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Abstract—The increasing integration of electric vehicles (EVs)
and renewable energy sources (RES) into power grids introduces
significant challenges in managing dynamic energy demands and
ensuring grid stability. This paper proposes a comprehensive two-
level machine learning (ML) and optimisation framework for
intelligent energy management in EV- and RES-integrated smart
grids. In the prediction layer, supervised ML models, including
Random Forest (RF) and Gradient Boosting (GB), accurately
forecast EV charging demand and renewable generation. These
forecasts are then fed into the optimisation layer, where a
multi-objective particle swarm optimisation (PSO) algorithm
minimises power losses, optimises EV charging schedules, and
reduces renewable curtailment while ensuring voltage stability.
The framework is evaluated on a modified IEEE 14-bus system
incorporating EV charging stations, photovoltaics (PV), and wind
turbines. Simulation results validate the effectiveness of the pro-
posed framework, demonstrating a reduction in renewable energy
curtailment and improved computational efficiency compared to
benchmark optimisation methods.

Index Terms—Electric Vehicles, Smart Grids, Renewable En-
ergy Integration, Machine Learning.

I. INTRODUCTION

As modern power systems evolve to meet the increasing
demand for cleaner and more efficient energy solutions, elec-
tric vehicles (EVs) and renewable energy sources (RESs)
play an essential role in decarbonising both the electricity
and transportation sectors [1]–[3]. However, the large-scale
integration of EVs and RESs introduces complex technical
challenges for modern power grids [4]–[6]. In particular, the
rapid adoption of EVs is revolutionising the transportation
sector while simultaneously reshaping power systems by in-
troducing dynamic, decentralised, and unpredictable energy
demands [4]. Unlike traditional loads, EV charging behaviour
is driven by consumer preferences and travel habits, resulting
in demand spikes that are difficult to predict and manage. High
penetration of RESs further compounds these challenges due
to their variable and intermittent generation [5], [6].

The simultaneous variability of the demand for EV charging
and the generation of RES disrupts the stability of the grid,
causing voltage fluctuations and frequency deviations [4], [6],
[7]. Traditional centralised energy management systems are of-

ten inadequate for managing these dynamics, prompting a shift
towards distributed, intelligent energy management strategies
aimed at improving reliability and operational efficiency [8].

Various distributed optimisation frameworks have been de-
veloped to enhance grid stability under high RES and EV pen-
etration. For example, a joint distributed optimisation approach
in [4] addresses voltage control and coordinated scheduling of
energy storage and EV charging, but it lacks predictive capa-
bilities for proactive management. More advanced strategies,
including hierarchical control methods in [9], [10] and two-
stage optimisations combining particle swarm optimisation
(PSO) and mixed-integer linear programming (MILP) in [7],
offer improvements in scalability, resilience, and computa-
tional efficiency. However, even these approaches largely rely
on fixed control structures, limiting adaptability to dynamic,
real-time grid conditions.

To address the limitations of fixed and reactive control
strategies, machine learning (ML) techniques have been in-
creasingly adopted to enable proactive and dynamic energy
management by forecasting key grid parameters, such as
RES generation and EV demand [11]. Studies employing ML
models, such as random forest (RF), convolutional neural
networks (CNN), recurrent neural networks (RNN), gradient
boosting (GB), and long short-term memory (LSTM) demon-
strate ML’s potential in forecasting and optimisation for smart
grids [12]. In addition, heuristic optimisation methods such as
genetic algorithms (GA) have been applied for solving related
scheduling and control problems [13], [14]. Comprehensive
reviews, such as [15] and [16], highlight significant advances
in ML-based forecasting. They also identify a gap in the
integration of these predictive models with real-time multi-
objective optimisation frameworks for operational decision-
making. Some studies have begun to bridge this gap by
combining forecasting with optimisation. For instance, [17]
presents an LSTM-based demand prediction model coupled
with optimised EV charging strategies. While valuable, this
study focuses primarily on intelligent pricing and discharge
scheduling, rather than addressing broader multi-objective op-
timisation goals, such as power loss minimisation, renewable



