

Psilocybin and ketamine affect novel neuropeptides gene expression in the rat hypothalamus

Artur Pałasz¹, Marta Pukowiec¹, Katarzyna Bogus¹, Aleksandra Suszka-Świtek¹,
Łukasz Filipczyk¹, Kinga Mordecka-Chamera¹, John J. Worthington², Maria Sygidus¹
Adam Wojtas³, Agnieszka Bysiek³, Krystyna Gołembowska³

¹ Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland

² Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK

³ Department of Pharmacology, Unit II, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland

Corresponding author:

Artur Pałasz

Medyków Street 18, 40-752 Katowice, Poland

apalasz@sum.edu.pl

+48 32 208 83 77

Abstract

Objective: Psychedelics are able to trigger highly intense and profound alterations in self-consciousness, perception, affective and cognitive processes. Indeed, recent studies show that ketamine and psilocybin could be used as fast-acting antidepressants. However the molecular and neurochemical mechanisms of these psychedelics and their actions at the level of diverse brain structures remains so far unclear. Hypothalamic neuropeptides are involved in a wide spectrum of neuronal activities being responsible for the central control of all fundamental autonomic functions.

Methods: The purpose of this exploratory pilot study was to assess the gene expression of both classical and novel neuropeptides, including nesfatin-1, phoenixin (PNX), spexin (SPX), neuromedin U (NMU), neuropeptide S (NPS), and their known receptors in the hypothalamus of male Wistar-Han rats subjected to single injections of psilocybin (dose 2 or 10 mg/kg) and ketamine (dose 10 mg/kg). Total mRNA was isolated from homogenized tissue and Real-time PCR was used for estimation of related gene expression.

Results: It was found that a single administration of the higher dose of psilocybin increased the mRNA expression of most noncanonical neuropeptides examined in the study, with only the case of NMU was there a decrease in gene expression. Interestingly, psilocybin administration also increased mRNA expression of the serotonin receptors: 5-HT1A, 5-HT2A and 5-HT2B but not 5HT-2C. In contrast, the effect of ketamine on the expression of neuropeptides was much more limited compared to psilocybin, only increasing transcripts of NUCB2, GPR173 and POMC were demonstrated.

Conclusions: These results suggest for the first time that selected psychedelics may enhance the signaling of 5-HT2A receptors or inhibit NMDA receptor activity, affecting neuropeptide signaling and serotonin transmission in the rat hypothalamus, which may contribute to a better understanding of psychedelic action in the brain.

Key words;

Psilocybin; ketamine; hypothalamus; neuropeptides; brain

Introduction

Psychedelics belong to an intriguing family of drugs that affect brain neurotransmission as well as several intracellular signaling pathways. Even a single dose of these psychoactive substances is able to profoundly alter the subjective human experience, highly modulate sensory perception and change affectivity (Vollenweider and Smallridge 2022). Classical psychedelics such as N,N-dimethyltryptamine (DMT) and psilocybin act as potent agonists of serotonin 2A receptors (5-HT2A) however they also affect a wide spectrum of brain receptors and intracellular signaling pathways (Holze et al. 2024, Hatzipantelis and Olson 2024). Both psilocybin and ketamine, a potent dissociative anesthetic, especially its isomeric form S-ketamine (esketamine), have recently been considered as safe and fast-acting antidepressants (Nutt et al. 2013, Kalfas et al. 2023, Seshadri et al. 2024, Krystal et al. 2023). Despite its fast and potent psychedelic activity ketamine does not represent the structure of classical serotonergic hallucinogen, being a glutamate NMDA receptor ionic channel blocker (Maeng and Zarate 2007).

The primary effects of the central action of psychedelics include strong distortions in the perception of reality, personality dissociation and peculiar entheogenic experiences which are related to their influence on neocortical centres (Swanson 2018). However, these substances may also, at least transiently, act at the level of hypothalamic signaling pathways, modulating key autonomic functions such as food intake, thermoregulation and cardiovascular physiology (Gouzoulis-Mayfrank et al. 1999, Erkizia-Santamaría et al. 2022, Ludwig et al. 2021, Patterson et al. 2017, Maqueda et al. 2016). The regulatory systems of the hypothalamus rely significantly on local neuropeptidergic circuits and their connections with limbic and brainstem centres. Neurons in this area, supplied by serotonergic fibres, express 5-HT2A receptors and may be a potential target of classic psychedelics (Martin-Gronert et al. 2016). On the other hand a large population of hypothalamic neurons that regulate core autonomic functions are rich in the NMDA receptor (Miracca et al. 2022, Lee and Stanley 2005), opening up the possibility of the potential action of ketamine and other highly psychoactive modulators on glutamatergic signaling.

