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Abstract 
Tropical dry forests, such as the Miombo woodlands, play crucial roles both as an effective global carbon 
sink, and as the source of livelihood for a vast number of local communities. However, mapping Miombo 
woodlands accurately into definable classes is a great challenge due to their sparse and heterogeneous nature 
and their alteration due to anthropogenic impacts. Nevertheless, such mapping is important to underpin 
management and conservation efforts. We explored the potential of Sentinel (S-1) and Sentinel-2 (S-2) 
seasonal and multi-seasonal images for two tasks: (i) mapping Land Use Land Cover (LULC) such as to 
identify the Miombo woodlands and (ii) mapping three specific forest classes (reference, degraded and 
regrowth forests) within the Miombo woodlands of Zambia. The Random Forest (RF) algorithm within 
Google Earth Engine (GEE) was selected for the LULC classification while a U-Net convolutional neural 
network (CNN) was applied to classify the different types of forest. Models were trained, validated, and 
tested using ground validation data. The RF model achieved an overall accuracy of 93% for LULC 
classification, with the forest class F1-scores ranging from 93% to 96% across different seasons. The U-Net 
CNN effectively delineated the Miombo woodlands into reference, degraded and regrowth forests, with 
respective F1-scores of 85%, 73% and 72%. Combining multi-seasonal S-1 and S-2 images and their 
derivatives yielded the greatest accuracy for LULC mapping, while combining the year-round S-1 and S-2 
bands produced the highest F1-scores for the forest type classification. The hierarchical approach employed 
was, thus, demonstrated to be effective, providing more nuanced functional forest information. The approach 
holds great promise for mapping and monitoring programs aiming to manage and conserve the Miombo 
woodlands sustainably.  
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1. Introduction 
 

Tropical dry woodlands represent a sink to terrestrial carbon and a source of livelihood for local 
communities, amongst many other ecosystem services and, therefore, need to be managed sustainably. 
However, less research exists on mapping tropical dry forests compared to tropical moist forests such as the 
Amazon rainforest (David et al., 2022). The Miombo woodlands are a typical tropical dry woodland found 
extensively in Southern and Eastern Africa. They extend across the Democratic Republic of Congo (DRC), 
Angola, Mozambique, Malawi, Tanzania, Zimbabwe and Zambia (Kamusoko et al., 2014). These tropical 
dry woodlands, while important, are challenging to classify into easily definable functional forest types due 
to their complex vegetation composition and patterns (Ribeiro et al., 2012; Day et al., 2014). Moreover, 
constant human use coupled with the impact of fire has led to fragmentation of the Miombo vegetation 
structure and distribution.  

There exists a pressing need for methods and algorithms that can map tropical dry forest types accurately. 
Discrimination of the different forest types is important for accurate monitoring and reporting of above 
ground biomass, especially as most of the countries in which the Miombo woodlands are found are 
domesticating global efforts such as REDD+, NDCs and the Bonn Challenge aimed at sustainable forest 
management (Shamaoma et al., 2022; David et al., 2022). Useful Miombo forest types to discriminate include 
intact, degraded or disturbed, and regrowth forests. These forest types differ in the ecosystem services that 
they provide as well as the amounts of above ground biomass they store (Solórzano et al., 2021). 



 

Improvements in the classification of these forest types is, thus, needed to support more accurate estimation 
of above-ground biomass and to underpin evidence-based forest policies and management strategies to 
mitigate deforestation and its effects. 

Several studies on land use and land cover (LULC) and vegetation type mapping for the Miombo 
woodlands and other forest biomes were carried out with Landsat-8, with high accuracies achieved (Mayes 
et al., 2015; Connette et al., 2016; Halperin et al., 2016; Phiri et al., 2018; John et al., 2021). However, 
Landsat-8 with a spatial resolution of 30 m is more prone to mixed pixels compared to Sentinel-2 (S-2) with 
a spatial resolution of 10 m (visible and near infrared bands), considering the heterogeneity of the Miombo 
woodlands in terms of both composition and pattern. Romijn et al. (2015) proposed the use of finer spatial 
resolution remote sensing data for accurate mapping of dry woodlands such as the Miombo due to their open 
and sparse structure, and history of human impacts.  Studies based on S-2 reported increases in the accuracy 
of LULC and forest mapping (Adagbasa et al., 2019; Mudereri et al., 2021). For example, Puletti et al. (2018) 
used S-2 for forest classification in a Mediterranean environment to map forest type (beech forests, mixed 
spruce-fir forests, chestnut forests and mixed oak forests) and to discriminate forest categories (conifer, 
broadleaved and mixed forest) and obtained an overall accuracy of >83%. However, David et al. (2022) 
found no published research that used S-2 to map Miombo woodland LULC and forest type.  

Studies that used Synthetic Aperture Radar (SAR) data alone (McNicol et al., 2018; Ngo et al., 2020; 
Prudente et al., 2020) and in combination with optical data (Carreiras et al., 2017; Brandt et al., 2018; Lu 
Zhang, 2019; Mercier et al., 2019) have received much attention because the synergy of optical and SAR 
data is reported to increase the accuracy of LULC and vegetation mapping. According to David et al. (2022), 
few research papers were published mapping the Miombo woodlands using SAR and optical data, and even 
less so using Sentinel-1 (S-1) and S-2. Our review of the literature indicated very few research publications 
in which the effects of seasonal and temporal variation on mapping LULC and vegetation types using S-1 
and S-2 were explored  (Altarez et al., 2023). The current research is intended to bridge these research gaps. 

