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Modeling Brain Aging with Explainable Triamese
ViT: Towards Deeper Insights into Autism

Disorder
Zhaonian Zhang, Richard Jiang, Plamen Angelov and Vaneet Aggarwal

Abstract— Machine learning, particularly through ad-
vanced imaging techniques such as three-dimensional
Magnetic Resonance Imaging (MRI), has significantly im-
proved medical diagnostics. This is especially critical for di-
agnosing complex conditions like Alzheimer’s disease. Our
study introduces Triamese-ViT, an innovative Tri-structure
of Vision Transformers (ViTs) that incorporates a built-in in-
terpretability function, it has structure-aware explainability
that allows for the identification and visualization of key fea-
tures or regions contributing to the prediction, integrates
information from three perspectives to enhance brain age
estimation. This method not only increases accuracy but
also improves interoperability with existing techniques.
When evaluated, Triamese-ViT demonstrated superior per-
formance and produced insightful attention maps. We ap-
plied these attention maps to the analysis of natural aging
and the diagnosis of Autism Spectrum Disorder (ASD).
The results aligned with those from occlusion analysis,
identifying the Cingulum, Rolandic Operculum, Thalamus,
and Vermis as important regions in normal aging, and
highlighting the Thalamus and Caudate Nucleus as key
regions for ASD diagnosis.

Index Terms— Deep Learning, Natural Aging, ASD Anal-
ysis, Triamese-ViT.

I. INTRODUCTION

THE biological aging process is characterized by accumu-
lating adverse changes, leading to progressive declines in

physiological functions. Brain aging, in particular, is closely
linked to diseases like Alzheimer’s disease [1], psychosis [2],
mild cognitive impairment [3], and depression [4]. Under-
standing brain aging is crucial for enhancing health.

Aging significantly reduces brain volume, notably in gray
matter regions such as the prefrontal cortex, and insular cortex,
critical for memory, planning, and decision-making [5]–[8].
White matter integrity, vital for neural connectivity, also
deteriorates [9], potentially slowing processing speeds and
impairing cognition. Additionally, aging increases ventricular
and cerebrospinal fluid volumes [5], [6], [9], and in diseases
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like Alzheimer’s, amyloid-beta plaques [10] and tau protein
tangles [11] accumulate, leading to neuronal degeneration.

Recent deep learning advances have revolutionized brain
diagnostics [12]–[18]. Deep learning-based brain age esti-
mation from MRI (Figure 1) aids in identifying age-related
diseases [1], [3], [12]. The ’brain age gap’ (BAG), the differ-
ence between estimated and chronological brain age, serves
as a valuable biomarker [12]. A younger-appearing brain
typically indicates health, while an older-appearing brain may
signal Alzheimer’s disease [1], psychosis [2], mild cognitive
impairment [3], or depression [4]. Therefore, refining brain
age estimation algorithms is essential for aging analysis and
early disease detection.

Current brain age estimation primarily utilizes convolutional
neural networks (CNNs) trained on 3D MRI scans or 2D
slices [12], [19], [20]. Although CNNs excel at detailed image
processing by analyzing local pixel groups [21], they often
neglect global structural information critical for comprehen-
sive brain analysis. Furthermore, the opacity of CNNs poses
difficulties for their integration into Explainable AI, hindering
interpretability in medical diagnostics [22]. Conversely, Vision
Transformers (ViTs) offer advantages by segmenting images
into patches and employing attention mechanisms to capture
complex inter-patch relationships [23], enabling detailed fea-
ture extraction and improved transparency through attention
maps [24]. However, since ViTs are primarily tailored for 2D
data [25]–[27], they may inadequately exploit the full depth
and context provided by 3D MRI scans, potentially missing
essential depth-related information in brain age estimation.

Explainability is crucial for brain age estimation, high-
lighting key regions for prediction and aiding in disease
diagnosis. Model interpretability typically involves either post-
hoc explanations or inherently interpretable models. Post-hoc
methods provide explanations for black-box models through
feature attribution, often using perturbations [28], [29] or gra-
dients [30], [31]. However, perturbation-based techniques may
yield unreliable explanations due to assumptions about fea-
ture independence [32]. Inherently interpretable models, like
linear models, decision trees, GLMs, GAMs [33], JAMs [34],
prototype-based models [35], and weight-aligned models [36],
provide more transparent explanations but often compromise
on predictive accuracy.

Our study introduces ’Triamese-ViT,’ a deep-learning model
designed to achieve high accuracy and interpretability in brain
aging analysis. Trained on MRI data from 1,351 cognitively
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Fig. 1: It illustrates the brain age estimation process. MRIs serve as input to the deep learning models, which then predict
the subjects’ ages based on these images. These predicted ages are compared with the subjects’ actual chronological ages to
calculate key indicators, notably the brain age gap (predicted age minus chronological age). In this paper, we used this brain
age gap to analyze brain normal aging and ASD patients.

healthy individuals (ages 6–80), Triamese-ViT uses Vision
Transformers to capture distinct features from three different
orientations (Figure 3). These features are integrated through
a Tri Multi-Layer Perceptron to predict age. This novel Tri-
Structure demonstrated superior predictive accuracy, fairness,
and interpretability compared to existing state-of-the-art meth-
ods, achieving an MAE of 3.85, a Spearman correlation of
0.94 between predicted and chronological ages, and a -0.3
correlation between chronological age and brain age gap.
Moreover, by combining multi-view data, the model generates
3D-like attention maps, enhancing its value for assessing
normal brain aging and diagnosing brain diseases.