Fig. 1: Schematic representation of the IEEE 14-bus power
grid system with key components.

curtailment reduction, and voltage stability enhancement.
Building on these insights, although significant progress

has been made in both distributed optimisation and ML-
based forecasting, a clear gap remains: the lack of compre-
hensive frameworks that integrate accurate predictions with
real-time, multi-objective optimisation strategies for EV- and
RES-integrated smart grids. To bridge this gap, a two-level ML
and optimisation framework is proposed in this paper. The first
layer, namely the prediction layer, employs ensemble learning
models, including RF and GB, to forecast key grid parameters,
such as EV charging demand and renewable energy generation.
Compared to deep learning models like LSTM, the models
used in this paper (i.e., RF and GB) offer a favourable balance
between accuracy and computational efficiency, making them
particularly suitable for real-time applications with limited
data. These models also naturally handle heterogeneous inputs,
including temporal (hour of day, day type) and weather-
related features (temperature, solar irradiance, wind speed).
The second layer, namely the optimisation layer, incorporates
the forecasts into a multi-objective PSO algorithm. This opti-
misation simultaneously minimises power losses and schedules
EV charging, thereby enhancing grid stability and operational
efficiency. The optimisation also respects key operational
constraints, including voltage limits, power balance, EV charg-
ing capacities, and renewable generation thresholds, ensuring
feasibility and safe grid operation. The paper utilises the IEEE
14-bus system shown in Fig. 1 as a benchmark, which consists
of 14 buses, 19 branches, and various components, such as
generators and different loads. For the purposes of this study,
the IEEE 14-bus system is modified to include EV charging
infrastructure and RESs (e.g., wind turbines and photovoltaics
(PV)).

The rest of this paper is organised as follows: Section
II formulates the problem and outlines the mathematical
framework for optimisation. Section III discusses the proposed
methodology, including the developed ML models and the
optimisation algorithm. Section IV presents performance eval-
uations. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION: COST FUNCTION AND
CONSTRAINTS

A two-level optimisation framework is developed in this
paper, combining ML-based forecasting and system-wide op-
timisation. The framework focuses on minimising global ob-
jectives, such as power losses and renewable energy curtail-
ment, while efficiently managing EV charging and discharging
across the grid. A comprehensive cost function is formulated
to balance energy efficiency and EV charging satisfaction, and
a set of operational constraints, including power flow equa-
tions, voltage limits, EV scheduling bounds, and renewable
energy limits, is incorporated to ensure safe and reliable grid
operation.

A. Cost function

The cost function reflects the dual objectives of minimising
power losses and efficiently managing EV charging. The total
cost is defined as:

Jtotal = α1Jloss + α2JEV, (1)

where Jloss represents the power losses in the grid caused by
resistive elements. Minimising Jloss reduces energy wastage
and improves grid efficiency. JEV captures penalties for unmet
EV charging demands, ensuring user needs are met while
avoiding overloading the grid. α1, α2 are adjustable weights
to balance the importance of power losses and EV charging
efficiency.

1) Power Loss Costs (Jloss):: Power losses are modelled
as:

Jloss = closs ·
T∑

t=1

∑
(i,j)∈L

P 2
ij,t +Q2

ij,t

V 2
i

, (2)

where Pij,t and Qij,t represent the active and reactive power
flows on branch (i, j) at time t. Also, Vi denotes the voltage
magnitude at node i, closs is the cost coefficient associated
with power losses, L represents the set of all branches (or
transmission lines) in the power network, and T is the total
number of time steps (or time periods) in the analysis.

2) EV Costs (JEV):: This term captures penalties for unmet
EV charging demands:

JEV =
T∑

t=1

(cpenalty · PUnmet,t) , (3)

where PUnmet,t represents the total unmet EV charging demand
at time t, and cpenalty is the penalty coefficient applied for
unmet charging demand.