Machine learning classifiers such as the random forest (RF), extreme gradient boosting (XGBoost) and 
support vector machines (SVM) have been used extensively for LULC and vegetation type mapping (Ngo et 
al., 2020; John et al., 2021; Mudereri et al., 2021). Cloud-based computing using Google Earth Engine (GEE) 
can facilitate mapping large areas due to its ability to handle large datasets (Tsai et al., 2018; Praticò et al., 
2021). The past few years have seen U-net, a convolutional neural network-based form of deep learning, 
become prominent for LULC and forest type classification due to its capability to learn spatial context, unlike 
other machine learning methods that rely on already-made context features (Kattenborn et al., 2021). The 
fully-convolutional neural network, U-Net, can classify pixels by identifying patterns in an image using both 
spectral and spatial domains without sacrificing spatial resolution (Solórzano et al., 2021). Several studies 
have used the state-of-the-art U-Net for forest mapping (Solórzano et al., 2021; Dal Molin and Rizzoli, 2022; 
Altarez et al., 2023). However, we found no studies that utilized GEE and U-net for mapping the Miombo 
woodlands, a major component of the world’s tropical dry woodlands biome. 

To the best of our knowledge, no study has explored seasonal S-1 and S-2 images, and their derivatives, 
for LULC mapping of the Miombo woodlands using the GEE platform. Further, no study used the U-net 
algorithm to map the forest types that characterise the Miombo woodlands using S-1 and S-2 imagery. This 
research aimed to explore the use of S-1 and S-2 seasonal and multi-seasonal (i.e., including all seasonal 
mean images for rainy, dry, and hot seasons stacked) images for LULC mapping using RF within GEE, and 
to test the capability of U-net to discern forest patterns and, thus, effectively classify Miombo forest types 
(reference, degraded and regrowth). Our proposed approach is hierarchical in that we first identify Miombo 
forest areas through LULC classification within GEE to create a forest mask, and then use the U-Net deep 
learning algorithm to discriminate between the forest types. We hypothesised that this approach would 
produce accurate forest type maps which can be used for further applications such as for forest conservation 
initiatives and to increase the accuracy of AGB mapping for REDD+ projects, which is urgently needed. The 
remainder of this research is arranged as follows; description of the study areas and the datasets used; 
experimental design and methodology; results; discussion; conclusion. 

 



 

 
 
 
 

2. Methodology 
 

In this section, the hierarchical classification methodological framework is presented. We first describe the 
study area and data acquisition in sections 2.1 and 2.2, respectively. In section 2.3, we explain the design of 
the experiments conducted in this research. In sections 2.4 and 2.5 we describe the pre-processing of the data 
through visualisation and the hierarchical classification analysis, respectively. In section 2.6 we discuss the 
quality assessment of the results. Fig. 1 shows the methodological framework. 
 

 
Fig. 1.  Flowchart showing the methodology followed in this research. 
 
2.1. Study Area 

This research used data collected across 12 landscapes encompassing the Miombo woodlands of Zambia 
through the research project Landscape Forestry in the Tropics (LaforeT: http://www.la-foret.org/). These 
landscapes are spread across Zambia’s Miombo woodlands covering three provincial administrative 
boundaries with each province depicting a different deforestation context (initial, middle and advanced), 
based on national and international forest reports (Velasco et al., 2022). The landscape tiles were created 
across six districts, with two districts in each province, and every district having two landscape tiles (Fig. 2). 
The districts were Nyimba and Petauke from Eastern province, Masaiti and Lufwanyama from Copperbelt 
province, and Mufumbwe and Mwinilunga from North-western Province. All 12 landscapes are multi-
functional with a great diversity of LULC types and forest types. We chose to use the LaforeT landscapes for 
Zambia because (1) they encompass both dry and wet Miombo woodlands and, thereby, facilitate a balance 
for model training and (2) the ground validation exercise was extensive (n=3,000) and explicit in defining 
the classes of interest for the current research.  

http://www.la-foret.org/


 

 

 
Fig. 2. Map of the study areas showing (a) the extent of the Miombo woodlands in Zambia, the provincial 
and LaforeT district boundaries and the location of the training and validation landscape tiles and (b) one 
zoomed-in landscape tile showing the ground validation data points. 
 
2.2. Data Acquisition 
 
2.2.1. Satellite sensor imagery 

We used Sentinel-1 (S-1) and Sentinel-2 (S-2) images for the current research. Using GEE, we downloaded 
S-2 L2A images for the year 2019 to conform to the ground dataset collection period. Similarly, we 
downloaded S-1 Ground Range Detected (GRD) scenes from ESA’s S-1 satellites (A and B) that use dual 
polarization C-band Synthetic Aperture Radar (SAR).  

We composited freely available S-1 SAR images and S-2 optical images using code in GEE developed 
elsewhere (Tassi et al., 2021; Vizzari, 2022). A collection of cloud masked S-2 L2A images was made by 
filtering for our study area and for the four primary periods of interest (rainy season, dry season, hot season 
and year-round), applying a median reduction for all available images.  Ten S-2 bands (band 2 to band 8A, 
band 11 and band 12) were targeted, and resampled to a spatial resolution of 10 m to conform to the spatial 
resolutions of the RGB and NIR bands. We also computed and added to the original bands six vegetation 
indices namely the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), 
Normalized Difference Moisture Index (NDMI), Normalized Difference Water Index (NDWI), Bare Soil 
Index (BSI) and Shadow Index (SI). The NDVI and EVI are commonly used for LULC mapping, given their 
capability to quantify vegetation greenness (Phiri et al., 2018; Mercier et al., 2019). The NDMI and NDWI 
are normalised indices like the NDVI, but use the shortwave infrared and green bands, respectively. Both are 
used for identifying vegetation water content and water bodies, respectively (Adagbasa et al., 2019; Decuyper 
et al., 2022). The BSI distinguishes bare soil from other LULC classes while the SI is used in forestry and 
crop mapping (Vizzari, 2022).  



 

A similar approach of filtering by study area, period of interest, instrument mode (IW) and polarisation 
(VH and VV) was applied to the S-1 datasets. S-1 bands VV and VH were downloaded with a spatial 
resolution of 10 m. 

