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Abstract

Recommendation systems are widely applied across various domains, particularly in providing users with personalized con-
tent and service recommendations. However, traditional recommendation systems face challenges in meteorological services 
when handling complex atmospheric data and real-time dynamic user needs. Accurate cloud top height (CTH) retrieval is crucial 
for enhancing meteorological services, especially in delivering precise weather forecasts and warnings. This paper proposes a 
self-attention-based CTH retrieval model integrated into an intelligent meteorological service recommendation (IMSR) system. 
Leveraging self-attention mechanisms, the model captures long-range dependencies and extracts key global features from satellite-
based meteorological data, improving the accuracy of CTH retrieval even in data-sparse environments. Additionally, the system 
utilizes real-time CTH data to provide personalized weather recommendations for agriculture, transportation, and tourism users. 
Experimental results demonstrate that the proposed model outperforms existing methods in both CTH retrieval accuracy and recom-
mendation effectiveness, significantly enhancing the timeliness and relevance of meteorological services. This approach integrates 
advanced deep learning techniques with practical applications in weather services, offering potential for cross-domain applications.

Keywords: Intelligent Meteorological Service Recommendation, Cloud top height retrieval, CRU-RecNet, Self-attention 
mechanism

1. Introduction

Recommendation systems are widely applied in various industries, offering personalized content and services
based on user preferences and behaviors [1]. In meteorological services, the demand for customized weather forecast-
ing has increased significantly, as industries such as agriculture, transportation, and tourism rely heavily on accurate
and timely weather information to optimize operations and ensure safety [2]. Unlike traditional forecasting systems,
recommendation systems analyze user-specific data, such as location and activity preferences, to deliver tailored
weather suggestions [3]. For instance, a farmer can receive guidance on the best irrigation times based on localized
weather data. At the same time, a traveler might be warned of potential delays caused by adverse weather conditions
[4]. In transportation, precise weather information is crucial to managing traffic flows, reducing delays, and ensuring
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passenger safety. However, the dynamic nature of meteorological data introduces unique challenges for recommen-
dation systems, requiring them to adapt quickly to changing conditions [5].

Cloud top height (CTH) refers to the vertical distance between the top of a cloud and the Earth’s surface [6],
providing critical insights into cloud structure and atmospheric stability. CTH plays a key role in identifying areas of
atmospheric instability, which are often precursors to extreme weather events like thunderstorms, hurricanes, and hail
[7]. For instance, high CTH values usually indicate strong convective activity, signaling the potential for hazardous
conditions. This parameter is not only fundamental in meteorology but also impacts industries such as agriculture,
aviation, and disaster management. In aviation, for example, CTH data helps pilots avoid dangerous weather zones,
ensuring flight safety, while in agriculture, it assists farmers in assessing precipitation risks and optimizing irrigation
schedules [8].

However, obtaining accurate CTH data under complex atmospheric conditions remains challenging. Traditional
CTH retrieval methods include radiometric techniques and satellite imaging [9]. Active remote sensing techniques,
such as lidar, directly measure the physical properties of the cloud with high accuracy. However, their low spatiotem-
poral resolution and limited coverage hinder large-scale real-time monitoring [10]. Passive remote sensing, on the
other hand, uses different wavelengths of natural radiation to infer CTH, providing continuous observations and broad
coverage. However, the CTH retrieval models based on passive remote sensing data involve Radiative Transfer Mod-
els (RTMs), and the effectiveness of RTMs is compromised when solar radiation is lacking as a source of reflected
light [11]. Moreover, RTMs face numerous challenges when dealing with optically thin clouds, cirrus clouds, or
broken clouds. The radiation signals from these cloud types are relatively weak, and their scattering and absorption
effects on light are difficult to accurately simulate. Capturing and analyzing them precisely is particularly challenging,
making it extremely difficult to obtain accurate and usable CTH data [5][12].

In addition, traditional recommendation systems face challenges in processing complex, dynamic meteorological
data in real-time [13][14]. The multidimensional and real-time nature of meteorological data requires recommenda-
tion systems to quickly adapt to changing weather conditions to provide accurate personalized services. Traditional
systems, however, often fall short of meeting this need, which limits the applicability of intelligent meteorological
services in agriculture, transportation, and tourism [15].

To address these challenges, this study proposes a novel CTH retrieval model based on multi-scale attention
and self-attention mechanisms[16], which is integrated with an intelligent meteorological service recommendation
(IMSR) system, simultaneously solving the problems of low model availability under complex weather conditions and
nighttime scenarios. We replaced the traditional single-scale convolution with a multi-scale attention module (MAM)
and a convolutional block attention module (CBAM) to overcome the limitation of the model’s ability to handle
complex cloud layer structures. The MAM employs dilated convolutions with different sampling rates to capture cloud
layer features at different scales, while CBAM adaptively suppresses interfering features. These designs enable the
model to effectively extract features even under challenging conditions, such as optically thin layers, without requiring
additional observation channels. To address the limited receptive field of traditional convolutional networks, we utilize
a three-layer parallel self-attention structure to establish global associations between pixels and capture long-range
dependencies between infrared channels. Specifically, we use dynamic attention weight adjustments to enhance the
model’s global feature perception capability and adopt a novel dual-decoder architecture to balance global semantic
information and local detail preservation. The CTH data obtained will ultimately serve as a critical input for the
recommendation system, allowing the provision of customized and real-time meteorological services for industries
such as agriculture, transportation, and tourism [17].