B. Constraints

The optimisation problem is subject to the constraints listed
in Table I, which ensure the safe and efficient operation of
the grid. Power flow constraints enforce Kirchhoff’s laws for
active and reactive power to maintain the balance of power
flows within the grid. Here, Pload,i,t and Qload,i,t represent the
active and reactive power demands at node i at time t. Voltage
limits ensure that voltage magnitudes at each node remain
within the permissible range [Vmin, Vmax], where Vmin and
Vmax denote the minimum and maximum allowable voltages,
respectively. EV scheduling constraints aggregate the total
charging and discharging power contributions of all EVs in the
system, ensuring that the total power does not exceed PEV,max.
Similarly, the renewable energy constraints ensure that the
total renewable energy generated Rgen at any time t does not
exceed the installed capacity Rcap, and renewable curtailment
Rcurt,t ensures that excess renewable energy can be managed
to maintain grid stability. In these expressions, N represents
the set of nodes in the grid and EV represents the set of all
EVs in the system.

TABLE I: Constraints of the optimisation problem

Constraint Type Mathematical Expression

Power Flow
Pi −

∑
(i,j)∈L Pij,t = Pload,i,t,

Qi −
∑

(i,j)∈L Qij,t = Qload,i,t

Voltage Limits Vmin ≤ Vi ≤ Vmax, ∀i ∈ N

EV Scheduling 0 ≤
∑

i∈EV PEV,i,t ≤ PEV,max

Renewable Energy Rgen,t ≤ Rcap

Curtailment 0 ≤ Rcurt,t ≤ Rgen,t

III. PROPOSED TWO-LEVEL ML FRAMEWORK

To address the challenges of real-time energy management
in EV-integrated smart grids, a two-level ML framework is
proposed. This framework integrates prediction and optimisa-
tion to dynamically manage grid operations while minimising
costs, as shown in Fig. 2.

A. Prediction layer

The first layer of the framework employs supervised ML
models to predict key grid parameters. These predictions
provide the optimisation layer with real-time data to enable
informed decision-making while considering dynamic grid
conditions.

1) EV Demand Prediction: Accurate prediction of EV
charging demand (PEV,i,t) is a critical component of the
framework, enabling real-time optimisation of grid operations.
A supervised ML approach using the RF algorithm is used
here to forecast demand based on historical data and contextual
features. This algorithm is outlined in Algorithm 1 and consists
of the following steps:

Firstly, the “data pre-processing” step prepares the input
data for training and prediction. Missing values in any feature
F are interpolated using linear interpolation:

Fig. 2: Flowchart of the proposed two-level ML framework
for EV- and RES-integrated smart grid optimisation.

Finterpolated = Fprevious +
Fnext − Fprevious

tnext − tprevious
× (t− tprevious). (4)

Next, all features are normalised using Min-Max scaling

Fscaled =
F − Fmin

Fmax − Fmin
, ensuring a uniform range of [0, 1],

which enhances model performance.
Next, in the “feature engineering” step, raw data is trans-

formed into meaningful input vectors for the ML model.
Temporal features such as hour of the day (ht) and day
type (dt), distinguishing between weekdays and weekends, are
extracted for each timestamp t. Additionally, weather data,
including temperature (Tt), rainfall (Rt), and humidity (Ht),
are combined with these temporal features to form input
vectors: Xt1 = {ht, dt, Tt, Rt, Ht}.

Then, the “RF model training” step takes place, which
consists of multiple decision trees for EV demand prediction.
For each tree Tn in the forest, a bootstrap sample of the dataset
is created by randomly sampling data points with replacement.
Each tree is trained on its bootstrapped dataset, and the final
prediction is obtained by aggregating outputs from all trees.
For a given input Xt1 , the predicted EV demand P̂EV,i,t is
calculated as:

P̂EV,i,t =
1

Ntrees

Ntrees∑
n=1

Tn(Xt1). (5)

After that, once the model is trained, it is used in the
“prediction” step to estimate EV demand for new input data



in the test set. For each input vector Xt1 , the predicted EV
demand for each node i in the grid at each time step t is
computed using the same aggregation technique across all
decision trees.

Finally, in the “validation” step, the performance of the
trained model is evaluated using mean absolute percentage
error (MAPE) over the total number of predictions (i.e.,
N × T ).