The GLCM algorithm in GEE was utilized to compute the texture metrics with input gray-level images 
generated using eqs. (1) and (2) for S-2 and S-1, respectively with a window size of 2 pixels. The input bands 
and the window size used in this research follow the approach of Tassi et al. (2021). The weights in eq. (1) 
are standard weights mapping RGB to greyscale. Although originally designed based on how sensitive the 
human eye is to different colours in visible light, the weights can be adapted when the Red band is substituted 
with the NIR band (Tassi et al., 2021; Vizzari, 2022). Texture information is used in most studies to increase 
the accuracy of forest type mapping (Numbisi et al., 2019; Ferrer Velasco et al., 2022).  Five texture metrics 
(angular second moment, contrast, correlation, variance and inverse difference moment) were selected for 
both S-1 and S-2. 

 
S-2 Gray-level Image = (0.3 * NIR) + (0.59 * RED) + (0.11 * GREEN)   (1) 
S-1 Gray-level Image = (VH - VV) / (VH + VV)               (2) 
 
2.2.2. Ground reference data 

We used ground data collected under the LaforeT project for Zambia (Ferrer et al., 2023). A total of 3,000 
ground validation points (GVPs) capturing the main LULC types (Forest, 1,601; cropland, 629; settlements, 
265; grassland, 187; other land, 161; wetlands, 157 GVPs) were collected across the 12 landscapes that 
formed the LaforeT research sites for Zambia. LaforeT applied a stratified sampling approach to capture the 
main forest and LULC types in each of the 12 landscapes. Ground data collection was conducted between 
April 2018 to October 2019. Details on the ground data collection procedure can be found in (Velasco et al., 
2022). The original LaforeT GVPs classes were realigned to conform to the Inter-Governmental Panel on 
Climate Change (IPCC) classes, namely forests, cropland, grassland, wetlands, other land, and settlements. 
We used Google Earth Pro fine-resolution and S-2 images to recheck these points as well as to populate the 
LULC classes that were less commonly represented such as wetlands, settlements, and other land. 
 
2.3. Experimental Design 

We designed experiments to compare the accuracies of the LULC classification and forest type 
classification when using various dataset combinations (Table 1). In total, 28 variables were extracted. Ten 
raw bands were derived from the S-2 bands, two raw bands from the S-1 bands, 10 texture metrics from both 
the S-1 and S-2 bands, and six vegetation indices from the S-2 bands. These variables were chosen based on 
previous, similar studies (Mercier et al., 2019; Lopes et al., 2020; Mudereri et al., 2021; Vizzari, 2022). The 
LULC classification experiments made use of all 28 extracted variables while the forest type classification 
experiments used only the raw bands from S-1 and S-2.  
 
Table 1 
Experimental design to compare the accuracies of the LULC classification and forest type classification when 
using S-1 and S-2 bands and their derived indices. 
 
Sensor Time period Dataset combination Number of experiments 
S-1 Rainy 

S-1 bands 
S-1 textures 
S-1 bands + textures  

12-LULC  
4-Forest types Dry 

Hot 
Annual 

S-2 Rainy S-2 bands 
S-2 textures 
S-2 bands + textures  

12-LULC 
4-Forest types Dry 

Hot 



 

Annual 
S-1 + S-2 Rainy 

S-1 bands + S-1 textures + S-2 bands + 
S-2 textures + S-2 vegetation indices  

5-LULC 
4-Forest types Dry 

Hot 
Annual 
Multi-seasonal 

 
2.4. Data visualisation 

As part of preparing the training data, we generated spectral and backscatter profiles that represented the 
mean spectral reflectance and mean backscatter for each of the LULC and forest type points (with a buffer 
of 15 m) and polygons, respectively, for the S-1 and S-2 bands. This was done to visually assess the 
separability of our training data. We also performed explanatory data analysis by summarising and 
graphically visualising the data to check for correlations, any unusual anomalies or outliers, and to identify 
the distributions. This informed the selection of combinations of remote sensing variables during the 
classification experiments.  

 
2.5. Classification algorithms 
 
2.5.1. RF for LULC classification 

The RF algorithm was selected for this research based on its ability to produce high LULC accuracies, 
especially when working with large datasets and training samples (Kamusoko et al., 2014; Phiri et al., 2018; 
Solórzano et al., 2021; Tassi et al., 2021; Velasco et al., 2022). The RF algorithm is an ensemble machine 
learning method which uses decision trees to train on random subsets of the observed and predictive variables 
and then assigns a class to each pixel having the most votes from the individual trees (Breiman, 2001). The 
IPCC classes were the official classes used for forest monitoring and reporting in our study area and were, 
therefore, chosen for this study, facilitating easier comparison of the results with those of other similar studies 
and secondary data sources. The RF classifier was trained using 70% randomly selected points from all the 
ground validation points and validated using the remaining 30%. The training and validation subsets were 
maintained for all the LULC classification experiments conducted in this research, thus, providing effective 
comparability within the experiments. All the classification experiments were carried out in GEE. 

 
2.5.2. U-net for Forest type classification 

We tested the potential of the state-of-the-art U-net CNN to effectively delineate the three forest classes of 
interest in the Miombo woodlands (reference, degraded forests and regrowth forests). For the purposes of 
this research, and as adopted by the ground data collectors, the definitions of the three forest types used are 
as follows:  

1. Reference (intact) forest refers to a forest that has little or no disturbance with a tree composition 
of mostly mature old-growth forests or intact primary forests and secondary forests with the last 
disturbance at least 10 years ago, without undergoing clear felling,  

2. Degraded forest represents areas with a more recent disturbance of not more than 10 years (mostly 
human impact in the form of logging for timber, firewood, etc.), leading to a current state of 
degradation or a reduction of forest canopy cover, but not completely clear felled,  

3. Regrowth forest (secondary forest) includes those forested areas that were at one point 
completely clear felled and converted to other LULCs, or in some cases with few trees left standing 
as a result of shifting cultivation or charcoal burning, but which have subsequently undergone, or 
are currently undergoing, a recovery process (Fig. 3).  