Compared to recent works such as [25], [37], our pro-
posed Triamese-ViT achieves higher prediction accuracy while
also demonstrating improved fairness in brain age estima-
tion. Additionally, it incorporates a built-in interpretability
mechanism, generating explainable result maps with clearer
structural insights, which is not available in these previous
approaches.Furthermore, in comparison to the high-accuracy
3D ViT model proposed in [38], our model offers substan-
tial advantages in terms of computational efficiency, reduced
memory usage, and simplified implementation. By leveraging
a multi-view axis-wise processing strategy, Triamese-ViT sig-
nificantly lowers the computational burden while maintaining
strong predictive performance, making it more scalable for
large-scale 3D medical imaging applications.

Furthermore, we leveraged the interpretability of Triamese-
ViT to perform an analysis of natural brain aging, to track the
significance trends of various brain regions over the course of
aging. The interpretability of Triamese-ViT was also applied
to the diagnosis of ASD, enabling the identification of key
regions as perceived by the AI. To accomplish this, we
employed 3D occlusion analysis—a conventional technique in
Explainable AI (XAI)—to pinpoint regions of high correlation
during prediction, thereby validating the alignment with the
attention map generated by our model.

Through attention map analyses across different age cohorts,

we investigated the changes in brain structure during aging
from a machine-learning perspective, identifying regions that
exhibit age-specific characteristics. Notable regions identified
include the Rolandic Operculum, Cingulum, Thalamus, and
Vermis, which are closely associated with various prevalent
brain diseases. In the case of patients with ASD, the model
highlighted the Thalamus and Caudate Nucleus, emphasizing
their relevance in the disorder’s pathology.

In this paper, our contributions include:
• We propose Triamese-ViT, a high-accuracy and fair

model for brain age estimation that outperforms state-
of-the-art (SOTA) models.

• Compared to high accuracy 3D ViT model, our model of-
fers significant improvements in computational efficiency,
reduced memory usage, and simplified implementation.

• Our model exhibits strong interpretability, producing at-
tention maps with clearer structural insights compared
to existing interpretable models. Additionally, its inter-
pretability is validated through occlusion analysis.

• The interpretability of our model identifies crucial brain
regions associated with normal aging, providing valuable
insights into the aging process.

• Our model also highlights key brain regions relevant to
ASD diagnosis, offering potential clinical significance for
autism research.

All the above contributions are proved in the Results section.

II. METHOD

A. Data and Code Availability

We used MRI scans from the IXI1 and ABIDE2 datasets
here. We collected a dataset of healthy participants to train the
model and analyze normal brain aging, as well as a dataset
of ASD patients to identify crucial brain regions for ASD
detection. All the MRIs’ types are T1-weighted. The dataset

1https://brain-development.org/ixi-dataset/
2https://fcon_1000.projects.nitrc.org/indi/abide/

https://brain-development.org/ixi-dataset/
https://fcon_1000.projects.nitrc.org/indi/abide/
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Fig. 2: It illustrates the effect of harmonization, we visualized the voxel intensity distributions from two different sites within
our dataset—Trinity College Dublin and Georgetown University—before and after applying ComBat harmonization.

of healthy participants includes 1,351 scans from individuals
aged 6 to 80 years, with a mean age of 30.5 years and a
standard deviation of 19.95 years. This dataset consists of 872
male and 479 female participants. Based on previous research
indicating that gender does not significantly influence brain
age estimation [39], we have not included gender analysis here.

The age distribution across different groups within the
healthy population is shown in Table I.

Age 6-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Samples 142 420 257 138 112 104 120 58

TABLE I: Healthy participants’ dataset age distribution.

Age 6-10 10-20 20-30 30-40 40-50 50-60 60-70
Samples 82 112 48 6 12 18 2

TABLE II: ASD participants’ dataset age distribution.

As for the healthy samples split, the dataset is divided into
eight age groups: 6-10, 10-20, 20-30, 30-40, 40-50, 50-60,
60-70 and 70-80. For each age group, 70% of the samples
were allocated to the training set, 15% to the validation set,
and 15% to the test set, ensuring a representative distribution
across all subsets.

Regarding the ASD patients’ dataset, there are 280 samples
included in the experiment. The participants range in age
from 6 to 62 years, with a mean age of 18.8 years and a
standard deviation of 13.78 years. The detailed age distribution
is presented in Table II.

To ensure compatibility and mitigate the potential effects
of protocol variability for the different datasets, we applied
a standardized preprocessing protocol using FSL 5.10 [40] to
the MRI scans. This protocol included several steps: brain
extraction [41], bias field correction, nonlinear registration to
the MNI standard space, and normalization of voxel values
within the brain area by subtracting the mean and dividing by
the standard deviation. We also used ComBat harmonization
on the datasets to adjust for scanner and site-specific effects
while preserving biological variability. After preprocessing, all
MRI scans were resized to a voxel dimension of 91×109×91
with an isotropic spatial resolution of 2mm.

To illustrate the effect of harmonization, we visualized the
voxel intensity distributions from two different sites within
our dataset—Trinity College Dublin and Georgetown Univer-
sity—before and after applying ComBat harmonization (Fig-
ure 2). Prior to harmonization, substantial differences in inten-
sity distributions across datasets were evident, indicating scan-
ner and site-specific variability. After harmonization, intensity
distributions became well-aligned, demonstrating the effec-
tiveness of ComBat in reducing unwanted scanner-induced
variability while preserving biologically relevant variations.