Algorithm 1 RF for EV demand prediction

1: Input:
Historical EV charging data (PEV,i,t) for nodes i =

1, 2, . . . ,N and time steps t = 1, 2, . . . , T ;
Weather data (Tt, Rt, Ht);
Temporal data (ht, dt).

2: Step 1: Data pre-processing
3: for each feature F in the dataset do
4: if F contains missing values then
5: Interpolate missing values for F
6: end if
7: end for
8: Normalise features Fscaled using Min-Max scaling.
9: Step 2: Feature engineering

10: for each timestamp t do
11: Extract temporal features (ht, dt)
12: Combine (Tt, Rt, Ht) and (ht, dt) into Xt1

13: end for
14: Step 3: Train RF model
15: for each tree n in the Random Forest (n = 1, 2, . . . , Ntrees)

do
16: Train decision tree Tn using bootstrapped samples of

Xt1 , PEV,i,t

17: end for
18: Aggregate predictions across all trees: P̂EV,i,t

19: Step 4: Prediction
20: for each data point in the test set do
21: Predict P̂EV,i,t using the trained RF model.
22: end for
23: Step 5: Validation
24: Compute performance metrics:

MAPE =
1

N × T

∑N×T
i=1

∣∣∣∣∣PEV,i,t − P̂EV,i,t

PEV,i,t

∣∣∣∣∣× 100

2) Renewable generation prediction: Accurately forecast-
ing renewable energy generation (Rgen,t) is essential for man-
aging grid stability and ensuring the efficient utilisation of
renewable resources. A GB algorithm is employed to predict
renewable generation using weather features such as solar
irradiance, wind speed, and temperature. The algorithm is
outlined in Algorithm 2 and is described below:

Firstly, in the “data pre-processing” step, weather features
representing solar irradiance (It), wind speed (Wt), and tem-
perature (Tt) are normalised using Min-Max scaling to ensure
uniform feature ranges. Similar to the EV demand prediction

algorithm, missing values in the weather dataset are handled
using linear interpolation.

Next, in the “feature engineering” step, temporal features
(ht, dt) representing the hour of the day and day type (week-
day/weekend) are combined with weather data, including solar
irradiance (It), wind speed Wt, and temperature (Tt) to form
input vectors: Xt2 = {ht, dt, It,Wt, Tt}.

Then, the “GB algorithm” constructs an ensemble of deci-
sion trees to iteratively minimise a loss function, such as mean
squared error (MSE):

MSE =
1

N × T

N×T∑
t=1

(
Rgen,t − R̂gen,t

)2

(6)

After that, in the “prediction” step, for each input vector Xt2

in the test dataset, the trained GB model predicts renewable
generation (R̂gen,t). The final predicted renewable generation
is obtained by aggregating predictions from all trees:

R̂gen,t =
M∑

m=1

αmTm(Xt2), (7)

where αm is the learning rate, Tm is the mth tree, and M is
the total number of trees.

Finally, the model’s performance is evaluated using the root
mean squared error (RMSE).

B. Optimisation layer using PSO

The optimisation layer employs the predicted values from
the ML models to solve a multi-objective problem. As out-
lined in Section II, the primary objectives are to minimise
power losses in the grid (Jloss) and to optimise EV charging
schedules (JEV) to reduce unmet EV demand while ensuring
grid stability by satisfying the constraints listed in Table I.

The optimisation problem is solved using PSO, which is ef-
fective for handling complex, nonlinear, and multi-dimensional
problems. PSO operates based on a population of particles,
each representing a candidate solution, and iteratively im-
proves these solutions based on the objective function. Opti-
misation using PSO is presented in Algorithm 3 and is carried
out as follows:

Firstly, a population of particles is created, where each par-
ticle represents a potential solution comprising EV schedules
(PEV,i,t) and renewable energy curtailment decisions (Rcurt,t).
Each particle is assigned a random initial velocity to facilitate
exploration of the solution space. Additionally, bounds for
the decision variables are defined to ensure feasible solutions.
Next, each particle’s fitness is evaluated using the cost function
Jtotal in (1). Then, each particle’s solution is evaluated against
the constraints outlined in Table I. After that, each particle’s
velocity and position are updated based on their own best-
known position and the global best-known position of the
swarm:{

vi,k+1 = ωvi,k + c1r1(pbest − xi,k) + c2r2(gbest − xi,k)

xi,k+1 = xi,k + vi,k+1

,

(8)



Algorithm 2 GB Algorithm for renewable generation predic-
tion

1: Input:
Weather data (It,Wt, Tt);
Temporal data (ht, dt);
Historical renewable generation data (Rgen,t).

