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Abstract

Regression modeling is the workhorse of statistics. It is realized in recent years
that one important aim in regression analysis may be the estimation of a level set
of the regression function. The published work on this has thus far focused mainly
on nonparametric regression, especially on point estimation. In Wan et al. (2022),
exact upper and lower, but only conservative two-sided, confidence sets for a level set
are constructed in linear regression. In this paper, exact two-sided confidence sets are
constructed in simple linear regression. A simultaneity property of the exact two-sided
confidence is also studied. An example is given to illustrate the method.

keywords: confidence sets; level set; linear regression; simultaneous confidence bands; sta-
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1 INTRODUCTION

Let Y = h(xxx) + e where Y ∈ <1 is the response, xxx ∈ <p is the covariate (vector), h is the
regression function, and e is the random error. In regression analysis, there is a vast literature
on how to estimate the regression function h, based on the observed data (Yi,xxxi), i = 1, . . . , n.
In recent years, it is realized that an important problem in regression is the inference of the
λ-level set

Gλ = Gλ(h) = {xxx ∈ K : h(xxx) ≥ λ}

where λ is a pre-specified number, and K ⊂ <p is a given covariate xxx region of interest;
see, for example, Scott and Davenport (2007), Dau et al. (2020) and Wan et al. (2022) and
the references therein. Inference of the level set Gλ is an important component of the more
general field of subgroup analysis (cf. Wang et al., 2007, Herrera et al., 2011, Ting et al.,
2020).

In nonparametric regression where h is not assumed to have a specific form, point estimation
of Gλ, aiming to construct Ĝλ to approximate Gλ using the observed data, has been con-
sidered by Cavalier (1997), Polonik and Wang (2005), Willett and Nowak (2007), Scott and
Davenport (2007), Dau et al. (2020) and Reeve et al. (2021) among others. The main focus
of these works is on large sample properties such as consistency and rate of convergence. On
the other hand, confidence-set estimation of Gλ aims to construct sets Ĝλ to contain or be
contained in Gλ with a pre-specified confidence level 1−α. Large sample approximate 1−α
confidence-set estimation of Gλ is considered in Mammen and Polonik (2013).

In Wan et al. (2022), confidence-set estimation of Gλ for linear regression is considered.
It is shown that the problem is closely related to simultaneous confidence bands for the lin-
ear regression function, which have been considered in Wynn and Bloomfield (1971), Naiman
(1984, 1986), Piegorsch (1985a,b), Sun and Loader (1994), Liu and Hayter (2007) and numer-
ous others; see Liu (2010) for an overview. Specifically, one-sided lower and upper confidence
sets for Gλ of exact 1 − α level can be constructed from the corresponding one-sided lower
and upper simultaneous confidence bands for the regression function of exact 1 − α level.
However, the two-sided confidence set for Gλ constructed from the corresponding two-sided
exact 1− α level simultaneous confidence band for the regression function is of conservative
confidence level 1− α.

In this paper, a two-sided confidence set for Gλ of exact 1−α level is constructed for simple
linear regression. This confidence set is ‘tighter’ than the conservative confidence set given
in Wan et al. (2022) in this case. As pointed out in Wan et al. (2022), the method can
be directly extended to, for example, the generalized linear regression models, though the
two-sided confidence set is of asymptotic 1− α level since only asymptotic normality of the
regression coefficients estimators is available in this case, instead of the exact normality in
the linear regression case. It is also shown that the exact confidence sets constructed in this
paper do not have the property of simultaneity in λ, which is different from the two-sided
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confidence sets constructed from the two-sided simultaneous confidence band.

The layout of the paper is as follows. The construction of the exact two-sided confidence
set is given in Section 2. The property of simultaneity in λ is considered in Section 3. The
method is illustrated with one example in Section 4. Section 5 contains a brief discussion on
possible future research.

