the function u 7→ log(u) is Lipschitz on the compact interval [mt, 1] we conclude:∣∣log ((yNn,t)⊤µN

n,t(wn, θ)
)
− log

(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)∣∣
≤ 1

mt

∣∣(yNn,t)⊤µN
n,t(wn, θ)− (yNn,t)

⊤µ̂∞
n,t(wn, θ)

∣∣ ,
P-almost surely. From the above we can conclude:











log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− log

(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)






4

≤ 1

mt











(yNn,t)
⊤µN

n,t(wn, θ)− (yNn,t)
⊤µ̂∞

n,t(wn, θ)











4

,

meaning that it remains to bound:










(yNn,t)
⊤µN

n,t(wn, θ)− (yNn,t)
⊤µ̂∞

n,t(wn, θ)











4

.

Consider as an inductive hypothesis that there exists a constant χ̄t−1 > 0 such that for any
random vector fn which satisfies ∥fn∥∞ ≤ B, P-almost surely:











f⊤n π
N
n,t−1(wn, θ)− f⊤n π̂

∞
n,t−1(wn, θ)











4

≤ 2B
4
√
6N− 1

2 χ̄t−1.

Observe that this is valid at t− 1 = 0 since π∞
n,0(wn, θ) = π̂∞

n,0(wn, θ), therefore we have:











f⊤n π
N
n,0(wn, θ)− f⊤n π̂

∞
n,0(wn, θ)











4

= 0.
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In order to show that the inductive hypothesis holds at time t, let us first consider the prediction
step, and observe that:











f⊤n π
N
n,t|t−1(wn, θ)− f⊤n π̂

∞
n,t|t−1(wn, θ)











4

≤











πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)fn − πN

n,t−1(wn, θ)
⊤Kη̄∞

t−1(wn,θ)(wn, θ)fn











4

(41)

+











πN
n,t−1(wn, θ)

⊤Kη̄∞
t−1(wn,θ)(wn, θ)fn − π̂∞

n,t−1(wn, θ)
⊤Kη̄∞

t−1(wn,θ)(wn, θ)fn











4

. (42)

Starting from (41), we have:










πN
n,t−1(wn, θ)

⊤Kη̃N
t−1(wn,θ)(wn, θ)fn − πN

n,t−1(wn, θ)
⊤Kη̄∞

t−1(wn,θ)(wn, θ)fn











4

≤ ∥fn∥∞











η̃Nt−1(wn, θ)− η̄∞
t−1(wn, θ)











4

≤ 2BC
4
√
6N− 1

2 (γt−1 + 1),

which follows in the same way as the proof of Proposition 17, see (23).
Moving to (42), we can apply our inductive hypothesis on the random vector: Kη̄∞

t−1(wn,θ)(wn, θ)fn

since
∥∥∥Kη̄∞

t−1(wn,θ)(wn, θ)fn

∥∥∥
∞

≤ B, P-almost surely, hence:











πN
n,t−1(wn, θ)

⊤Kη̄∞
t−1(wn,θ)(wn, θ)fn − π̂∞

n,t−1(wn, θ)
⊤Kη̄∞

t−1(wn,θ)(wn, θ)fn











4

≤ 2B
4
√
6N− 1

2 χ̄t−1.

By putting everything together we can conclude:










f⊤n π
N
n,t|t−1(wn, θ)− f⊤n π̂

∞
n,t|t−1(wn, θ)











4

≤ 2B[C(γt−1 + 1) + χ̄t−1]
4
√
6N− 1

2

≤ 2B
4
√
6N− 1

2 χ̄t|t−1,

where χ̄t|t−1 := C(γt−1 + 1) + χ̄t−1. Given the above we also have:










f⊤n µ
N
n,t(wn, θ)− f⊤n µ̂

∞
n,t(wn, θ)











4

≤











πN
n,t|t−1(wn, θ)

⊤G(wn, θ)fn − π̂∞
n,t|t−1(wn, θ)

⊤G(wn, θ)fn











4

≤ 2B
4
√
6N− 1

2 χ̄t|t−1,

(43)
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which is just an application of the previous result on the bounded random variable G(wn, θ)fn, as
we know ∥G(wn, θ)f∥∞ ≤ B is bounded P-almost surely.

Now we need to work on:










f⊤n π
N
n,t(wn, θ)− f⊤n π̂

∞
n,t(wn, θ)











4

.

Note that by using Gµ(w, θ) for the matrix with elements Gµ(w, θ)
(i,j) = G(w,θ)(i,j)

µ(j) where 0
0
= 0 by

convention, we can rewrite everything in a more compact way:











f⊤n π
N
n,t(wn, θ)− f⊤n π̂

∞
n,t(wn, θ)











4

=











[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
fn ⊙ π̂∞

t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

.

By Minkowski inequality we can then conclude:











f⊤n π
N
n,t(wn, θ)− f⊤n π̂

∞
n,t(wn, θ)











4

≤











[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
fn ⊙ πN

t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

(44)

+











[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
fn ⊙ π̂∞

t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

. (45)

Starting from (44), we remark that:

x⊤Gµb− x⊤Gµ̃b =
∑
i,j

x(i)y(j)
G(i,j)µ̃(j) −G(i,j)µ(j)

µ̃(j)µ(j)
=
∑
i,j

x(i)
y(j)

µ̃(j)µ(j)
G(i,j)

(
µ̃(j) − µ(j)

)
.
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Hence we can reformulate (44):










[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
fn ⊙ πN

t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

=











{[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤
G(wn, θ)

}⊤
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̂∞
n,t(wn, θ)

]⊤
[
µ̂∞
n,t(wn, θ)− µN

n,t(wn, θ)
]









4

,

from which we can notice that for any wn:∥∥∥{[fn ⊙ πN
t|t−1(wn, θ)

]⊤
G(wn, θ)

}
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̂∞
n,t(wn, θ)

]∥∥∥
∞

≤ ∥fn∥∞
∥∥yNn,t ⊘ µ̂∞

n,t(wn, θ)
∥∥
∞ ,

where the first step follows from µN
n,t(w, θ) =

[
πN
t|t−1(w, θ)

⊤G(w, θ)
]⊤

and the elementwise ratio

yNn,t ⊘ µ̂∞
n,t(wn, θ) is well-defined because of Proposition 25.