2: Step 1: Data pre-processing
3: for each feature F in the dataset do
4: if F contains missing values then
5: Interpolate missing values for F
6: end if
7: end for
8: Normalise features Fscaled using Min-Max scaling.
9: Step 2: Feature engineering

10: for each timestamp t do
11: Extract temporal features (ht, dt)
12: Combine (It,Wt, Tt) and (ht, dt) into Xt2

13: end for
14: Step 3: Train GB model
15: for each tree m in the GB model (m = 1, 2, . . . ,M ) do
16: Train decision tree Tm to minimise MSE
17: end for
18: Aggregate predictions across all trees.
19: Step 4: Prediction
20: for each data point Xt in the test set do
21: Predict renewable generation R̂gen,t using the trained

GB model
22: end for
23: Step 5: Validation

24: Compute RMSE =

√
1

N × T

∑N×T
t=1

(
Rgen,t − R̂gen,t

)2

where ω is the inertia weight, c1, c2 are acceleration coeffi-
cients, r1, r2 are random numbers, pbest is the particle’s best
position, and gbest is the swarm’s global best position.

Finally, the algorithm terminates when the maximum num-
ber of iterations is reached or the change in fitness value across
iterations falls below a predefined threshold.

IV. CASE STUDY AND RESULTS

This section presents the simulation results of the proposed
framework for energy management in smart grids integrated
with EVs and RESs. The framework is evaluated on the
modified IEEE 14-bus test system shown in Fig. 1.

A. Prediction layer performance

The prediction layer uses the two supervised ML algorithms
to forecast the demand for EV charging and the generation of
renewable energy. The models are trained on historical datasets
that reflect daily variability.

1) EV charging demand prediction: Following the method-
ology described in Subsection III-A1, the RF model is em-
ployed to forecast hourly EV charging demand at Bus 08. The
model uses a set of carefully engineered features, including
temporal features (hour of day, day type) and contextual

Algorithm 3 PSO-Based optimisation algorithm

1: Input:
P̂EV,i,t and R̂gen,t;
Cost function parameters (α1, α2, closs, cpenalty);
Constraints (Table I).

2: Step 1: Initialization
3: Initialise a population of N particles, where each particle

represents a solution: PEV,i,t, Rcurt,t.
4: Assign random initial velocities to each particle.
5: Define bounds for decision variables:

EV charging power (0 ≤ PEV,i,t ≤ PEV,max).
Renewable curtailment (0 ≤ Rcurt,t ≤ Rcap).

6: Step 2: Evaluate objective function
7: for each particle in the swarm do
8: Compute the cost function: Jtotal in (1)
9: end for

10: Step 3: Apply constraints (Table I)
11: for each particle do
12: Check feasibility against the constraints
13: if particle violates constraints then
14: Penalise its cost function.
15: end if
16: end for
17: Step 4: Update particle position and velocity
18: for each particle do
19: Update velocity and position in (8)
20: Ensure particles stay within bounds.
21: end for
22: Step 5: Termination
23: if maximum iterations reached or fitness convergence is

achieved then
24: Terminate the algorithm.
25: else
26: Go to Step 2.
27: end if
28: Output:

Optimal EV schedules (PEV,i,t).
Optimal renewable curtailment (Rcurt,t).

weather features (temperature, rainfall, humidity), extracted
and pre-processed (as detailed in Algorithm 1). Fig. 3 presents
a scatter plot of predicted versus actual EV charging demand.
The points are tightly clustered around the reference line
representing perfect prediction, confirming the accuracy and
low variance of the model’s output across different demand
levels.