2 An Exact two-sided confidence set

In this section, an exact 1− α level two-sided confidence set for G is constructed for simple
linear regression model given by

Y = h(x) + e = β0 + β1x+ e ,

where the independent errors ei = Yi − h(xi) have distribution N(0, σ2). From the observed
sample of observations (Yi, xi), i = 1, · · · , n, the usual estimator of β = (β0, β1)

T is given by
β̂ = (XTX)−1XTY where X is the n × 2 design matrix and Y = (Y1, · · · , Yn)T . The usual
estimator of the error variance σ2 is denoted by σ̂2. It is known that β̂ ∼ N(β, σ2(XTX)−1),
σ̂2 ∼ σ2χ2

ν/ν with ν = n− 2, and β̂ and σ̂2 are independent.

Let x̃xx = (1, x)T , and the covariate region of interest be given by the interval K = [l, u] where
−∞ ≤ l < u ≤ ∞ are given numbers. Suppose the two-sided 1− α simultaneous confidence
band over the covariate region x ∈ K = [l, u] is given by

P
{
x̃xxT β̂ − c2σ̂g(x) ≤ x̃xxTβ ≤ x̃xxT β̂ + c2σ̂g(x) ∀x ∈ K

}
= 1− α (1)

where g(x) =
√
x̃xxT (XTX)−1x̃xx, and c2 > 0 is the critical constant to achieve the exact 1− α

confidence level. Define

Ĝλ,2u =
{
x ∈ K : x̃xxT β̂ + c2σ̂g(x) ≥ λ

}
, Ĝλ,2l =

{
x ∈ K : x̃xxT β̂ − c2σ̂g(x) ≥ λ

}
. (2)

It is shown in Wan et al. (2022) that

inf
β∈<2, σ>0

P
{
Ĝλ,2l ⊆ Gλ ⊆ Ĝλ,2u

}
≥ 1− α ,

that is, [Ĝλ,2l, Ĝλ,2u] is a two-sided confidence set for Gλ of at least 1− α level.

Our aim in this section is to construct new and exact confidence set

Ĝλ,2u,N =
{
x ∈ K : x̃xxT β̂ + c2N σ̂g(x) ≥ λ

}
, Ĝλ,2l,N =

{
x ∈ K : x̃xxT β̂ − c2N σ̂g(x) ≥ λ

}
(3)
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where c2N < c2 is a suitably chosen critical constant so that

inf
β∈<2, σ>0

P
{
Ĝλ,2l,N ⊆ Gλ ⊆ Ĝλ,2u,N

}
= 1− α , (4)

that is, [Ĝλ,2l,N , Ĝλ,2u,N ] is a two-sided confidence set for Gλ of exact 1− α level.

It is clear from (2) and (3) that the confidence sets [Ĝλ,2l,N , Ĝλ,2u,N ] and [Ĝλ,2l, Ĝλ,2u] differ

only in their critical constants. Since c2N < c2, [Ĝλ,2l,N , Ĝλ,2u,N ] is tighter than [Ĝλ,2l, Ĝλ,2u]

in the sense that Ĝλ,2l ⊂ Ĝλ,2l,N ⊂ Ĝλ,2u,N ⊂ Ĝλ,2u.

The main result of this section is given by the theorem below which gives an explicit expression
for the minimum probability in (4).

Theorem 1. For c2N > 0, we have

inf
β∈<2, σ>0

P
{
Ĝλ,2l,N ⊆ Gλ ⊆ Ĝλ,2u,N

}
= pt(c2N , ν)− φ

2π

(
1 + c22N/ν

)−ν/2 − 1

π

∫ (π−φ)/2

0

(
1 +

c22N
ν sin2(φ/2 + θ)

)−ν/2
dθ (5)

where pt(·, ν) denotes the cumulative distribution function (cdf) of the t-distribution with ν
degrees of freedom (df), and the angle φ ∈ (0, π] is defined in (10) below with P = (XTX)−1/2.