The code we used in this project is uploaded to Github3.

B. Proposed Triamese-ViT

In this section, we present our Tri architecture named
Triamese-ViT. Our approach is inspired by [42], which high-
lights that different views of a 3D image contain unique
and independent information that can be leveraged in ma-
chine learning models. As illustrated in Fig. 3, the struc-
ture of Triamese-ViT is based on the Vision Transformer
(ViT) [23]. Triamese-ViT processes 3D MRIs, denoted as
M ∈ RH×W×C , where H, W, and C represent the height,
width, and the slice number, respectively. The MRI M is
then reshaped into three distinct viewpoints, represented as
M → (Mx,My,Mz), with Mx ∈ RH×W (C channels),
My ∈ RH×C (W channels), and Mz ∈ RW×C (H channels).

Focusing initially on Mx, the MRI is divided into a
sequence of flattened 2D squares, denoted as Mx,s ∈
RN×(S2·C), where the side length of square is S, and the
number of squares is N = H×W

S2 .
In the transformer encoder layers, the vectors processed

are of dimension D. Thus, Mx needs to be mapped to D
dimensions using a trainable linear projection. The process
is formulated as follows:

tx,0 = Concat(Mx,class;M
1
x,sE;M2

x,sE; . . . ;MN
x,sE) + Epos

(1)
In Equation 1, Mx,class is a learnable token (or class token)

added to ViT, akin to the method used in [43]. This class

3https://github.com/zhangz59/Triamese-ViT

https://github.com/zhangz59/Triamese-ViT


4 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Fig. 3: It depicts the architecture of our model, ’Triamese-ViT’. This model processes brain MRI images from three distinct
perspectives utilizing the Vision Transformer (ViT) to extract unique features. These features are then integrated within a Tri
Multi-Layer Perceptron (MLP) framework to generate age predictions. And built-in interpretability function generates 3D-like
images to explain different brain regions influence during prediction.

token, Mx,class, is eventually output from the Transformer
Encoder as t0x,L, representing the image representation P

(Equation 7). Here, E ∈ R(S2·C)×D is the linear projection
matrix, Concat denotes token concatenation, and Epos ∈
R(N+1)×D is the positional encoding added to each token
embedding. tx,0 represents the input sequence to the 0-th (first)
Transformer encoder layer. The same preprocessing steps are
applied to My and Mz , resulting in ty,0 and tz,0.

The transformed matrices tx,0, ty,0, and tz,0 ∈ R(N+1)×D

are fed into the transformer encoder. Each encoder consists
of multiple layers, where each layer sequentially processes
the input through Layer Normalization (LN), Multi-Head
Attention (MSA), another Layer Normalization, and a Multi-
Layer Perceptron (MLP). The MSA performs parallel attention
calculations across multiple ’heads’, allowing for diverse rep-
resentation and richer understanding of the input data.

[Q,K, V ] = FC(tx,0) (2)

Here, Q ∈ R(N+1)×d, K ∈ R(N+1)×d, and V ∈ R(N+1)×d

represent the Query, Key, and Value matrices, respectively.
Assuming the MSA has n heads and D = n × d, each head
independently processes the input:

headi = softmax
(
QiK

T
i√

d

)
Vi (3)

MSA(zx,0) = Concat(head1, head2, . . . , headn) (4)

Let tx,0 be the input to the first layer of the Transformer
Encoder. The feedforward calculations in the encoder are
given:

t
′

x,l = MSA(LN(tx,l−1)) + tx,l−1 (5)

tx,l = MLP(LN(t
′

x,l)) + t
′

x,l (6)

where l ∈ [1, 2, . . . , L]. The outputs from each Transformer
Encoder are then passed to an MLP head, consisting of
a hidden layer and an output layer, to generate the final
prediction for each view. The prediction from the first view,
Mx, is denoted as Px. By applying the same procedure to My

and Mz , we obtain two additional predictions, Py and Pz .

Finally, these three view-based predictions (Px, Py , and Pz)
are fed into the MLP, which integrates the information from
all three views to produce the final comprehensive prediction:

PTri = MLP(Px, Py, Pz) (7)

Here, PTri denotes the final prediction.
The motivation for adopting an axis-wise ViT instead of a

3D ViT for brain age estimation lies in several key advantages:
• Lower Computational Cost: Triamese-ViT circumvents

the high computational demands of processing an entire
3D volume by decomposing it into three orthogonal
2D views. This significantly reduces the computational
complexity, as each view is treated as a 2D input to
a standard ViT, which scales linearly with input size.
Consequently, Triamese-ViT enables faster training and
requires substantially less GPU memory compared to a
full 3D ViT, making it more feasible for large-scale 3D
medical imaging datasets.

• Model Simplicity and Implementation: By leveraging
the well-established 2D Vision Transformer framework,
Triamese-ViT maintains a straightforward implementa-
tion that requires minimal adaptation. This simplifies
model design, debugging, and fine-tuning while allowing
the integration of pre-trained weights and existing tools
developed for 2D ViTs. In contrast, 3D ViTs necessi-
tate extensive architectural modifications, such as 3D
tokenization and positional encoding, which introduce
additional computational and technical complexities.