As from Proposition 26 we know that the saturated CAL is almost surely bounded we have:∥∥∥{[fn ⊙ πN
t|t−1(wn, θ)

]⊤
G(wn, θ)

}
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̂∞
n,t(wn, θ)

]∥∥∥
∞

≤ ∥fn∥∞
mt

≤ B

mt

,

P-almost surely. Hence we can apply (43) as we are considering an almost surely bounded random
vector: {[

fn ⊙ πN
t|t−1(wn, θ)

]⊤
G(wn, θ)

}
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̂∞
n,t(wn, θ)

]
and conclude:











[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤ [

GµN
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
fn ⊙ πN

t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

=











{[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤
G(wn, θ)

}⊤
⊙
[
yNn,t ⊘ µN

n,t(wn, θ)⊘ µ̂∞
n,t(wn, θ)

]⊤
[
µ̂∞
n,t(wn, θ)− µN

n,t(wn, θ)
]









4

≤ 2B
4
√
6N− 1

2
χt
mt

.
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Moving to (45), we can observe that:










[
fn ⊙ πN

n,t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]
−
[
fn ⊙ π̂∞

t|t−1(wn, θ)
]⊤ [

Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t

]









4

=











[
fn ⊙Gµ̂∞

n,t(wn,θ)(wn, θ)y
N
n,t

]⊤ [
πN
t|t−1(wn, θ)− π̂∞

t|t−1(wn, θ)
]









4

≤ 2B
4
√
6N− 1

2 χ̄t|t−1,

where we can apply (43) to the test vector fn⊙Gµ̂∞
n,t(wn,θ)(wn, θ)y

N
n,t, as it is almost surely bounded.

By putting everything together we can conclude:










f⊤n π
N
n,t(wn, θ)− f⊤n π̂

∞
n,t(wn, θ)











4

≤ 2B
4
√
6N− 1

2
χt
mt

+ 2B
4
√
6N− 1

2 χ̄t|t−1,

which closes our inductive hypothesis by setting χ̄t =
χt

mt
+ χ̄t|t−1, and so we can conclude that for

any t ≥ 1 there exists χ̄t|t−1, χ̄t such that for any test random vector fn, with ∥fn∥∞ ≤ B, P-almost
surely:

•











f⊤n π
N
n,t|t−1(wn, θ)− f⊤n π̂

∞
n,t|t−1(wn, θ)











4

≤ 2B 4
√
6N− 1

2 χ̄t|t−1;

•











f⊤n µ
N
n,t(wn, θ)− f⊤n µ̂

∞
n,t(wn, θ)











4

≤ 2B 4
√
6N− 1

2 χ̄t|t−1;

•











f⊤n π
N
n,t(wn, θ)− f⊤n π̂

∞
n,t(wn, θ)











4

≤ 2B 4
√
6N− 1

2 χ̄t.

As yNn,t is almost surely bounded
∥∥yNn,t∥∥∞ ≤ 1 we can conclude:











(yNn,t)
⊤µN

n,t(wn, θ)− (yNn,t)
⊤µ̂∞

n,t(wn, θ)











4

≤ 2
4
√
6N− 1

2 χ̄t|t−1,

so we can conclude our proof by setting χt :=
χ̄t|t−1

mt
as:











log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− log

(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)






4

≤ 1

mt











(yNn,t)
⊤µN

n,t(wn, θ)− (yNn,t)
⊤µ̂∞

n,t(wn, θ)











4

≤ 2
4
√
6N− 1

2
χ̄t|t−1

mt

.
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C.5 Strong consistency

Contrast function. In proposition 28 below we establish the convergence of the rescaled loga-

rithm of the CAL,
ℓN1:T (θ)

N
in the large population limit, and in Theorem 29 show how

ℓN1:T (θ)

N
− ℓN1:T (θ⋆)

N

converges to a contrast function.

Proposition 28. Under assumptions 6,7,8,9,10 and for any θ ∈ Θ let:

ℓNt (θ) :=
∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
,

then N−1ℓNt (θ) converges to E
[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]
as N → ∞, P-almost surely. Moreover:

E
[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]
= E

[
µ∞
t (w∞, θ⋆)⊤ log (µ∞

t (w∞, θ))
]
.

Proof. Consider the definition of µN
n,t(wn, θ) from (6), the definition of µ̂∞

n,t(wn, θ) from (40), the
definition of µ∞

t (w, θ) from (30), and define:

π∞
n,0(wn, θ) := p0(wn, θ),

π∞
n,t|t−1(wn, θ) :=

[
π∞
n,t−1(wn, θ)

⊤Kη̄∞
t−1(wn,θ)(wn, θ)

]⊤
,

µ∞
n,t(wn, θ) :=

[
π∞
n,t|t−1(wn, θ)

⊤G(wn, θ)
]⊤
,

π∞
n,t(wn, θ) := π∞

n,t|t−1(wn, θ)⊙
{[
G(wn, θ)⊘

(
1Mµ∞

n,t(wn, θ)
⊤)]y∞

n,t

}
,

(46)

where η̄∞
t−1(·, ·) is defined in (18) and y∞

n,t is defined in (31).
We can then consider the following decomposition:

1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]
=

1

N

∑
n∈[N ]

(log
(
yNn,t)

⊤µN
n,t(wn, θ)

)
− log

(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)
+

1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)
− log

(
(y∞

n,t)
⊤µ∞

n,t(wn, θ)
)

+
1

N

∑
n∈[N ]

log
(
(y∞

n,t)
⊤µ∞

n,t(wn, θ)
)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]
,
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by Minkowski inequality we conclude:











1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]






4

≤











1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− log

(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)






4

(47)

+











1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)
− log

(
(y∞

n,t)
⊤µ∞

n,t(wn, θ)
)






4

(48)

+











1

N

∑
n∈[N ]

log
(
(y∞

n,t)
⊤µ∞

n,t(wn, θ)
)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]






4

. (49)

Starting from (47), we can apply Proposition 27 to obtain:











log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− log

(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)






4

≤ 2
4
√
6N− 1

2χt.

Consider now (48), it is important to observe that when we compare (40) with (46), the only
difference between the two is that (40) uses yNn,t while (46) uses the population saturated process y∞

n,t.
Hence, if we look at (yNn,t)

⊤µ̂∞
n,t(wn, θ) as a function of yNn,1:t and (y∞

n,t)
⊤µ∞

n,t(wn, θ) as a function of
y∞
n,1:t we are considering the same function evaluated in different arguments; we can define for a fixed
θ the function hθt (w, y1:t) which is such that hθt (wn,y

N
n,t) = (yNn,t)

⊤µ̂∞
n,t(wn, θ) and hθt (wn,y

∞
n,t) =

(y∞
n,t)

⊤µ∞
n,t(wn, θ). Because of Proposition 26, for all i ∈ [M ] we have that µ̂∞

n,t(wn, θ)
(i) > mt,

meaning that hθt (wn,y
N
n,t) ∈ [mt, 1] almost surely. Similarly, because of Proposition 23, for all i ∈

[M ] we have that µ∞
n,t(wn, θ)

(i) > mt, meaning that hθt (wn,y
∞
n,t) ∈ [mt, 1] almost surely. This follows

as (31) consists of repeating (29) N times. We can then consider log(hθt (wn,y
N
n,t)) ∈ [log(mt), 0]

and log(hθt (wn,y
∞
n,t)) ∈ [log(mt), 0] almost surely and apply Proposition 24 as both log(hθt (wn,y

N
n,t))

and log(hθt (wn,y
∞
n,t)) are almost surely in [log(mt), |log(mt)|]:











1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µ̂∞
n,t(wn, θ)

)
− log

(
(y∞

n,t)
⊤µ∞

t (wn, θ)
)






4

≤ 2 |log(mt)| 4
√
6N− 1

2 ξt.