 
 



 

 
 
Fig. 3. Photographs depicting forest types in the Miombo woodlands. (a, b) Regrowth, (c, d) Degraded, (e, 
f) Reference (intact). 
 

The U-net model classifies images per-pixel by assigning each pixel to a particular class. Recently, several 
studies used U-net to conduct various forest classification tasks obtaining very high accuracies (Wagner et 
al., 2019; Isaienkov et al., 2021; Hamedianfar et al., 2022; Altarez et al., 2023).  

As noted by (Hamedianfar et al., 2022) in their review of deep learning for forest applications, it can be 
laborious to prepare annotations for training a CNN architecture. This is of particular relevance, because to-
date little research exists on mapping forest types amongst Zambia’s Miombo woodlands, and this makes it 
challenging to find a readily available dataset with which to train the models. Hence, we relied on the 1600 
GVPs for forest type and very fine resolution images in Google Earth Pro and S-2 images to digitise 600 
forest type polygons (Table 2). We created 664 systematically selected 64 × 64 pixel tiles across the 12 
landscapes encompassing the 600 digitised forest type polygons. We masked out non-forest pixels based on 
our LULC classification and visually classified the remaining forest pixels into reference, degraded and 
regrowth forests using the forest type polygons and Google Earth Pro. This data preparation approach for 
deep learning was adopted from previous research (Solórzano et al., 2021; Isaienkov et al., 2021; Altarez et 
al., 2023). The 664 tiles with a spatial resolution of 10 m were converted to polygons and used for training, 
validation and testing of U-Net (Bragagnolo et al., 2021). One landscape from each of the study regions was 
selected randomly and reserved for model testing, while the rest of the landscapes were used for model 
training.  
 
Table 2 
The number of digitised polygons and their area per forest type. 
 
Class Digitized polygons Area (ha) 
Reference (intact) 56 870 
Degraded 387 1431 
Regrowth 157 144 

 



 

2.6. Quality analysis 
To assess classification accuracy, we compared our maps with two secondary maps, the integrated land 

use assessment (ILUAII) national maps for Zambia (Shakachite et al., 2016) and the ESRI land cover maps 
(https://livingatlas.arcgis.com/landcover/). The LULC accuracy assessments were evaluated using a 
confusion matrix in GEE where the number of correctly classified LULC pixels was measured from the 
validation dataset. For the forest type U-net models, we selected the best models based on the results of model 
validation in the form of Precision (also known as user’s accuracy, eq. 3), Recall (also known as producer’s 
accuracy, eq. 4) and F1-score (eq. 5) (Wagner et al., 2019). The most accurate U-net models were then tested 
on an independent dataset reserved during data preparation. Again, we created a confusion matrix from the 
classified maps. Fine spatial resolution Google Earth images were consulted as a secondary source of 
reference information. From the confusion matrix we were able to calculate thematic accuracy measures such 
as the overall accuracy (OA, eq. 6), user’s accuracy (UA) and producer’s accuracy (PA), as well as the Kappa 
statistic (K, eq. 7) (Solórzano et al., 2021). Qualitative assessment on the classified maps was also explored 
through visual inspection. In addition, we used the z-test statistic to test for significant differences between 
the classification results from the various data combinations. 
 
Recall (PA) =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑖𝑖𝑁𝑁𝑖𝑖 𝑝𝑝𝑖𝑖𝑝𝑝𝑁𝑁𝑐𝑐𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑖𝑖𝑔𝑔𝑁𝑁𝑖𝑖 𝑁𝑁𝑎𝑎𝑝𝑝 𝑐𝑐𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑎𝑎𝑖𝑖𝑁𝑁𝑁𝑁𝑖𝑖 𝑐𝑐𝑜𝑜 𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑐𝑐 𝑁𝑁𝑎𝑎𝑝𝑝 𝑐𝑐𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝
    (3)  

 
Precision (UA) =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖𝑜𝑜𝑖𝑖𝑁𝑁𝑖𝑖 𝑝𝑝𝑖𝑖𝑝𝑝𝑁𝑁𝑐𝑐𝑝𝑝 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑖𝑖𝑔𝑔𝑁𝑁𝑖𝑖 𝑁𝑁𝑎𝑎𝑝𝑝 𝑐𝑐𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑐𝑐𝑐𝑐𝑁𝑁𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑐𝑐 𝑁𝑁𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑐𝑐𝑁𝑁 𝑐𝑐𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝
   (4) 

 
F1-score = 2 * 𝑃𝑃𝑁𝑁𝑁𝑁𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖 ∗ 𝑅𝑅𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐

𝑃𝑃𝑁𝑁𝑁𝑁𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖 + 𝑅𝑅𝑁𝑁𝑐𝑐𝑎𝑎𝑐𝑐
        (5) 

 
Overall accuracy (OA) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑝𝑝𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑜𝑜𝑖𝑖𝑝𝑝

𝑇𝑇𝑜𝑜𝑐𝑐𝑎𝑎𝑐𝑐 𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑜𝑜𝑖𝑖𝑝𝑝
     (6) 

 
Kappa statistic (K) = 𝑂𝑂𝑁𝑁𝑝𝑝𝑁𝑁𝑁𝑁𝑔𝑔𝑁𝑁𝑖𝑖 𝑎𝑎𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑐𝑐−𝐸𝐸𝑝𝑝𝑝𝑝𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑖𝑖 𝑎𝑎𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑐𝑐

1−𝐸𝐸𝑝𝑝𝑝𝑝𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑖𝑖 𝑎𝑎𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑐𝑐
     (7) 

 
3. Results 
 
3.1. Data visualisation 

For S-1 bands we noted different class separability based on VV and VH radar backscatter between the 
three considered seasons, with the rainy season producing a greater separation between all classes except for 
cropland and settlements. The dry season produced clear separability using both VV and VH backscatter for 
the six LULC classes. The hot season also produced a clear separation of the classes except for cropland and 
grassland in VV backscatter and cropland and other land in VH backscatter (See Supplementary Fig. S1). 
The largest backscatter values were observed for the forest class followed by built-up using both VV and VH 
backscatter. This result is expected because radar backscatter is known to interact with forest crowns, 
branches and trunks, and buildings, resulting in single, double, and triple bounces. These findings are 
consistent with those of others (Nicolau et al., 2021; Altarez et al., 2023).  For the forest type classes, (See 
Supplementary Fig. S2),  radar backscatter in VH resulted in more distinct classes, especially for the rainy 
and hot seasons, although clear separation is visible, even in VV backscatter, with close similarities for the 
degraded and regrowth classes, while the reference forest class stands out, similar to Verhegghen et al. 
(2022).  