• Higher Predictive Accuracy: Empirical evaluations
demonstrate that Triamese-ViT achieves superior predic-
tion accuracy compared to 3D ViTs. This improvement
stems from its ability to integrate multiple 2D views,
capturing diverse and complementary spatial features
from different anatomical perspectives, thereby enhancing
the robustness and precision of brain age estimation.

III. RESULTS
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Algorithm MAE r |rp| R2 Memory
ResNet [12] 4.11 0.84 0.33 0.70 958 MB
VGG19 [44] 4.09 0.7 0.49 0.68 2.27 GB
VGG16 [44] 5.32 0.6 0.41 0.64 2.18 GB
5-layer CNN [39] 4.55 0.79 0.47 0.71 2.46 MB
Global-Local
Transformer [27]

4.68 0.77 0.32 0.73 617 MB

Two-Stage-Age-
Network [45]

3.93 0.91 0.38 0.81 1.52 GB

Efficient Net [46] 4.55 0.88 0.4 0.77 72 MB
Multiple Instance
Neuroimage
Transformer [38]

3.90 0.9 0.36 0.77 4.62 GB

ITSVR [47] 4.21 0.75 0.35 0.71 3.57 GB
3D-TDR [37] 3.97 0.85 0.42 0.80 2.15 GB
Our Triamese-ViT 3.85 0.94 0.3 0.81 3.99 GB

TABLE III: The details of tested algorithms’ performance.
Since the input of Global-Local Transformer should be a 2D
image, we extract 2D slices around the center of the 3D brain
volumes in the axial as input, which is the same process
method as [27]. Other algorithms’ input are 3D MRIs with
dimensions (91,109,91). Our Triamese-ViT has consistently
achieved the best among all measures.

A. Comparison With State-of-the-Art Algorithms for
Brain Age Estimation

We employed Triamese-ViT to estimate brain ages based on
MRI scans from a cohort of 1,351 healthy individuals aged
between 6 and 80 years. The dataset was divided into 70%
for training, 15% for validation, and 15% for testing, allowing
for a rigorous assessment of model performance. We evaluated
the model using three principal metrics: Mean Absolute Error
(MAE), the Spearman correlation coefficient between the
predicted and chronological ages (r), the absolute value of the
Spearman correlation coefficient between chronological age
and the Brain Age Gap (BAG) (|rp|), and R-Squared (R2)
between the predicted and chronological ages. The MAE, r,
and R2 measure the model’s accuracy and the degree of corre-
lation between the predicted and chronological ages, while |rp|
quantifies the model’s fairness, with a higher |rp| indicating
a more pronounced age bias. We compared our Triamese-ViT
model against other state-of-the-art algorithms to demonstrate
its superior performance in brain age estimation. The results
are shown in Table III.

Table III presents a comprehensive comparison of the
Triamese-ViT model against eight other models, encompassing
both classic and state-of-the-art (SOTA) approaches in brain
age estimation. This comparison includes four established 3D
CNN-based models: a 5-layer CNN, ResNet, VGG16, and
VGG19. Additionally, our model was benchmarked against
six other SOTA methodologies: the Two-Stage-Age-Network,
which features a two-stage cascade network architecture where
the first-stage network estimates a rough brain age and the
second-stage network refines this estimate based on the dis-
cretized brain age provided by the first-stage network; the
Global-Local Transformer, which utilizes 2D brain slices to
predict; EfficientNet, known for its ensemble architecture; the
Multiple Instance Neuroimage Transformer, which is a 3D
transformer architecture that changes 2D patches to 3D blocks
in ViT; the ITSVR, an improved twi support vector regression;

and the 3D-TDR, a tensor-distribution-regression model based
on 3D conventional neural networks.

Triamese-ViT achieves the lowest Mean Absolute Error
(MAE) at 3.85, followed closely by the Multiple Instance
Neuroimage Transformer (MAE 3.90) and the Two-Stage-
Age-Network (MAE 3.93), with VGG16 performing the worst
(MAE 5.32). For Spearman correlation (r) between predicted
and chronological ages, Triamese-ViT leads at 0.94, followed
by the Two-Stage-Age-Network (0.91) and Multiple Instance
Neuroimage Transformer (0.90); VGG16 again ranks lowest
(0.60). In terms of fairness, Triamese-ViT achieves the best
(lowest) brain age gap correlation (|rp|) at -0.3, while ResNet
(0.33) and Global-Local Transformer (0.32) also perform well.
Regarding R-squared (R2), both Triamese-ViT and the Two-
Stage-Age-Network show strong performances (0.81), with the
3D-TDR following closely (0.80); VGG16 has the weakest
result (0.64).

Regarding memory consumption, the 5-layer CNN has
the fewest parameters, requiring only 2.46 MB of memory.
EfficientNet follows, utilizing 72 MB, as it trains on only a
slice of the MRI data. In contrast, the 3D ViT has the highest
memory requirement at 4.62 GB. Although Triamese-ViT also
demands substantial memory at 3.99 GB, its consumption
remains lower than that of the 3D ViT.

This comparative analysis underscores the Triamese-ViT
model’s superior performance in brain age estimation, high-
lighting its advantages in accuracy and fairness compared to
other leading models in the field.

B. Ablation Study
In this part, we conduct ablation experiments to explore

and justify the design choices in the structure of Triamese-
ViT. First, we provide the rationale behind selecting the hy-
perparameter S as 7 in ViT. Experimental evaluations revealed
that a smaller patch size increases sensitivity but results in
overly detailed attention maps, which may introduce noise
and hinder interpretability. Conversely, a larger patch size
encompasses multiple brain regions within a single patch,
reducing the granularity of the attention maps and potentially
obscuring critical structural information. The choice of S =
7 represents an optimal balance, ensuring sufficient sensitivity
while preserving meaningful spatial features for brain structure
analysis.