Several novel hypothalamic neuropeptides have recently been discovered which influence some behavioral pathways also modulated by the use of psychoactives opening up potential mechanisms of action. Nesfatin-1 and spexin (SPX) - pleiotropic, highly anorexigenic neuropeptides are considered to play an important role in several brain signaling processes including mechanisms underlying the generation of anxiety symptoms (Friedrich and Stengel 2023, Pałasz et al. 2018, Porzionato et al. 2010, Ma et al. 2018). Phoenixin (PNX), a novel modulator of the gonadoliberin (GnRH) releasing neurons, and ligand of GPR173 receptor (Treen et al. 2016), has also manifested potential anxiolytic properties (Jiang et al. 2015), and its multifaceted regulatory role in the brain has recently been suggested (Schalla and Stengel 2018). Another anorexigenic peptide neuromedin U (NMU) has been found to modulate anxiety-like behaviour acting via NMUR2 receptor (Tanaka and Telegdy, 2014). Highly anxiolytic neuropeptide S (NPS), a ligand of G-coupled receptor (NPSR, GPR154) is a neuromodulator with a wide spectrum of regulatory activity in the brain e.g. it stabilizes wakefulness and plays a role in the mechanisms of addiction (Reinsheid and Ruzza 2021, Tobinski and Rappeneau 2021). Orexigenic neuropeptide 26RFa (QRFP) acting via metabotropic receptor GPR103 stimulates food intake and regulates glucose homeostasis through the modulation of NPY/POMC neurons in the arcuate nucleus (Devere et al. 2024, El-Medi et al. 2020, Lectez et al. 2009).

So far, a number of basic studies have been conducted on the effects of diverse psychedelics on the level of expression of several neurotransmitters, their membrane receptors as well as some intracellular signaling factors. However, possible pharmacological action of psychedelics at the level of neuropeptidergic signaling in the hypothalamus are not yet revealed. The aim of this exploratory pilot study was therefore to investigate for the first time the effect of short-term administration of two structurally and pharmacologically different psychedelic substances: psilocybin and ketamine on the gene expression of a relatively wide pool of both novel (nesfatin-1, PNX, SPX, NMU, NPS, 26RFa) and canonical (orexins, POMC, MCH) neuropeptides and their selected receptors in the rat hypothalamus. A common feature of all studied neuropeptides is their important role in the central regulation of food intake and energy homeostasis. The analysis of their hypothalamic expression seems to be important in the context of the potential use of psychedelics in the pharmacotherapy of eating disorders.

2. Materials and Methods

2.1 Animals

Adult male Wistar–Han rats (280–350 g; age: 2.0 to 2.5 month, Charles River, Göttingen, Germany) were initially acclimatized and housed (5 per cage) in environmentally controlled rooms (ambient temperature 23 ± 1 °C, humidity $55 \pm 10\%$, and 12:12 light:dark cycle). Rats were handled once daily before the beginning of the experiments; an enriched environment was not applied. The animals had free access to water and typical laboratory food (VRF 1, Special Diets Services, Witham, UK). All animal use procedures were conducted in strict accordance with European regulations for animal experimentation (EU Directive 2010/63/EU on the Protection of Animals Used for Scientific Purposes). The 2nd Local Institutional Animal Care and Use Committee (IACUC) in Kraków, Poland, approved the experimental protocols for Experimentation on Animals (permit numbers: 112/2021, app. 8 April 2021; 324/2021, app. 20 October 2020 and 79/2022, app. 10 March 2022).

2.2. Drugs and Reagents

Ketamine hydrochloride was purchased from Tocris/Bio-Techne (Warsaw, Poland) and psilocybin was synthesized at the Department of Medicinal Chemistry of the Maj Institute of Pharmacology using the method described by Shirota et al. (2003); both were dissolved in sterile water. All solutions were made fresh on the day of the experiment. The dose of ketamine (10 mg/kg) was based on a report by Popik et al. (2022), while doses of psilocybin (2 and 10 mg/kg) were based on work by Jefsen et al. (2019). Psilocybin was given subcutaneously while ketamine was given intraperitoneally in the volume of 2 mL/kg. The control group was treated with 0.9% NaCl solution (s.c. administration). Animals were injected with single doses.