The analysis of spectral reflectance patterns across S-2 bands showed that the separability of the six IPCC 
land cover classes and forest type classes varied notably by season. For the rainy season, all the IPCC classes 
were only narrowly separated in the Red (B4), Near Infrared (NIR, B5), and Red Edge (B7) bands with the 



 

SWIR bands producing a clear separation between all classes, except for forest and grassland, while the forest 
type classes regrowth and degraded were indistinguishable across all the bands (see Supplementary Fig. S3). 
For the dry season, the six IPCC classes were visibly well separated in the Red Edge bands (B6 to B8A) and 
the Shortwave Infrared bands, while for the forest types there was no visible separation between regrowth 
and degraded forests in the visible and SWIR bands, and no observable separation between regrowth and 
reference forests in the Red Edge (B6 to B8A) and NIR bands (see Supplementary Fig. S4). For the hot 
season, visible separation between the IPCC classes was evident in the Red (B4), Red Edge (B5), and SWIR 
bands, while forest types remained barely separable in the SWIR bands especially between the degraded and 
regrowth classes (see Supplementary Fig. S5). For the year-round (i.e., annual mean) imagery, IPCC classes 
were visibly separable across all Red Edge bands (B6, B7, B8A), NIR, and SWIR-2 bands, while forest type 
classes also demonstrated visual separation in the Red (B4), Red Edge (B5) and SWIR bands (see 
Supplementary Fig. S6). These observed reflectance patterns are consistent with those reported by Altarez et 
al. (2023). Note that the figures referred to are based on mean spectral reflectance values for the purposes of 
visual interpretation and, thus, provide only an indication of potential separability, ignoring within-class 
variation.  
 
3.2. Comparison between S-1 SAR and S-2 optical imagery for LULC mapping 
 
3.2.1. Model overall accuracies 

The results revealed a significant difference between the classification accuracy using S-1 SAR data and 
S-2 optical data. We conducted z-test statistics at the 5% level of significance. The p-values obtained when 
we compared the classification accuracies using the S-1 and S-2 bands singly, as well as their combination 
with GLCM textures, were highly significant (p-values < 0.001). The highest overall accuracies and Kappa 
indices were obtained using S-2 bands and textures combined (Table 3). 

Using the S-2 bands alone produced overall accuracies and Kappa indices that were evidently superior to 
the overall accuracies and Kappa indices for the S-1 bands. For the S-2 bands alone, and combined with 
textures, the highest overall accuracy and Kappa index were obtained for the rainy season followed by the 
hot season, with the lowest accuracy in the dry season. Using the S-1 bands alone produced the highest overall 
accuracy for the hot season followed by the rainy season and with the lowest accuracy in the dry season. A 
similar pattern was seen when the S-1 bands were combined with their textures, where the overall accuracies 
for the hot season and rainy season were similar, and higher than for the dry season. This result agrees with 
our interpretation of the backscatter and spectra.  

We observed that using the bands alone produced greater accuracy than using the textures alone for both 
the S-1 and S-2 datasets. Overall, our results comparing SAR and optical data are similar to those for other 
studies that compared S-1 and S-2 for LULC mapping (Mercier et al., 2019; de Souza Mendes et al., 2019; 
Lopes et al., 2020).   

 
Table. 3 
LULC overall accuracies and Kappa indices for S-1 and S-2 data comparisons. 
 

  Overall Accuracy (%) Kappa Index (%) 
  Rainy Dry Hot Year-round Rainy Dry Hot Year-round 

S-1 Bands 67.8 64 70 71.9 48 42 51 54.3 
S-2 Bands 87.2 84 86 85.4 80.4 75 78 77.3 
S-1 Textures 57.7 57 55 57.7 25 25 15 26.4 
S-2 Textures 81.3 81 78 81 71.2 71 66 66.5 



 

S-1 Bands & 
Textures 73.5 69 74 77.8 57.8 49 57 64.2 

S-2 Bands & 
Textures 89.1 87 88 88.7 83.2 80 81 82.5 

 
3.2.2. Class F1-scores 

Using the S-1 bands alone, and combined with their texture bands, is almost as accurate as using the S-2 
bands alone, and combined with their texture bands, for forest class mapping (Fig. 4). We noted that the S-1 
bands alone contributed more to increasing forest mapping accuracy than the S-1 textures when the two were 
combined. This was also noted for the other classes except for settlements where S-1 texture bands were 
more accurate than the S-1 bands (Fig. 4). Overall, the S-2 bands alone and combined with their texture 
bands, produced the highest F1-scores across the four time periods for forest mapping. Cropland was easily 
detectable in the rainy season with the highest F1-score of 83.9% (See Supplementary Table S1). The highest 
F1-score for mapping grassland was produced in the rainy season. S-1 images produced low F1-scores for 
grasslands with the highest F1-score in the rainy season. The highest F1-score for settlements was produced 
in the rainy season using S-2 bands and textures. For other land the highest accuracy was produced in the dry 
season with S-2 bands alone (See Supplementary Table S2). Wetlands were fairly well classified in all three 
seasons using both the S-1 and S-2 images. We found that S-1 produced a low accuracy for classes where 
backscatter interaction is poor such as other land, cropland and grassland; a similar result reported by other 
researchers (Prudente et al., 2020).  
 

