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Abstract—Fractional vegetation cover (FVC) is a critical 

component of ecosystems, global climate change and the carbon 

cycle. Several FVC products have been released, the most widely 

used of which are the GLASS FVC products (including the 

GLASS-MODIS and GLASS-AVHRR FVC products). Specifically, 

the GLASS-MODIS FVC product covers the period from 2000 to 

present with a 500 m spatial resolution, whereas the 

GLASS-AVHRR FVC product is available from 1982 to present 

with a coarser spatial resolution of 5 km. For local monitoring of 

patterns of change in vegetation, however, there is a great need for 

fine spatial resolution (e.g., 500 m in this paper) and long-term 

time-series FVC datasets. To this end, we proposed to reconstruct a 

500 m, 8-day historical MODIS FVC dataset (1982–2000) by 

making full use of the advantages of the existing GLASS-MODIS 

FVC (fine spatial resolution of 500 m) and GLASS-AVHRR FVC 

(long-term coverage from 1982 to the present) products covering 

China in this paper. The known GLASS-AVHRR FVC product 

was first used to fit the relationship between the FVC data after 

2000 and before 2000, based on a random forest (RF) model. The 

trained relationship was migrated to the GLASS-MODIS FVC 

product, that is, predicting the MODIS FVC before 2000 based on 

the input of MODIS FVC after 2000. The validation using 64 scenes 

of Landsat FVC reference data revealed that the predicted 

historical MODIS FVC dataset has a reliable accuracy with a 

correlation coefficient (CC) value of 0.84, root mean square error 

(RMSE) of 0.14, Bias of 0.04 and unbiased RMSE (ubRMSE) of 

0.12. Moreover, an accuracy evaluation in seven different regions 

in 1999 suggested that the historical MODIS FVC is closer to the 

Landsat FVC than the GEOV2 FVC product. Overall, the 500 m, 

8-day MODIS FVC dataset (1982–2000) in China can provide 

important historical data for long-term, local monitoring of 

vegetation, which has great potential in supporting studies in a 

range of applications areas including ecology, hydrology and 

climatology. This dataset is available at 

https://doi.org/10.6084/m9.figshare.24616446.v1. 
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I. INTRODUCTION 

Vegetation plays an essential role in the global carbon cycle 

by absorbing carbon dioxide from the atmosphere in the form of 

carbohydrates through photosynthesis and fixing it in terrestrial 

ecosystems [1-4], which can protect terrestrial ecosystems by 

regulating climate, conserving water and preventing soil erosion 

[5-7]. Moreover, vegetation is an effective way to alleviate the 

urban heat island (UHI) effect by decreasing the temperature 

through evapotranspiration [8]. Therefore, monitoring 

vegetation dynamics has become an important topic in 

ecological and environmental assessments. Fractional 

vegetation cover (FVC) is an important indicator of surface 

vegetation conditions and is defined as the proportion of the 

vertical projection area of vegetation canopy (including 

vegetation components such as leaves, stems and branches) per 

unit area [9]. FVC is also a key factor in transpiration, 

photosynthesis, global climate change and other terrestrial 

processes and climate patterns, and it has been used widely in 

applications such as agriculture, forestry, drought monitoring 

and related fields [10], [11]. 

Remote sensing is the main tool used to estimate FVC at a 

large scale and has the advantages of a large monitoring range 

(e.g., global coverage) and regular revisit frequency. Generally, 

the FVC extracted by remote sensing technology refers to green 

vegetation cover. Currently, there are three classical methods for 

estimating FVC [12]. First, empirical methods construct the 

relationship between true FVC and vegetation index [13]. The 

methods can be divided into linear and nonlinear regression. 

Secondly, physical methods aim to establish the physical 

relationships between FVC and the spectral reflectance of the 

vegetation canopy, such as via a radiative transfer model [14] 

and geometric-optical model. For example, as a widely used 

radiative transfer model, PROSAIL is composed of the leaf 

optical properties model PROSPECT [15] and the canopy 

bidirectional reflectance model SAIL. The vegetation canopy 

reflectance and the corresponding FVC simulated based on the 

PROSAIL model can be used as training data to train a learning 

model, and then the learning model can be applied to estimate 

FVC from satellite observations. Finally, spectral unmixing 

methods assume that remote sensing image pixels contain 

different surface feature information [16]. In this case, the linear 

spectral mixture model (LSMM) has been the most widely used 

choice [17], [18]. Owing to the complexity of endmember 

extraction, several machine learning methods were developed 

recently [19], [20]. 

Up to now, several FVC products have been published, 

including the ENVISAT [21], GEOV [22], MuSyQ [23] and 

https://doi.org/10.6084/m9.figshare.24616446.v1
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GLASS FVC products [12], [24]. Information regarding the 

sensors, resolution and available time for these products is listed 

in Table 1. Amongst them, the GLASS FVC is a widely used 

product, due to the advantages in terms of spatial resolution (i.e., 

500 m for MODIS) or temporal coverage (i.e., from 1982 to the 

present for AVHRR). Originally, the GLASS FVC product was 

derived from 500 m moderate resolution imaging 

spectroradiometer (MODIS) data (denoted as the 

GLASS-MODIS FVC product) using the general regression 

neural networks (GRNNs) approach [25], [26], where Thematic 

Mapper (TM) and Enhanced Thematic Mapper plus (ETM+) 

data were used as labels to construct training samples [12]. 

Considering that the computational efficiency of GRNNs was 

unsatisfactory for long-term products, alternative algorithms 

were considered in later studies, such as the multivariate 

adaptive regression splines (MARS) [27-29]. Generally, the 500 

m GLASS-MODIS FVC product can provide more detailed 

spatial information than other FVC products at kilometer 

resolution. However, as MODIS surface reflectance data were 

acquired after 2000, GLASS-MODIS FVC product data are only 

available from 2000 to the present. That is, a long-term 

time-series FVC product that extends to before 2000 is not 

available. Therefore, to further expand the temporal coverage of 

GLASS FVC, a GLASS FVC product derived from advanced 

very high resolution radiometer (AVHRR) data (denoted as the 

GLASS-AVHRR FVC product) was developed, where the 

relation between the GLASS-MODIS FVC product and the 

AVHRR reflectance data was identified in the training process 

[24]. As the AVHRR data have been available from 1982, the 

GLASS-AVHRR FVC product can span from 1982 to the 

present, which is generally longer than other FVC products at 

the global scale. 

 
Table 1. Information on some FVC products. 

Product name Sensor 
Spatial 

resolution 

Temporal 

resolution 
Available time 

ENVISAT MERIS 1.2 km 10-day 2002-2012 

GEOV 
VGT 1 km 10-day 1999-2020 

https://land.copernicus.eu/global/products/fcover 

MuSyQ 
MODIS, FY-3 1 km 5-day 2010-now 

http://www.doi.org/10.11922/sciencedb.j00001.00266 

GLASS FVC 

AVHRR 5 km 8-day 1982-now 

http://www.glass.umd.edu/FVC/AVHRR/ 

MODIS 500 m 8-day 2000-now 

http://www.glass.umd.edu/FVC/MODIS/500m/ 

 

The GLASS-MODIS FVC product, with a 500 m spatial 

resolution and an 8-day temporal resolution, has good spatial 

and temporal continuity characteristics as well as satisfactory 

accuracy at the global scale. Therefore, it has been used as 

ancillary data in conjunction with other data types for vegetation 

change monitoring and downscaling. For example, Mu et al. [30] 

used the GLASS-MODIS FVC product from 2001–2018 to 

analyze the vegetation change trend in China and quantified the 

CO2, temperature, shortwave radiation, precipitation, and land 

cover change effects on changes in vegetation cover using a 

generalized linear model. Hu et al. [31] used the 

GLASS-MODIS FVC product as a fine spatial resolution 

independent variable to assist in downscaling soil moisture data 

in the Tibetan Plateau region. Therefore, the GLASS-MODIS 

FVC product at fine spatial resolution provides important data 

supporting a wider range of researches. 