2.3. Brain tissue collection and Real-Time-PCR reaction

Seven days after drug administration rats were sacrificed by decapitation, their brains were excised immediately and hypothalamus was microsurgically excised and frozen in dry ice prior to RNA isolation. Taking into account that psychedelics produce long-lasting epigenomic and transcriptomic alterations in the brain and these modifications lead to neuroplasticity (Vargas et al. 2023, de Vos et al. 2021) we decided to sacrifice animals a week after drug administration to correlate possible changes with other drugs' effects. Total mRNA was extracted from the collected brain tissues via homogenization with an ultrasound homogenizer (Heildoph DIAx 900,Germany) in 1 ml of TRIzol® Reagent (Sigma-Aldrich). mRNA isolation was performed using chlorophorm/isopropanol and 75% ethanol with samples finally dissolved in 50 µl of RNase-free water. Collected mRNA samples were transcribed into cDNA during incubation in buffered solution of reverse transcriptase MMLV-RT with RNAsin, oligo-dT and mix of nucleotides at 42 °C for 60 min. using a thermal cycler Veriti 96 Well (Applied Biosystems). Initial mRNA solutions contained 1,5µl/ml. Quantitative Real-Time PCR reaction (qPCR) was performed by FastStart SYBR Green Master (Roche) in a Light Cycler ® 96 (Roche) thermal cycler for 40 rounds. Beta-2-microglobulin (B2M) was chosen as a standard internal reference gene. Primer sequences of all studied neuropeptides and receptors as well as hybridization temperatures presented in the Table 1. The analysis of the obtained results was performed on the basis of the $2-\Delta\Delta Ct$ algorithm, where the internal control was the reference gene B2M.

2.4. Statistical analysis

Statistical analysis was performed using data analysis software system Statistica (TIBCO Software Inc. 2017, version 13). Mean differences between groups were analyzed using one-way ANOVA test followed by Dunnett's post hoc test. The logarithmic transformation method was applied to conduct a one-factor analysis of variance for all genes. Results were presented as means \pm SD \pm 95% confidence intervals. Differences were considered statistically significant at $p < 0.05$ (Tab. 2.).

3. Results and Discussion

In the current study we analyzed neuropeptides mRNA expression in the rat hypothalamus after long-term exposure to psilocybin or ketamine using quantitative Real-Time PCR (Tab 2.). Our report is the first study to investigate changes in the gene expression of hypothalamic regulatory neuropeptides after psychedelic administration which may enhance the understanding of the possible molecular interplay between brain peptidergic signaling pathways and the psychomodulatory activity of psilocybin and ketamine. The effect of administering psilocybin at a higher dose (10 mg/kg) brought a statistically significant increase in the mRNA expression of the following neuropeptides: nucleobindin 2 (NUCB2), phoenixin (PNX) and receptors: GPR173, GPR103, NPSR, MC4R, MCHR (Fig. 1 and 2). In the case of NPS mRNA, the increase in expression occurred also with the use of a lower dose of psilocybin (2 mg/kg). It is worth emphasizing, the observed increase in gene expression of the examined neuropeptides was accompanied by a distinct up-regulation of 5-HT1A, 5-HT2A and 5-HT2B but not 5HT-2C mRNA levels (Fig. 3.). This may confirm some reports suggesting that 5-HT2A activation stimulates the synthesis and secretion of several neuropeptides such as CRF and oxytocin (Van der Kar et al. 2001) by hypothalamic neurons and also increases prolactin release from hypophyseal acidophilic cells (Bagdy et al. 1996). Moreover, it has been suggested that 5-HT2A-dependent signaling plays a role in the control of hypothalamic POMC neurons activity (Martin-Gronert et al. 2016). On the other hand, 5-HT2C receptors expressed on anorexigenic POMC neurons are considered the main regulator of food intake and energy homeostasis (Doslikova 2013), so the lack of effect of psilocybin on the 5-HT2C mRNA expression therefore suggests that the action of this psychedelic on hypothalamic peptidergic signaling is mediated by 5-HT1, 5-HT2A and 5-HT2B receptors (Fig. 3.). This corresponds with a report showing that hypothalamic responses to peripheral DOI administration are mediated by activation of 5-HT2A receptors in the paraventricular nucleus (Zhang et al. 2002). Interestingly, in the experiment performed, psilocybin and ketamine did not change POMC expression in the rat hypothalamus. Therefore, their potential impact on hypothalamic mechanisms of energy homeostasis is realized through regulatory circuits other than melanocortin pathway and may possibly be