 
Fig. 4. Average F1- scores for IPCC classes comparing the S-1 and S-2 datasets. 
 
3.2.3. Synergy of S-1 SAR and S-2 optical data for LULC mapping 

As anticipated, the results showed that combining S-1 and S-2 increased the F1-score. The F1-score for 
forest land increased by 2-3% across the three seasons with the year-round images recording a 4% increase 



 

when S-1 SAR was added to the S-2 optical data (See Supplementary Table S4). A similar pattern was 
observed for cropland with increments of 1%, 2%, 8% and 6% for the rainy (See Supplementary Table S1), 
dry (See Supplementary Table S2), hot (See Supplementary Table S3) and year-round (See Supplementary 
Table S4) images, respectively, when the S-1 bands were added to S-2 bands. An increment of 26% was 
observed in grassland mapping when S-1 year-round images were added to the S-2 year-round images. For 
the built-up class, a decline in F1-score was observed when S-1 and S-2 were combined for the rainy and hot 
seasons, while for the dry season and year-round images the F1-score increased. Other land showed minimal 
changes in F1-score, as for wetlands. This result indicates that the addition of S-1 SAR data to S-2 SAR data 
has different impacts on the different LULC classes and seasons. For example, we noted significant increases 
of 8% and 6% for cropland detection in the hot season and year-round image, respectively, and a 26% increase 
for grassland detection for the year-round images.  

The highest F1-scores for each LULC class, for the time scales considered in this research, are shown in 
Table 4. Using multi-seasonal images produced higher F1-scores for forest, cropland and settlements while 
the other classes had similar or lower F1-scores to those obtained using the seasonal and annual images. Most 
studies that compared S-1 SAR data and S-2 optical data for LULC mapping or forest type mapping obtained 
similar overall accuracies, but none of the reviewed studies went deeper to compare the effects of S-1 and S-
2 synergy on individual class F1-scores, except for Solórzano et al. (2021) who reported similar results to 
ours. 

 
Table 4 
F1-scores for seasonal, year-round, and multi-seasonal images for S-1 and S-2 combined.  
 
  F1-score (%) 
  Rainy Dry Hot Year-round Multi-seasonal 
Forests 94.9 92.6 92.9 94.3 95.7 
Cropland 85.2 80.1 79.1 82.1 88.5 
Grassland 89.5 87.4 73.1 93.4 92.6 
Settlements 83.5 87.8 72.8 88.9 89.3 
Other land 77.3 85.7 76.1 87.9 86.7 
Wetlands 92.9 93.6 93.3 95.8 95.8 
 
The highest overall accuracies and Kappa indices were obtained for the multi-seasonal case, as shown in 

Table 5. This result is consistent with previous research which suggested that incorporation of temporal 
images increases classification accuracy (Puletti et al., 2018; Ngo et al., 2020; Lopes et al., 2020). A statistical 
test at the 5% level of significance indicated no significant difference between the model accuracies for the 
seasonal images and year-round images (p-values of between 0.16 to 0.92).  However, a significant difference 
was found between the individual seasonal images (and year-round image) and the multi-seasonal images (p-
values of between 0.02 to 0.00).  

 
Table 5 
Overall accuracies and Kappa indices for seasonal, year-round and multi-seasonal S-1 and S-2 images 
combined. 
 
  Rainy Dry Hot  Year-round Multi-seasonal  
Overall accuracy (%) 90.6 89.0 90.1 91.1 93.0 
Kappa (%) 85.5 83.0 84.7 86.3 89.3 

 
3.2.4. Visual Inspection 



 

We inspected visually the LULC classified maps produced for a clip from our study area.  The synergy of 
S-1 and S-2 produced the most visually pleasing and accurate map comparing favourably with the actual 
landscape (Fig. S7). The multi-seasonal map shows the LULC classes in greater detail (Fig. S8). The rainy 
season maps classified some grasslands as wetlands, which is to be expected given the spectral overlap 
between dambo grasslands (a shallow and seasonally wet grassy floodplain)  and wetlands (refer to IPCC 
classification scheme; Shakachite et al., 2016)). A visual comparison of our most accurate LULC map (i.e., 
produced using multi-seasonal images) with the national forest map for 2014 (latest) produced under the 
ILUAII project and the 2019 Esri landcover map is shown in (Fig. 5). Our map identifies detailed LULC 
classes that are missed by both the ILUA and Esri maps. Note that although the ILUA map represents 2014, 
whereas our map and the Esri map represent 2019, the low quality of the map is visible. Quantitatively, our 
map achieved a higher overall accuracy; specifically, 93% compared to the ILUA map reported at 87.7% and 
Esri map reported at 85%.  

 
 

 
 

Fig. 5. Comparison of our best classified LULC map with two benchmark maps. (a), ILUA-2014 (b), Esri (c) 
this research, (d) S-2 colour infrared for comparison. 
 
3.3. Forest type classification with U-net 

The highest F1-score was achieved for the reference forest from the S-1+S-2 model followed by degraded 
forest and lastly for the regrowth forest using year-round images. The S-2 model had higher F1-scores than 
the S-1 model for all three forest type classes (Table 6). Only very small increases in F1-scores were achieved 
when S-1 and S-2 were combined. 