As mentioned earlier, 500 m FVC data are absent before 2000. 

Thus, presently, the existing GLASS-MODIS FVC product 

cannot satisfy the requirement for long time-series vegetation 

monitoring at fine spatial resolution, and it would be of great 

interest to extend the time span of the GLASS-MODIS FVC 

product at 500 m spatial resolution. For existing FVC products, 

the GLASS-AVHRR FVC has the longest historical time span 

(i.e., beginning from 1982). Consequently, the GLASS-AVHRR 

FVC could be used as base data to extend the temporal length of 

the GLASS-MODIS FVC back to 1982. In contrast to some 

historical, coarse spatial resolution FVC data (e.g., 

GLASS-AVHRR FVC and GEOV), the produced 500 m 

historical FVC data would provide more refined and abundant 

spatial information. Moreover, based on these advantages, the 

constructed data will contribute to vegetation change trend 

analysis over a longer period and can also be employed to study 

vegetation-climate interactions and the relationships between 

ecosystems over historical periods. 

Currently, most spatio-temporal reconstruction methods aim 

to fill missing data using partial available data that are spatially 

adjacent (known as gap filling), which is essentially an 

interpolation task. However, this task is substantially different 

from the task of reconstructing completely missing data (i.e., an 

extrapolation task). In this paper, the 500 m historical MODIS 

FVC data to be predicted is completely missing at the time of 

interest. Thus, the gap filling methods are not applicable to the 

reconstruction task in this paper. 

In this paper, we reconstructed a 500 m, 8-day historical 

MODIS FVC dataset from 1982–2000 in China, based on the 

GLASS-MODIS FVC with fine spatial resolution and 

GLASS-AVHRR FVC with a longer period (from 1982 to the 

present). First, a training model was constructed using the 

GLASS-AVHRR FVC product at different times in China, 

based on the assumption that the FVC temporal change pattern 

in the GLASS-AVHRR FVC product is similar to that of the 

GLASS-MODIS FVC product. Specifically, the relation 

between the GLASS-AVHRR FVC data after 2000 (i.e., input) 

and GLASS-AVHRR FVC data at any time within 1982–2000 

(i.e., label) was fitted using a random forest (RF) model. Then, 

the trained RF model was applied to estimate the historical 500 

m MODIS FVC dataset from 1982–2000, with the 

GLASS-MODIS FVC after 2000 as input. The accuracy of the 

estimated 500 m, 8-day FVC data from 1982 to 2000 was 

evaluated by referring to Landsat FVC data. The reconstructed 

FVC dataset not only maintains the fine spatial resolution of the 

GLASS-MODIS FVC product, but also further extends the 

temporal length (i.e., from 1982). Thus, the reconstructed 500 m, 

8-day MODIS FVC dataset (1982–2000) can provide important 

sources for long-term, local monitoring of vegetation, which can 

support studies in a range of applications areas including 

ecology, hydrology and climatology. 

The remainder of this paper is organized as follows: Section II 

introduces the used data, including the GLASS-MODIS and 
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GLASS-AVHRR FVC products and Landsat data. Workflow 

details for reconstructing the historical MODIS FVC dataset in 

China are elaborated in Section III. Section IV presents 

validation of the reconstructed FVC results and the 

corresponding spatio-temporal analysis. Section V discusses 

further issues with the produced FVC dataset, including FVC 

change analysis, advantages in spatial resolution and the 

handling of uncertainty. Finally, Section Ⅵ concludes the paper. 

II. DATA 

A. GLASS-MODIS FVC product 

The GLASS product suite [32] provides global MODIS FVC 

data (i.e., GLASS-MODIS FVC) with an 8-day temporal 

resolution and a 500 m spatial resolution [9]. The 

GLASS-MODIS FVC product was generated using a machine 

learning method applied to the MODIS surface reflectance data 

(i.e., MOD09A1), where the MARS model was chosen as the 

most applicable algorithm compared with the other three models 

[27]. Landsat data from global samples were used as labels for 

the training samples. Direct validation using 44 ground 

measurements from the Validation of Land European Remote 

Sensing Instruments (VALERI) sites revealed that the 

GLASS-MODIS FVC product trained by MARS has a reliable 

performance for estimating FVC (R
2
=0.836, root mean square 

error (RMSE)=0.149). Considering the MODIS surface 

reflectance data were acquired from 24 February 2000, the 

corresponding GLASS-MODIS FVC product is not available 

before 2000. This paper aimed to reconstruct the historical 

MODIS FVC dataset for China from 1982–2000. The 

GLASS-MODIS FVC product was downloaded from 

http://www.glass.umd.edu/FVC/MODIS/500m/. 

B. GLASS-AVHRR FVC product 

The GLASS-AVHRR FVC product is available as a GLASS 

product suite with a 5 km spatial resolution and 8-day temporal 

resolution. Jia et al. [24] used the GLASS-MODIS FVC product 

to generate a long-term GLASS FVC product from AVHRR 

data dating back to 1982. More precisely, the AVHRR surface 

reflectance data [33], including the red and near-infrared bands, 

were used as input data and the corresponding GLASS-MODIS 

FVC product (reprojected to 5 km) was used as a label for 

training samples in training the MARS model. Based on the 

trained model, the 5 km FVC product starting in 1982 was 

estimated using AVHRR reflectance data as input. To ensure 

consistency with the GLASS-MODIS FVC results, the AVHRR 

FVC results were corrected linearly using the GLASS-MODIS 

FVC product. Direct validation of the ground measurements 

demonstrated the reliability of the GLASS-AVHRR FVC 

product (R
2
=0.834, RMSE=0.145). Furthermore, compared to 

the GLASS-MODIS FVC product from 2013, satisfactory 

spatial and temporal consistencies were found between the two 

products. The data can be freely downloaded from 

http://www.glass.umd.edu/FVC/AVHRR/. 

C. Landsat data 

The Landsat-5 TM reflectance data, which can be acquired 

from Earth Explorer (https://earthexplorer.usgs.gov/), were used 

to validate the estimated historical MODIS FVC results in this 

paper. The spatial and temporal resolution of Landsat data are 30 

m and 16-day, respectively. To match by location, the 

GLASS-MODIS and GLASS-AVHRR FVCs and Landsat data 

were unified into a single Geographic Coordinate System (i.e., 

WGS84). The reference FVC data at 500 m spatial resolution 

were derived by applying the dimidiate pixel model to the 

Landsat data. Further details are provided in Section Ⅲ-D. 