For (49), note that:

E
[
log
(
(y∞

n,t)
⊤µ∞

n,t(wn, θ)
)]

= E
[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]
,

see the definitions of y∞
n,t,y

∞
t ,µ

∞
t (w∞, θ) in Section C.4 and the definition of µ∞

n,t(wn, θ) in (46) at
the beginning of the proof. Moreover,∥∥log ((y∞

n,t)
⊤µ∞

n,t(wn, θ)
)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]∥∥ ≤ 2 |log(mt)| ,
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P-almost surely, because of the previous reasoning. As we are considering averages of random
variables that are mean zero, bounded, and independent, we can apply Lemma 5 and conclude:











1

N

∑
n∈[N ]

log
(
(y∞

n,t)
⊤µ∞

n,t(wn, θ)
)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]






4

≤ 2
4
√
6N− 1

2 |log(mt)| .

By putting everything together we obtain:










1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]






4

≤ 2
4
√
6N− 1

2χt + 2 |log(mt)| 4
√
6N− 1

2 ξt + 2
4
√
6N− 1

2 |log(mt)|
= 2

4
√
6N− 1

2 [χt + |log(mt)| (ξt + 1)] .

(50)

By applying Markov’s inequality, for any ι > 0,

P

∣∣∣∣∣∣ 1N
∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]∣∣∣∣∣∣ > ι


= P

∣∣∣∣∣∣ 1N
∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]∣∣∣∣∣∣
4

> ι4


≤ 1

ι4
E

∣∣∣∣∣∣ 1N
∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]∣∣∣∣∣∣
4

= ι−4











1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]






4

4

≤ 6
24

ι4
N−2 [χt + |log(mt)| (ξt + 1)]4 ,

where the last bound follows from (50). We then conclude that:

∞∑
N=1

P

∣∣∣∣∣∣ 1N
∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]∣∣∣∣∣∣ > ι

 <∞,

hence by the Borel-Cantelli lemma:

1

N

∑
n∈[N ]

log
(
(yNn,t)

⊤µN
n,t(wn, θ)

)
− E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]
→ 0,

as N → ∞, P-almost surely, or equivalently 1
N
ℓNt (θ) converges to E

[
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)]
as

N → ∞, P-almost surely.
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For the final statement of the proposition it is enough to observe that as y∞
t is a one-hot encoding

vector:
log
(
(y∞

t )⊤µ∞
t (w∞, θ)

)
= (y∞

t )⊤ log (µ∞
t (w∞, θ))

under the convention 0 log 0 = 0, and from Proposition 21 we have:

y∞
t |y∞

1:t−1,w
∞ ∼ Cat (·|µ∞

t (w∞, θ⋆)) .

Hence, by the tower rule:

E
[
(y∞

t )⊤ log (µ∞
t (w∞, θ))

]
= E

{
E
[
(y∞

t )⊤ log (µ∞
t (w∞, θ)) |y∞

1:t−1,w
∞]}

= E
{
E
[
(y∞

t )⊤|y∞
1:t−1,w

∞] log (µ∞
t (w∞, θ))

}
= E

[
µ∞
t (w∞, θ⋆)⊤ log (µ∞

t (w∞, θ))
]
.

Because of Proposition 28, we can conclude that the CAL has a contrast function which is an
expected Kullback-Leibler divergence, as per the following theorem. Recall from (30) the definition
µ∞
t (w∞, θ).

Theorem 29. Under assumptions 6,7,8,9,10, for any T ≥ 1 and θ ∈ Θ let:

ℓN1:T (θ) :=
T∑
t=1

ℓNt (θ)

then:
ℓN1:T (θ)

N
− ℓN1:T (θ

⋆)

N
→ CT (θ, θ⋆),

as N → ∞, P-almost surely, where:

CT (θ, θ⋆) := −
T∑
t=1

E {KL [Cat (·|µ∞
t (w∞, θ⋆)) ||Cat (·|µ∞

t (w∞, θ))]} . (51)

Moreover:
θ⋆ ∈ Θ⋆ := argmax

θ∈Θ
CT (θ, θ⋆). (52)

Proof. Because of Proposition 28:

ℓN1:T (θ)

N
− ℓN1:T (θ

⋆)

N
→

T∑
t=1

∫
E
[
µ∞
t (w∞, θ⋆)⊤ log

(
µ∞
t (w∞, θ)

µ∞
t (w∞, θ⋆)

)∣∣∣∣w∞ = w

]
Γ(dw),

as N → ∞, P-almost surely, where we notice that:

E
[
µ∞
t (w∞, θ⋆)⊤ log

(
µ∞
t (w∞, θ)

µ∞
t (w∞, θ⋆)

)∣∣∣∣w∞ = w

]
= E

{
E
[
µ∞
t (w∞, θ⋆)⊤ log

(
µ∞
t (w∞, θ)

µ∞
t (w∞, θ⋆)

)∣∣∣∣y∞
1:t−1,w

∞ = w

]∣∣∣∣w∞ = w

}
= −E {KL [Cat (·|µ∞

t (w∞, θ⋆)) ||Cat (·|µ∞
t (w∞, θ))] |w∞ = w} ,
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hence:

ℓN1:T (θ)

N
− ℓN1:T (θ

⋆)

N

→ −
T∑
t=1

∫
E {KL [Cat (·|µ∞

t (w∞, θ⋆)) ||Cat (·|µ∞
t (w∞, θ))] |w∞ = w}Γ(dw),

as N → ∞, P-almost surely, from which we conclude the first part of the proof as:

CT (θ, θ⋆) = −
T∑
t=1

∫
E {KL [Cat (·|µ∞

t (w∞, θ⋆)) ||Cat (·|µ∞
t (w∞, θ))] |w∞ = w}Γ(dw).

The KL-divergence is always greater than or equal to zero, and equal to zero if and only if the two
distributions are equal. Hence the maximal value of the negative KL-divergence is zero, and we
have:

θ⋆ ∈ Θ⋆ = argmax
θ∈Θ

CT (θ, θ⋆),

which concludes the proof.

Uniform almost sure convergence. Theorem 29 proves the convergence
ℓN1:T (θ)

N
− ℓN1:T (θ⋆)

N
→

CT (θ, θ⋆) pointwise in θ. In order to make statements about the convergence of the maximizer of
ℓN1:T (θ) in the same vein as Whitehouse et al. (2023), we must show this convergence is uniform. To
proceed we will use the following results.