The contributions of this paper are as follows:

• Development of a self-attention-based CTH retrieval model that significantly improves prediction accuracy and
robustness through a novel architecture combining multi-scale attention and self-attention mechanisms. Unlike
traditional convolutional networks, our model effectively captures long-range dependencies between infrared
channels and adaptively focuses on key atmospheric features.

• Introduction of a unique dual-decoder architecture that balances global semantic information and local detail
preservation, enabling more accurate detection of complex cloud structures even in optically thin cloud layers
and cirrus clouds where traditional radiative transfer models struggle. This innovative approach addresses
the limitations of fixed receptive fields in conventional CNNs without significantly increasing computational
complexity.
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• Implementation of a highly effective CTH retrieval system for low-light and nighttime scenarios, where our
model maintains superior performance (as validated with CALIPSO nighttime data) through dynamic attention
weight adjustments that enhance the model’s global feature perception capability even when solar radiation is
lacking—a significant advantage over traditional passive remote sensing methods.

• Integration of the high-precision CTH retrieval with an intelligent meteorological recommendation system using
collaborative filtering, establishing a novel pipeline for delivering personalized, real-time weather forecasting
services that adapt to dynamic user needs across agriculture, transportation, and tourism sectors.

The structure of this paper is as follows: Section 2 reviews related literature, focusing on the limitations of tra-
ditional CTH retrieval techniques and the use of self-attention mechanisms in meteorological applications. Section
3 details the design of the CRU-RecNet model and discusses the limitations of current methods. Section 4 describes
the experimental setup, evaluation metrics, and results. Finally, Section 5 summarises key findings and concludes the
study.

2. Related Work

In recent years, with the development of machine learning, particularly deep learning techniques, significant
progress has been made in CTH retrieval and IMSR. Many studies have focused on improving retrieval accuracy
through innovative model architectures and feature extraction methods. Meanwhile, the application of recommenda-
tion systems in meteorological services has become increasingly sophisticated, incorporating more advanced algo-
rithms to provide personalized and accurate weather services. In this section, we review the key research works on
CTH retrieval models and recommendation system technologies, highlighting the progress made and the challenges
encountered in real-world applications.

2.1. U-Net
U-Net is a deep learning network specifically designed for image segmentation [18]. Since its introduction in 2015,

it has gained widespread popularity due to its exceptional performance. Its unique feature is the symmetric U-shaped
architecture, where deep features from the encoder are directly transferred to the decoder through skip connections,
effectively restoring image details and enabling precise pixel-level predictions. This design allows U-Net to excel in
scenarios with limited annotated data, such as medical image segmentation. It has also been widely applied in satellite
image processing and industrial image analysis. By integrating multi-scale features, U-Net optimizes segmentation
quality, demonstrating strong capability and flexibility in handling complex image tasks.

2.2. Deep Learning models for CTH retrieval
In recent years, in addition to U-Net applications in CTH data retrieval, other deep learning models such as

Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs), and Residual Neural Networks
(ResNet) have shown significant potential in this field. Convolutional Neural Networks (CNNs) have been widely
applied in extracting multi-scale features from CTH data, demonstrating excellent performance in identifying com-
plex cloud structures [19]. Through hierarchical convolution operations, CNNs can capture spatial structures and
scale variations within multi-channel satellite data, thereby improving the accuracy of CTH predictions, particularly
under extreme weather conditions [20]. Generative Adversarial Networks (GANs) have also garnered attention in
CTH retrieval due to their powerful data generation capabilities. GANs can generate realistic synthetic images to
compensate for observation gaps under low-light or night conditions, enabling high accuracy in CTH retrieval even in
data-sparse scenarios. Recent studies indicate that GAN-generated data significantly enhance cloud detection accuracy
in complex atmospheric conditions [21]. Residual Neural Networks (ResNet), by introducing residual connections,
effectively address the gradient vanishing problem in deep networks, making them highly efficient and stable for deep
feature extraction. In CTH retrieval, ResNet efficiently learns multi-level cloud features, improving the precision of
cloud-top height predictions [22]. Additionally, ResNet has shown superior performance in handling complex cloud
structures and stratified atmospheric features, helping accurately capture essential meteorological data characteristics.
The incorporation of these deep learning models not only expands the technical approaches to CTH data analysis
but also significantly enhances model accuracy and robustness under complex weather conditions, providing stronger
theoretical and technical support for CTH retrieval.
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2.3. Attention Mechanisms in Recommendation Systems