 

 

 
Fig. 1. Flowchart showing generation of historical MODIS FVC in China from 1982–2000. 
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Fig. 2. The GLASS-AVHRR FVC (black line) and GLASS-MODIS FVC (red line) products temporal curves during 2002–2005 at three different geographical 

locations in China. (a) Lat: 26°12’N, Lon: 102°24’E; (b) Lat: 33°46’N, Lon: 115°25’E; (c) Lat: 43°31’N, Lon: 129°19’E. 

 

 
Fig. 3. The relation (in terms of three indicators) between the FVC temporal profiles (from 2002–2005) of the GLASS-AVHRR FVC and GLASS-MODIS FVC 

products (upscaled to 5 km). (a) CC; (b) RMSE; (c) Bias (using the GLASS-AVHRR FVC as reference). 
 

III. METHODS 

In this paper, we considered exploiting known FVC products 

(i.e., GLASS-AVHRR FVC) as training samples, in which the 

RF model was used as the training model. A strategy flowchart is 

shown in Fig. 1. The training samples were constructed using the 

GLASS-AVHRR FVC product (China) time-series data, with 

the data from day of year (DOY) 2002001–2005361 as input and 

known historical data (i.e., within DOY 1982001–2000041) as 

labels. The trained RF model was used to estimate the historical 

MODIS FVC dataset from DOY 1982001–2000041. Finally, the 

estimated historical MODIS FVC dataset was validated using 

Landsat FVC data. Details of this process are described in the 

following subsections. 

A. Construction of training samples 

Based on the GLASS-AVHRR and GLASS-MODIS FVC 

products, three groups of FVC change curves from 2002–2005 

in China are shown in Fig. 2, with geographical locations 

selected randomly in China. We found that, for all three groups, 

the overall change trend of GLASS-AVHRR and 

GLASS-MODIS FVC is similar, despite the local difference in 

FVC values between the two products. Moreover, the intra-year 

variation in FVC is regular, and the inter-year variation also 

remains largely constant, indicating that the time-series of both 

the GLASS-AVHRR and GLASS-MODIS FVC products 

exhibit a regular change. In addition, we calculated the 

correlation coefficient (CC), RMSE and Bias between the FVC 

temporal profiles for each pixel of the GLASS-AVHRR FVC 

and GLASS-MODIS FVC products (upscaled to 5 km) from 

2002–2005, respectively, as shown in Fig. 3. It can be seen that 

most regions of China present CC values above 0.90, RMSE 

values below 0.1 and Bias values ranging from -0.1 to 0.1. Thus, 

the two FVC products have a large correlation and small 

differences between the temporal profiles. Based on the 

similarity in the two products, we assume that the pattern of 

temporal changes in the GLASS-AVHRR FVC can be 

transferred to the GLASS-MODIS FVC. Therefore, to 

reconstruct the historical MODIS FVC before 2000, the longer 

time-series GLASS-AVHRR FVC product for China was taken 

to construct the training samples for the predicted model. 

Specifically, the training model was constructed for each date 

within 1982–2000, in turn, in which the GLASS-AVHRR FVC 

data from 2002–2005 were used as the input for training, 

whereas the GLASS-AVHRR FVC data for a date within 1982–

2000 were used as labels to train the corresponding learning 

model. 

B. RF model for training 

The RF model is a decision tree-based machine learning 

algorithm proposed by Breiman [34]. The RF model can 

quantify complex nonlinear relationships that are not affected by 

outliers or redundant data and there is no significant over-fitting 

risk [35]. Therefore, the RF has been utilized widely in fields 

such as ecology [36], [37] and agriculture [38]. This paper 

exploited the RF model to estimate the historical MODIS FVC 

dataset. In addition, the temporal length of the GLASS-AVHRR 
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FVC data (China) used as input data was evaluated to determine 

the appropriate temporal length for historical MODIS FVC 

estimation (Section Ⅳ-A). In addition, the number of decision 

trees (ntree) was set to 200 and the number of variables at each 

node (mtry) was set to 5. 
 

C. Estimation of the historical MODIS FVC dataset (1982–

2000) 

The GLASS-AVHRR FVC product in China was utilized as 

input data, and the optimal temporal length for estimating the 

historical MODIS FVC was determined as 4 years (illustrated in 

Section Ⅳ-A). The RF model was trained using 

GLASS-AVHRR FVC data (China) using the following 

expression: 

1 2
( , , , )

i i N

AVHRR AVHRR AVHRR AVHRR

t t T T TfFVC FVC FVC FVC     (1) 

where 
1 2

, , ,
N

AVHRR AVHRR AVHRR

T T TFVC FVC FVC  are the fixed 

time-series GLASS-AVHRR FVC data (China) with 5 km 

spatial resolution based on the optimal temporal length (i.e., 4 

years in this paper) as the input data for training. Specifically, 

1 2, , ,and  NT T T  represent the period from 2002001–2005361. 

Note that the data of two dates, 2002305 and 2005169, are 

missing from the GLASS-MODIS FVC product. To maintain a 

consistent number of training samples, the corresponding 

GLASS-AVHRR FVC data constructing the training samples do 

not include the scenes of these two dates, resulting in 182 scenes. 

That is, N=182 in this paper. 
i

AVHRR

tFVC  represents the 

GLASS-AVHRR FVC data (5 km) at a time 
it  ( 1,2, ,i n ) in 

the historical period of 1982001–2000041 (i.e., n=834), which 

was used as a label for training the RF model. 
it

f  is the 

nonlinear relationship operator at the corresponding time 
it . 

In line with the assumption mentioned in Section Ⅲ-A, the 

trained RF model was used to produce a 500 m, 8-day historical 

MODIS FVC dataset from 1982–2000 (i.e., DOY from 

1982001–2000041). The specific expression is as follows: 

1 2
( , , , )

i i N

MODIS MODIS MODIS MODIS

t t T T TfFVC FVC FVC FVC     (2) 

where 
it

f  is the function fitted using Eq. (1) and 

1 2
, , ,

N

MODIS MODIS MODIS

T T TFVC FVC FVC are known time-series 

GLASS-MODIS FVC data (China) with 500 m spatial 

resolution from 2002001–2005361 as input data. Note that the 

input data are also fixed, and the temporal length of the input 

data is the same as that in Eq. (1). 
i

MODIS

tFVC  is the predicted 

MODIS FVC (500 m) at time it  in the historical period (i.e., 

within 1982001–2000041). For each prediction time it , the 

training model in Eq. (1) and predicting model in Eq. (2) were 

constructed in turn. The specific processes are summarized as 

follows: 

1) The GLASS-AVHRR FVC data (China) from 2002001–

2005361 were used as the fixed input of the training data 

and the known historical GLASS-AVHRR FVC (China) at 

the prediction time it  (i.e., in the historical period of 

1982001–2000041) was used as the label. 

2) The RF model was trained based on the training data in step 

1). 

3) The corresponding GLASS-MODIS FVC (China) from 

2002001–2005361 were input to the trained RF model, 

producing the prediction of the historical MODIS FVC at 

time 
it . 

4) The above steps were repeated for all time points in the 

period from 1982001–2000041. Then, a 500 m, 8-day 

historical FVC dataset from 1982–2000 in China was 

reconstructed. 