Definition 30. Let (HN)N≥1 be a sequence of random functions HN : θ ∈ Θ 7→ HN(θ) ∈ R where Θ
is a metric space. We say that (HN)N≥1 are stochastically equicontinuous if there exists an event E
of probability 1, such that for all ι > 0 and ω ∈ E, there exists N(ω) and δ > 0 such that N > N(ω)
implies:

sup
|θ1−θ2|<δ

|HN(ω, θ1)−HN(ω, θ2)| < ι.

Lemma 31. Assume Θ is a compact metric space and let (HN)N≥1 be a sequence of random
functions HN : θ ∈ Θ → HN(θ) ∈ R. If there exists a continuous function H such that for all θ ∈ Θ
we have |HN(θ)−H(θ)| a.s.→ 0, and (HN)N≥1 are stochastically equicontinuous, then:

sup
θ∈Θ

|HN(θ)−H(θ)| a.s.→ 0.

That is HN(θ) converges to H(θ) almost surely as N → ∞, uniformly in θ.

Proof. See Andrews (1992).

Lemma 32. Under Assumptions 6,7,8,9,10,

sup
θ∈Θ

∣∣∣∣ℓN1:T (θ)N
− ℓN1:T (θ

⋆)

N
− CT (θ, θ⋆)

∣∣∣∣→ 0,

P-almost surely.
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Proof. By Theorem 29 we have pointwise convergence. Hence, by Lemma 31 it is enough to show
that

CNt (θ) :=
1

N

∑
n∈[N ]

(yNn,t)
⊤ log

(
µN
n,t(wn, θ)

)
, (53)

is stochastically equicontinuous. Define

C∞
t (θ) :=

∫
E
[
µ∞
t (w∞, θ⋆)⊤ log (µ∞

t (w∞, θ)) |w∞ = w
]
Γ(dw).

Let θ1, θ2 ∈ Θ and consider the decomposition

|CNt (θ1)− CNt (θ2)| ≤|CNt (θ1)− C∞
t (θ1)| (54)

+|CNt (θ2)− C∞
t (θ2)| (55)

+|C∞
t (θ1)− C∞

t (θ2)|. (56)

Note that all of these quantities are well defined by Theorem 10 and by the fact that µ∞
t (w∞, θ) ̸= 0

because of Proposition 22.
Let E ⊂ Ω such that P(E) = 1. Let θ, θ⋆ ∈ Θ, ω ∈ E, and ι > 0. By Theorem 29 we have almost

sure convergence of (54) and (55) to 0, hence there exists an N(ω) such that for all N > N(ω) these
terms are bounded by ι/3.

It remains to show that there exists a δ such that for |θ1−θ2| < δ implies that (56) is bounded by
ι/3. This follows directly from noticing that C∞

t (θ) comprises a composition of continuous functions
of our model quantities p0, K, and G, which are themselves continuous functions of θ because of
Assumption 6.

Theorem 33. Let 6,7,8,9,10 hold and let θ̂N be a maximizer of ℓN1:T (θ). Then θ̂N converges to Θ⋆

as N → ∞, P-almost surely.

Proof. The proof follows in the same manner as that of Theorem 1 in Whitehouse et al. (2023), we
include it for completeness.

Let CT (θ⋆, θ) be as defined by (51) and let CNT (θ) =
∑T

t=1 CNt (θ) be as in Equation (53). We have

that CNT (θ̂N) ≥ CNT (θ) for all θ ∈ Θ⋆. Furthermore CT (θ⋆, θ⋆)− CT (θ⋆, θ) ≥ 0 for all θ ∈ Θ. We can
combine these inequalities to obtain:

0 ≤ CT (θ⋆, θ⋆)− CT (θ⋆, θ̂n)
= CT (θ⋆, θ⋆)− CNT (θ⋆) + CNT (θ⋆)− CNT (θ̂n) + CNT (θ̂n)− CT (θ⋆, θ̂n)
≤ 2 sup

θ∈Θ

∣∣CT (θ⋆, θ)− CNT (θ)
∣∣→ 0 P-almost surely,

(57)

by Lemma 32. Hence CT (θ⋆, θ̂n) → CT (θ⋆, θ⋆) P-almost surely.
Now assume for purposes of contradiction that there is some positive probability that θ̂n does

not converge to the set Θ⋆, i.e. assume that there is an event E ⊂ Ω with P(E) > 0 such that
for all ω ∈ E there exists a δ > 0 such that for infinitely many n ∈ N we have θ̂n(ω) is not in
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the open neighborhood Bδ(Θ
⋆) = {θ ∈ Θ : ∃θ′ ∈ Θ⋆ : ∥θ − θ′∥ < δ}. Since Θ is compact, the

set Bδ(Θ
⋆)c = Θ \ Bδ(Θ

⋆) is closed, bounded, and therefore compact. Furthermore, CT (θ⋆, θ) is
continuous in θ. By the extreme value theorem this means that there exists a θ′ ∈ Bδ(Θ

⋆)c such
that for all θ ∈ Bδ(Θ

⋆)c:
CT (θ⋆, θ) ≤ CT (θ⋆, θ′)

Furthermore, since θ′ /∈ Θ⋆ there exists ι > 0 such that:

CT (θ⋆, θ′) < CT (θ⋆, θ⋆)− ι.

By our assumption we have for each ω ∈ E there are infinitely many n ∈ N such that θ̂n(ω) ∈
Bδ(Θ

⋆)c. But this implies that for each ω ∈ E there are infinitely many n ∈ N such that:

CT (θ⋆, θ̂n(ω)) ≤ CT (θ⋆, θ′) < CT (θ⋆, θ⋆)− ι,

=⇒ |CT (θ⋆, θ⋆)− CT (θ⋆, θ̂n(ω))| > ι,

which contradicts (57). Hence we must have that θ̂n converges to the set Θ⋆ P-almost surely.

C.5.1 Identifiability

Definition 34. Let {y∞
t }t≥1 be generated according to the process defined by equations (29) with

data-generating parameter θ⋆ ∈ Θ. Denote the law of {y∞
t }t≥1 conditional on w∞ = w with Pθ⋆,w∞ .

Lemma 35. Let θ⋆ ∈ Θ. For any θ1, θ2 ∈ Θ⋆ := argmaxθ∈Θ CT (θ, θ⋆) we have that Pθ1,w∞ = Pθ2,w∞ for
Γ-almost all w ∈ W.