In recent years, attention mechanisms have become a pivotal element in recommendation systems, especially for
capturing user behavior patterns and enhancing personalized recommendations. Self-attention models are widely used
due to their ability to identify long-range dependencies and contextual information, which are crucial for accurately
predicting user preferences. For instance, Qi et al. (2019) introduced a time-aware distributed service recommendation
approach that integrates privacy preservation, providing a robust framework for sensitive user data in recommenda-
tion systems [23][24]. In a more recent study, Liu et al. (2024) proposed a dynamic embedding transportation model,
enhancing cross-domain recommendation accuracy through adaptive feature alignment [1]. Attention-based architec-
tures have continued to evolve. For example, Sun et al. developed BERT4Rec, a bidirectional self-attention model that
can capture both past and future contexts in user sequences, achieving superior performance for next-item prediction
[25]. Similarly, Chen et al. (2024) designed a transformer-based recommendation system specifically for e-commerce,
where user interest often fluctuates rapidly. Their work underscores the ability of self-attention mechanisms to capture
short-term user preferences for real-time personalized recommendations dynamically [26]. Additionally, Zhou et al.
(2018) introduced the Deep Interest Network (DIN), which utilizes attention mechanisms to model shifts in user in-
terests, further refining recommendation accuracy [27]. To expand on this, Xu et al. (2024) proposed a cross-attention
mechanism that jointly analyses user and item features in collaborative filtering, significantly improving the contex-
tual relevance of recommendations by capturing intricate user-item relationships [28][29]. These recent advancements
illustrate how self-attention and attention-based mechanisms have continued to drive innovation in recommendation
systems. By integrating adaptive models capable of handling complex and dynamic user behavior patterns, these
methods have demonstrated substantial improvements in recommendation accuracy and responsiveness, keeping the
field in line with the latest technological advancements.

2.4. Reinforcement Learning in Intelligent Services

Reinforcement Learning (RL) has been widely adopted in intelligent services, particularly for resource alloca-
tion and dynamic decision-making tasks. Xu et al. proposed XRL-SHAP-Cache, a model that combines explainable
AI with reinforcement learning to optimize edge caching in content delivery networks (CDNs) [30][31]. The use
of SHAP (Shapley Additive Explanations) in this model improves system transparency and user trust by explain-
ing the model’s decision-making process. In the realm of autonomous driving and intelligent transportation, RL is
increasingly applied to optimize resource allocation for connected and automated vehicles. Xu et al. introduced a
multi-agent reinforcement learning-based distributed edge caching method designed for zero-trust environments in
connected vehicles [32]. This method leverages cooperation among RL agents to optimize resource scheduling and
caching strategies. RL has also been applied in content recommendation systems. Zhao et al. developed a Page-
Level Recommendation system based on deep reinforcement learning, which dynamically adjusts recommendation
strategies to improve long-term user satisfaction [33]. Similarly, Ali et al. introduced RLRec, a deep RL-based
recommendation system that optimizes long-term rewards to improve recommendation performance [34]. Liu et al.
proposed DRN (Dynamic Recommendation Network), which adapts recommendation strategies in real-time based on
user feedback using RL techniques [35]. In the smart home context, RL has been applied to provide personalized
service recommendations. Mohammadi et al. demonstrated that RL could be used to optimize smart home device
control, improving user comfort and quality of life [36]. These studies demonstrate the potential of RL in optimizing
resource allocation, improving recommendation accuracy, and dynamically adjusting recommendation strategies in
intelligent services.

In summary, recent years have seen significant progress in the fields of CTH retrieval and IMSR. Deep learning
techniques, especially convolutional neural networks like U-Net and self-attention mechanisms, have proven effective
in atmospheric data processing and recommendation systems. These methods have shown great potential in improving
the accuracy of CTH retrieval and the effectiveness of personalized recommendation services. However, despite these
advancements, existing models still face challenges in addressing global dependencies across multi-source data, data
sparsity, and the dynamic nature of user preferences. Therefore, effectively integrating CTH retrieval with intelligent
recommendation services to further enhance recommendation precision and user experience remains a key direction
for future research.
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3. CRU-RecNet model for IMSR

This section introduces the CRU-RecNet model, which leverages multi-scale attention and self-attention mecha-
nisms to predict CTH and provide IMSR accurately. As shown in Figure 1, the CRU-RecNet architecture is based
on the U-Net framework. It consists of five key components: the encoding module, the small decoder module, the
large decoder module, the connection module, and the recommendation module. The encoding module is responsible
for extracting deep semantic information from satellite data, capturing essential atmospheric features and cloud struc-
tures, which are crucial for CTH prediction. The self-attention module (SAM) and MAM are embedded within the
Bridge, enhancing CRU-RecNet’s ability to capture multi-level atmospheric patterns and complex cloud structures.
These attention mechanisms enable the model to perform a more detailed and precise analysis of cloud structures,
improving the accuracy of CTH retrieval, which is essential for accurate weather forecasting. The decoding process
progressively reconstructs CTH predictions through cross-layer connections, similar to how meteorological systems
integrate data at various stages to improve forecast accuracy. By leveraging multi-level integration, the final CTH
predictions become more accurate and refined. The Recommendation utilizes these high-precision CTH data to gen-
erate personalized weather forecasts and actionable recommendations for users across industries such as agriculture,
transportation, and tourism.

