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Abstract—Multi-agent systems can be used in a range of
applications to observe and map spatial-temporal phenomena.
In this paper, we have taken the first step to develop a multi-
agent environmental monitoring system for fully autonomous
exploration and mapping of an unstructured indoor GPS-denied
environment. By employing the Gmapping SLAM, the agents
cooperatively map a previously unknown environment and ex-
plore its entirety. At the same time, the agents are able to
successfully map and characterize the temperature distribution
inside the room passively using Gaussian Process Regression. The
system has been experimentally tested in an indoor cluttered
environment, by operation of two Unmanned Ground Vehicles
built fully in house. The experimental results show that the
proposed system could successfully navigate and explore in
the cluttered environment and estimate the spatial distribution
of the environment by locating two independent heat sources.
It was found that while a passive field prediction approach
can approximate the temperature distribution in the room and
identify the heat sources, the accuracy of the prediction greatly
depends on the proximity of the trajectories that the robots
traverse close to the sources.

Index Terms—Cooperative Robots, Multi-agent Systems, GPS
Denied, Autonomous Robots, UGV, SLAM, Environmental Mon-
itoring

I. INTRODUCTION

The task of Environmental Monitoring (EM) is becom-
ing more crucial in the modern world. It has a part to
play in search and rescue [1], pollution, wildlife and habitat
monitoring [2], agriculture [3], nuclear decommissioning [4]
and many more. It is often the case that the environments
these applications pose are inherently dangerous to humans.
Autonomous systems are often cost-effective and low-risk
making them attractive solutions. Unmanned Ground Vehicles
(UGVs) are ideal choices for many of these tasks, due to their
robustness, long-term operation and low power requirements.
Furthermore, cooperative multi-agent systems (MAS) offer a
robust framework for solving complex problems across various
domains in EM. MAS offer redundancy, fault tolerance, par-
allel processing, reduced operation times and larger operation
scales.

It is often the case in EM applications that the agent will
be tasked with modeling a spatially distributed environmental

phenomena. This could be a gas leak, temperature field,
radiation source, pollution concentration or many other things.
Furthermore, many of these operation environments encoun-
tered in EM are GPS-denied, which means agents need to
provide another form of localization based on the environment
around them. One common approach is using Simultaneous
Localization and Mapping (SLAM). The lack of GPS also
makes it harder for agents to cooperate since, unless initial
positions are measured before the mission starts, they have no
knowledge of their position relative to other agents and hence
must use data collected during a mission to calculate a global
coordinate frame to facilitate cooperation.

To explore autonomously, agents need to be able to generate
waypoints and paths that avoid collisions and are constructive
to the mission goal. In EM these paths can either take an active
or passive approach to EM. Active approaches are when agents
navigate with the goal of maximizing the accuracy of the target
phenomenon they are modeling whereas in passive approaches
the field sampling is done as the agent explores with respect to
another criteria. For example, coverage control is the problem
of mapping an environment by ensuring sensor measurements
are taken evenly across the whole region of interest. Converge
can be performed using fixed search patterns, sometimes
called ’lawnmower’ algorithms but for a predetermined path to
optimally cover the space prior information on the operation
environment is needed. Nonetheless, in autonomous SLAM
approaches where no priori information about the environ-
ment is available, the paths are generated to produce a fully
formed map of the physical environment and the waypoints
are selected by examining unobserved space. Whether or not
one decides to control their agents with a fixed pilot, a fixed
search pattern or an autonomous search based on exploration
or model optimization depends on the demands and goals of
each specific application.

In this paper, we investigated the feasibility of using a multi-
agent system of UGVs for a passive EM task in an experi-
mental setting. The system consists of a pair of cooperative
UGVs that can autonomously explore and map a unknown
and cluttered environment, collaborate on a global map and



passively model the temperature distribution. The results show
that the trajectories generated for exploration and mapping
of the physical environment do not always lead to consistent
predictions of the target environmental phenomena but can be
used to provide a realistic indication of its distribution.