Proof. It will become clear from below that the probability in (4) does not depend on σ > 0,
and so it is only necessary to study the minimum probability over β ∈ <2. To evaluate the
minimum probability in (4) over β ∈ <2, the probability itself needs to be computed for
various configurations of β ∈ <2 next. Below we consider four configurations of β which
include all possible β ∈ <2. For a given set A ⊆ K, let Ac denote the complement set within
K, i.e. Ac = K\A.

First, consider Configuration 1: β ∈ <2 is such that the regression line Y = β0 + β1x
crosses the level line Y = λ at x = m ∈ (l, u), β0 + β1x < λ for x ∈ [l,m), and β0 + β1x > λ
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for x ∈ (m,u]. In this case, we have Gλ = [m,u] and Gc
λ = [l,m), and so

P
{
Ĝλ,2l,N ⊆ Gλ ⊆ Ĝλ,2u,N

}
(6)

= P
{
Gc
λ ⊆ Ĝc

λ,2l,N and Gλ ⊆ Ĝλ,2u,N

}
= P

{
∀x ∈ Gc

λ : x̃xxT β̂ − c2N σ̂g(x) < λ and ∀x ∈ Gλ : x̃xxT β̂ + c2N σ̂g(x) ≥ λ
}

= P
{
∀x ∈ Gc

λ : x̃xxT (β̂ − β)− c2N σ̂g(x) < λ− x̃xxTβ

and ∀x ∈ Gλ : x̃xxT (β̂ − β) + c2N σ̂g(x) ≥ λ− x̃xxTβ
}

≥ P
{
∀x ∈ Gc

λ : x̃xxT (β̂ − β)− c2N σ̂g(x) < 0 and ∀x ∈ Gλ : x̃xxT (β̂ − β) + c2N σ̂g(x) ≥ 0
}

= P

∀x ∈ Gc
λ :

x̃xxT (β̂ − β)/σ̂√
x̃xxT (XTX)−1x̃xx

< c2N and ∀x ∈ Gλ :
x̃xxT (β̂ − β)/σ̂√
x̃xxT (XTX)−1x̃xx

≥ −c2N


= P

{
∀x ∈ Gc

λ :
{Px̃xx}T T

‖Px̃xx‖
< c2N and ∀x ∈ Gλ :

{Px̃xx}T T

‖Px̃xx‖
≥ −c2N

}

= P

{
∀x ∈ [l,m) :

{Px̃xx}T T

‖Px̃xx‖
< c2N and ∀x ∈ [m,u] :

{Px̃xx}T T

‖Px̃xx‖
≥ −c2N

}
(7)

where the second equality above follows directly from the definitions of Ĝλ,2l,N and Ĝλ,2u,N in
(3), the inequality above follows directly from the definition of Gλ (and Gc

λ), P = (XTX)−1/2,

and T = P−1(β̂−β)/(σ̂/σ) has a standard bivariate t distribution with covariance matrix I2
and df ν (cf. Genz and Bretz, 2009). Also note that the inequality above approaches equality
as the regression line Y = β0 + β1x approaches the level line Y = λ, and so the minimum of
the probability in (6) over this configuration is given by the probability in (7).

For the probability in (7), the constraint {Px̃xx}TT
‖Px̃xx‖ < c2N for a given Px̃xx = P (1, x)T =

(p0,p1)(1, x)T = p0 + xp1 restricts T to the half plane on the same side as the origin and
bounded by the straight line that is perpendicular to the vector p0+xp1 and c2N distance (in

the direction of p0+xp1) from the origin. Hence
{
∀x ∈ [l,m) : {Px̃xx}

TT
‖Px̃xx‖ < c2N

}
restricts T to

the area that is bounded by the (thick) curve-line in red and contains the origin, which is de-

picted in Figure 1(a). The curve-line is formed by the arc
{

T : {Px̃xx}
TT

‖Px̃xx‖ = c2N for x ∈ [l,m)
}

bounded by the vectors p0 + lp1 and p0 +mp1, the half line that is tangent to the arc at one
end corresponding to the vector p0 + lp1 and extends from that end to infinity, and the half
line that is tangent to the arc at the other end corresponding to the vector p0 + mp1 and
extends from that end to infinity.