Then, we focus on the number of layers in the Tri-MLP.
While keeping all other variables constant, we vary the number
of MLP layers and observe their impact on the model’s
performance. The findings depicted in Fig. 4 show a distinctive
trend in the Mean Absolute Error (MAE) relative to the MLP
layers in Triamese-ViT MLP. The MAE initially rises when
increasing layers from 4 to 6, then decreases after 6 layers,
reaching a minimum of 9 layers before rising again at 10
layers. This indicates an optimal layer count for balancing
model complexity and accuracy. The observed MAE variation
with different layer counts underscores the intricate relation-
ship between model depth and performance, emphasizing the
need for precise architectural tuning in the model.

Then we turned our focus to the backbone of Triamese-
ViT. To assess the impact of different backbone architectures,
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Fig. 4: The impact of the number of MLP layers in Triamese-
ViT.

we substituted the original ViT with alternative models like
ResNet, a 5-layer CNN, and VGG19. These were then in-
tegrated with the Tri-MLP to evaluate how they influenced
overall performance. The results of this experiment are de-
tailed in Table IV. According to our findings, the original
ViT backbone proves to be the most effective for the Tri-
amese structure. The 5-layer CNN also shows commendable
adaptability, registering an MAE of 4, a Spearman correlation
(r) of 0.85, ∥rp∥ of 0.45 and R2 of 0.72. In stark contrast,
ResNet and VGG19 appear significantly less suited for the
Triamese framework. Both these architectures yielded MAEs
exceeding 10, which are highly unfavorable outcomes for brain
age estimation. This experiment underscores the importance
of selecting an appropriate backbone model for the Triamese
structure to ensure optimal performance.

We also investigated alternative fusion strategies for com-
bining the outputs from the three ViT branches in Triamese-
ViT model. Specifically, we compared original MLP-based
fusion layer against two alternative fusion methods: convo-
lutional attention (using Convolutional Block Attention Mod-
ule—CBAM) and self-attention mechanisms. Following each
fusion method, a four-layer MLP was employed to generate
the final predictions. Our experimental results indicate that the
CBAM-based fusion strategy achieves promising performance,
yielding an MAE of 4.23, a r of 0.81, a ∥rp∥ of 0.35,
and a R2 of 0.78, indicating good accuracy and fairness.
Conversely, the self-attention fusion approach demonstrated
inferior performance, with an MAE of 6.57, a r of 0.52, ∥rp∥
of 0.41, and a R2 of 0.64. Nonetheless, both alternative fusion
methods underperformed compared to our original Triamese-
ViT architecture. These comparative results justify our choice
of the MLP-based fusion layer and enrich the robustness and
comprehensiveness of our methodological analysis.

Next, we explore the unique structures within our Triamese-
ViT model, particularly focusing on the individual contribu-
tions of the three Vision Transformers (ViTs) oriented along
different axes of the MRIs. These are the V iTx with di-
mensions (91,109,91), V iTy with dimensions (91,91,109), and
V iTz with dimensions (109,91,91). The performance of each
of these orientation-specific ViTs is crucial in understanding
the efficacy of the combined Triamese-MLP structure.

Algorithm MAE r |rp| R2

VGG-Backbone 10.31 0.30 0.31 0.29
ResNet-Backbone 10.36 0.45 0.25 0.37
CNN-Backbone 4 0.85 0.45 0.72
CBAM-fusion layer 4.23 0.81 0.35 0.78
self-attention-fusion layer 6.57 0.52 0.41 0.64
V iTx 4.42 0.78 0.33 0.71
V iTy 4.99 0.92 0.29 0.79
V iTz 5.29 0.73 0.37 0.7
V iTmap 5.04 0.61 0.55 0.65
Our Triamese-ViT 3.85 0.94 0.3 0.81

TABLE IV: The details of the backbone-changed, fusion-
layer changed models and unique structures. V iTx, V iTy , and
V iTz are focusing on the individual contributions of the three
Vision Transformers (ViTs) oriented along different axes of
the MRIs in Triamese-ViT. V iTmap also utilizes three ViTs
on different viewpoints but each ViT in Triamesemap outputs
a feature map from the Transformer Encoder, rather than a
direct prediction from the MLP Head. Then the MLP in this
variant takes as input the concatenated feature maps from the
three ViTs to make the final prediction.

Additionally, we tested a variant model, Triamesemap,
which also utilizes three ViTs on different viewpoints.
However, unlike the standard Triamese-ViT, each ViT in
Triamesemap outputs a feature map from the Transformer
Encoder, rather than a direct prediction from the MLP Head.
The Triamese MLP in this variant then takes as input the
concatenated feature maps from the three ViTs to make the
final prediction.

The comparative performance of these models, including
each individual orientation ViT and the Triamesemap variant,
is presented in Table IV. It says Triamese MLP supports a
great improvement of performance, for MAE, V iTx is the sec-
ond best with 4.42, and V iTz is the worst with 5.29. As for r,
V iTy has the highest value with 0.92, This is closely followed
by the combined Triamese-ViT model. Notably, V iTmap,
which uses concatenated feature maps for prediction, shows
the lowest correlation value at 0.61. Regarding the aspect of
fairness, only V iTmap displays a strong negative correlation.
This suggests a significant reduction in age bias. Conversely,
the other models, including the individual orientation-specific
ViTs, exhibit minimal ageism in their predictions. As for R2,
V iTy has the highest value with 0.79, and V iTmap has the
worst performance with 0.65.