The remainder of the paper is organized as follows Section
II reviews the related work and gives context to the potential
applications. Section III formulates the GPR used in this paper
and describes how it is trained to model the field. Next, Section
IV discusses how SLAM is used to predict the robot’s posi-
tion and orientation and map the physical environment. The
process for frontier exploration, path planning and collision
avoidance and map merging is discussed. Then, in Section VI
the experimental results are presented and discussed. Finally
concluding remarks are given in Section VII

II. RELATED WORK

GPS denied navigation is required in numerous environ-
ments such as dense urban areas, any indoor environment,
underground and underwater. Furthermore, the places where
autonomous surveys are most needed are often dangerous for
humans, meaning that these environments can be unknown be-
fore the mission starts. Perhaps the most ubiquitous approach
for solving this problem is Simultaneous Localization And
Mapping (SLAM) [5], [6]. But there are other approaches that
do not use a map [7], [8]. Multi-agent SLAM systems can be
used to reduce mission times but this requires communication
and the fusion of each agent’s observations. In situations when
the initial correspondence is unknown, agents must establish
transforms to a global coordinate frame. This is usually done
by matching features and landmarks from overlapping parts
of local maps [9]. However, this is not a trivial problem
as these maps may only partially overlap and the quality
of each map can vary from the effect of many factors, in-
cluding sensors, memory capacity and dynamic environments.
In general, there are two kinds of approaches to fusing
two maps, direct approaches and feature-based approaches.
However, direct approaches are rarely used in practice as they
involve examining each pixel in all local map instances which
becomes very computationally demanding [10]. In [11], the
overlap between RGB-D SLAM maps is detected by using
a Bag of Words (BoW) technique that reflects the similarity
between two keyframes. All matches above a threshold are
then assessed over a number of consecutive keyframes. This
helps to avoid false positives in feature mapping. This problem
is also addressed for robots in motion in [12] who impose on
geometric constrains to improve the accuracy of the feature
matching between keyframes.

UGVs are popular for GPS-denied environmental character-
ization and mapping. In [13] an autonomous UGV was used
for radiation mapping, discrete source seeking and inspection
of a region of interest. The UGV was fitted with two scintilla-
tion detectors one of which was directional. The directional
sensor is useful for directing the movement of the robot,
especially for source-seeking applications. A popular alterna-
tive to UGVs is Unmanned Aerial Vehicles (UAVs), which

in the context of indoor applications are very often multi-
rotor models [14]. UAVs offer the advantage of 3D movement
at the cost of much shorter operation times. In [15] a UAV
is presented for navigation in GPS-denied environments, the
system is implemented on the Robot Operating System (ROS)
and tested in Gazebo. This is a comprehensive simulation
platform for testing and development of UAVs in GPS denied
environments that also extends to multi-agent simulations [16].

One method to model an environmental phenomena is to
combine physical measurements with a mathematical model
[17]. But this ultimately restricts the prediction by making
assumptions on the structure of the field and, by proxy, parts of
the environment. An alternative approach to radiation mapping
which does not assume a certain functional form is achieved
using regression models. Gaussian Process Regression (GPR)
is one such option that is quickly becoming a standard choice
for the modelling of spatially distributed data due to its
generality, flexibility and accuracy across a wide variety of ap-
plications [18]. The authors of [19] applied GP regression for
the reconstruction of multiple radiation sources. The Gaussian
process (GP) was built offline after the measurements were
collected by a robotic arm. GPs can be used with autonomous
agents to model all kinds of spatial (and non-spatial) data, for
example, it has been applied to terrain mapping and predicting
dangerous regions for navigation to improve safety [20].

The authors of [21] use a UGV as a mobile sensor to model
two different radiation sources both mapping the physical
environment and creating a radiation model using Gaussian
process regression. The robots were not autonomous and their
trajectory was controlled remotely by a human in a safe
location. One perk of using GPs is that they provide a measure
of uncertainty with each prediction which can be leveraged
for navigational purposes, allowing agents to move in ways
that prioritize the cultivation of an accurate predictive model.
An example application of using UGVs to optimize GPR for
accurate radiation modelling is shown in [22]. The authors
employ an autonomous UGV that models the radiation dose
rate distribution via GPR and finds the next best measurement
position using a differential evolution algorithm driven by the
entropy of the GP prediction.