Proof. Recall from (51) the definition of the contrast function:

CT (θ, θ⋆) := −
T∑
t=1

E {KL [Cat (·|µ∞
t (w∞, θ⋆)) ||Cat (·|µ∞

t (w∞, θ))]} .

where θ⋆ is the DGP and θ is a candidate parameter. With θ⋆ fixed, we want to characterize the set
of maximizers of CT (θ, θ⋆) in the first argument, i.e. the set Θ⋆ := argmaxθ∈Θ CT (θ, θ⋆). Let w ∈ W
and consider the conditional expectation

E {KL [Cat (·|µ∞
t (w∞, θ⋆)) ||Cat (·|µ∞

t (w∞, θ))]|w∞ = w},

this is the expectation of a KL-divergence between categorical distributions parameterized by the
random vectors µ∞

t (w∞, θ⋆) and µ∞
t (w∞, θ). Recall that according to the recursive definition of

these vectors given in (30), conditional on w∞ = w these vectors are random solely as functions
of y∞

1:t−1 ∼ Pθ⋆,w∞ , with no other sources of stochasticity. Hence this conditional expectation is a
summation over y1:t−1 ∈ Ot−1

M+1:

E {KL [Cat (·|µ∞
t (w∞, θ⋆)) ||Cat (·|µ∞

t (w∞, θ)) |w∞ = w]} (58)

=
∑
y1:t−1

Pθ⋆,w∞ (y∞
1:t−1 = y1:t−1)KL [Cat (·|µ∞

t (w, θ⋆)) ||Cat (·|µ∞
t (w, θ))]
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where the unbolded µ∞
t (w, θ⋆) and µ∞

t (w, θ) (similarly to the process defined by equations (29)) are
calculated with the recursions:

π∞
0 (w, θ) := p0(w, θ),

η̄∞t−1(w, θ) =

∫
d(w, w̃, θ)⊤π̄∞

t−1(w̃, θ)Γ(dw̃),

π∞
t|t−1(w, θ) :=

[
π∞
t−1(w, θ)

⊤Kη̄∞t−1(w,θ)
(w, θ)

]⊤
,

µ∞
t (w, θ) :=

[
π∞
t|t−1(w, θ)

⊤G(w, θ)
]⊤
,

π∞
t (w, θ) := π∞

t|t−1(w, θ)⊙
{[
G(w, θ)⊘

(
1Mµ

∞
t (w, θ)⊤

)]
yt
}
,

where the dependence of various quantities on y1:t is not shown in the notation.
By properties of the KL-divergence we have that

KL [Cat (·|µ∞
t (w, θ⋆)) ||Cat (·|µ∞

t (w, θ))] = 0 ⇐⇒ µ∞
t (w, θ) = µ∞

t (w, θ⋆),

and
KL [Cat (·|µ∞

t (w, θ⋆)) ||Cat (·|µ∞
t (w, θ))] > 0 ⇐⇒ µ∞

t (w, θ) ̸= µ∞
t (w, θ⋆),

which makes it clear that θ⋆ ∈ Θ⋆, as already mentioned in (52). It then follows from Equation (58)
that if θ ∈ Θ⋆ then for Pθ⋆,w∞ -almost all paths y1:t−1 ∈ Ot−1

M+1 we must have µ∞
t (w, θ) = µ∞

t (w, θ⋆).
Now, considering the full contrast function we have by the tower rule:

CT (θ, θ⋆) := −
T∑
t=1

E {KL [Cat (·|µ∞
t (w∞, θ⋆)) ||Cat (·|µ∞

t (w∞, θ))]}

= −
T∑
t=1

E {E {KL [Cat (·|µ∞
t (w∞, θ⋆)) ||Cat (·|µ∞

t (w∞, θ))] |w∞}} .

Here we are summing over t ∈ [T ] and taking the expectation of (58) over w∞ ∼ Γ. It therefore
follows that if θ ∈ Θ⋆ then for all t ∈ [T ], Γ− almost all w ∈ W, and Pθ⋆,w∞ -almost all paths
y1:t−1 ∈ Ot−1

M+1, we must have that µ∞
t (w, θ) = µ∞

t (w, θ⋆).
To complete the proof, recall that by Proposition 21 if y1:T ∼ Pθ⋆,w∞ we have the conditional

distributions y∞
t |y∞

1:t−1,w
∞ ∼ Cat (·|µ∞

t (w∞, θ⋆)). Hence for Γ−almost all w ∈ W, Pθ⋆,w∞ -almost all
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paths y1:T ∈ OT
M+1 and any θ1, θ2 ∈ Θ⋆ we have

Pθ1,w∞ (y∞
1:T = y1:T ) =

T∏
t=1

Pθ1,w∞ (y∞
t = yt|y∞

1:t−1 = y1:t−1)

=
T∏
t=1

Cat (yt|µ∞
t (w, θ1))

=
T∏
t=1

Cat (yt|µ∞
t (w, θ⋆))

=
T∏
t=1

Cat (yt|µ∞
t (w, θ2))

=
T∏
t=1

Pθ2,w∞ (y∞
t = yt|y∞

1:t−1 = y1:t−1)

= Pθ2,w∞ (y∞
1:T = y1:T ),

where we used that θ ∈ Θ⋆ implies µ∞
t (w, θ) = µ∞

t (w, θ⋆). Assumption 8 ensures that the support
of Pθ,w∞ does not depend on θ, and hence Pθ1,w∞ = Pθ2,w∞ for Γ−almost all w ∈ W.

D Experiments

D.1 Computational considerations

Algorithm 1 requires only N repetitions of simple linear algebra operations on M -dimensional
vectors and M ×M matrices at each time step. The resulting computational cost is O(TNM2 +
TNCη(N)), where T and N arise from recursive operations over time and individuals, M2 accounts
for vector-matrix operations, and Cη(N) is the cost of evaluating the η function for a fixed population
size N .

Table 4: Memory and running time summary. Cη(N) is the model specific cost of evaluating η for a fixed
population size N . For the SMC, P is the number of particles, while Cq(M, 1) is the cost of computing the
parameters of the categorical distribution q which is used as a proposal (see Rimella et al. (2023a) for an
example). The memory requirement assumes that everything is stored over time steps.

Memory Running time
Data simulation O(TN) O(TNCCat(M, 1) + TNCη(N))
SMC O(TNP ) O(TNCCat(M,P ) + TNPCη(N) + TNCq(M,P ))
CAL O(TNM) O(TNM2 + TNCη(N))

The cost Cη(N) is model-specific. For instance, for the motivating example in sections 1.1 and 2.3,
we have a cost of Cη(N) = O(N) for the homogeneous-mixing case and a cost of Cη(N) = O(N2) for
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the heterogeneous-mixing scenario or other dense spatial interactions (Jewell et al., 2009; Rimella
et al., 2023). Remark that the cost Cη(N) is inherent to the model, rather than a feature of
the CAL, as even simulating data from the model would incur a cost in N of the same order:
O(TNCCat(M, 1) + TNCη(N)), where CCat(M, 1) is the cost of simulating a single draw from a
categorical distribution with M categories. Algorithm 1 requires computing probability vectors
πn,t|t−1, µn,t, and πn,t for each individual n at every time step. If all these vectors are stored
over T time steps, the memory requirement is O(TNM). The memory requirement of storing the
data is O(TN). The resulting computational cost is significantly cheaper than SMC, which would
require many simulations of each individual. Table 4 provides an SMC-CAL complexity comparison
summary.