B. Renewable generation prediction

Fig. 4 illustrates time-series plots of actual and predicted
renewable generation prediction for Bus 02 (with wind farm)
and Bus 12 (with PV) using the GB algorithm, discussed in
Subsection III-A2. The results demonstrate that the GB model
captures the temporal trends and variability of renewable
generation effectively (as detailed in Algorithm 2). On Bus
02, where wind is the primary energy source, the model ac-



Fig. 3: Simulation results: EV charging demand prediction
using RF algorithm.

Fig. 4: Time-series comparison between actual and predicted
renewable generation using GB algorithm for wind and PV
resources, at Bus 02 (top) and Bus 12 (bottom), respectively.

curately follows fluctuations caused by changing wind speeds.
Similarly, for Bus 12, where solar irradiance is dominant, the
model tracks the diurnal generation pattern with high fidelity.
The RMSE value representing the deviations between actual
and predicted values is approximately 6.50 kW.

C. Optimisation layer performance

The optimisation layer uses the predicted EV demand
P̂EV,i,t and renewable energy generation profiles R̂gen,t ob-
tained from the ML models to solve a multi-objective optimi-
sation problem, as detailed in III-B. The PSO-based algorithm
(detailed in Algorithm 3) dynamically adjusts EV charging
and renewable curtailment decisions based on the forecasted
profiles.

1) Fairness in EV charging schedules: Based on the pre-
dicted EV demand P̂EV,i,t, the optimisation framework ensures
balanced charging schedules across all buses. Fig 5 illustrates
the distribution of unmet EV demand across different buses
before and after optimisation. The box plots show the spread
of unmet demand values for each bus, with the blue and red
bars representing unmet demand before and after optimisation,
respectively. The results demonstrate a significant reduction in
unmet demand, as evidenced by the decrease in the median
and interquartile range.

Fig. 5: Unmet EV demand per bus before and after optimisa-
tion using PSO algorithm.

2) Renewable curtailment minimisation: The optimisation
framework prioritised the efficient use of renewable energy
based on the predicted RES generation profiles R̂gen,t. As
shown in Fig. 6, renewable curtailment is reduced from 15%
(baseline) to 5%, thus supporting higher renewable integration.

D. Scalability and sensitivity analysis

The scalability of the proposed two-level ML and optimisa-
tion framework is assessed by varying the system size in terms
of the number of EVs and buses. Three scenarios are tested:
a small-scale system (200 EVs and 14 buses), a medium-
scale system (400 EVs and 20 buses), and a large-scale
system (600 EVs and 30 buses). As summarised in Table II,
the prediction accuracy, measured by MAPE, remains within
acceptable limits (below 8%) across all system sizes. Although
the optimisation time increases with system size, computation
times remain within feasible limits for near real-time energy
management applications.

TABLE II: Scalability analysis of the proposed framework

System size Buses Prediction
MAPE (%)

Optimisation
time (s)

Small (200 EVs) 14 6.26 12.51
Medium (400 EVs) 20 7.41 28.09
Large (600 EVs) 30 7.87 36.33



Fig. 6: Renewable energy generation and curtailment profiles
before and after optimisation using PSO algorithm.

To evaluate the robustness of the proposed optimisation
framework against uncertainties in EV demand and renewable
generation forecasts, a sensitivity analysis is performed. Pre-
diction errors are introduced into the forecasted profiles, rang-
ing from 5% to 15% MAPE, to mimic potential inaccuracies
from the ML models. Fig. 7a presents a two-dimensional sen-
sitivity map illustrating the impact of varying prediction errors
and EV penetration levels on total system power losses. The
results reveal a strong correlation between forecast accuracy
and optimisation outcomes. Specifically, as MAPE increases,
power losses escalate significantly, with the effect becoming
more pronounced at higher EV penetrations. For instance, at
500 EVs, increasing MAPE from 5% to 15% leads to a power
loss rise of nearly 30%. Contour lines in Fig. 7a highlight
regions of equal power losses, emphasising critical thresholds
where minor deteriorations in prediction accuracy could cause
disproportionate increases in system losses. The influence of
renewable generation forecast accuracy is also evaluated using
RMSE. The results indicate that as RMSE grows (increasing
from 5 kW to 20 kW), total power losses and renewable
curtailment rates also rise sharply. For example, beyond 15
kW RMSE, power losses grow by approximately 25–30%.
Furthermore, Fig. 7b presents a combined sensitivity surface
illustrating the joint effect of EV demand and RES generation
forecast errors on total system power losses. The results show
that simultaneous high errors in both forecasts lead to non-
linear amplification of power losses and curtailment.