Similarly,
{
∀x ∈ [m,u] : {Px̃xx}

TT
‖Px̃xx‖ ≥ −c2N

}
restricts T to the area that is bounded by the

(thick) curve-line in blue and contains the origin, which is depicted in Figure 1(b). The

5

wanf
Highlight



curve-line is formed by the arc
{

T : {Px̃xx}
TT

‖Px̃xx‖ = −c2N for x ∈ [m,u]
}

bounded by the vectors

−p0−mp1 and −p0−up1, the half line that is tangent to the arc at one end corresponding to
the vector −p0−mp1 and extends from the end to infinity, and the half line that is tangent
to the arc at the other end corresponding to the vector −p0− up1 and extends from the end
to infinity.

Hence all the constraints in (7) restrict T to the region bounded by the two (thick) curve-
lines given in Figures 1(a) and 1(b), which is depicted in Figure 1(c). This region can be
partitioned into four sub-regions: a half-stripe, two fans (shaded), and the remaining sub-
region whose shape is depicted in Figure 1(d).

To calculate the probabilities of T in these regions, the following facts are used. First, the
probability distribution of T is rotational invariant, that is, the probability of T in any given
region is the same as the probability of T in the region that is resultant from rotating the
given region around the origin by any angle. Second, let (‖T‖, θT) be the polar coordinates
of T then the cdf of ‖T‖ is given by

F‖T‖(x) = 1− (1 + x2/ν)−ν/2, x > 0, (8)

θT has a uniform distribution on the interval [0, 2π), and ‖T‖ and θT are independent random
variables (cf. Liu, 2010, pp.18-19).

Since the pdf of T = (T1, T2)
T is rotational invariant, the probability of T in the half-stripe is

the same as the probability of T in the half-stripe that is resulted from rotating the original
half-stripe so that the end of the original half-stripe is on the T1-axis. This probability is
then equal to

1

2
P {−c2N < T1 < c2N} = P {0 < T1 < c2N} = pt(c2N , ν)− 0.5 (9)

where pt(·, ν) denotes the cdf of the univariate t distribution with df ν.

Again due to the rotational invariance of the T probability distribution, the probability of T
in the two fans is equal to the probability of T in the big fan formed by these two fans (via
rotating one fan to next to the other). The angle φ ∈ (0, π] between the two edges of the big
fan is given by

cosφ =

{
P

(
1
l

)}T {
P

(
1
u

)}/∥∥∥P ( 1
l

)∥∥∥∥∥∥P ( 1
u

)∥∥∥ . (10)

Hence the probability of T in the big fan is equal to

φ

2π
P {‖T‖ < c2N} =

φ

2π

(
1− (1 + c22N/ν)−ν/2

)
(11)

where the equality above follows directly from (8).

6



For the probability of T in the remaining region, the remaining region can be rotated to
the position so that it is symmetric about the T1-axis as depicted in Figure 1(d). Then the
probability of T in this region is equal to

2P { θT ∈ [0, (π − φ)/2], (cos((π − φ)/2), sin((π − φ)/2)) T < c2N }
= 2P { θT ∈ [0, (π − φ)/2], ‖T‖ < c2N/ cos((π − φ)/2− θT) }

= 2

∫ (π−φ)/2

0

1

2π
P { ‖T‖ < c2N/ cos((π − φ)/2− θ) } dθ

=
1

π

∫ (π−φ)/2

0

(
1−

(
1 +

c22N
ν sin2(φ/2 + θ)

)−ν/2)
dθ (12)

where the last equality follows directly from (8).