Figure 1: CRU-RecNet model framework diagram

Once the CTH data is accurately reconstructed, it serves as input for IMSR systems. These high-precision CTH
predictions enable the generation of personalized weather forecasts and recommendations, supporting more informed
decision-making across various industries. For example, agricultural users can adjust irrigation schedules based on
CTH data. At the same time, transportation services can optimize routes by incorporating cloud height information,
thus enhancing both the practicality and personalization of meteorological services.

3.1. Encoding Module
The encoding module adopts the ResNet-50 setup [37], uses five rounds of downsampling to reduce the resolution,

and gradually extracts the deep semantics. The first round of downsampling contains a convolutional layer with the
size of 7 × 7 and a maximum pooling layer. The computational formulas are shown in Equation (1) and Equation (2):

Z = BN (W7×7 ∗ X) , (1)

T = MaxPool(ReLu(Z)), (2)

where BN denotes the batch normalization layer, which serves to maintain the consistency of the distribution of
the data in each layer to avoid the problem of disappearing or exploding gradients during the training process. X
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denotes satellite multichannel data, W7×7 denotes the convolution of size 7 × 7, T denotes the output of this round
of downsampling, and MaxPool and ReLu denote the maximum pooling layer and the ReLu activation function,
respectively.

The second through fifth rounds of downsampling used the Bottleneck Block as the basic unit, with the second
round of downsampling containing three bottleneck blocks. The third round of downsampling used four bottleneck
blocks. The fourth round of downsampling used six bottleneck blocks. The fifth bottleneck layer uses three bottleneck
layers. The formulas for the bottleneck layers are shown in Equation (3), Equation (4), and Equation (5):

T1 = ReLu(BN(W1×1 ∗ T )), (3)

T2 = ReLu(BN(W3×3 ∗ T1)), (4)

S = ReLu(BN(W1×1 ∗ T )) + ReLu(BN(W1×1 ∗ T2)), (5)
where W1×1 denotes the convolution of size 1 × 1 to adjust the channel data of the feature map.W3×3 denotes the

convolution of size 3 × 3. S denotes the output of the bottleneck layer. Residual concatenation by convolution of size
1 × 1 can effectively reduce the number of parameters and computational complexity while maintaining the network
performance.

3.2. Dual Decode Architecture
To address the challenges of capturing both large-scale atmospheric patterns and fine-grained cloud structure de-

tails, a dual-decoder structure is proposed. High-level features extracted through multi-layer down-sampling possess
a broad receptive field and are adept at representing large-scale atmospheric patterns. However, they lack the reso-
lution necessary to capture detailed cloud formations. Conversely, low-level features offer higher resolution and are
better suited for capturing localized cloud behavior but are limited in their ability to represent broader atmospheric
patterns. The dual-decoder structure leverages the strengths of both feature types, ensuring the preservation of global
atmospheric context while enhancing the model’s ability to recover fine-grained details. This design improves CTH
retrieval accuracy and provides precise input for personalized meteorological service recommendations.

The large decoder employs a total of five rounds of up-sampling to recover the information of the feature maps
gradually. The formula for each round of up-sampling is shown in Equation (6):

O = W3×3 ∗Concat(DConv(t), Xpre), (6)
where W3×3 denotes the convolution of dimension 3 × 3, DConv denotes the transposed convolution, Xpre denotes

the spanning connection from the previous layer, O denotes the output of the current round of down-sampling, and t
denotes the output features from the Bridge or the last round of down-sampling. Concat then denotes splicing along
the channel dimension.

By integrating outputs from the first four levels of feature maps, as well as the SAM and MAM, the large decoder
effectively extracts multi-scale contextual information. This information is then progressively restored to the original
resolution through up-sampling, preserving global semantic information.

The small decoder focuses on recovering fine edge details from low-level feature maps and refining the output of
the large decoder. It conducts a three-stage up-sampling operation, beginning with up-sampling features refined by
SAM. These are then merged with the feature maps optimized by CBAM along the channel dimension. Finally, a
convolutional layer adjusts the number of channels in the merged feature maps to align with subsequent processing
requirements. Each up-sampling step is represented by Equation (7):

O = W3×3 ∗Concat(CBAM(Xpre),DConv(t)), (7)
where Xpre denotes the skip connection from the previous layer, O denotes the output of the current downsampling

round, and t is the output features from the connection module or the previous downsampling round.
The dual-decoder structure combines the strengths of high-level and low-level features: the large decoder captures

global atmospheric patterns, while the small decoder ensures the accurate recovery of fine-grained edge details. This
synergy enhances the accuracy of CTH retrieval and provides robust, detailed inputs for intelligent meteorological
recommendations.
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3.3. Multi-scale Attention Module

CTH data exhibits significant multi-scale characteristics, making it crucial to accurately extract atmospheric fea-
tures at different scales to improve the performance of CTH retrieval models. Additionally, the complexity of atmo-
spheric data often includes a large amount of noise, and retrieval models need to focus on key atmospheric patterns
and cloud structure formations. To enhance the model’s ability to extract multi-scale features and to focus on critical
patterns in cloud data, this chapter introduces a MAM. The primary objective of this module is to enable the model
to more precisely identify and capture cloud features of various sizes and formations while effectively reducing the
impact of noisy data on retrieval results. This module enhances the overall model performance without significantly
increasing computational costs. The detailed structure of the MAM is shown in Figure 2.