III. GAUSSIAN PROCESS REGRESSION

Suppose robot ri takes a set Y of N noisy observations
T̃ri of the room temperature at corresponding set X of
positions qri predicted by the SLAM algorithm. Such that
T̃ri = Tri + σn. Where Tri is the true temperature reading
and σn is zero-mean Gaussian noise. The unknown target
environmental field f(x) is modelled using Gaussian Pro-
cess Regression (GPR). GPR is a powerful non-parametric
Bayesian approach used for regression analysis. A Gaussian
Process (GP) is a collection of random variables, any number
of which has a joint Gaussian distribution. We can train a GP
to make predictions f∗(x) of the underlying field f(x). GPs
provide probabilistic predictions allowing one to compute a
measure of uncertainty with each prediction. A GP is entirely



defined by a mean function µ(x) and a covariance function
C(x,x′):

f(x) ∼ GP (µ(x),C(x,x′)) . (1)

where (x) is a set of input locations. GPR is useful for spatial
data as the covariance function C(x,x′) is chosen as a kernel
function K(x,x′). Many kernels naturally exhibit spatial
correlation and hence work well with spatially distributed
samples of environmental phenomena. There are a popular
few choices for kernel functions that work well for similar
applications. In this work, the chosen kernel was the Matern
kernel with ν = 3

2 which is a hyperparameter that controls the
kernel’s smoothness. The Matern kernel is given by [23]:

K(x,x′) = σ2
f

(
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√
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)
exp

(
−
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)
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where r is the Euclidean distance between x and x′, σf and σl

are the parameters that describe the correlation between inputs.
The tuning of these hyperparameters is done by minimizing
the marginal log-likelihood function which describes how well
the predicted data fits the observations. The marginal log-
likelihood is given by:

logp(Y |X,θ) = −1
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(3)

where I is the identity matrix and σϵ2 is a zero-mean Gaussian
noise. The process of finding the hyperparameters is referred
to as training the GP. Once trained we can use the GP to make
predictions of target phenomena µf∗ at a set of test locations
X∗ with uncertainty measurements Σf∗ using the following
equations:

µf∗ = K(X,X∗)K−1(X,X)Y (4)

and

Σf∗ = K(X∗,X∗)−K(X∗,X)K̂−1(X,X)K(X,X∗),
(5)

where K̂(X,X) = K(X,X) + σ2
ϵI .

IV. SLAM AND NAVIGATION

The UGVs used in this paper have differential drive
kinematics and its position and orientation qri(K) =
[xri(k), yri(k), θri(k)]

T can be expressed with the following
equations: xri(k + 1)

yri(k + 1)
θri(k + 1)

 =

 xri(k) + vri(k)cos(θri(k))∆t

yri(k) + vri(k)sin(θri(k))∆t

θri(k) + ωri(k)∆t

+ϵ(k)

(6)
where xri(k), yri(k), θri(k) are the x-coordinate, y-coordinate
and corresponding direction with respect to the x-axis of
robot ri at sample time k respectively, and vri and ωri

are the linear velocity and the angular velocity of robot ri
respectively.∆t is the sampling interval and ϵ(k) is zero-mean
non-Gaussian process noise with a known probability density

function. The SLAM method utilized in this system uses Rao-
Blackwellized particle filters (RBPF) to improve grid-based
Fast-SLAM [24]–[26]. In particle filter Fast-SLAM the robot’s
belief of its state is represented as a set of particles, which each
represent a possible state with a certain weight that indicates
the likelihood of that state being correct. Using odometery
uri(0 : k) found from the motion model (Equation 6) and
the robots observations zri(1 : k), RBPF can be used to first
predict a posterior p(xri(1 : k)|zri(1 : k), uri(0 : k)) over
potential robot trajectories xri(1 : k). The simplified general
steps of the employed method for each robot are summarized
in the following:

1) generate path particles using the probabilistic odometry
motion model as presented in (6), that is qjri j = 1, . . . N
where N refers to the number of particles.

2) compute the importance weight wj(k) = wj(k −
1)p(z(k)|mj(k − 1), qjri(k) where z(k) is the distance
measured by the range sensor, m is the grid map and the
likelihood is computed using beam model as presented
in [27].

3) normalize the weights and do the resampling to obtain
highly weighted particles qjri(k).

4) update the map mj(k) using scan matching to compute
the best match between z(k) and the reference map
mj(k − 1) given qjri(k). Toward this, the likelihood
function can be employed.

It is worth mentioning that more details of the algorithm with
improved proposal distribution and adaptive resampling can
be found in [25].