Adding the expressions (9-12) gives the probability in (7) equal to

pt(c2N , ν)− φ

2π

(
1 + c22N/ν

)−ν/2 − 1

π

∫ (π−φ)/2

0

(
1 +

c22N
ν sin2(φ/2 + θ)

)−ν/2
dθ . (13)

It is clear that this expression depends only on X, n, c2N and [l, u], but not on the value
m ∈ (l, u) or σ > 0. Hence the minimum probability over β in Configuration 1 is given by
(13), which is also the expression given in the theorem.

Second, consider Configuration 2: β ∈ <2 is such that the regression line Y = β0 + β1x
crosses the level line Y = λ at x = m ∈ (l, u), β0 + β1x > λ for x ∈ [l,m), and β0 + β1x < λ
for x ∈ (m,u]. An argument similar to that for Configuration 1 above shows that the
minimum probability over β in Configuration 2 is also given by (13).

Third, consider Configuration 3: β ∈ <2 is such that the regression line Y = β0 + β1x is
not below the level line Y = λ over the interval x ∈ [l, u]. An argument similar to that for
Configuration 1 above shows that the minimum probability over β in Configuration 3
is strictly larger than (13) (and attained when the regression line approaches the level line).
The details are omitted to save space.

Finally, consider Configuration 4: β ∈ <2 is such that the regression line Y = β0 + β1x is
not above the level line Y = λ over the interval x ∈ [l, u]. An argument similar to that for
Configuration 1 above shows that the minimum probability over β in Configuration 4
is the same as the minimum probability over β in Configuration 3 and strictly larger than
(13).

It is clear that the four configurations above form a partition of all possible β ∈ <2. The
minimum probabilities for the four configurations given above therefore establish that the
minimum probability in (4) is given by (13). This completes the proof of the theorem. ♣
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The critical constant c2N can therefore easily be solved numerically from the equation (4)
with the minimum probability replaced with (13). The R code for computing c2N and all the
results in the example in the next section can be downloaded from the authors’ websites.

3 Simultaneity in λ

Now suppose that the value of λ is not pre-specified, that is, one might be interested in the
confidence sets for Gλ for several different values of λ. Of course one can use [Ĝλ,2l, Ĝλ,2u] or

[Ĝλ,2l,N , Ĝλ,2u,N ] as a confidence set Gλ for each given value of λ. It is shown in Wan et al.
(2022) that

inf
β∈<p+1, σ>0

P
{
Ĝλ,2l ⊆ Gλ ⊆ Ĝλ,2u ∀λ ∈ <1

}
≥ 1− α , (14)

which means that the joint confidence level of the confidence sets [Ĝλ1,2l, Ĝλ1,2u], [Ĝλ2,2l, Ĝλ2,2u], · · ·
for any sequence of λ-values λ1, λ2, · · · is at least 1− α.

The question is whether this property of “simultaneity in λ” also holds for the new confidence
sets [Ĝλ,2l,N , Ĝλ,2u,N ]. The answer is negative as shown in this section.

Consider the confidence set of the form

Ĝλ,2u,S =
{
x ∈ K : x̃xxT β̂ + c2Sσ̂g(x) ≥ λ

}
, Ĝλ,2l,S =

{
x ∈ K : x̃xxT β̂ − c2Sσ̂g(x) ≥ λ

}
.

(15)
Note that the only difference between this confidence set, [Ĝλ,2l, Ĝλ,2u] and [Ĝλ,2l,N , Ĝλ,2u,N ]
is the critical constant used. Next we determine the critical constant c2S so that

inf
β∈<p+1, σ>0

P
{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S ∀λ ∈ <1

}
= 1− α , (16)

it is asserted in the theorem below that c2S = c2.

Theorem 2. The critical constant c2S that satisfies (16) is given by c2S = c2, where c2 is
the critical constant of the two-sided simultaneous band in (1).