related to newly identified, noncanonical hypothalamic neuropeptides. This information seems to be particularly interesting in the context of a recent study by Peck *et al.* (2023) reporting the possibility of using a single dose of psilocybin (25 mg) in the safe treatment of female anorexia nervosa (AN). The molecular mechanism of the aforementioned pharmacological action of psilocybin is not yet known but it likely modulates aminergic and glutamatergic signaling in various brain structures. There are suggestions that some disturbances in 5-HT2A-dependent serotonergic signaling, such as abnormal receptor binding (Goethals *et al.* 2007, Bailer *et al.* 2004, Audenaert *et al.* 2003) or polymorphism of 5-HT2A gene (Calati *et al.* 2011, Gorwood *et al.* 2002), may play a role in the pathogenesis of AN and other eating disorders (Chen *et al.* 2015). It can therefore be assumed that the observed clinical improvement after treatment with psilocybin is related to its agonistic effect on 5-HT2A in various areas of the brain, including the hypothalamus. Activation of 5-HT2A could, under these conditions, increase the expression of food-intake promoting neuropeptides. However, in the presented study, we revealed an increase in the expression of both orexigenic (PNX, MCHR GPR173, GPR 103) and anorexigenic (NUCB2, MC4R, NPS, NPSR) hypothalamic regulatory factor genes (Fig.1 and 2). In contrast, there was a significant decrease in the mRNA expression of NMU, a neuropeptide that strongly inhibits eating (Teranishi and Hanada 2021). Therefore, the mechanism of action of psilocybin at the level of the hypothalamus is ambiguous and appears to be somewhat more complex. It is also unclear to what extent changes in gene expression of the studied neuropeptides translate into the level of protein synthesis and function in the hypothalamic neurons that regulate energy homeostasis. Moreover, it is difficult to clearly estimate which of the examined multifunctional neuropeptides are crucial in the pathogenesis of AN. It should also be emphasized that research on the neurochemical background of AN in animal models, such as activity based anorexia, is far from perfect and translating the obtained results to humans should be carried out with great caution and awareness of the limitations. In the course of AN, there is a persistent, emotionally charged disturbance of body image self-perception, a phenomenon that is likely not to occur in animals. Effects of psilocybin and other psychedelics on bodily self awareness may involve some populations of insular neurons which are responsible for self-recognition and interoceptive awareness (Craig 2009). It is suggested that some functions of insula are disturbed in the course of eating disorders including anorexia nervosa (Bulik *et al.* 2022). The affective and addictive aspects of

AN pathophysiology are related to the activity of the brain limbic and amygdalar pathways (Lipsman et al. 2015, Chowdhury et al. 2003, Joos et al. 2011, Burkert et al. 2019), in which 5-HT2A may also play an important role. Their stimulation by psilocybin could theoretically result in the release of so far promising pharmacological effects. However, at present these considerations are speculative and must be supported by further basic research.

Unlike psilocybin, the effect of ketamine on neuropeptide gene expressions was much more limited. In the case of this psychedelic agent, only an increase of NUCB2, GPR173, POMC and 5-HT1A mRNA level was observed (Fig. 1-3). Glutamate signaling via NMDA receptors plays an important role in the activity of hypothalamic nuclei involved in the regulation of energy homeostasis, sleep and cardiovascular functions (Miracca et al. 2022, Busnardo et al. 2016, Doane et al. 2007, Lee and Stanley 2005). The effects of ketamine on the gene expression of the aforementioned neuropeptides in several hypothalamic neurons may therefore occur via blockade of NMDAR activity. Recently, there have been suggestions regarding the possible use of ketamine in the treatment of anorexia nervosa and depression-related eating disturbances (Mitchel et al, 2023, Keeler et al. 2023). A single injection of ketamine (dose 30 mg/kg) increased food intake, attenuated hyperactivity and reduced anxiety-like behavior in rats (Chen et al. 2018). On the other hand, ketamine induced anaesthesia was associated with a long-term reduction in daily food intake in rhesus macaques (Springer et al. 2007). Nevertheless, the results of the presented experiment do not yet allow the conclusion that the orexigenic effects of ketamine are related to its impact on noncanonical neuropeptide signaling in the hypothalamus.

There was a simultaneous stimulation of the anorexigenic POMC, NUCB2 (a precursor of potent food-intake inhibiting factor – nesfatin-1) and GPR173 receptor gene expressions. The activation of GPR173 is attributed to orexigenic effects of PNX in animals (Schalla et al. 2017). It can therefore be assumed that the pharmacological effects of ketamine in the treatment of anorexia nervosa are probably related to its effect on dysfunctional neurotransmission in some brain regions other than hypothalamus such as insula or limbic structures (Mitchel et al 2023, Frank et al. 2019, Craig 2009). Interestingly, alterations in the NR2 subunits of NMDAR may be related to genetic predisposition to anorexia nervosa (Koronyo-Hamaoui et al. 2007).