Exploration waypoints are generated for each robot from
their individual maps and pose estimations using frontier
exploration. A frontier is a boundary between explored and
unexplored areas. They are found by finding where known
areas meet unknown areas inside the map occupancy grid
messages. The centre of the frontier is selected as the next
waypoint.

To navigate to their waypoints without colliding with obsta-
cles the robots use both a global and local planner. The global
planner determines the best path from the robot location to
the current frontier waypoint and considers the entire map.
The path is found using Dijkstra’s algorithm to minimize the
cost. The cost is defined using a cost map that considers static
obstacles. The local planner is responsible for executing the
global path but considering obstacles along the way using a
local cost map that considers both static and dynamic obstacles
detected by the robot’s sensors. The local planner uses the
dynamic window approach (DWA) which selects optimal paths
by optimizing an objective function in the form:

Cri = αriCθ,ri + βriCdist,ri + γriCvel,ri (7)

where Cθ,ri is a function of the difference between robot ri’s
heading and the required heading to reach its current goal,
Cdist,ri is a function of the distance of robot ri’s distance
to its current goal and Cvel,ri is a function of the relative
velocity of robot ri with respect to its current goal. αri, βri



and γri are weights that determine the relative contribution of
each component. To achieve this planning and navigation the
ROS navigation stack is used. This is a standard collection of
ROS packages that are used together to allow navigation and
collision avoidance via the algorithms discussed.

As the agents are exploring their map and pose data in
their local coordinate frames are being shared over a wi-
fi connection. Since the robots do not know their starting
positions relative to one another the transform between them
and the global coordinate frame must be established from the
collected data in real time. To achieve this ORB (Oriented
FAST and Rotated BRIEF) feature extraction is performed
on each map occupancy grid. Then in pairwise fashion, the
features for each possible pair of maps are compared. If there
is a significant overlap, that is, the number of duplicate features
between two maps is above a certain threshold the maps are
considered to be overlapping. The transform between each
pair of grids is calculated using Random Sample Consensus
(RANSAC) which is a robust algorithm used to estimate
parameters of a set of data that contains outliers. It is a popular
choice for feature matching in computer vision and used for
many feature matching applications [28]. Next, a spanning
tree graph is constructed in which the nodes represent the
component maps and an edge between two maps means they
have been matched and the transform between that pair has
been established. Then finally that tree is traversed and all
maps are transformed to the global coordinate frame which
can be chosen to be one of the local coordinate frames. The
operation of each agent is summarized in Figure 1.

figures/figure1.png

Fig. 1. A block diagram of the robot system.

V. METHODS AND MATERIALS

The use of UGVs is beneficial, especially in unreachable
and physically dangerous environments often encountered in
environmental monitoring. The distributed UGVs used in this
study were custom-built at Lancaster University and are shown
in Figure 2. They are designed with a modular philosophy and
work well as a development platform for many multi-agent
robotic applications. They are sturdy and robust but made from
inexpensive and replaceable components. They work well for
proof of concept tests and full algorithm tests alike although
for deployment more application-specific hardware may be
required.

figures/figure2.png

Fig. 2. Labled photograph of one the Lancaster University UGV.

These two differential drive robots are capable of coopera-
tively mapping an unknown location using 2D-Lidar SLAM.
They can successfully perform static and dynamic obstacle
avoidance and explore autonomously. UGVs such as these can

safely operate in environments that pose potential harm to hu-
mans. Each UGV is powered by the Robot Operating System
(ROS) running on a lightweight and low-power Raspberry Pi 4
model B. The motor drivers are controlled by an Arduino UNO
and the odometry is provided by the digital motor encoders of
each. The system’s power supply is a 4-cell 16.8V 6600mah
LiPo battery. The agents share map data over the ROS network
via a Wi-Fi connection. The data was recorded using rosbag.

figures/figure3.png

Fig. 3. The operation environment showing initial robot positions and heat
sources.

Without a priori knowing the relative position of the other
agent using scan matching techniques the agents are able to
merge their individual SLAM maps and localize their selves
w.r.t to one another. This does require some overlap in the
sensed areas but makes the system more widely applicable
as it is possible that the relative position would be unknown
in practical scenarios. The robots were tasked with exploring
an unknown environment and measuring temperature as they
moved. Temperature, in this case, represents a general envi-
ronmental field of interest and the same algorithms used here
could be applied to radiation, humidity, gas etc with very little
or no algorithmic changes. The temperature measurements
and corresponding x and y coordinates were passed to the
GP regression ROS node that makes a prediction over the
given area. To perform GP regression GPYTorch was used.
The experiment was carried out in a small seminar room with
the furniture arranged to create a cluttered environment for the
agent to navigate. The environment was configured in this way
to separate the agents initially and to allow full demonstration
of the planning and obstacle avoidance capabilities. The room
is shown in Figure 3.