Proof. At the configuration β = (β0, 0)T where β0 is a given constant, it is clear that{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S ∀λ ∈ <1

}
= ∩λ∈<1

{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S

}
=

(
∩λ≤β0

{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S

})
∩
(
∩λ>β0

{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S

})
. (17)
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Now for each λ ≤ β0 we have Gλ = [l, u] and Gc
λ = ∅. Hence an argument similar to that for

establishing (7) from (6) in the last section implies that{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S

}
⊇

{
∀x ∈ [l, u] :

{Px̃xx}T T

‖Px̃xx‖
≥ −c2S

}
,

and in particular the two sets above are equal at λ = β0. It follows immediately that

∩λ≤β0
{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S

}
=

{
∀x ∈ [l, u] :

{Px̃xx}T T

‖Px̃xx‖
≥ −c2S

}
. (18)

Next for each λ > β0 we have Gλ = ∅ and Gc
λ = [l, u]. Again an argument similar to that for

establishing (7) from (6) in the last section implies that{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S

}
⊇

{
∀x ∈ [l, u] :

{Px̃xx}T T

‖Px̃xx‖
< c2S

}
,

and in particular the two sets are equal at λ = β+
0 ; here β+

0 denotes a number that is
infinitesimally close to β0 from right. It follows immediately that

∩λ>β0
{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S

}
=

{
∀x ∈ [l, u] :

{Px̃xx}T T

‖Px̃xx‖
< c2S

}
. (19)

The combination of (17-19) implies that, at β = (β0, 0)T ,{
Ĝλ,2l,S ⊆ Gλ ⊆ Ĝλ,2u,S ∀λ ∈ <1

}
=

{
∀x ∈ [l, u] :

{Px̃xx}T T

‖Px̃xx‖
≥ −c2S and

{Px̃xx}T T

‖Px̃xx‖
< c2S

}
.

Hence, in order to satisfy the simultaneity requirement in (16), c2S cannot be smaller than
the value that solve the equation

P

{
∀x ∈ [l, u] :

{Px̃xx}T T

‖Px̃xx‖
≥ −c2S and

{Px̃xx}T T

‖Px̃xx‖
< c2S

}
= 1− α .

Note on the other hand that c2 of the two-sided simultaneous confidence band in (1) satisfies

P

{
∀x ∈ [l, u] :

{Px̃xx}T T

‖Px̃xx‖
≥ −c2 and

{Px̃xx}T T

‖Px̃xx‖
< c2

}
= 1− α .

It follows therefore that c2S cannot be smaller than c2. This and the fact that the con-
fidence sets [Ĝλ,2l, Ĝλ,2u] constructed from the two-sided simultaneous confidence band do

have the simultaneity property (14) imply c2S = c2, that is, [Ĝλ,2l,S, Ĝλ,2u,S] must be given

by [Ĝλ,2l, Ĝλ,2u] in order to satisfy (16). This completes the proof of the theorem. ♣

In conclusion, the confidence sets [Ĝλ,2l,S, Ĝλ,2u,S] must be the same as the confidence sets

[Ĝλ,2l, Ĝλ,2u] in order to satisfy the simultaneity property (16). Since c2N < c2, the confidence

sets [Ĝλ,2l,N , Ĝλ,2u,N ] do not satisfy the simultaneity property.
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4 An example

Kleinbaum, Kupper, Muller, and Nizam (1998, p. 192) provided a dataset on changes in
systolic blood pressure (y = SBP , in mm Hg) with age (x = age, in years) for a group of
40 males. The data points and the fitted regression line, which is Y = 110.04 + 0.96x, are
plotted in Figure 2(a). From the usual model diagnostic check, the simple linear regression
model is a quite reasonable fit, with R2 = 0.7447 and σ̂ = 8.479 on ν = 38 df.