To date, almost nothing is known about possible effects of classical and atypical psychedelics on food intake and energy homeostasis in animal models. However,

several studies show the impact of these substances on other forms of rat behaviour, especially anxiety and stress related responses. For instance, a marked anxiolytic effect of psilocybin in the acute phase and 24 h post-exposure was shown in the open field (OF) test. Interestingly, the increased exploration of the central zone of the OF persisted until 24 h and was no longer accompanied by suppression of rats' locomotion (Wojtas et al. 2023). A reduced anxiety-like behaviour in elevated plus maze (EPM) test was also evidenced in rats seven days after exposure to single doses of psilocybin and ketamine (Hibicke et al. 2020). Another study reported that typical psychedelic 25B-NBOMe shows distinct hallucinogenic activity in body twitch response (WDS) test. Moreover some alterations in the OF, the novel object recognition (NOR) and the light/dark box (LDB) tests suggest that 25B-NBOMe modulates locomotion, affects short-term memory and may produce anxiogenic effects (Wojtas et al. 2021).

Some limitations of this preliminary pilot study should definitely be noted. The main limitation is the reduced sample size in RT-PCR assay, more animals per group would have increased the statistical power. Secondly, the neuropeptide and receptor protein levels were not measured and immunohistochemistry will therefore urgently be examined in our ongoing research. In summary, we have exposed only part of the possible neuromolecular changes occurring following psilocybin and ketamine administration and our initial conclusions remain cautious. It should also be taken into account that any effects measured could well be different in animals which have experienced physical or social stressors. As such the discussion can be rather speculative and a bit over-stated when inferring anything about clinical observations with these drugs, particularly as no data is presented to validate protein changes or other mechanisms/functional consequences of the psychedelics exposure. Whether neuropeptide gene expressions after psilocybin and ketamine administration are directly related to drug pharmacological action or is a secondary effect, has to be investigated in the future. However, our results suggest for the first time that selected psychedelics enhance the signaling of 5-HT2A receptors or inhibit the action of NMDA receptors affecting neuropeptide signaling and serotonin transmission in the rat hypothalamus, which may contribute to a better understanding of the alternative ways of their psychomodulatory and autonomic action.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Acknowledgements

The authors would like to thank Mr Krzysztof Pawlicki, PhD, DSc from Department of Biophysics and Mr Paweł Cieślik, MD, PhD from Department of Internal, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences, Medical University of Silesia for their valuable assistance.

Funding

This research was funded by the Medical University of Silesia grants for Department of Histology No; PCN-1-225/K/I.

References

Audenaert K, Van Laere K, Dumont F, et al. (2003) Decreased 5-HT2a receptor binding in patients with anorexia nervosa. *Journal of Nuclear Medicine* 44:163-69

Bagdy G (1996) Role of the hypothalamic paraventricular nucleus in 5-HT1A, 5-HT2A and 5-HT2C receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. *Behavioural Brain Research* 73: 277-80.

Bailer UF, Price JC, Meltzer CC, et al. (2004) Altered 5-HT 2A receptor binding after recovery from bulimia-type anorexia nervosa: Re-relationships to harm avoidance and drive for thinness. *Neuropsychopharmacology* 29:1143–1155

Bulik CM, Coleman JRI, Hardaway JA, et al. (2022). Genetics and neurobiology of eating disorders. *Nature Neuroscience* 25: 543-554

Burkert NT, Koschutnig K, Ebner F, et al. (2019) Body image disturbances, fear and associations with the amygdala in anorexia nervosa. *Wiener Klinische Wochenschrift* 131: 61-67

Busnardo C, Crestani CC, Fassini A, et al. (2016) NMDA and non-NMDA glutamate receptors in the paraventricular nucleus of the hypothalamus modulate different stages of hemorrhage-evoked cardiovascular responses in rats. *Neuroscience* 320: 149-59

Calati R, De Ronchi D, Bellini M, et al. (2011) The 5-HTTLPR polymorphism and eating disorders: A meta-analysis. *International Journal of Eating Disorders* 44: 191–199.

Chen J, Kang Q, Jiang W, et al. (2015) The 5-HTTLPR confers susceptibility to anorexia nervosa in Han Chinese: Evidence from a case-control and family-based study. *PLoS ONE* 10:e0119378

Chen YW, Sherpa AD, Aoki C. (2018) Single injection of ketamine during mid-adolescence promotes long-lasting resilience to activity-based anorexia of female mice by increasing food intake and attenuating hyperactivity as well as anxiety-like behavior. *International Journal of Eating Disorders* 51: 1020-1025

Chowdhury U, Gordon I, Lask B, et al. (2003) Early-onset anorexia nervosa: is there evidence of limbic system imbalance? *International Journal of Eating Disorders* 33: 388-96

Craig AD (2009) How do you feel — Now? The anterior insula and human awareness. *Nature Reviews Neuroscience* 10: 59-70

Devère M, Takhlidjt S, Prévost G, et al. (2024) The 26RFa (QRFP)/GPR103 neuropeptidergic system: A key regulator of energy and glucose metabolism. *Neuroendocrinology* 2024 Apr 10. doi: 10.1159/000538629.

de Vos CMH, Mason NL, Kuypers KPC (2021) Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. *Frontiers in Psychiatry* 12: 724606.