Figure 2: Structure of the MAM

The module first simulates the relationship between the size of the sensory field and the eccentricity using different
combinations of convolutions and null convolutions to enhance the distinguishability and robustness of the features.
The formulas for this process are shown in Equation (8), Equation (9), and Equation (10):

X1 = W1×1 ∗ X +W3×3D1 ∗ X0, (8)

X2 = W3×3 ∗ X +W3×3D3 ∗ X0, (9)

X3 = W7×7 ∗ X +W7×7D7 ∗ X, (10)

where X0 is the output of the encoding module, Wn×n denotes the convolution of size, and Wn×nDK denotes the
hollow convolution of size n × n with dilation k.

Subsequently, the key CTH features are augmented with different scale features from both spatial and channel
dimensions through the CBAM to filter the interfering features. Finally, after stitching the enhanced features along
the channel dimension, the final feature dimensions are adjusted by a convolution of size 3× 3 to get the final module
output. This process is represented as Equation (11):

Outm = W3×3 ∗ [CBAM(X1),CBAM(X2),CBAM(X3)]. (11)

3.4. Self-attention Module

Traditional convolutional networks face limitations in extracting global atmospheric features due to the fixed size
of convolutional kernels. Larger kernels extend the receptive field but significantly increase complexity and hinder
the ability to capture fine-grained cloud structures. To overcome these challenges, this study introduces a SAM, as
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illustrated in Figure 3. This module enables the model to capture global dependencies in CTH data without relying on
convolutional kernel size, thereby enhancing global feature extraction and improving CTH retrieval accuracy.

Figure 3: SAM Architecture Diagram

The self-attention mechanism dynamically assigns weights to elements within the feature map, focusing on critical
regions and enhancing the model’s ability to capture long-range dependencies. This mechanism improves CTH re-
trieval accuracy by capturing cloud structure relationships, multi-layer features, and temporal dynamics. The attention
weights are computed using Equation (12):

Attention(Q,K,V) = so f tmax
(

QKT

√
dk

)
V, (12)

where Q, K, and V represent query, key, and value matrices derived from input features X; the dot product between
Q and K is scaled by

√
dk to stabilize gradients and normalized with a softmax function to compute the attention

weights.
The SAM comprises three layers of self-attention, enabling parallel extraction of multi-scale features from CTH

data. Each layer focuses on different levels of information, ranging from local cloud formations to global atmospheric
patterns. This design effectively integrates diverse contextual information, enhancing CTH retrieval accuracy.

Each self-attention layer first processes input features using 1 × 1 convolutions to generate Qi, Ki, and Vi. These
matrices are used in the self-attention computation shown in Equation (13) to refine global feature information:

Zi = so f tmax
(

QiKT
i

√
dki

)
Vi. (13)

The outputs from all layers are concatenated along the channel dimension and processed by a 3 × 3 convolutional
layer to fuse multi-layer features. This final step produces the SAM’s output, as shown in Equation (14):

Outs = W3×3 ∗ [Z1,Z2,Z3]. (14)

The self-attention mechanism significantly enhances the model’s capacity to capture long-range dependencies,
integrate multi-scale features, and dynamically focus on key regions within the cloud data. By leveraging these
improvements, the SAM refines CTH predictions under complex atmospheric conditions, providing more precise
inputs for meteorological service recommendations.
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3.5. Recommendation Module

In the CRU-RecNet model, the recommendation module utilizes collaborative filtering to provide personalized
meteorological service recommendations using the retrieved CTH data as input. The core of collaborative filtering
lies in analyzing similarities between users or between users and meteorological services to generate the most relevant
recommendations for each user. First, the recommendation module obtains high-precision CTH data from the retrieval
process, which reflects cloud height variations across different times and regions, providing accurate meteorological
insights. The system then combines these CTH data with users’ historical behavior data, such as previously queried
weather services or behavioral patterns under specific weather conditions, to construct a user-item interaction matrix
[38]. In user-based collaborative filtering, the system calculates the similarity between the current user and other
users (typically using cosine similarity or Pearson correlation), identifying user groups with similar meteorological
needs. Based on these similar users’ historical behaviors, the system generates personalized weather service recom-
mendations for the current user. Through this approach, the recommendation system effectively leverages both CTH
data and user preferences to offer accurate, real-time meteorological service recommendations for users in fields like
agriculture, transportation, and tourism.

4. Experimental results and analysis

4.1. Experimental environment

This section evaluates CRU-RecNet’s performance through comparison and ablation experiments. The environ-
ment configurations used in this experiment are detailed in Table 1.