D.2 Hamiltonian Monte Carlo for homogeneous-mixing SIS

We use the parameter settings p0 = 0.01, β = 0.2,bI = 0.5,bS = 1.0, γ = 0.1,bR = −0.5, qS =
0.2, qI = 0.5, qSe = 0.9, qSp = 0.95. We treat p0, qSe, qSp as known. To create a warm start for
our HMC sampler we consider 100 random initializations, where each parameter is drawn from
a standard Gaussian, and perform 1000 steps of Adam optimization with a learning rate of 0.1.
Across the 100 initializations, we choose the resulting parameter values with the highest CAL log-
likelihood as a warm-start for our HMC sampler which we then run for 200000 iterations. We use
uninformative independent Gaussian priors each with variance 100. Trace plots are reported in
Figure 1 after a burn-in of 50000 and a thinning to retain every 5th sampled value.

The learning rate is adapted every 1000 iteration to fall within the acceptance range [0.55, 0.75].
Specifically, if the acceptance range is lower than 0.55 then for the next 1000 iterations it is decreased
by 35%, while if it is higher than 0.75 it is increased by 35%, otherwise if it falls within the range is
kept stable. We find the acceptance rate to stabilize within the range after about 25000 iterations
for N = 1000, 10000, hence we choose a burn-in of 50000. For N = 100 the acceptance rate also
stabilized within the range after about 25000 iterations, but it started swinging again around 165000
iterations as the chain got stuck in a region of the parameter space. It then stabilized again after
175000 iterations. This phenomenon might be due to the presence of ridges and flat regions in the
likelihood surfaces. We choose to perform thinning to reduce the autocorrelation of the chain.

The acceptance rates after burn-in are 0.65 for N = 100, 0.60 for N = 1000, and 0.70 for
N = 10000, which are all close to the optimal acceptance rate of 0.65 (Neal, 2012).

D.3 Gradient-based calibration for heterogeneously-mixing SIS models

Model 1 Here we provide all the details on Model 1. As initial infection probabilities, we consider:

p0(wn) =

[
1− p0
p0

]
,
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where p0 ∈ [0, 1]. We consider an interaction term:

ηn,t−1 =
1

N

∑
k∈[N ]

 0
exp{c⊤k bI} 1√

2πϕ2exp

{
− ∥zn−zk∥2

2ϕ2

}
⊤

xk,t−1,

where ϕ > 0 and bI ∈ R as we are considering a single covariate. The ηn,t−1 is then used in the
transition matrix:

Kηn,t−1
(wn) =

[
exp

(
−hβ exp{c⊤nbS}ηn,t−1 − hϵ

)
1− exp

(
−hβ exp{c⊤nbS}ηn,t−1 − hϵ

)
1− exp (−hγn) exp (−hγn)

]
,

with log γn = log γ + c⊤nbR and where β, γ > 0 and bS,bR ∈ R.
The observation model is given by the matrix:

G(wn) =

[
1− qS qSqSp qS(1− qSp)
1− qI qI(1− qSe) qIqSe

]
,

where qS, qSe, qI , qSp ∈ [0, 1].
Figure 7 provides a graphical representation of the optimization of Model 1.

Figure 7: CAL parameters values during optimization for Model 1 from Section 5.2 over the gradient
steps of Adam and across different population sizes (from top to bottom). Lines refer to the best out of 10
optimizations on different datasets. Blue and black colors are used in the same plot to distinguish across
parameter components.

Model 2 Here we provide all the details on Model 2. Everything is as in Model 1 but the
spatial location is now set to the centroid of the community the individual is in. As a consequence,
there is also a computationally cheaper representation of ηn,t−1, which exploits the fact that some
individuals belong to the same community. Denote with mc

i the centroid of community i and with
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ai the set of individuals within the community, i.e. n ∈ ai if n is in the community i. We can then
observe that for n ∈ aj:

ηn,t−1 =
1

N

∑
k∈[N ]

[
0

exp{c⊤k bI} 1√
2πϕ2

exp
{
−∥mn−mk∥2

2ϕ2

}]⊤
xk,t−1

=
1

N

∑
i

∑
k∈ai

[
0

exp{c⊤k bI} 1√
2πϕ2

exp
{
−∥mn−mk∥2

2ϕ2

}]⊤
xk,t−1

=
1

N

∑
i

∑
k∈ai

[
0

exp{c⊤k bI} 1√
2πϕ2

exp
{
−∥mc

j−mc
i∥2

2ϕ2

}]⊤
xk,t−1,

from which we observe that for any n, k ∈ aj we have ηn,t−1 = ηk,t−1, hence we just need to compute
the interaction term per each community. This reduces the computational cost of computing all
ηn,t−1 from N2 to N times the number of communities.

Figure 8 provides a graphical representation of the optimization of Model 2.

Figure 8: CAL parameters values during optimization for Model 2 from Section 5.2 over the gradient
steps of Adam and across different population sizes (from top to bottom). Lines refer to the best out of 10
optimizations on different datasets. Blue and black colors are used in the same plot to distinguish across
parameter components.

D.4 Calibration and filtering for heterogeneously-mixing SIR

Well-specified model Here we provide all the details on the correctly specified model from
Section 5.3. As initial infection probabilities, we consider:

p0(wn) =

1− p0I (zn ∈ [−∞, 5]× [8,+∞])
p0I (zn ∈ [−∞, 5]× [8,+∞])

0

 ,
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where p0 ∈ [0, 1]. We consider an interaction term:

ηn,t−1 =
1

N

∑
k∈[N ]

 0

exp{c⊤k bI}
exp

{
− ∥zn−zk∥2

2ϕ

}
√
2πϕ

⊤

xk,t−1,

where ϕ > 0 and bI ∈ R as we are considering a single covariate. The ηn,t−1 is then used in the
transition matrix:

Kηn,t−1
(wn)

=

exp (−hβ exp{c⊤nbS}ηn,t−1 − hϵ
)

1− exp
(
−hβ exp{c⊤nbS}ηn,t−1 − hϵ

)
0

0 exp (−hγn) 1− exp (−hγn)
0 0 1

 ,
with log γn = log γ + c⊤nbR and where β, γ > 0 and bS,bR ∈ R.

Half of the population is forced to be unobserved and misreporting is not allowed. We call U
the set of individuals that are always unobserved, the observation model is then given by:

G(wn) =

1− qSI(n /∈ U) qSI(n /∈ U) 0 0
1− qII(n /∈ U) 0 qII(n /∈ U) 0
1− qRI(n /∈ U) 0 0 qRI(n /∈ U)

 ,
where qS, qI , qR ∈ [0, 1].