Doane DF, Lawson MA, Meade JR, et al. (2007) Orexin-induced feeding requires NMDA receptor activation in the perifornical region of the lateral hypothalamus. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 293: R1022-26

Doslikova B, Garfield AS, Shaw J, et al. (2013) 5-HT2C receptor agonist anorectic efficacy potentiated by 5-HT1B receptor agonist coapplication: an effect mediated via increased proportion of pro-opiomelanocortin neurons activated. *Journal of Neuroscience* 33: 9800-9804

El-Mehdi M, Takhlidjt S, Khiar F, et al. (2020) Glucose homeostasis is impaired in mice deficient in the neuropeptide 26RFa (QRFP). *BMJ Open Diabetes Research & Care* 8: e000942. doi: 10.1136/bmjdrc-2019-000942

Erkizia-Santamaría I, Alles-Pascual R, Horrillo I, et al. (2022) Serotonin 5-HT(2A), 5-HT(2c) and 5-HT(1A) receptor involvement in the acute effects of psilocybin in mice. In vitro pharmacological profile and modulation of thermoregulation and head-twitch response. *Biomedicine & Pharmacotherapy* 154: 113612.

Frank GKW, Shott ME, DeGuzman MC (2019) The neurobiology of eating disorders. *Child and Adolescent Psychiatric Clinics of North America* 28: 629-640

Friedrich T, Stengel A (2023) Current state of phenixin-the implications of the pleiotropic peptide in stress and its potential as a therapeutic target. *Frontiers in Pharmacology* 14:1076800.

Goethals I, Vervaet M, Audenaert K, et al. (2007) Differences of cortical 5-HT2A receptor binding index with SPECT in subtypes of anorexia nervosa: relationship with personality traits? *Journal of Psychiatry Research* 41: 455-58

Gorwood P, Ades J, Bellodi LF, et al. (2002) The 5-HT 2A-1438G/A polymorphism in anorexia nervosa: A combined analysis of 316 trios from six European centres. *Molecular Psychiatry* 7:90–94

Gouzoulis-Mayfrank E, Thelen B, Habermeyer E, et al. (1999) Psychopathological, neuroendocrine and autonomic effects of 3,4-methylenedioxymethamphetamine (MDMA), psilocybin and d-methamphetamine in healthy volunteers. Results of an experimental double-blind placebo-controlled study. *Psychopharmacology (Berl)*. 142: 41-50.

Hatzipantelis CJ, Olson DE (2024) The Effects of Psychedelics on Neuronal Physiology. *Annual Reviews of Physiology* 86: 27-47.

Hibicke M, Landry AN, Kramer HM, et al. (2020) Psychedelics, but Not Ketamine, Produce Persistent Antidepressant-like Effects in a Rodent Experimental System for the Study of Depression. *ACS Chemical Neuroscience Journal* 11: 864–871.

Holze F, Singh N, Liechti ME, et al. (2024) Serotonergic Psychedelics: A Comparative Review of Efficacy, Safety, Pharmacokinetics, and Binding Profile. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*. 2024 Feb 1: S2451-9022(24)00020-X. doi: 10.1016/j.bpsc.2024.01.007.

Jefsen O, Højgaard K, Christiansen SL, et al. (2019) Psilocybin Lacks Antidepressant-like Effect in the Flinders Sensitive Line Rat. *Acta Neuropsychiatrica* 31: 213–219

Jiang JH, He Z, Peng YI et al. (2015) Effects of Phoenixin-14 on anxiolytic-like behavior in mice. *Behavioural Brain Research* 286: 39-48.

Joos AA, Saum B, van Elst LT, et al. (2011) Amygdala hyperreactivity in restrictive anorexia nervosa. *Psychiatry Research* 191: 189-95

Kalfas M, Taylor RH, Tsapekos D, et al. (2023) Psychedelics for treatment resistant depression: are they game changers? *Expert Opinion on Pharmacotherapy* 24 : 2117-2132

Keeler JL, Treasure J, Himmerich H, et al. (2023) Case report: Intramuscular ketamine or intranasal esketamine as a treatment in four patients with major depressive disorder and comorbid anorexia nervosa. *Frontiers in Psychiatry* 14: 1181447

Koronyo-Hamaoui M, Frisch A, Stein D, et al. (2005) Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca(2+)-activated K⁺ channel to genetic predisposition to anorexia nervosa. *Journal of Psychiatry Research* 41: 160-7

Krystal JH, Kaye AP, Jefferson S, et al. (2023) Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. *Proc Natl Acad Sci U S A*. 2023 Dec 5;120(49):e2305772120. doi: 10.1073/pnas.2305772120