Table 1: Experimental environment configuration

Matrix Model (version)

Operating system CentOS7
GPUs NVIDIA TITAN V
CPU Intel(R) Core(TM) i9-10850k
Random access memory (RAM) 128GB
Pytorch 1.11

4.2. Experimental datasets

This study focuses on the retrieval of CTH data and its integration with the personalization function of a recom-
mendation system. The goal is to enhance both the accuracy of weather warnings and the overall user experience. To
achieve this, the CALIPSO satellite dataset, provided by NASA [39], was selected as the primary data source. This
dataset includes detailed observations of cloud layer heights and atmospheric aerosols, leveraging lidar technology
to achieve high spatiotemporal resolution. The CALIPSO dataset is particularly well-suited for CTH retrieval under
complex atmospheric conditions, such as during thunderstorms and heavy rain, offering precise information on cloud
structure and height.

The selected CALIPSO dataset corresponds to the CAL-LID-L2-05kmLay-Standard-V4-21 product, which pro-
vides cloud layer data at a 5-kilometer resolution. The V4.21 version incorporates several significant technical ad-
vancements. These include the introduction of a Cloud-Aerosol Discrimination (CAD) probability distribution func-
tion, which significantly enhances the reliability of cloud and aerosol classification. The dataset also demonstrates
improved sensitivity to suspended aerosols, achieving a more accurate classification of high-altitude smoke plumes
and Asian dust layers. Moreover, the application of a derivative-based peak-finding algorithm for surface detection
allows the dataset to perform well in highly turbid atmospheric conditions while maintaining or improving accuracy
under clear-sky scenarios. Additional advancements include the refined handling of strongly scattering layers, which
are preserved during coarse-resolution averaging, and special processing for specific anomalies to improve classifi-
cation accuracy further. These improvements collectively enhance the dataset’s utility in atmospheric classification,
surface detection, and the provision of scientific information.

9
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The dataset underwent preprocessing to ensure compatibility and quality before being used with the CRU-RecNet
model. Missing or abnormal values were removed, and key parameters such as CTH and aerosol optical depth were
normalized to improve model convergence and stability [40]. The data were then split into training, validation, and
testing sets to ensure a balanced representation across various atmospheric conditions, including daytime, nighttime,
and extreme weather events.

The CRU-RecNet model employs multi-scale attention and self-attention mechanisms to prioritize different scale
features of cloud layers adaptively. In complex atmospheric environments, particularly at night when there is insuf-
ficient light, the model is capable of maintaining high-precision retrieval of CTH. Moreover, the integration of the
recommendation system data with the model enhances the efficacy of personalized weather recommendations. The
evaluation of the retrieval accuracy employed metrics such as mean square error (MSE), mean absolute error (MAE),
and root mean square error (RMSE). In contrast, the assessment of the recommendation system performance utilized
metrics such as precision@K and recall@K.

4.3. Model parameterization
The retrieval model entails numerous hyperparameters throughout the training phase. These include a training

batch size of 8, the utilization of the Adam optimizer, a loss function comprising MSE and MAE, an initial learning
rate of 0.001, and a maximum of 80,000 iterations.

In addition, in order to adapt to the characteristics of the ReLU activation function and effectively solve the
problem of gradient vanishing and explosion that may be encountered during the model training process, this model
adopts the He [41] initialization strategy to set the weights. For a given layer, the weight W initialization is randomly
drawn from a normal distribution, the interval of which is shown by Equation (15):

W ∼ N
0, √ 2

nin

 , (15)

where N
(
0, σ2

)
denotes the normal distribution with a mean of 0 and a variance of σ̇2, and nin denotes the number

of nodes in the previous layer.

4.4. Evaluation indicators
The experiments in this section used the following metrics to assess the retrieval quality of the retrieval model:

MAE, mean bias error (MBE), RMSE, and correlation coefficient (R).
MAE measures the average size of the absolute value of the difference between the predicted and actual values. It

is a measure of prediction accuracy that gives the average absolute magnitude of the prediction error. The smaller the
MAE, the higher the prediction accuracy of the model. The MAE gives the same weight to all error magnitudes and
is calculated as shown in Equation (16):

MAE =
1
n

n∑
i=1

|yi − ŷi| . (16)

MBE measures the average degree of deviation of the predicted values from the actual values and reflects the
systematic over- or underestimation of the expected values. Positive values indicate that the predicted values tend to
systematically overestimate the exact values, while negative values indicate systematic underestimation. MBE can be
used to detect the direction of bias in the model’s predictions, and the formula is shown in Equation (17):

MBE =
1
n

n∑
i=1

(yi − ŷi) . (17)

RMSE measures the square root of the squared mean of the differences between predicted and actual values. It
gives higher weight to larger errors and is, therefore, often used to emphasize the unacceptability of larger deviations.
The smaller the RMSE, the higher the predictive accuracy of the model. The formula is shown in Equation (18):

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2. (18)
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The R measures the degree of linear correlation between predicted and actual values. Its value ranges from -1 to
1, where 1 indicates a perfect positive correlation, 0 means no linear correlation, and -1 indicates a perfect negative
correlation. R provides information about the strength and direction of the relationship between the predicted and
actual values and is calculated using the formula shown in Equation (19):