VI. RESULTS AND DISCUSSION

The robots were tasked with exploring a cluttered environ-
ment and mapping the temperature passively. This kind of
operation is useful for preliminary monitoring applications
like measuring the radiation intensity throughout a nuclear
power plant undergoing decommissioning. A challenging and
densely cluttered course was made with two heat sources
placed inside. It should be noted that due to limited resources,
the heat sources used are cheap electric fan heaters and
only provide significant temperature changes in very close
proximity. That being said under these constrained conditions
the GP predictions were able to identify both sources which
demonstrates the effectiveness of the system. The environment,
initial starting positions and locations of the heat sources are
shown in Figure 3. The ambient temperature of the room was
22.4◦C.

The robots were successfully able to navigate the room
safely without any collisions and successfully planned efficient
exploration paths around the room. Exploration and map
merging was always completed in under 2 minutes. The results



figures/figure4.png

Fig. 4. The GP temperature field predictions and robot trajectories superimposed onto the local robot maps. Heat sources are labelled ”A” and ”B”.

figures/figure5.png

Fig. 5. The local component maps and the merged map at the time of merging.

of the map merging are shown in Figure 5. The maps are very
slightly offset which is due to observation noise, differences
in each robot’s local map and uncertainties in the global
coordinate frame calculation, That being said, the global map
is still an accurate representation of the room and would allow
a robot to navigate and perform reliable path planning within it
which is the main aim. Due to the size of the room each robot
had explored most of the environment before map merging.
This means that the improvement of efficiency from multi-
agent cooperation was very marginal, as each robot only had
a small area left to explore. However, the time to merge maps
is more closely related to the amount of overlapping features
in each component map rather than the extent to which the
total environment has been explored. This means that in a
larger environment, this system has a much higher potential
of increasing efficiency. This insight indicates that for a multi-
agent system with unknown initial relative starting locations,
the efficiency gain is related to how quickly the two agents
meet.

Alongside autonomous exploration, each robot was also
tasked with mapping the temperature in the room. There are
numerous considerations that need to be taken into account
when analysing these results. First and foremost, the tempera-
ture sources are inexpensive electric heaters and only provide
high-temperature fluctuations in very close proximity and lead
to very slight changes in temperature in the surrounding area.
This, combined with the fact that the agents were sensing
and predicting temperature passively, that is, not adapting
their behaviour based on the temperature readings it means
that if the agents did not pass the source closely the lack
of high-intensity temperature readings will be reflected in the
prediction. However, this set-up was chosen as it accurately
reflects the sparse nature of many different real environmental
scenarios and the temperature sources were still detected
despite a low variation. The GP temperature field predictions
are shown in Figure 4. These results show the predictions for
each agent on its local map as the current system does not
collaborate on temperature prediction. One agent successfully
identified both heat sources and predicted heat source A to be
more intense. On the other hand, the other agent detected a
similar heat plume for heat source B but missed heat source
A completely. This kind of result was a frequent occurrence.
The differences in predictions stem from numerous sources.
Firstly passing more closely to a heat source will allow for

higher temperature readings and a better chance for the source
to be reflected in the prediction. It is also the case that if an
agent passes much more closely to one source than the other
those high values can saturate the other hot spots if there is a
low density of samples with high values near the other source.
Finally, the speed and orientation of the agents as they pass
through a source will affect the readings as the sensor was
located only at the front of the robot.

VII. CONCLUSION

These results demonstrate the power of GPR for predicting
environmental fields under serious constraints. Firstly the
target field is very uniform apart from small gradients in very
localized areas, the agents were using cheap and inexpensive
sensors and finally, the movement of the robots was not
performed in such a way as to optimize field predictions.
Despite this, the results still give a sensible estimation of
the sources. It can also be appreciated that cooperation on
field prediction may yield more accurate results again demon-
strating the advantages of multi-agent systems. Implementing
navigation for field optimization and cooperative temperature
field predictions is the subject of future work.
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