Misspecified model The initial infection probabilities, the transition matrix, and the observation
model are the same as for the well-specified model. However, the interaction term is:

ηn,t−1 =
1

N

∑
k∈[N ]

[
0

exp{c⊤k bI} 1√
2πϕ2

exp
{
− (∥mn−mk∥I(∥mn−mk∥≠0)+z̄nI(∥mn−mk∥=0))2

2ϕ2

}]⊤
xk,t−1.

as explained in the main paper. We can notice that the big advantage of this formulation, as for
Model 2, is the computational cost indeed:

ηn,t−1 =
1

N

∑
k∈[N ]

[
0

exp{c⊤k bI} 1√
2πϕ2

exp
{
− (∥mn−mk∥I(∥mn−mk∥≠0)+z̄nI(∥mn−mk∥=0))2

2ϕ2

}]⊤
xk,t−1

=
1

N

∑
i

∑
k∈ai

[
0

exp{c⊤k bI} 1√
2πϕ2

exp
{
− (∥mn−mk∥I(∥mn−mk∥≠0)+z̄nI(∥mn−mk∥=0))2

2ϕ2

}]⊤
xk,t−1

=
1

N

∑
i

∑
k∈ai

[
0

exp{c⊤k bI} 1√
2πϕ2

exp
{
− (∥mc

j−mc
i∥I(∥mc

j−mc
i∥≠0)+z̄cjI(∥mc

j−mc
i∥=0))2

2ϕ2

}]⊤
xk,t−1

where mc
i is the centroid of community i, z̄ci is the mean distance within community i, ai is the set

of individuals within community i, and we assume n ∈ aj.
The considered metrics for comparison are:
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Algorithm 2 Previous guess

Require: W,Y1:T , g
Initialize πg

n,0 and πguess
n,0 with 1M ⊘M for all n ∈ [N ]

for t ∈ 1, . . . , T do
for n ∈ [N ] do

if y
(M+1)
n,t = 0 then

πg
n,t = y

(1:M)
n,t

πguess
n,t = g ⊙ y

(1:M)
n,t + 1−g

M−1
⊙
(
1− y

(1:M)
n,t

)
else

πg
n,t = πguess

n,t−1

πguess
n,t = πguess

n,t−1

end if
end for

end for

• cross-entropy loss: − 1
NT

∑T
t=1

∑
n∈[N ] x

⊤
n,t log(πn,t);

• accuracy:
[

1
NT

∑T
t=1

∑
n∈[N ] I (argmaxi xn,t = argmaxi πn,t)

]
· 100%.

We now define the baseline classifiers. To build a classifier we need to create a vector of probabilities,
which represents the probability of estimating the different states, e.g. for the CAL this is πn,t. Let
us start with the “Random” classifier, here our vector of probabilities for estimating is: πg

n,t =

I
(
y
(M+1)
n,t = 1

)
(13⊘3)+ I

(
y
(M+1)
n,t = 0

)
yn,t, meaning that we estimate at random if the individual

is unreported, otherwise we estimate with what is reported. “Prev. uncertain” and “Prev. certain”
are more complicated and we define them via Algorithm 2. Here, if the individual is reported, we
estimate the individual’s state with what is reported, otherwise, we have a confidence parameter g
which tells us how confident we are with predicting the nth individual at t with their latest observed
state. If g = 0.34 we have “Prev. uncertain”, while if g = 0.99 we have “Prev. certain”.

D.5 Comparing CAL with SMC

We consider a homogeneous-mixing individual-based SIS model inspired by Ju et al. (2021). The
initial distribution is:

p0(wn) =

[
1− 1

1+exp(−c⊤n b0)
1

1+exp(−c⊤n b0)

]
,

where b0 ∈ R2. We consider an interaction term:

ηn,t−1 =
1

N

∑
k∈[N ]

[
0
1

]⊤
xk,t−1,
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as we are considering a homogeneous-mixing case, which is then used in the transition matrix:

Kηn,t−1(wn) =

 exp
(
−h ηn,t−1+ϵ

1+exp (−b⊤
S cn)

)
1− exp

(
−h ηn,t−1+ϵ

1+exp (−b⊤
S cn)

)
1− exp

(
− h

1+exp (−b⊤
Rcn)

)
exp

(
− h

1+exp (−b⊤
Rcn)

)  ,
where bS,bI ∈ R2 and ϵ > 0 and . The observation model is then given by:

G(wn) =

[
1− qS qS 0
1− qI 0 qI

]
,

with qS, qI ∈ [0, 1]. We consider a population of 1000 individuals and a time horizon of 100, with
parameters set to b0 = [− log(100− 1), 0]⊤, ϵ = 0.001,bS = [−1, 2]⊤,bR = [−1,−1]⊤, qS = 0.6, qI =
0.4, qSe = 1.0, qSp = 1.

The SEIR scenario is significantly more challenging as some transitions are not allowed, making
the SMC more prone to particle impoverishment and degeneracy. In our SEIR we consider a
homogeneous-mixing individual-based model with an initial distribution as in the aforementioned
SIS, but an additional zero probability of being assigned to E,R at the beginning of the epidemic.
The model is again inspired by Ju et al. (2021), now the initial distribution is:

p0(wn) =


1− 1

1+exp(−b⊤
0 cn)

0
1

1+exp(−b⊤
0 cn)

0

 ,
where b0 ∈ R2. As we are again considering a homogeneous-mixing scenario the interaction term
is:

ηn,t−1 =
1

N

∑
k∈[N ]


0
0
1
0


⊤

xk,t−1,

and used in the stochastic transition matrix:

Kηn,t−1(wn) =
exp

(
−hηn,t−1−hϵ

1+exp (−b⊤
S cn)

)
1− exp

(
−hηn,t−1−hϵ

1+exp (−b⊤
S cn)

)
0 0

0 exp(−hρ) 1− exp(−hρ) 0

0 0 exp
(

−h
1+exp (−b⊤

Rcn)

)
1− exp

(
−h

1+exp (−b⊤
Rcn)

)
0 0 0 1

 ,
with bS,bI ∈ R2, ϵ > 0 and ρ ∈ R+. The observation matrix is:

G(wn) =


1− qS qS 0 0 0
1− qE 0 qE 0 0
1− qI 0 0 qI 0
1− qR 0 0 0 qR

 ,
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Number of particles P 512 1024 2048 Time (sec)
APF Failed Failed Failed 1.2s
† with α = 5 -43447.56 (52.04) -43419.52 (51.08) -43391.0 (52.41) 4.44s
† with α = 20 -43004.55 (5.38) -43001.9 (4.65) -42999.76 (3.7) 11.08s
† with α = 50 -42999.93 (3.44) -42998.13 (2.72) -42996.74 (2.39) 20.88s
Block APF Failed Failed Failed 2.09s
SimBa -43683.85 (9.54) -43683.67 (7.35) -43683.76 (5.16) 1.25s
CAL -43454.97 0.75s
CAL jit compiled -43454.97 0.003s

Table 5: Log-likelihood means and log-likelihood standard deviations for the individual-based SEIR model
with N = 1000. We denote Rimella et al. (2023a) with †, with α being the number of future observations
included in the lookahead scheme (α = 0 correspond to APF). Log-likelihood results are averages and
standard deviation over 100 runs. Running times are reported for a single run.

with qS, qE, qI , qR ∈ [0, 1].
As for the SIS scenario, we consider a population of 1000 individuals and a time horizon of 100.