Lectez B, Jeandel L, El-Yamani FZ, et al. (2009). The orexigenic activity of the hypothalamic neuropeptide 26RFa is mediated by the neuropeptide Y and proopiomelanocortin neurons of the arcuate nucleus. *Endocrinology* 150: 2342–2350

Lee SW, Stanley BG (2005) NMDA receptors mediate feeding elicited by neuropeptide Y in the lateral and perifornical hypothalamus. *Brain Research* 1063: 1-8

Lipsman N, Woodside DB, Lozano AM (2015) Neurocircuitry of limbic dysfunction in anorexia nervosa. *Cortex* 62: 109-18

Ludwig VM, Sauer C, Young AH, et al. (2021) Cardiovascular Effects of Combining Subcutaneous or Intravenous Esketamine and the MAO Inhibitor Tranylcypromine for the Treatment of Depression: A Retrospective Cohort Study. *CNS Drugs* 35:881-892

Ma, A., Bai, J., He, M., Wong, A.O.L., 2018. Spexin as a neuroendocrine signal with emerging functions. *Gen. Comp. Endocrinol.* 265, 90-96.

Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. *Current Psychiatry Reports* 9: 467-74

Maqueda AE, Valle M, Addy PH, et al. (2016) Naltrexone but Not Ketanserin Antagonizes the Subjective, Cardiovascular, and Neuroendocrine Effects of Salvinorin-A in Humans. *International Journal of Neuropsychopharmacology* 19: pyw016

Martin-Gronert MS, Stocker CJ, Wargent ET, et al. (2016) 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats. *Dis Model Mech.* 2016 Apr;9(4):401-12. doi: 10.1242/dmm.023903.

Miracca G, Anuncibay-Soto B, Tossell K, et al. (2022) NMDA Receptors in the Lateral Preoptic Hypothalamus Are Essential for Sustaining NREM and REM Sleep. *Neuroscience* 42: 5389-5409

Mitchell JS, Hermens DF, Bennett MR, et al. (2023) Ketamine and Zinc: Treatment of Anorexia Nervosa Via Dual NMDA Receptor Modulation. *CNS Drugs* 37: 159-180.

Nacmias B, Ricca V, Tedde A, et al. (1999) 5-HT2A receptor gene polymorphisms in anorexia nervosa and bulimia nervosa. *Neuroscience Letters* 277: 134–136

Nutt DJ, Peill JM, Weiss B, et al. (2023) Psilocybin and Other Classic Psychedelics in Depression. *Current Topics in Behavioral Neurosciences*. 2023 Nov 14. doi: 10.1007/7854_2023_451

Pałasz A, Janas-Kozik M, Borrow A, et al. (2018) The potential role of the novel hypothalamic neuropeptides nesfatin-1, phenixin, spixin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. *Neurochemistry International* 113: 120-136.

Patterson AC, Wadia SA, Lorenz DJ, et al. (2017) Changes in blood pressure and heart rate during sedation with ketamine in the pediatric ED. *American Journal of Emergency Medicine* 35: 322-325.

Peck SK, Shao S, Gruen T, et al. (2023) Psilocybin therapy for females with anorexia nervosa: a phase 1, open-label feasibility study. *Nature Medicine* 29: 1947-1953.

Popik P, Hogendorf A, Bugno R, et al. (2022) Effects of Ketamine Optical Isomers, Psilocybin, Psilocin and Norpsilocin on Time Estimation and Cognition in Rats. *Psychopharmacology* 239: 1689–1703.

Porzionato A, Rucinski M, Macchi V et al. (2010) Spixin expression in normal rat tissues. *Journal of Histochemistry and Cytochemistry* 58: 825-837

Reinscheid RK, Ruzza C (2021) Pharmacology, Physiology and Genetics of the Neuropeptide S System. *Pharmaceuticals (Basel)* 14: 401.

Schalla M, Prinz P, Friedrich T, et al. (2017) Phenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. *Peptides* 96: 53-60

Schalla MA, Stengel A (2018) Current Understanding of the Role of Nesfatin-1. *Journal of the Endocrine Society* 2:1188-1206.

Seshadri A, Prokop L, Singh B (2024) Efficacy of intravenous racemic ketamine and intranasal esketamine with dose escalation for treatment-resistant depression: A systematic review and meta-analysis. *Journal of Affective Disorders* 25:S0165-0327(24)00561-5. doi: 10.1016/j.jad.2024.03.137

Shirota O, Hakamata W, Goda Y (2003) Concise Large-Scale Synthesis of Psilocin and Psilocybin, Principal Hallucinogenic Constituents of “Magic Mushroom”. *Journal of Natural Products* 66: 885–887

Springer DA, Baker KC (2007) Effect of ketamine anesthesia on daily food intake in *Macaca mulatta* and *Cercopithecus aethiops*. *American Journal of Primatology* 69: 1080-92.