R =
∑n

i=1(yi − y)(ŷi − ŷ)√∑n
i=1(yi − y)2 ∑n

i=1(ŷi − ŷ)2
. (19)

4.5. Comparative experimental results and Analysis

In the study by Wang et al. [42], it has been demonstrated that the deep learning-based retrieval model outper-
forms the physical method-based retrieval model for the same dataset. Therefore, the comparison experiments in
this section select representative deep learning models from previous work on CTH retrieval based on geostation-
ary meteorological satellites to compare with the proposed CRU-RecNet model, which mainly includes U-Net [43],
RESU-Net [44]U-Net, RESU-Net, and DNN [42]. U-Net is a classical convolutional neural network structure, the
overall architecture is divided into two parts, encoder and decoder, and combines low-level and high-level features
through jump connections, which has been widely used in image segmentation tasks. RESU-Net, on the other hand,
is an improvement of U-Net and employs residual connectivity to improve the training stability and performance of
the model. DNN, on the other hand, uses two rounds of up-sampling and two rounds of down-sampling, as well as a
fully connected layer structure to invert satellite data.

Table 2: Experimental quantitative evaluation results of different models on the test set

Model name MAE MBE RMSE R

U-Net 0.894 -0.265 1.416 0.946
RESU-Net 0.772 -0.258 1.125 0.969
DNN 0.906 -0.341 1.562 0.938
CRU-RecNet 0.682 -0.136 0.893 0.982

Table 2 shows the quantitative evaluation results of CTH retrieval on the test set for all the models in the compar-
ison experiments in this section, where the lower MAE proves that the model performs better on the test set, MBE is
greater than 0, the model overestimates the CTH, and the lower than 0, the model underestimates the CTH, and the
closer the value is to 0, the better the model performs on the test set. The lower RMSE proves that the model performs
better on the test set. The closer the RMSE is to 1, the better the model performs on the test set.

From Table 2, it can be seen that CRU-RecNet has better retrieval performance on the test set compared to other
models. Specifically, the MAE improves by 23.71% compared to U-Net. The MBE both underperforms on the
test set, but CRU-RecNet still improves by 48.86% compared to U-Net. The RMSE ratio improves by 46.94%.
And R improves by 3.81%. Compared to RESU-Net, MAE improves by 11.66%.MBE reduces underestimation by
47.29%.RMSE improves by 20.62%. Compared to DNN, MAE improves by 24.72%. And MBE reduces the under-
estimation by 60.12%. And RMSE improves by 42.83%. And R improves by 4.69%. These significant improvements
highlight CRU-RecNet’s ability to deliver higher accuracy and superior robustness under various conditions.
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(a) Actual CTH (b) CRU-RecNet

(c) RESU-Net (d) U-Net

(e) DNN

Figure 4: Results of the July 7, 2020, 8:30 a.m. retrieval performance for each model

Figure 4 shows the retrieval results of various models for CTH on July 7, 2020, at 8:30 a.m. The results indicate
that deep learning-based models effectively retrieve CTH using infrared channel data. Notably, the retrieval map
produced by CRU-RecNet aligns most closely with the actual CTH map, demonstrating its superior ability to capture
cloud-top features under complex atmospheric conditions.

Figure 5 illustrates the density scatter plots and probability density function plots of the retrieval results for each
model on July 7, 2020. These plots clearly demonstrate the discrepancies between the retrieval data and the actual
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values of each model. As evidenced by the plots, the CRU-RecNet model exhibits the most optimal retrieval results.
In particular, the CRU-RecNet model shows superior performance compared to the suboptimal model, with an MAE
of 18.54%, an MBE of 4%, an RMSE of 21.78%, and a correlation R of 0.82% higher than the suboptimal model.
Additionally, it is notable that the models demonstrate an overall tendency towards underestimation, both in the test
set and in the retrieval cases. This phenomenon may be attributed to the absence of high cloud data, which could have
otherwise provided a more accurate representation of the actual values.

(a) CRU-RecNet (b) CRU-RecNet (c) U-Net (d) U-Net

(e) RESU-Net (f) RESU-Net (g) DNN (h) DNN

Figure 5: Density Scatter Plot and Probability Density Function of July 7, 2020 Retrieval Results for Each Model

This study employs nighttime CTH data from the CALIPSO satellite to evaluate the performance of each model
under nighttime conditions. Figures 6(a) and 7(a) display the CALIPSO satellite trajectories during the data acquisi-
tion process, while Figures 6(b) and 7(b) present the nighttime CTH data alongside retrieval results for July 7, 2020,
and January 6, 2022. The results indicate that although all models demonstrate acceptable performance in nighttime
CTH retrieval, CRU-RecNet consistently achieves the best performance, with retrieval results that most closely match
the actual data.