D. Validation with Landsat data 

Owing to the lack of in-situ FVC data for validation in the 

predicted time interval, the processed Landsat FVC data were 

selected as references based on Landsat-5 surface reflectance 

images, which were acquired from 1984–2000 with a 30 m 

spatial resolution. The classic dimidiate pixel model was used to 

calculate the acquired Landsat image FVC values [10], [39], 

[40]. The dimidiate pixel model is a simple and widely used 

model that assumes that a pixel is composed only of vegetation 

and soil [41], [42]. The normalized difference vegetation index 

(NDVI) reflects vegetation growth during different periods as 

well as vegetation coverage at different locations [43]. Therefore, 

based on the dimidiate pixel model, the 30 m FVC was estimated 

using the NDVI [44]. The mathematical expression is as follows: 

Landsat S

V S

NDVI NDVI
FVC

NDVI NDVI





                      (3) 

where LandsatFVC  is the estimated 30 m FVC; NDVI is the NDVI 

value of the pixel, which is calculated by bands 3 (i.e., Red band) 

and 4 (i.e., NIR band) from Landsat-5 surface reflectance data 

(i.e., 
4 3

4 3

Band Band
NDVI

Band Band





); NDVIs is the NDVI value of a 

full soil pixel, and NDVIv is the NDVI value of a full vegetation 

pixel. 

The NDVIs and NDVIv values remain constant in the ideal case; 

however, these two parameters were affected by other 

environmental factors. Despite this, the NDVIs and NDVIv values 

can be confirmed by NDVI statistical analysis of the entire 

Landsat image, which assumes that full soil and vegetation 

pixels exist for each Landsat image. In this paper, the NDVI of 

each Landsat image was calculated and then the cumulative 

probability distribution was analyzed statistically. The NDVI 

values at 2% and 98% cumulative percentage were determined 

as NDVIs and NDVIv, respectively [45], [46]. After estimating 

the 30 m FVC according to Eq. (3), the result was upscaled to 

500 m to validate directly the corresponding 500 m historical 

MODIS FVC. 

IV. RESULTS 

A. Evaluation of the RF model 

The influence of the temporal length of the time-series data 

for the RF model was evaluated to ensure the reliability of 

training sample selection. Five temporal lengths were evaluated 

in this study, with a 1-year minimum and a 5-year maximum 

temporal length. The model performance was evaluated by 

predicting the MODIS FVC in China for 2001 (i.e., from DOY 

2001001–2001361, a total of 46 scenes) and comparing it with 
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the existing GLASS-MODIS FVC product at the corresponding 

time [12]. The CC, RMSE, Bias and unbiased RMSE (ubRMSE) 

were utilized as statistical indicators. Fig. 4 shows the accuracy 

for each temporal length in the RF model. According to Fig. 4, it 

is not difficult to find that the CC increases while the RMSE 

decreases with temporal length increasing from 1-year to 5-year. 

For the 4-year temporal length, the CC value can reach 0.95, but 

does not increase obviously as the temporal length increases to 

5-year. Therefore, we take the 4-year (i.e., from 2002–2005) as 

the desirable temporal length. 

 

 
Fig. 4. Evaluation of the temporal length of the time-series used in the RF model.  

 

We trained the RF model based on the optimal temporal 

length, and the four accuracy curves of the trained RF model for 

predicting the FVC of the whole China in 2001 are shown in Fig. 

5. It can be seen that the CC value remains between 0.92 and 

0.97 for the 46 predicted results (i.e., from DOY 2001001–

2001361) in 2001. Meanwhile, the ubRMSE remains between 

0.04 and 0.08. The averages of the four accuracy indicators are 

also plotted in Fig. 5. We can clearly observe that the average 

CC of the predicted FVC can achieve 0.95 and the average Bias 

is only -0.02, and the corresponding average RMSE and 

ubRMSE values are 0.07 and 0.07, respectively. The results 

suggest that the RF model trained by the GLASS-AVHRR FVC 

product (China) with the optimal temporal length can reliably 

predict FVC. 

 

 

 
Fig. 5. Four statistical metrics (i.e., CC, RMSE, Bias and ubRMSE) of the 

predicted 500 m FVC in China (with the GLASS-MODIS FVC product in 2001 

as reference). 
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Fig. 6. Exhibition of the predicted historical MODIS FVC in China for several randomly selected days. 

 

B. Validation of the 500 m FVC results using Landsat FVC 

1) Overall validation. With the RF model, we obtained the 

500 m 8-day FVC historical dataset (1982–2000) in China. Part 

of the data are shown in Fig. 6. Since Landsat-5 data were 

available from 1984, we acquired 64 Landsat tiles from 1984–

2000. More precisely, for each year, the historical MODIS FVC 

results were validated with four Landsat tiles sampled randomly 

at different times. The spatial distribution map of Landsat tiles 

used for validation is displayed in Fig. 7. The spatial size of the 

validation region is 200×200 pixels, with a 500 m spatial 

resolution. Table 2 shows the accuracy evaluation results 

between the historical MODIS and Landsat FVCs at a 500 m 

resolution. To provide an intuitive accuracy assessment, we 

present scatterplots for four selected years (i.e., 1996, 1994, 

1992 and 1990) of the validation results (Fig. 8). According to 

the validation analysis (Table 2), it is observed that the CC 

values are all above 0.71, and the RMSE values are below 0.22. 

Moreover, we calculated the averages of each indicator for 

validation results of all 48 scenes. The results show that the 

mean values of CC, RMSE, Bias and ubRMSE are 0.84, 0.14, 

0.04 and 0.12, respectively. As shown in Fig. 8, the scatter of the 

MODIS FVC results is clustered around the line y=x (black line), 

suggesting that the historical FVC estimated by the RF model is 

close to the reference data (that is, Landsat FVC). This reveals 

that the MODIS FVC dataset produced in the historical period 

has a reliable accuracy. 

 
Table 2. Accuracy evaluation results (predicted MODIS FVC vs. Landsat FVC) 

at 500 m resolution. 

Date Path/Row CC RMSE Bias ubRMSE 

1999/03/04 130/042 0.8686 0.1479 0.1135 0.0948 

1999/05/18 127/035 0.9275 0.1129 0.0730 0.0861 

1999/05/27 126/037 0.8360 0.1228 -0.0745 0.0976 

1999/06/29 117/030 0.8808 0.1841 -0.1181 0.1412 

1998/05/25 117/030 0.9019 0.1274 0.0360 0.1223 

1998/05/26 124/033 0.8392 0.2100 0.1768 0.1134 

1998/05/28 122/032 0.9095 0.1637 0.1348 0.0930 

1998/10/24 125/044 0.7717 0.1555 0.1147 0.1051 

1997/05/25 122/025 0.8047 0.1618 0.0488 0.1542 

1997/05/28 127/035 0.9303 0.0910 0.0186 0.0891 

DOY193 DOY241 DOY289 DOY337 

DOY001 DOY049 DOY097 DOY145 

DOY193 DOY241 DOY289 DOY337 

DOY193 DOY241 DOY289 DOY337 

DOY001 DOY049 DOY097 DOY145 
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1997/06/13 127/035 0.9387 0.0968 -0.0066 0.0966 