Overall, the data in Table IV strongly supports the efficacy
of the Triamese-ViT in enhancing both the accuracy and
fairness of brain age estimation, validating its design.

C. Explainable Results for Brain Age Estimation
As is often the case, the prediction process in deep learning

models can resemble a ’black box’, where complex architec-
tures and numerous parameters obscure the decision-making
process. In this section, we aim to elucidate the predictive strat-
egy of the Triamese-ViT model and enhance its interpretability
using two distinct methods. The first method involves the use
of 3D-like attention maps generated from the Triamese-ViT,
which is a built-in method of the model. Since we input
3D MRIs into the ViTs from three different viewpoints (as
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Fig. 5: Illustration of the framework for occlusion analysis. In this work, occlusion analysis systematically obscures regions
in brain MRI images using a 7×7×7 voxel mask to assess their impact on model predictions. By measuring changes in Mean
Absolute Error (MAE) as the mask moves across the brain, a saliency map is generated, highlighting critical regions for age
estimation.

depicted in Figure 3), we obtain three distinct 2D attention
maps corresponding to these perspectives. These 2D maps are
then expanded into 3D and combined by averaging them to
produce a composite 3D attention map.

The other method is a classic XAI method called Occlusion
Sensitivity Analysis. Its process is shown in Figure 5. It
is a technique that systematically obscures different parts
of the input data to evaluate their influence on the model’s
output. In our case, specific regions within brain MRI im-
ages are obscured. This is achieved by applying a cube-
shaped occlusion mask, sized at 7×7×7 voxels, which sets
the encompassed voxels to zero. We methodically move this
mask throughout the entire brain volume, ensuring there is no
overlap between successive positions. As the mask traverses
the brain, it enables us to observe variations in the model’s
predictions. These alterations, measured in terms of Mean
Absolute Error (MAE), compare the prediction accuracy with
and without the occlusion. The degree of change in MAE
indicates the relative importance of each brain region. The
compilation of these changes forms a saliency map, effectively
highlighting the areas that the model predominantly relies on
for making its age estimations.

Figure 6 displays the results of our interpretability analyses.
Figure 6.a illustrates the results from built-in interpretation
compared to original brain, while Figure 6.b shows the
outcomes from Occlusion Sensitivity Analysis. Appendix4

records the detailed values of these two methods. From
Figures 6.a and 6.b, it is evident that the brightest spots,
indicating regions of highest relevance for age estimation, are
centrally located, possibly pointing to deep brain structures.
The symmetry in highlighted areas across both hemispheres
aligns with the mirrored nature of many brain processes and
structures.

Appendix highlights the consistency between the two ex-

4https://github.com/zhangz59/Triamese-ViT/blob/
main/JBHI_Appendix.pdf

plainable AI (XAI) methods. For the attention maps, regions
with attention values above 3 are considered key, while for
Occlusion Sensitivity Analysis, regions with values above
4 are deemed critical. Both methods identify the Rolandic
Operculum, Cingulum, and Thalamus as important for brain
age prediction. Additionally, attention maps also emphasize
the significance of the Vermis, and Occlusion Sensitivity
Analysis highlights the Insula, Caudate Nucleus, Putamen, and
Heschl’s gyrus.

To prove the outstanding interpretability of Triamese-ViT,
we compared the explanation results with another inherently
interpretable model’s. Figure 7 represents the interpretability
results from the Global-Local Transformer [27] on brain age
estimation. By comparing Figure 7 (Global-Local Trans-
former) with Figure 6 (Triamese-ViT), it becomes evident
that the interpretability of the Triamese-ViT is more infor-
mative. The large area of color coverage makes Global-Local
Transformer challenging to identify specific highlighted brain
structures, and the results are limited to a single top-down
view, providing partial information about brain regions.

In contrast, the 3D-like attention maps generated by
Triamese-ViT clearly associate attention values with specific
brain structures, enabling a more precise understanding of
the regions influencing predictions. Additionally, Triamese-
ViT provides attention maps from three distinct orientations,
offering comprehensive 3D information about the brain.

D. Normal Aging Analysis
The experimental results presented above demonstrate that

our Triamese-ViT model not only excels in predicting brain
age for healthy samples compared to classic and SOTA
algorithms but also offers superior interpretability through
its attention maps, compared to traditional explainable AI
(XAI) methods. Therefore, in this section, we will apply the
Triamese-ViT model to analyze the normal aging process in
the human brain.

https://github.com/zhangz59/Triamese-ViT/blob/main/JBHI_Appendix.pdf
https://github.com/zhangz59/Triamese-ViT/blob/main/JBHI_Appendix.pdf
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Fig. 6: Comparison between the Triamese-ViT’s attention map and occlusion analysis for healthy people. Figure 6.a presents
the results from built-in interpretation compared to the original brain, while Figure 6.b shows the outcomes of the occlusion
analysis. Together, these sections identify the specific brain regions that the Triamese-ViT model finds most crucial for age
prediction.

Fig. 7: This figure is from [27]. It shows the interpretability
results from the Global-Local Transformer on brain age esti-
mation.