We compared the commonly used spectral channels within the S-2 bands to assess their effect on model 
accuracy. Using the S-2 bands excluding the red edge bands (hereafter referred to as S-2–6 bands) produced 
greater overall accuracy and F1-scores for all three forest types compared to omitting the S-2 red edge bands 



 

and shortwave infrared bands (hereafter, referred to as S-2–4 bands) (See Supplementary Table S5). Thus, 
using the S-2–10 bands (B2, B3, B4, B5, B6, B7, B8, B8A, SWIR1, SWIR2) produced greater accuracy than 
the S-2–4 bands, but excluding the red-edge bands had little effect on accuracy. This result differs from that 
of Ali and Johnson (2022) who concluded that the S-2–4 bands produced greater accuracy than the S-2–10 
bands, although their classification was for the common LULC classes and not the forest types considered in 
this research. For the seasonal images, the S2 bands performed more accurately across all three seasons with 
the dry season images producing the highest accuracy (See Supplementary Tables S6 – S8). The S-1 bands 
produced the lowest accuracies for all three seasons.  
 
Table. 6 
F1-scores and Overall accuracy of forest types for S-1, S-2 and their combination for year-round images 
using the U-net algorithm. 
 

Model Classes Precision (%) Recall (%) F1-score 
(%) Overall Accuracy (%) 

S-1 bands 
Regrowth 36.5 30.8 33.4 

45.4 Degraded 48.8 31 37.9 
Reference 47.5 72.3 57.3 

S-2 bands 
Regrowth 71.1 68.3 69.6 

75.6 Degraded 70.5 69.2 69.9 
Reference 82.1 86 84 

S-1 and S-2 
bands 
  

Regrowth 72.5 71.1 71.8 
77.2 Degraded 71.4 73.3 72.3 

Reference 84.5 85 84.7 
 

When the most accurate models for each dataset (S-1+S-2, S-2 and S-1) were applied to the test datasets, 
the results followed a similar pattern to that of the training dataset with the S-1+S-2 bands producing the 
highest overall accuracy (See Supplementary Table S9) followed by the S-2 bands (See Supplementary Table 
S10), and lastly the S-1 bands(See Supplementary Table S11). Reference forest produced the highest user 
accuracy (81%) followed by the degraded (78%) and lastly regrowth (76%) classes. 

We further analysed the results qualitatively by visually inspecting the produced maps. The S-1+S-2 bands 
produced a classified map that compared favourably with the three testing landscapes, clearly delineating 
reference forests (darker red in the colour infrared images), from degraded and regrowth forests. Closer 
analysis of the confusion matrices, and visual inspection, reveals that most mismatches occurred between 
degraded forests and regrowth forests, especially in landscapes with advanced degradation (i.e., the 
Copperbelt and Eastern province landscapes). This conforms with a similar observation by Ferrer et al. 
(2022). Classified images using the S-2 bands were almost as accurate as classified images using the S-1+S-
2 bands in terms of mapping the three forest types (Table 6). Classified images using S-1 bands, consistent 
with the quantitative analysis, showed very low accuracy with no clear delineation of forest types (Fig. S9).  

 
We compared the classification differences between the classified images produced using the RF and U-

net algorithms. The U-net algorithm was found to be superior to the RF algorithm both in terms of quantitative 
accuracy and visual assessment (Fig. 6). 

 
 
 



 

 
Fig. 6. Classified forest type maps for the North-western province test landscape for illustration. (a-c) a 
zoomed-in area comparing the RF and U-Net algorithms, (d-e) comparison of the different datasets using U-
Net for a complete landscape tile. (a) RF, (b) U-net, (c) World View Image (29/12/2021), (d) S-1, (e), S-2 
and (f) S1+S2. 
 
4. Discussion 
 
4.1. LULC mapping with RF in GEE 

We explored the use of S-1 and S-2 data for LULC mapping of the Miombo woodlands using the RF 
algorithm in GEE. We compared bands, textures and their combination, as well as the effect of seasons, on 
mapping six IPCC classes (forests, cropland, grassland, settlements, wetlands, and other land). The results 
showed that the use of multi-seasonal images significantly increased LULC mapping accuracy for the 
Miombo woodlands. These findings agree with related studies (Higginbottom et al., 2018; de Souza Mendes 
et al., 2019; Lopes et al., 2020). Contrary to the view that dry season images produce higher accuracies for 
mapping Miombo woodlands (Kamusoko et al., 2014; Halperin et al., 2016; Ferrer Velasco et al., 2022), we 
found no significant difference in overall accuracy obtained by using either rainy or dry or hot season images 
or year-round images. Moreover, hot and rainy season images produced higher overall accuracies than dry 
season images. Studies that reported dry season images to be superior to rainy season images (Higginbottom 
et al., 2018; de Souza Mendes et al., 2019) considered forest types and woody cover and not the IPCC 
classification scheme used in this research. Our study considered three distinct seasons (rainy, dry and hot) 
unlike the two reviewed studies which considered only the rainy and dry seasons. We also found that S-1 
bands combined with their textures performed well when mapping forests, a result confirmed by both 
quantitative and qualitative analysis. 

When we compared our most accurate LULC map with secondary maps (i.e., the national LULC and the 
Esri landcover map), our map showed closer similarity to the actual landscape image than the two secondary 
maps (Figure 7). Forest areas in our map agreed spatially with both the Esri map and the ILUA map with 
small differences. A similar result was reported by Velasco et al. (2022) when they compared their classified 



 

maps for tropical forests to global maps. However, we observed misclassifications for non-forest areas such 
as cropland and settlements. From visual inspection using Google Earth fine resolution imagery and Sentinel 
images, the Esri landcover map misclassified several croplands as rangeland, just as several settlements 
(built-up areas) were misclassified as rangeland. We recommend future studies are undertaken to scrutinise 
these discrepancies further, especially for the cropland and settlements classes, as these global LULC datasets 
are used for land accounting in developing countries such as Zambia where up-to-date locally calibrated 
LULC maps are not available (GRZ, 2022). 