1997/06/23 117/029 0.8051 0.1879 -0.1223 0.1427 

1996/04/12 130/042 0.8830 0.1617 0.1287 0.0979 

1996/05/22 122/032 0.8887 0.1361 0.0914 0.1008 

1996/09/14 127/035 0.8029 0.1021 0.0002 0.1021 

1996/12/14 124/044 0.8089 0.1410 0.1052 0.0939 

1995/05/07 127/035 0.8587 0.1109 0.0038 0.1108 

1995/05/09 125/041 0.7890 0.1128 -0.0305 0.1086 

1995/06/08 127/035 0.9244 0.1126 0.0264 0.1095 

1995/06/19 124/033 0.8221 0.1807 0.1336 0.1217 

1994/05/17 122/032 0.8877 0.1246 0.0816 0.0941 

1994/05/27 128/036 0.9352 0.0907 -0.0047 0.0905 

1994/06/15 117/030 0.8660 0.1250 -0.0157 0.1240 

1994/08/22 145/030 0.7354 0.1536 0.0608 0.1411 

1993/04/04 130/042 0.8717 0.1556 0.1137 0.1061 

1993/05/14 122/032 0.8877 0.1070 0.0478 0.0957 

1993/09/22 127/035 0.8226 0.1205 0.0791 0.0909 

1993/12/06 124/044 0.8072 0.1503 0.1115 0.1008 

1992/02/13 130/042 0.7614 0.1667 0.1099 0.1254 

1992/05/14 127/035 0.9189 0.1238 0.0575 0.1096 

1992/05/27 122/032 0.8595 0.1192 0.0475 0.1093 

1992/07/17 127/035 0.8741 0.1102 -0.0077 0.1100 

1991/02/10 130/042 0.7687 0.1468 0.0789 0.1238 

1991/05/25 122/025 0.7520 0.1683 0.0556 0.1588 

1991/11/15 124/043 0.8162 0.1189 -0.0297 0.1151 

1991/11/15 124/044 0.7967 0.1031 0.0133 0.1031 

1990/03/11 130/042 0.8411 0.1695 0.1348 0.1027 

1990/05/18 126/037 0.7973 0.1302 -0.0804 0.1024 

1990/05/22 122/032 0.8963 0.1002 -0.0029 0.1001 

1990/11/28 124/044 0.8055 0.1096 0.0116 0.1090 

1989/05/03 122/032 0.8769 0.2075 0.1709 0.1178 

1989/05/11 130/042 0.8972 0.1405 0.0990 0.0997 

1989/06/01 117/028 0.8963 0.1341 0.0227 0.1322 

1989/12/02 125/044 0.8131 0.1445 0.0962 0.1079 

1988/02/02 130/042 0.7133 0.1556 0.0801 0.1335 

1988/06/04 127/038 0.7326 0.2203 -0.1835 0.1234 

1988/06/06 125/041 0.7561 0.1247 -0.0606 0.1090 

1988/06/25 114/028 0.7764 0.1984 -0.0561 0.1903 

1987/02/15 130/042 0.7579 0.1800 0.1316 0.1228 

1987/05/14 122/032 0.8946 0.1068 0.0348 0.1009 

1987/06/02 127/038 0.7917 0.2004 -0.1530 0.1295 

1987/10/08 127/035 0.8863 0.1870 0.1435 0.1199 

1986/05/27 122/032 0.8992 0.1008 0.0249 0.0977 

1986/06/04 114/028 0.8184 0.1731 0.0134 0.1725 

1986/06/09 117/030 0.8183 0.1820 0.1049 0.1488 

1986/12/13 130/042 0.7403 0.1628 0.1037 0.1255 

1985/05/14 116/030 0.7989 0.1741 -0.0716 0.1587 

1985/05/16 114/028 0.8467 0.1704 0.0789 0.1510 

1985/05/21 117/029 0.8925 0.1417 0.0426 0.1352 

1985/05/21 117/030 0.8577 0.1338 0.0322 0.1299 

1984/05/18 117/027 0.8093 0.1315 0.0122 0.1309 

1984/05/18 117/028 0.8747 0.1555 0.0924 0.1250 

1984/05/18 117/029 0.8653 0.1466 0.0659 0.1310 

1984/05/18 117/030 0.8706 0.1710 0.1238 0.1180 

 Average 0.8403 0.1446 0.0416 0.1173 

 

 
Fig. 7. The spatial distribution of Landsat tiles used for validation. The base map 

is the land cover type map derived from the MCD12Q1, where the different 

forest types are all categorized as forests. 
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Fig. 8. Density scatterplots of Landsat FVC and historical MODIS FVC on several randomly selected days. The black line represents the y=x line. The red line is the 
fitted linear line. Point colors indicate the probability density. 

 

2) Validation based on different land cover types. To further 

validate the historical MODIS FVC dataset, we evaluated the 

accuracy under three main land cover types of vegetation in 

China (i.e., forests, grasslands and croplands), based on the 

MCD12Q1 land cover product. Specifically, a 200×200 pixel 

region of the historical MODIS FVC (at 500 m resolution) was 

selected, which corresponds to the Landsat tile with Path/Row of 

122 and 032, as shown in Fig. 9. The accuracy of the historical 

MODIS FVC for the selected region was evaluated for all three 

land cover types at three different times, as listed in Table 3. It is 

observed that the average CC values for forests, grasslands and 

croplands are 0.86, 0.87 and 0.87, respectively, with the 

corresponding average RMSE values of 0.13, 0.12 and 0.10. 

This suggests that the 500 m MODIS FVC dataset generally 

presents stable accuracy under different land cover types. 

 
Fig. 9. The spatial location and the land cover types of the selected region 

(200×200 pixels; 500 m) for validation based on different land cover types. 
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Table 3. Accuracy evaluation results for different land cover types (predicted 

historical MODIS FVC vs. Landsat FVC) at 500 m resolution. 

 Date CC RMSE Bias ubRMSE 

Forests 

1996/05/22 0.8461 0.1369 0.0777 0.1128 

1992/05/27 0.8478 0.1295 0.0472 0.1206 

1986/05/27 0.8852 0.1161 0.0456 0.1067 

Average 0.8597 0.1275 0.0568 0.1134 

Grasslands 

1996/05/22 0.8631 0.1320 0.0732 0.1099 

1992/05/27 0.8552 0.1208 0.0332 0.1162 

1986/05/27 0.8934 0.1062 0.0272 0.1027 

Average 0.8706 0.1197 0.0445 0.1096 

Croplands 

1996/05/22 0.8706 0.1115 0.0598 0.0941 

1992/05/27 0.8493 0.1078 0.0317 0.1031 

1986/05/27 0.8876 0.0944 0.0205 0.0921 

Average 0.8692 0.1046 0.0373 0.0964 

 

C. Comparison with the GLASS-AVHRR FVC product 
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Fig. 10. The density scatterplots of predicted MODIS FVC (or GLASS-AVHRR 

FVC) versus Landsat FVC across multiple time points. 

 

Four tiles in Table 2 (with dates marked in Fig. 10) were 

selected for comparison. Fig. 10 shows a comparison in terms of 

the density scatterplots between GLASS-AVHRR FVC and 

predicted MODIS FVC across multiple time points within the 

historical period, using Landsat FVC as a reference. The spatial 

resolution of the three different datasets was unified to 5 km. 

From the density scatterplots, it can be observed that the scatter 

of GLASS-AVHRR FVC is closer to the line y=x than that of 

predicted MODIS FVC. This reveals that uncertainties exist in 

the prediction model, making the predicted MODIS FVC 

deviates from the original GLASS-AVHRR FVC. 