We set b0 = [− log(100 − 1), 0]⊤, ϵ = 0.001,bS = [−1, 2]⊤, ρ = 0.2,bR = [−1,−1]⊤, qS = 0, qE =
0, qI = 0.4, qR = 0.6 and we simulate from the model. The log-likelihood mean and standard
deviation are then estimated over multiple runs. As expected, APF and Block APF failed, meaning
that at some point all the considered particles have zero probability. Conversely, the method by
Rimella et al. (2023a) has a low variance for α = 50, which trades off in terms of computational
cost. SimBa-CL is computationally more efficient, but it shows higher variance and a significant
bias. The CAL is closer to Rimella et al. (2023a) with α = 50 compared to the other baselines.
Again, if just-in-time compilation is considered, the CAL runs in about 0.003s.

D.6 2001 UK Foot and Mouth disease outbreak

Local authorities meta-population model. For the local authorities we consider data.gov.uk
(2023), reporting digital vector boundaries of the UK’s local authority districts in December 2023.
We did not find any open-source digital vector boundaries from 2001, which would have been
ideal. Local authorities with less than five farms were excluded from the study, e.g. London and
Birmingham. The farm-specific covariates are then wn = [mn, z̄n, cn], where mn is the centroid
(in EPSG:27700, the projected coordinate system for the UK) of the local authority individual n
is assigned to, z̄n is the mean-distance (in km) across farms within the local authority, and cn
is a bi-dimensional vector containing the log-number of cattle and the log-number of sheep. The
components of mn are further divided by 1000 so when computing Euclidean distances across local
authorities the resulting distances are in Km. Observe that cn is still at an individual-level, while
we have aggregated the spatial component.

Model. We consider a heterogeneous-mixing individual-based SIR model, where transitions from
S to R are also allowed, representing the culling/quarantine of healthy farms to create containment
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zones around infected farms. We consider two interaction terms:

ηIn,t−1 =
1

N

∑
k∈[N ]

 0
exp{c⊤k bI}√

2πϕ2
exp

{
−∥mn−mk∥2I(∥mn−mk∥≠0)+z̄2nI(∥mn−mk∥=0)

2ϕ2

}
0


⊤

xk,t−1, (59)

ηCn,t−1 =
1

N

∑
k∈[N ]

 0
1√
2πψ2

exp
{
−∥mn−mk∥2I(∥mn−mk∥≠0)+z̄2nI(∥mn−mk∥=0)

2ψ2

}
0


⊤

xk,t−1, (60)

where bI ∈ R2, ϕ > 0, ψ > 0, and we also define:

η0
n :=

1

N

∑
k∈[N ]

exp{c⊤k bI}
exp

{
−∥mn−mk∥2I(∥mn−mk∥≠0)+z̄2nI(∥mn−mk∥=0)

2ϕ2

}
√

2πϕ2
τ, (61)

where τ > 0 can be interpreted as the probability of being infected before t = 0. We consider an
initial distribution:

p0(wn) =

 exp
(
−β exp{c⊤nbS}η0

n − ϵ
)

1− exp
(
−β exp{c⊤nbS}η0

n − ϵ
)

0

 .
We then define the culling/quarantine probability of farm n by PC

n := 1−exp
(
−hρηCn,t−1

)
where ρ >

0, the infection probability of a non-culled/quarantine farm by P I
n := 1−exp

(
−hβ exp{c⊤nbS}ηIn,t−1 − hϵ

)
where β > 0 and bS ∈ R2, and the recovery probability PR

n := 1 − exp (−hγ) where γ > 0. The
stochastic transition matrix is then given by:

KηIn,t−1,η
R
n,t−1

(wn) =

(1− PC
n )(1− P I

n) (1− PC
n )P

I
n PC

n

0 (1− PC
n )(1− PR

n ) PC
n + (1− PC

n )P
R
n

0 0 1

 .
For the observation model, we do not allow for misreporting and we assume only infected are
observable:

G(wn) =

 1 0 0 0
1− qI 0 qI 0

1 0 0 0

 .
The aforementioned individual-based model has two interaction terms and an interaction term
inside the initial distribution and does not strictly belong to the class of models that satisfy our
assumptions. Nevertheless, we remark that, since the terms (59),(60),(61) are averages and can be
shown to follow a law of large numbers and subsequently our saturation theory can be developed for
such individual-based models with multidimensional interaction terms. Consistency then follows
using the same techniques of Section 4.
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Figure 9: On the left, the CAL filter mean (dashed blue line) with 95% bands based on the CAL filter
variance. On the right, the Monte Carlo mean (dashed blue line) and 2.5%, 97.5% quantile of the predictive
distribution. Solid lines are used for the observations.

Maximum CAL estimation. We consider 100 different random initializations of τ, β,bS, bI , ϕ, ϵ, γ, ψ, qI
and run Adam optimizer per each of them for 10000 gradients steps using auto-differentiation in
TensorFlow. We then select the one with the highest log-CAL.

In Figure 9 we report the CAL filter and the predictive distribution under the optimized pa-
rameters for the total number of notified. The CAL filter is simply obtained by running the CAL
on the optimized parameters and by using the Categorical approximation to estimate mean and
variance of

∑
n∈[N ] yn,t. The predictive distribution is obtained via multiple simulations from the

model with the DGPs set to the optimized parameters, which are then used to get Monte Carlo
estimates of mean and quantiles. In both cases we can observe that we get good coverage of the
observations, showing that the optimized parameters are valid estimates.

The spatial location of a single farm cannot be disclosed for privacy, hence the left-hand side
of Figure 4 and the whole Figure 6 cannot be reproduced. However, we are allowed to disclose
information about local authorities and, in particular, the spread of the disease within the local
authorities, which can be found in our GitHub repository. The equivalent of Figure 6 for the local
authorities is Figure 10. Even though this aggregated version is less informative compared to the
fully spatial one, we can still recognize the same patterns in terms of the disease’s spread of the
infection and distribution of the removed.
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Figure 10: The CAL prediction over time of susceptible farms (blue), infected farms (red), and removed
farms (black) for the local authority model. Black dots are double the radius and red dots are for times
the radius for visual purposes.
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