 
4.2. Forest type mapping with U-net 

We used the U-Net CNN algorithm to map the three forest types (reference forests, degraded forests, 
regrowth forests) that characterise the Miombo woodlands. We hypothesised that U-Net can discriminate 
these spectrally similar forest types based on its ability to identify patterns in an image using both the spectral 
and spatial domains (Kattenborn et al., 2021). We trained U-Net models using different channels for the S-1 
and S-2 bands. Our results showed that the U-net CNN can discriminate the three forest types especially 
when trained on a combination of S-1 and S-2 bands. Overall test accuracy increased by 5% when we added 
the S-1 bands to S-2 bands, which is a significant increase. These validation and test results form a basis on 
which further studies can be based aimed at increasing these accuracies further. Future research should 
explore other CNN methods which have been reported to produce high accuracies (Sharma et al., 2017; 
Brutzkus et al., 2022). 

Reference forests were clearly delineated from degraded and regrowth forests, with the lowest F1-score of 
78% for the S-2 bands from the rainy season and highest F1-score of 85% for the year-round S-1+ S-2 bands. 
This result is similar to that obtained by Solórzano et al. (2021) who reported an F1-score of 86% for old-
growth forests. Prediction using the S-2 bands alone was almost as accurate as that using the S-1+S-2 bands 
for mapping reference forests. The small increase in F1-score when S-1 SAR data were combined with S-2 
optical data shows that the SAR data do not contribute greatly to increasing the accuracy of the reference 
forest classification, contrary to expectations that the ability of SAR to interact with the vegetation canopy 
structure should help to increase accuracy. This result is similar to that reported elsewhere (de Souza Mendes 
et al., 2019; Lopes et al., 2020). The low contribution of S-1 SAR data towards increasing the F1-score for 
reference forest might be because the penetration of the C-band of S-1 in the dense canopies that characterise 
reference forests is limited, for example, compared to L-band or P-band which achieve greater penetration.  

Very few studies attempted to discriminate forest types into degraded forests and regrowth forests. Most 
studies that tried to classify forest types for Miombo woodlands used forest parameters such as canopy cover 
to produce canopy cover classes and maps (Halperin et al., 2016; Verhegghen et al., 2022). Apart from the 
purposes of sound forest management practices, most of the methodologies for estimating and monitoring 
carbon emissions from forests such as the verified carbon standards (VCS) emphasise the need to delineate 
forests into distinguishable forest types to increase prediction accuracies. The need to classify forest types is, 
therefore, well-established. The overall objective of this research was to address this need by discriminating 
forest types using the state-of-the-art U-Net CNN. We obtained the highest F1-scores of 72% and 73% for 
regrowth and degraded forests, respectively, higher than the accuracies obtained by Solórzano et al. (2021) 
for regrowth forests. The training data for these two classes showed very close backscatter and spectral 
reflectance values. Our results demonstrate that regrowth forests and degraded forests can best be separated 
using the dry season images from S-2 bands and the year-round images from S-1+S-2 bands.  

 
4.3. Hierarchical Approach for Mapping Miombo Woodland Forest Types  

The hierarchical approach designed in this research, beginning with LULC mapping to delineate forest 
areas, and subsequently discriminating between the different forest types, was demonstrated to be effective 
in providing more accurate and detailed information about forest patterns compared to conventional methods. 
Discriminating between various LULC classes and forest types based on spectral and spatial characteristics 
can pose challenges for classification models, as certain classes closely resemble each other (Figure A1-A6). 



 

For example, Solórzano et al. (2021) used a U-Net model to classify LULC, including distinguishing between 
different forest types among other classes, but achieved low classification accuracies due to the complexity 
of the classification system. On the other hand, de Souza Mendes et al. (2019) who adopted a similar forest 
masking approach before forest type classification, achieved favourable results using the RF algorithm for 
both classifications. In contrast, we utilised the state-of-the-art U-Net CNN for forest type mapping, 
demonstrating significant potential for identifying the complex patterns resulting from the fragmentation of 
Miombo vegetation structure and distribution. This research, therefore, addresses directly the specific 
challenge of mapping the sparse and heterogeneous Miombo woodlands into distinct forest types (reference, 
degraded, and regrowth) using satellite sensor and ground data. The mapping of Miombo woodlands into 
these forest classes holds considerable importance and can play a pivotal role in improving the accuracy of 
estimation of AGB, as well as supporting forest conservation initiatives, particularly those focused on 
restoring degraded and fragmented landscapes like the Transforming Landscapes for Resilience and 
Development (TRARD), as well as in forest carbon (biomass) projects such as REDD+ that are presently 
taking place within the Miombo woodlands. 

 
5. Conclusion 

This research aimed to explore the optimal combination of remotely sensed S-2 optical and S-1 SAR bands 
for mapping the dry tropical Miombo woodlands, which are of great significance, and which require 
monitoring and conservation. Specifically, we integrated mapping of LULC to identify the Miombo 
woodlands and then mapped forest type within the Miombo woodlands themselves. We used the RF 
algorithm executed in GEE for LULC mapping and the U-Net algorithm for forest type mapping, and both 
algorithms yielded promising results.  

We assessed the influence of seasonal variation on classification accuracy and model performance by 
selecting the S-2 and S-1 images from specific seasons. Notably, the multi-seasonal image dataset produced 
the greatest accuracy for LULC classification. Further, we found that seasonal and year-round images did 
not exhibit statistically significant differences in terms of overall LULC classification accuracies. For 
mapping forest type, the year-round image dataset outperformed the others, with the dry season image 
producing the highest accuracy among the seasonal images.  

The analysis revealed that the combination of S-2 and S-1 data increased the accuracy marginally for both 
LULC and forest type mapping, with S-2 optical data playing the dominant role. These results suggest the 
superiority of S-2 over S-1 for mapping Miombo woodlands in Africa. 

In conclusion, the proposed hierarchical methodology, combining RF for forest mapping and U-Net for 
discriminating forest classes, was demonstrated to be effective and capable of generating accurate maps. The 
methodology can be readily adopted for Miombo woodland mapping and monitoring programs, offering 
valuable insights for Miombo biomass mapping and for conservation and land management efforts relating 
to this precious tropical dry woodland. 
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