D. Comparison with the GEOV2 FVC product 

The global biophysical products Version 2 (GEOV2) FVC 

product is defined as the fraction of ground covered by green 

vegetation, which has the same physical meaning as the 

GLASS-FVC product. To be specific, it was generated by a 

neural network using the Top-of-Canopy (TOC) input 

reflectance in visible, near-infrared and shortwave infrared 

[47]. The GEOV2 FVC product period was available from 

1999 to June 2020 with a 10-day temporal resolution and a 1 

km spatial resolution. The GEOV2 FVC product in 1999 was 

collected from the Copernicus Global Land Service 

(https://land.copernicus.eu/global/products/fcover) for 

comparison. 

Seven study areas were randomly selected to compare the 

predicted historical MODIS FVC dataset to the GEOV2 FVC 

product, with the Landsat FVC as reference. The specific dates 

and locations are listed in Table 4. It should be noted that there 

exists a difference in spatial resolution among the three FVC 

products. To ensure comparative fairness, we unified the 

spatial resolution of the three different datasets to 1 km. The 

scatterplots and error maps are shown in Fig 11. From the 

density scatterplots, the historical MODIS FVC scatter is more 

concentrated around the black line (i.e., the y=x line) than 

GEOV2 FVC for each study region, indicating that the 

historical MODIS FVC is closer to the Landsat FVC. Moreover, 

the error maps (in absolute value) in Fig. 11 indicate that the 

error of the historical MODIS FVC is smaller than that of 

GEOV2 FVC in all seven regions. The accuracy evaluation in 

Table 5 also shows that the historical MODIS FVC results are 

more accurate than those of GEOV2 FVC. For the seven 

different regions, the average CC for the historical MODIS 

FVC is 0.03 larger than that of GEOV2 FVC, and the 

corresponding average RMSE is 0.02 smaller. More precisely, 

the CCs of the historical MODIS FVC are 0.01, 0.03, 0.02, 

0.03, 0.07, 0.01 and 0.02 greater than those of GEOV2 FVC for 

Regions 1-7, respectively, and the corresponding RMSE values 

are 0.03, 0.02, 0.02, 0.01, 0.01, 0.02 and 0.04 smaller. In 

Region 1, the Bias and ubRMSE values of the historical 

MODIS FVC are 0.02 and 0.02 less, respectively, than those of 

GEOV2 FVC. 

 
Table 4. The dates and locations for the data of the selected seven regions. 

 Date Location 

Region 1 1999/03/04 25°45’N, 101°33’E 

Region 2 1999/05/18 35°50’N, 108°54’E 

Region 3 1999/05/27 33°13’N, 109°57’E 

Region 4 1999/06/29 42°59’N, 126°40’E 

Region 5 1999/09/25 23°11’N, 108°51’E 

Region 6 1999/11/05 22°47’N, 110°37’E 

Region 7 1999/12/23 22°56’N, 110°38’E 
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Table 5. Accuracy evaluation of GEOV2 FVC and predicted historical MODIS 

FVC in the seven different regions (the most accurate results are marked in bold). 

 Dataset CC RMSE Bias ubRMSE 

Region 1 

GEOV2 FVC 0.8961 0.1616 0.1336 0.0909 

Predicted 

MODIS FVC 
0.9097 0.1357 0.1135 0.0744 

Region 2 
GEOV2 FVC 0.9246 0.1041 -0.0453 0.0938 

Predicted 

MODIS FVC 
0.9589 0.0849 -0.0608 0.0592 

Region 3 

GEOV2 FVC 0.8737 0.1253 -0.0901 0.0871 

Predicted 

MODIS FVC 
0.8965 0.1039 -0.0745 0.0725 

Region 4 GEOV2 FVC 0.8935 0.1734 -0.1253 0.1199 

Predicted 
MODIS FVC 

0.9263 0.1672 -0.1181 0.1184 

Region 5 
GEOV2 FVC 0.7570 0.0817 -0.0135 0.0806 

Predicted 

MODIS FVC 
0.8253 0.0699 -0.0056 0.0696 

Region 6 

GEOV2 FVC 0.8126 0.0947 -0.0704 0.0634 

Predicted 

MODIS FVC 
0.8228 0.0766 -0.0327 0.0693 

Region 7 
GEOV2 FVC 0.7913 0.1310 0.1103 0.0705 

Predicted 
MODIS FVC 

0.8137 0.0900 0.0535 0.0723 

Average 

GEOV2 FVC 0.8498 0.1245 -0.0144 0.0866 

Predicted 

MODIS FVC 
0.8790 0.1040 -0.0178 0.0765 
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Fig. 11. The density scatterplots and error maps (in absolute value) of predicted MODIS FVC (or GEOV2 FVC) versus Landsat FVC for the seven regions. 

 

E. Spatial and temporal analysis 

1) Spatial consistency with AVHRR FVC. Examples of the 

predicted historical MODIS FVC (500 m), GLASS-AVHRR 

FVC (5 km) and the Bias maps for these two products (5 km) in 

three randomly selected regions on DOY 001, 065, 129, 193, 

257 and 321 in 1989 are shown in Fig. 12. It can be found that 

the FVC distribution between the historical MODIS and 

GLASS-AVHRR FVCs is basically consistent for each region. 

This is because the historical MODIS FVC results were 

estimated using an RF model trained by the GLASS-AVHRR 

FVC product. 
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Fig. 12. The predicted historical MODIS FVC dataset, the corresponding GLASS-AVHRR FVC product and the Bias maps at 5 km resolution (using the 
GLASS-AVHRR FVC as a reference) in three different regions. 

 

2) Temporal consistency with Landsat FVC. The time-series 

of the predicted historical MODIS FVC at three different sites 

(denoted as Sites A, B and C) from 1982–2000 is shown in Fig. 

13, and the Landsat FVC was added as a reference. Due to cloud 

contamination and differences in temporal resolution, the 

number of Landsat data acquisitions was limited. Specifically, 

21, 22 and 20 Landsat data points were acquired for the 

corresponding three sites. The three sites were based on MODIS 

pixels with a 500 m spatial resolution, and the aggregated 500 m 

Landsat FVCs were plotted. Fig. 13 shows that most of the red 

dots (i.e., Landsat FVC) are distributed near the blue line (i.e., 

historical MODIS FVC), suggesting that the historical MODIS 

FVC agrees with Landsat FVC for the period of interest. In 

addition, the FVC time-series curves show regular seasonal 

changes from 1982–2000 at each site. Table 6 shows the overall 

accuracy assessment for the three sites. For the site in Fig. 13(a), 

the CC value is 0.86, and the RMSE, Bias and ubRMSE values 

are 0.08, 0.07 and 0.05, respectively. Moreover, the CCs are 0.79 

and 0.68 for the site in Fig. 13(b) and Fig. 13(c). Therefore, the 

temporal profile of the predicted historical MODIS FVC is in 

satisfactory agreement with the Landsat FVC. 
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Fig. 13. The temporal profile of predicted historical MODIS FVC time-series at 

three different sites (at 500 m spatial resolution) from 1982–2000, where the 
corresponding Landsat FVC is added as reference. (a)-(c) are the results for Sites 

A-C. 

 
Table 6. Accuracy assessment of the temporal profile of the predicted historical 

MODIS FVC at three different sites. 