Since the minimum age min(xi) = 18 and the maximum age max(xi) = 70, we set K =
[l, u] = [18, 70] for illustration below. Suppose we are interested in identifying the ages
within K for which the mean SPB is larger than or equal to 160, that is, the level set
G160 = {x ∈ K : β0 + β1x ≥ 160 } with λ = 160. The level line Y = λ = 160 is also plotted
in Figure 2(a).

To compute the conservative confidence set [Ĝλ,2l, Ĝλ,2u] in (2), we first need to compute the
critical constant c2 for the tw-sided simultaneous confidence band in (1). For α = 0.05, c2 is
computed to be 2.514. The confidence band is plotted in Figure 2(b), given by the two curve-
lines around the fitted regression line. The confidence set [Ĝλ,2l, Ĝλ,2u] is plotted in the same

figure, with Ĝλ,2l = [56.10, 70] indicated by the shorter line-segment, and Ĝλ,2u = [48.44, 70]
indicated by the longer line-segment.

To compute the exact confidence set [Ĝλ,2l,N , Ĝλ,2u,N ] in (3), we first need to compute the
critical constant c2N . It is solved from equation (4), with the minimum probability given by
expression (13). For α = 0.05, c2N is computed to be 2.327, which is about 7.5% smaller
than c2 = 2.514. The two functions x̃xxT β̂ ± c2N σ̂g(x) are plotted in Figure 2(c), given by
the two long-dash curve-lines around the fitted regression line. The exact confidence set
[Ĝλ,2l,N , Ĝλ,2u,N ] is plotted in the same figure, with Ĝ2l = [55.75, 70] indicated by the shorter

line-segment, and Ĝλ,2u = [48.70, 70] indicated by the longer line-segment.

As expected, c2N < c2. So the curve-lines x̃xxT β̂ ± c2N σ̂g(x) are closer to the fitted regression
line than the curve-lines x̃xxT β̂±c2σ̂g(x), and Ĝλ,2l ⊂ Ĝλ,2l,N ⊂ Ĝλ,2u,N ⊂ Ĝλ,2u even though the
difference between the exact and conservative confidence sets is not that large in this example.
This is demonstrated in Figure 2(d) where both the exact and conservative confidence sets
are plotted.

If one is not fixated on one particular λ-value and would rather try several different λ-values,
then one can construct confidence sets [Ĝλ1,2l, Ĝλ1,2u], [Ĝλ2,2l, Ĝλ2,2u], · · · for any sequence of
λ1, λ2, · · · . The result of Section 3 guarantees that the simultaneous confidence level of this
sequence of confidence sets is still at least 1−α = 95%. However the simultaneous confidence
level of the corresponding sequence of confidence sets [Ĝλ1,2l,N , Ĝλ1,2u,N ], [Ĝλ2,2l,N , Ĝλ2,2u,N ], · · ·
may be strictly less than 1− α = 95% as pointed out in Section 3.
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5 CONCLUSION AND DISCUSSION

Conservative two-sided confidence set for a level set is provided in Wan et al. (2022) for linear
regression models, and based on a two-sided simultaneous confidence band. In this paper,
an exact two-sided confidence set for a level set is constructed for a simple linear regression
model. It is also shown that the exact two-sided confidence sets do not have the property
of simultaneity in λ, while the confidence sets based on two-sided simultaneous confidence
band do have the simultaneity property.

Construction of exact two-sided confidence sets for a level set for multiple linear or polynomial
regressions is clearly of interest but much more challenging. It warrants further research.

It is also interesting to explore the construction of exact two-sided confidence sets using other
forms of g(x). While beyond the scope of this paper, it warrants further research.
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(a) (b)

(c) (d)

Figure 1: Computation of the probability in (6).

13



(a) Data points and fitted regression line (b) Conservative confidence set [Ĝλ,2l, Ĝλ,2u]

(c) Exact confidence set [Ĝλ,2l,N , Ĝλ,2u,N ] (d) Both confidence sets

Figure 2: The 95% conservative and exact confidence sets in the example.
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