Figure 8 shows attention maps from the Triamese-ViT
model across three axes (x, y, z) for predicting brain age in
healthy individuals aged 6 to 80 years. Each map represents
attention values averaged by decade. Bright regions highlight
areas significantly influencing age predictions, predominantly
appearing centrally and symmetrically, suggesting deep brain
structures are crucial. The decreasing peripheral attention indi-
cates cortical regions may be less critical for age estimation.
Notably, high attention towards Thalamus, linked to a relay
station for sensory and motor signals, occurs in several age
groups [48].

Attention patterns differ by age group. Younger individuals
(6-10s) show broad attention distribution, possibly due to rapid
brain maturation. From the 10s to 30s, the attention becomes
increasingly focused, reflecting stabilized development and
emerging age-related structural changes. Starting in the 30s,
emphasis on midline structures might relate to aging white
matter. In the 40s and 50s, deep brain structures are frequently
highlighted. In older adults (60s-70s), attention spreads widely,
indicating a wider array of structural changes is becoming
more prominent and informative for age estimation.

Overall, these patterns align with established knowledge

about brain development and aging—dynamic changes during
youth, specific structural shifts in middle age, and widespread
changes in later life.

Since the MRIs are in standard MNI space, highlighted
regions in Figure 8 can be matched to specific brain structures.
We have global-normalized the attention values across all age
groups, ensuring that the same intensity in different maps
during normal aging analysis corresponds to the same numer-
ical attention value. Figure 9 shows attention trends in brain
regions with high attention values during natural aging, derived
from the Triamese-ViT attention maps. Appendix details the
attention values. For the attention values for the brain regions
from Triamese-ViT, we first extracted attention maps from
three different views as shown in Figure 8, and then expanded
each into a 3D map with dimensions of 91×109×91. By
calculating the average values of these 3D attention maps, we
obtained the final 3D attention values from Triamese-ViT.

Based on Figure 9, we can observe distinct patterns
from machine learning’s eyes in how different regions are
highlighted during natural aging.

• Early childhood (0s): Significant attention in Inferior
Frontal Gyrus, Rolandic Operculum, Cingulum, Cal-
carine, Caudate Nucleus, Cuneus, Thalamus, and Vermis,
with highest values in Thalamus and Rolandic Opercu-
lum, indicating critical developmental roles.

• Adolescence (10s): Attention generally decreases but
remains notable in the Cingulum and Thalamus, reflecting
neural network maturation.

• Young adulthood (20s–40s): Attention stabilizes, with
Thalamus and Cingulum always keep the highest values,
suggesting maintenance roles in cognitive, emotional
regulation and executive function.

• Middle age (40s–50s): Attention generally decreases but
remains notable in the Cingulum.

• Middle-aged and elderly (50s–60s): Attention values
increased across all regions, particularly within the ver-
mis, thalamus, and Rolandic operculum. This heightened
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Fig. 8: This figure represents the Triamese-ViT’s attention maps from different axes of the MRIs during natural aging from
6 to 80 years old. a shows x-axis attention maps, b shows y-axis attention maps, and c shows z-axis attention maps. Each
attention map was calculated by averaging the attention values over each decade.

Fig. 9: This figure presents the attention trend lines for the most important regions throughout natural aging based on the
Triamese-ViT built-in interpretation.

attention may reflect aging-related changes affecting co-
ordination, balance, and sensorimotor processing.

• Older adulthood (60s–70s): Attention values declined
across all regions, suggesting reduced differentiation
among individuals within this age group. This decrease
may indicate widespread age-related atrophy or reduced
functional activity across multiple brain regions.

The consistent prominence of the Thalamus and Cingulum
highlights their critical roles throughout the lifespan, supported
by existing research on their importance in cognitive networks
and vulnerability to pathological aging [49], [50].

E. Contribution to ASD Diagnosis

To demonstrate Triamese-ViT’s impact on the disease diag-
nosis, we applied it to datasets of Autism Spectrum Disorders
(ASD) patients, aiming to identify brain regions most affecting
ASD. We trained Triamese-ViT on healthy samples, where

the attention mechanism was learned during training and
remains fixed during prediction. However, attention weights
are influenced not only by the learned attention mechanism
but also by the input features. If the ASD data differs from the
healthy training data (e.g., in brain structure or function), the
self-attention mechanism generates different attention maps,
as the relationships between input patches differ.

When we apply the Triamese-ViT model trained on healthy
samples to ASD data, the resulting attention maps differ
from those generated for healthy data. Using the attention
maps from healthy samples as a baseline, we can analyze
these differences to understand how the identified regions in
ASD patients diverge from normal brain aging patterns. This
comparison allows us to pinpoint the crucial brain regions
associated with ASD, offering valuable insights into the unique
characteristics of ASD brains.

Furthermore, we conducted an Occlusion Sensitivity Analy-
sis to benchmark the attention map outcomes of Triamese-ViT.
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Fig. 10: Comparison between the Triamese-ViT’s attention map and occlusion analysis for ASD patients. Figure 10.a presents
the attention map results compared to the original brain, while Figure 10.b shows the outcomes of the occlusion analysis.
Together, these sections identify the specific brain regions that the Triamese-ViT model finds most crucial for ASD diagnosis.

This analysis involves systematically moving a mask across
the brain’s entire volume, without overlap, to determine the
relative importance of each region. We calculate the impor-
tance based on the difference in Brain Age Gap (BAG) before
and after occlusion (BAGoriginal-BAGocclusion). A larger
difference indicates the greater importance of a region. It’s
important to note that positive differences signify significant
areas, whereas negative values suggest less crucial regions.