Site 

The number 

of Landsat 
FVC 

CC RMSE Bias ubRMSE 

A 21 0.8634 0.0821 0.0678 0.0464 

B 22 0.7924 0.0790 0.0105 0.0783 

C 20 0.6840 0.0507 0.0167 0.0479 

 

V. DISCUSSION 

A. FVC change trend analysis 

The annual average FVC change trends in China, calculated 

from the historical MODIS FVC dataset predicted in this paper, 

are shown in Fig. 14(a). The red line represents the FVC linear 

fitted change trend. Although there are some fluctuations in the 

annual FVC average value in China from 1982–1999, the overall 

FVC change trend is increasing. This also shows that the area 

covered by vegetation in China has increased from 1982–1999. 

In addition, to further observe the relationship between trends in 

vegetation cover and changes in the corresponding vegetation 

policies, we used the example of China’s Three North Region, 

where the Three-North Shelterbelt Forest Program (TNSFP) was 

implemented [48]. Specifically, the TNSFP is a large-scale 

artificial forestry ecological project started in 1978 and planned 

to end in 2025, which is a strategic program to improve the 

ecological environment, reduce natural disasters and maintain 

living spaces [49]. For the range of China’s Three North Region, 

we referred to the Resource and Environment Science and Data 

Center (https://www.resdc.cn/data.aspx?DATAID=138). 

Considering summer is the time when vegetation productivity is 

at a maximum, this paper calculated the annual average FVC 

values of China’s Three North Region in summer (i.e., June to 

August) from 1982–1999 and plotted them on a continuous 

curve in Fig. 14(b). It can be clearly observed that the general 

change trend of FVC values in the China’s Three North Region 

is also upward. This correlates with the work of the TNSFP on 

afforestation and increasing forest cover during this period. 

Moreover, the slope of the linearly fitted line for the China’s 

Three North Region in summer is larger than those for the entire 

China region. This suggests that the predicted historical MODIS 

FVC result is a reliable dataset that reflects true FVC changes. 
 

 

 
Fig. 14. Annual average FVC variations from 1982–1999 in different spatial 

extents. (a) China; (b) China’s Three North Region. 

 

B. The advantage of the produced historical MODIS FVC 

dataset 

In this paper, we generated a historical MODIS FVC dataset 

with a 500 m resolution, which increases the spatial resolution of 

the GLASS-AVHRR FVC product by a factor of 10. To display 

the advantages of the historical MODIS FVC dataset in terms of 

spatial scales, we selected the data for two different areas (i.e., 

the Dongting Lake and the Yangtze River) in 1982 for 

comparison with the GLASS-AVHRR FVC product. The 

comparison results and the Bias maps (5 km) for the river and 

lake areas are shown in Fig. 15, where the black line outlines the 

specific extent. It is not difficult to find that the predicted 

MODIS FVC dataset is filled with red (i.e., representing that the 

FVC is zero) for the corresponding lake and river areas, whereas 

this is not the case for the AVHRR FVC dataset. For example, in 

DOY 257, 1982, the river area in the MODIS FVC dataset is 

completely dominated by red, but the corresponding area in the 

AVHRR FVC dataset is lighter than red. For the Bias maps, we 

can find that the differences are larger in the area of lakes and 

rivers. In addition, it is difficult to observe the shapes of lakes 

and rivers at a 5 km spatial resolution. 

We calculated the FVC values for both datasets at three 

different sites in the selected lake (denoted as Sites D, E and F) 

and river areas (denoted as Sites G, H and I) for the entirety of 

1982, as shown in Fig. 16. From Fig. 16(a1) and (b1), we can 

find that the FVC values for the predicted historical MODIS 

FVC dataset were consistently equal to zero throughout 1982, 

whereas the FVC values for the AVHRR FVC dataset are all 

greater than 0, whether in the lake or river areas. The reason is 

that the AVHRR FVC dataset contains a large amount of land 

cover information in one pixel with a 5 km resolution, and the 

produced MODIS FVC dataset can more accurately distinguish 
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different vegetation covers by increasing the resolution to 500 m. 

It is, thus, demonstrated that the produced MODIS FVC with 

500 m resolution can provide more detailed spatial information. 
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Fig. 15. Visual comparison and Bias maps (the AVHRR FVC as reference) between the AVHRR and predicted MODIS FVC datasets for a section of Dongting Lake 
and the Yangtze River at two time points (i.e., DOY 153 and 257) in 1982. The black line outlines the specific extent of Dongting Lake and the Yangtze River. 
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Fig. 16. The temporal profile of FVC at three different sites in the selected lake and river areas in 1982. (a1)-(a3) are the results for Sites D-F and (b1)-(b3) are the 

results for Sites G-I. 

 

C. Uncertainty in the training data 

In this paper, the GLASS-AVHRR FVC dataset was used as 

the training data to train the RF model. The quality of the 

training samples will influence the subsequent results. However, 

the GLASS-AVHRR FVC dataset, as an inversion product, also 

contains certain uncertainty. We selected the Xinjiang Uygur 

Autonomous Region in western China for further analysis. The 

main land cover types of the region are shown in Fig. 17. 

Additionally, a visual comparison between GLASS-AVHRR 

FVC and predicted MODIS FVC in 1999 at different time points 

(i.e., DOY 001, 161 and 321) for the region is displayed in Fig. 

18. From Fig. 17, it can be seen that while most of the area is 

dominated by barren land, a distinct cover of grasslands and 

croplands exists in the northern part. However, in Fig. 18, we 

can find that a large proportion of the GLASS-AVHRR FVC 

dataset in the grassland covered areas of the northern Xinjiang 

contains values of 0, which leads to an underestimation of FVC 

in this region. Based on this observation, the corresponding 
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predicted MODIS FVC inherits this uncertainty, that is, also 

with values of 0 in the northern part. 

 

 
Fig. 17. The land cover types of the Xinjiang Uygur Autonomous Region. 

D. Uncertainty in prediction 

One source of uncertainty in the present research is the 

imperfect relationship between the GLASS-AVHRR and 

GLASS-MODIS FVC products. In this study, based on the 

similarity in the FVC temporal profiles between the 

GLASS-MODIS and GLASS-AVHRR FVC products in China 

(see Figs. 2 and 3), the GLASS-AVHRR FVC product change 

pattern (China) was migrated to the GLASS-MODIS FVC 

product (China). Although the above assumption can be 

confirmed by the predicted FVC results, the differences between 

the GLASS-AVHRR and GLASS-MODIS FVC products 

cannot be ignored, not least because the acquisition platforms of 

the two products are different. In particular, the AVHRR and 

MODIS data differ in viewing angles and spectral wavelengths, 

which further contribute to the differences in the two types of 

observations. Moreover, due to the substantial difference in 

spatial resolution between MODIS and AVHRR data (500 m vs. 

5 km), the transfer of GLASS-AVHRR FVC to GLASS-MODIS 

FVC can bring scale uncertainty, especially when the 

distribution of land cover types is complex and local 

heterogeneity is great (e.g., dominated by objects with spatial 

size smaller than 5 km, presenting mixed pixels in AVHRR data). 

Thus, the existence of the observed discrepancies will cause 

errors in the estimated historical MODIS FVC dataset during 

1982–2000 to a certain extent. In addition, the RF model was 

selected as the training and prediction model. This is because RF 

can process a large number of training samples and performs 

well in fitting nonlinear relationships. With the development of 

machine learning, some deep learning networks have the 

advantages of processing complicated data, avoiding noise 

effects and improving computational efficiency [50-53]. 