Swanson LR (2018) Unifying Theories of Psychedelic Drug Effects. *Frontiers in Pharmacology*, 29:172.

Tanaka M, Telegdy G (2014) Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. *Behavioural Brain Research* 259: 196-69

Teranishi H, Hanada R (2021) Neuromedin U, a Key Molecule in Metabolic Disorders. *International Journal of Molecular Sciences* 22: 4238.

Tobinski AM, Rappeneau V (2021) Role of the Neuropeptide S System in Emotionality, Stress Responsiveness and Addiction-Like Behaviours in Rodents: Relevance to Stress-Related Disorders. *Pharmaceuticals (Basel)* 14:780.

Treen AK, Luo V, Belsham DD (2016) Phoenixin Activates Immortalized GnRH and Kisspeptin Neurons Through the Novel Receptor GPR173. *Molecular Endocrinology* 30: 872-88.

Van de Kar LD, Javed A, Zhang Y, et al. (2001) 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. *Journal of Neuroscience* 21: 3572-9.

Vargas MV, Dunlap LE, Dong C, et al. (2023) Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. *Science* 379:700-706.

Vollenweider FX, Smallridge JW (2022) Classic Psychedelic Drugs: Update on Biological Mechanisms. *Pharmacopsychiatry* 55:121-138.

Wojtas A, Bysiek A, Wawrzczak-Bargiela A, et al. (2023) Limbic System Response to Psilocybin and Ketamine Administration in Rats: A Neurochemical and Behavioral Study. *International Journal of Molecular Sciences* 25:100.

Wojtas A, Herian M, Skawski M, et al. (2021) Neurochemical and Behavioral Effects of a New Hallucinogenic Compound 25B-NBOMe in Rats. *Neurotoxicity Research* 2:305-326.

Zhang Y, Damjanoska KJ, Carrasco GA, et al. (2002) Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-) DOI. *Journal of Neuroscience* 22: 9635-42

Figure captions

Fig. 1. Quantitative PCR mRNA expression levels of NUCB2, SPX, SMIM20, GPR173, NMU, CRH, NPS and NPSR in the rat hypothalamus. Results were normalized to beta-2-microglobulin reference gene and shown as $2^{-\Delta\Delta Cq}$ levels compared to control group. The use of logarithmic transformation made it possible to perform a one-factor analysis of variance for all genes. Plots show means \pm SD (box) \pm 95% confidence interval (whiskers). Differences were considered statistically significant at $p < 0.05$ (relative to controls). Abbreviations: Ket, ketamine at dose 10mg/kg; Psil2 and Psil10, psilocybin at doses 2mg/kg and 10mg/kg respectively.

Fig. 2. Quantitative PCR mRNA expression levels of 26RFa (QRFP), GPR103, MCH, MCHR, POMC, MC4R, PPOX, OX1R in the rat hypothalamus. Results were normalized to beta-2-microglobulin reference gene and shown as $2^{-\Delta\Delta Cq}$ levels compared to control group. The use of logarithmic transformation made it possible to perform a one-factor analysis of variance for all genes. Plots show means \pm SD (box) \pm 95% confidence interval (whiskers). Differences were considered statistically significant at $p < 0.05$ (relative to controls). Abbreviations: Ket, ketamine at dose 10mg/kg; Psil2 and Psil10, psilocybin at doses 2mg/kg and 10mg/kg respectively.

Fig. 3. Quantitative PCR mRNA expression levels of selected serotonin receptors in the rat hypothalamus. Results were normalized to beta-2-microglobulin reference gene and shown as $2^{-\Delta\Delta Cq}$ levels compared to control group. The use of logarithmic transformation made it possible to perform a one-factor analysis of variance for all genes. Plots show means \pm SD (box) \pm 95% confidence interval (whiskers). Differences were considered statistically significant at $p < 0.05$ (relative to controls). Abbreviations: Ket, ketamine at dose 10mg/kg; Psil2 and Psil10, psilocybin at doses 2mg/kg and 10mg/kg respectively.

Fig. 4. A summary table highlighting the pattern of changes in neuropeptides and receptors mRNA expression in the rat hypothalamus after psilocybin and ketamine administration (left). Heatmap shows statistically significant changes in gene expression presented as a percentage of control (right). Abbreviations: increase, (\uparrow); decrease, (\downarrow); no changes, (n).

Tab. 1. PCR primer sequences and reaction parameters.

Tab 2. A summary of one-way ANOVA effect sizes for all studied genes.