To assess the flexibility and robustness of the proposed
optimisation framework, a sensitivity analysis is conducted on
the cost function weights α1 and α2 in eq. (1), which balances
the trade-off between minimising power losses and fulfilling
EV charging demand. α1 and α2 are varied within a range of
[0.5, 1, 1.5] around their nominal values (both initially set to 1).
Table III summarises the system performance under different
weighting scenarios. As expected, increasing α1 places more

(a) Impact of EV demand prediction accuracy (MAPE)

(b) Combined impact of EV and RES prediction errors (MAPE and RMSE)

Fig. 7: Sensitivity analysis results: Effects of EV and RES
forecast errors on system power losses.

emphasis on loss minimisation, resulting in lower power losses
but at the cost of higher unmet EV demand. Conversely,
increasing α2 improves EV charging satisfaction but leads to
higher power losses due to increased demand fulfilment.

TABLE III: Sensitivity of system performance to cost coeffi-
cient variations.

Scenario α1 α2 Power
loss

Unmet
EV
demand

Base case 1.0 1.0 36 kW 12 kW
High loss priority 1.5 1.0 30 kW 18 kW
High EV priority 1.0 1.5 42 kW 5 kW
Equal low priority 0.5 0.5 40 kW 8 kW

E. Comparative analysis

To benchmark the performance of the proposed PSO-based
optimisation framework, a comparative analysis is conducted



TABLE IV: Comparative performance analysis of optimisation
methods.

Optimisation
method

Convergence
time (s)

Power loss
reduction

Renewable
curtailment
reduction

PSO 12.51 s 28% 67%
GA 22.12 s 25% 58%
MILP 18.06 s 24% 55%

against two widely used optimisation techniques: GA and
MILP. Table IV summarises the key performance indicators for
all three approaches, including convergence time, total power
loss reduction, and renewable curtailment reduction.

As shown in Table IV, PSO achieves the highest perfor-
mance in both power loss reduction and renewable curtailment
mitigation, significantly outperforming GA and MILP. Specif-
ically, PSO reduces total power losses by 28%, compared
to 25% and 24% for GA and MILP, respectively. Moreover,
PSO reduces renewable curtailment from 15% (baseline) to
5%, representing a 67% reduction relative to the baseline
curtailment, which is substantially higher than the curtail-
ment reductions achieved by GA (58%) and MILP (55%).
In terms of computational efficiency, PSO converges within
12.5 seconds, demonstrating its suitability for near real-time
energy management applications. By comparison, GA and
MILP required longer convergence times of 22.1 s and 18.6
s, respectively.

V. CONCLUSION

This paper presents a two-level ML framework for intel-
ligent energy management in EV- and RES-integrated smart
grids. The prediction layer, based on RF and GB, achieves
high forecast accuracy, with an MAPE of 6.2% for EV
demand prediction and an RMSE of 6.50 kW for renewable
generation forecasting. The optimisation layer, using a PSO
algorithm, effectively minimises system costs by optimis-
ing EV charging schedules and reducing renewable energy
curtailment. Case study results demonstrate that renewable
curtailment is reduced from 15% to 5%, while fairness in
EV charging is significantly improved across the network.
The framework maintains robust prediction and optimisation
performance as the system scales from small to large grid
sizes. Comparative analysis confirms that the PSO approach
outperforms GA and MILP in both optimisation effectiveness
and computational efficiency. Sensitivity analysis highlights
that forecast accuracy is critical for maintaining system relia-
bility, as larger prediction errors substantially increase power
losses and curtailment. Future work will explore uncertainty-
aware optimisation, online learning, and vehicle-to-grid (V2G)
integration to further enhance flexibility and adaptability.
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