Therefore, further studies may consider using deep learning 

model to increase the accuracy of predicting historical FVC 

time-series datasets. 
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Fig. 18. Visual comparison between the GLASS-AVHRR FVC and predicted MODIS FVC datasets for the Xinjiang Uygur Autonomous Region at three different 

time points in 1999. 
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E. Limitations in validation 

Due to the lack of ground measurement FVC data in the 

historical period, we used Landsat FVC data, which were 

calculated using the dimidiate pixel model, as reference data 

with which to validate the predicted MODIS FVC results from 

1982–2000. First, the revisit interval of Landsat data is 16 days 

and is susceptible to cloud contamination. Moreover, Landsat 

data cannot guarantee complete cloud-free coverage in China 

and, therefore, the validation of reconstructed FVC data in China 

is also limited. Second, we calculated the NDVI values from the 

Landsat reflectance data and used the dimidiate pixel model to 

calculate the FVC. For the dimidiate pixel model (Eq. (3)), the 

key parameter definitions, that is NDVIs and NDVIv, were based 

on the assumption that full soil and vegetation pixels existed for 

each Landsat image. However, the actual situations in different 

ecosystems do not exactly match these assumptions. Therefore, 

there is uncertainty in the definitions of NDVIs and NDVIv. This 

has also been the subject of discussion by many scholars [44]. In 

the future, a more extensive validation of the predicted MODIS 

FVC dataset would be required, with more reliable reference 

data, including historical ground measurements and other finer 

spatial resolution remote sensing data. 

VI. CONCLUSION 

In this paper, the historical FVC dataset for China from 1982–

2000, with a 500 m spatial resolution and 8-day frequency, was 

derived from the GLASS-AVHRR and GLASS-MODIS FVC 

products. We assumed that the FVC change pattern of the 

GLASS-AVHRR FVC product could be migrated to the 

GLASS-MODIS FVC product. Specifically, the time-series 

training samples were created by the existing GLASS-AVHRR 

FVC for the Chinese region, with the GLASS-AVHRR FVC 

from 2002–2005 as input and known historical GLASS-AVHRR 

FVC data (i.e., within 1982–2000) as the label. The historical 

MODIS FVC dataset was predicted using the trained RF model, 

with the MODIS FVC from 2002–2005 as input. The accuracy 

was evaluated using 48 Landsat tiles. The results indicated that 

the predicted historical MODIS FVC dataset performed 

satisfactorily, with a CC and RMSE of 0.84 and 0.14, 

respectively. In addition, the predicted historical MODIS FVC 

dataset was demonstrated to be more accurate than the GEOV2 

FVC product (that is, the average values of CC and RMSE are 

increased by 0.03 and decreased by 0.02, respectively) for seven 

different regions in 1999. According to an analysis of 

spatio-temporal consistency, the historical MODIS FVC dataset 

reflects reliably the seasonal change in vegetation, and 

corresponds well with the Landsat FVC data in the temporal 

domain. Overall, the predicted historical MODIS FVC dataset 

expands the temporal length of the GLASS-MODIS FVC 

product in China, which begins in 1982, and can present much 

more spatial details at a finer spatial resolution of 500 m. To the 

best of our knowledge, this is the FVC time-series with the finest 

spatial resolution for 1982–2000. The 500 m FVC data will be of 

great value for various applications domains (e.g., climate 

change and carbon cycle) at regional scale. The dataset is 

available at https://doi.org/10.6084/m9.figshare.24616446.v1. 

APPENDIX 

Specific NDVIs and NDVIv values for each Landsat tile used 

for validation are listed in Table A1. 

 
Table A1. The NDVIs and NDVIv values for each Landsat tile used for validation. 

Date Path/Row NDVIs NDVIv 

1999/03/04 130/042 0.0592 0.2961 

1999/05/18 127/035 0.0851 0.4032 

1999/05/27 126/037 0.1215 0.4478 

1999/06/29 117/030 0.1269 0.4597 

1998/05/25 117/030 0.0758 0.4703 

1998/05/26 124/033 0.0761 0.3453 

1998/05/28 122/032 0.0508 0.4460 

1998/10/24 125/044 0.0418 0.3739 

1997/05/25 122/025 0.1030 0.3087 

1997/05/28 127/035 0.0832 0.4223 

1997/06/13 127/035 0.1025 0.4134 

1997/06/23 117/029 0.1426 0.4877 

1996/04/12 130/042 0.0629 0.3016 

1996/05/22 122/032 0.0549 0.3619 

1996/09/14 127/035 0.1185 0.3302 

1996/12/14 124/044 0.0677 0.3377 

1995/05/07 127/035 0.0610 0.3361 

1995/05/09 125/041 0.0985 0.3794 

1995/06/08 127/035 0.1052 0.3937 

1995/06/19 124/033 0.0577 0.3425 

1994/05/17 122/032 0.0558 0.3660 

1994/05/27 128/036 0.1044 0.4648 

1994/06/15 117/030 0.0580 0.4765 

1994/08/22 145/030 0.0230 0.4291 

1993/04/04 130/042 0.0547 0.2939 

1993/05/14 122/032 0.0524 0.3644 

1993/09/22 127/035 0.0957 0.3447 

1993/12/06 124/044 0.0517 0.3490 

1992/02/13 130/042 0.0426 0.2720 

1992/05/14 127/035 0.0962 0.3684 

1992/05/27 122/032 0.0655 0.3829 

1992/07/17 127/035 0.0927 0.3857 

1991/02/10 130/042 0.0379 0.3027 

1991/05/25 122/025 0.0875 0.2296 

1991/11/15 124/043 0.0832 0.3074 

1991/11/15 124/044 0.1020 0.2831 

1990/03/11 130/042 0.0430 0.2916 

1990/05/18 126/037 0.1323 0.4504 

1990/05/22 122/032 0.0813 0.4084 

1990/11/28 124/044 0.0684 0.3298 

1989/05/03 122/032 0.0521 0.3115 

1989/05/11 130/042 0.0626 0.2945 

1989/06/01 117/028 0.0713 0.4340 

1989/12/02 125/044 0.0496 0.3043 

1988/02/02 130/042 0.0304 0.2968 

1988/06/04 127/038 0.1671 0.4617 

https://doi.org/10.6084/m9.figshare.24616446.v1
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1988/06/06 125/041 0.1232 0.4389 

1988/06/25 114/028 0.1209 0.5034 

1987/02/15 130/042 0.0282 0.2968 

1987/05/14 122/032 0.0587 0.3547 

1987/06/02 127/038 0.1212 0.4237 

1987/10/08 127/035 0.0803 0.2671 

1986/05/27 122/032 0.0676 0.3790 

1986/06/04 114/028 0.0705 0.4606 

1986/06/09 117/030 -0.0121 0.4742 

1986/12/13 130/042 -0.0033 0.5426 

1985/05/14 116/030 0.0681 0.3481 

1985/05/16 114/028 0.0541 0.3920 

1985/05/21 117/029 0.0536 0.4399 

1985/05/21 117/030 0.0609 0.4479 

1984/05/18 117/027 0.0128 0.3642 

1984/05/18 117/028 0.0484 0.3666 

1984/05/18 117/029 0.0531 0.3769 

1984/05/18 117/030 0.0725 0.2914 
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