The findings are shown in Figure 10. Figure 10.a presents
the built-in interpretation results compared to the original
brain, while Figure 10.b shows the outcomes of the occlusion
analysis. Appendix says the details of important degrees of dif-
ferent brain regions during diagnosis matching the highlighted
areas in Figure 10.a and Figure 10.b.

Both the built-in interpretation and occlusion analysis in-
dicate that the Thalamus plays a significant role in ASD,
with occlusion analysis also highlighting the Caudate Nucleus
as important for ASD diagnosis. These findings align with
existing medical research. For example, [51] reported that
individuals with ASD exhibit an expanded surface area in
the right posterior thalamus, corresponding to the pulvinar
nucleus. They also noted that the shape of the caudal putamen
shows a steeper increase in concavity with age in those with
ASD. Similarly, [52] examined dynamic functional network
connectivity (dFNC) between 51 intrinsic connectivity net-
works in 170 individuals with ASD and 195 age-matched typ-
ically developing (TD) controls using independent component
analysis and a sliding window approach. They found that ASD
is marked by atypical large-scale subcortical-cortical connec-
tivity, including disrupted resting-state functional connectivity
between thalamic and sensory regions. Additionally, [53]
compared neuropsychological test scores and caudate volumes
in children with ASD, bipolar disorder (BD), and typically
developing (TD) children. Their study concluded that children
with ASD had larger right and left caudate volumes and
modest executive function deficits compared to TD controls.

IV. DISCUSSION

Our research introduces Triamese-ViT, a deep-learning al-
gorithm designed specifically for brain age estimation. Tested
against state-of-the-art (SOTA) models, Triamese-ViT demon-
strates superior performance. Its primary innovation is the
unique Tri architecture, which integrates comprehensive con-
text understanding with detailed image analysis, effectively
capturing complex relationships between image patches. This
results in more accurate, precise, and interpretable predictions,
significantly advancing clinical applications, especially in
early detection of neurodegenerative diseases and personalized
brain health assessments.

Evaluated on a public dataset, Triamese-ViT achieved out-
standing results, including a Mean Absolute Error (MAE) of
3.85, a Spearman correlation of 0.94 with chronological age,
and a favorable -0.3 Spearman correlation between Brain Age
Gap (BAG) and chronological age, highlighting reduced age
bias. Such accuracy is critical clinically, aiding in detecting
deviations from typical aging, potentially indicating early
neurodegeneration.

Beyond accuracy, Triamese-ViT’s interpretability is a sig-
nificant advantage. Analyzing attention values across brain
regions throughout natural aging revealed distinct patterns:
heightened activity in critical developmental regions like the
Inferior Frontal Gyrus, Rolandic Operculum, and Thalamus
during early childhood; maturation-related decreases during
adolescence, except in the Cingulum and Thalamus; cognitive
and emotional developments in young adulthood marked by
increased Rolandic Operculum and Thalamus activity; stability
with slight attention increases in the Thalamus and Vermis
during middle age; and a resurgence of attention in various
regions, particularly the Vermis, in Middle-aged and elderly
adulthood. And in older adulthood, all the regions attention
goes down. These findings align well with established medi-
cal literature [54]–[61], underscoring Triamese-ViT’s practical
value in neuroscience and clinical applications.

Triamese-ViT’s interpretability significantly enhances dis-
ease diagnostics. Conventional diagnosis methods are often
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time-intensive and subjective, increasing workload and risk
of inaccuracies. The model’s clear interpretive outputs, like
attention maps, support clinicians by highlighting influential
brain regions, thereby improving diagnostic efficiency and
accuracy. When tested on an ASD patient dataset, Triamese-
ViT identified the Thalamus and Caudate Nucleus as key
regions for ASD diagnosis, consistent with existing stud-
ies [51]–[53]. Thus, Triamese-ViT provides valuable assistance
in early disease detection and targeted interventions, promising
enhanced clinical outcomes.

We acknowledge that Triamese-ViT has limitations, includ-
ing high-frequency fluctuations in its attention maps, which
may reduce clarity and interpretability. To address this, future
work will explore spatial smoothing and attention regulariza-
tion to reduce noise and enhance the biological relevance of
highlighted patterns.

Integrating multi-modality MRI data—such as T1-weighted,
T2-weighted, and diffusion-weighted images—has shown po-
tential to improve model accuracy, robustness, and general-
izability [62]. We plan to extend our approach using these
modalities to better characterize brain structures and validate
the generalization of Triamese-ViT.

This aspect of our findings paves the way for further re-
search and highlights the profound and reliable insights offered
by Triamese-ViT. It establishes Triamese-ViT as an invaluable
tool for advancing our comprehension of brain aging and
related diseases. Future research could focus on validating
these findings in clinical trials, exploring the use of Triamese-
ViT in personalized treatment plans, and further enhancing
its interpretability to better support healthcare professionals in
their decision-making processes.

V. CONCLUSION

We introduced an innovative deep-learning model for brain
age estimation called Triamese-ViT, which surpasses current
leading algorithms in terms of accuracy, fairness, and in-
teroperability. We applied Triamese-ViT to the analysis of
natural brain aging and ASD diagnosis, yielding meaningful
results validated by existing medical research. We believe
that Triamese-ViT represents a significant advancement in the
integration of AI with medicine, offering promising progress
in both brain age estimation and broader medical AI research
and development.
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