(a) Chart of the orbit of the CALIPSO satellite (b) Scatter plot of model retrieval values against CALIPSO data

Figure 6: July 7, 2020, model retrieval values with CALIPSO nighttime data profiles and CALIPSO trajectories
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(a) Chart of the orbit of the CALIPSO satellite (b) Scatter plot of model retrieval values against CALIPSO data

Figure 7: January 6, 2022, model retrieval values with CALIPSO nighttime data profiles and CALIPSO trajectories

The comparative experimental results and nighttime retrieval validations using CALIPSO data confirm that the
CRU-RecNet model achieves highly efficient cloud-top height inversion during the daytime and maintains exceptional
robustness under limited light conditions at night. Compared to other models, CRU-RecNet consistently demonstrates
higher retrieval accuracy and reliability across various atmospheric scenarios.

4.6. Ablation experiments

4.6.1. Retrieval accuracy
The objective of a series of ablation experiments on CRU-RecNet is to ascertain whether the designed modules

can effectively enhance the model’s retrieval performance. The U-Net model was used as the baseline for the removal
of the MAM, the SAM, and the dual-decoding structure, which were evaluated exhaustively through quantitative
analysis. In particular, CRU-RecNet (wo. MAM) represents the retrieval model in which the MAM has been removed,
CRU-RecNet (wo. SAM) denotes the retrieval model in which the SAM has been removed, and CRU-RecNet (wo.
DDM) denotes the removal of the dual decoding structure.

Table 3: Results of Ablation Experiments

Model name MAE MBE RMSE R

U-Net 0.894 -0.265 1.416 0.946
CRU-RecNet (wo. MAM) 0.783 -0.232 1.231 0.953
CRU-RecNet (wo. SAM) 0.749 -0.187 1.012 0.968
CRU-RecNet (wo. DDM) 0.703 -0.151 0.925 0.973

CRU-RecNet 0.682 -0.136 0.893 0.982

The quantitative evaluation results of the ablation experiment of CRU-RecNet are presented in Table 3. As a
benchmark model, U-Net is capable of capturing the fundamental characteristics of CTH retrieval. However, it is de-
ficient in its ability to discern intricate multi-scale features and long-distance correlations, necessitating enhancements
to its performance. The removal of any component from the CRU-RecNet model resulted in a decline in performance
across all evaluation metrics. In particular, the removal of MAM has the most significant impact on the model, indi-
cating that MAM plays a pivotal role in capturing multi-scale features and reducing interference. This is evidenced
by a 14.81%, 70.59%, 37.85%, and 2.95% decrease in the four ratings, respectively. The removal of SAM resulted
in a reduction of 9.82%, 37.5%, 13.33%, and 1.43% in the four scores, respectively. This evidence substantiates the
efficacy of the SAM in enhancing the model’s capacity to capture long-range dependencies. The removal of the DDM
resulted in a decrease of the four ratings by 3.08%, 11.03%, 3.58%, 3.58%, and 0.92%, respectively. This outcome
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substantiates the contribution of the DDM in restoring resolution and capturing detailed features, thereby enhancing
the overall performance of the model.

4.6.2. Recommendation performance
To assess the impact of different modules in enhancing the recommendation performance of CRU-RecNet, we con-

ducted a series of comparative experiments between the CRU-RecNet and U-Net models within the recommendation
system. U-Net was used as the baseline model, and Precision@K and Recall@K were chosen as evaluation metrics.
We also tested the effects of removing specific components from the CRU-RecNet architecture to conduct a detailed
quantitative evaluation. Specifically, CRU-RecNet (wo. MAM) represents the model with the MAM removed, and
CRU-RecNet (wo. SAM) represents the model without the SAM.

Table 4 shows the quantitative evaluation results for each model in the recommendation task:

Table 4: Performance Comparison of CRU-RecNet and U-Net in Recommendation System

Model Name Precision@K Recall@K

U-Net 0.734 0.682
CRU-RecNet (wo. MAM) 0.765 0.723
CRU-RecNet (wo. SAM) 0.792 0.751
CRU-RecNet (Complete) 0.814 0.782

From the data, it is evident that as the baseline model, U-Net provides a certain level of recommendation per-
formance but is limited in its ability to capture detailed user preference features. When any of the components in
CRU-RecNet are removed, the evaluation metrics drop. Specifically, removing the MAM led to a 6.02% and 5.86%
decrease in Precision@K and Recall@K, respectively, indicating that capturing multi-scale features plays a crucial
role in improving recommendation precision and coverage. When the SAM was removed, Precision@K and Re-
call@K dropped by 2.7% and 3.9%, respectively, highlighting the importance of SAM in capturing global user behav-
ior patterns. With all modules intact, the complete CRU-RecNet model outperforms U-Net in both Precision@K and
Recall@K, demonstrating that the introduction of multi-scale attention and self-attention mechanisms significantly
enhances the accuracy and comprehensiveness of the recommendation system.

5. Conclusion

In this paper, we proposed CRU-RecNet, a novel model that integrates multi-scale attention and self-attention
mechanisms for accurate CTH retrieval and IMSR. By leveraging CTH data, the model enhances weather forecasting
accuracy and delivers personalized weather services. Experimental results demonstrated that CRU-RecNet signifi-
cantly improves both CTH retrieval and recommendation performance compared to existing methods. The integration
of attention mechanisms enables the model to capture multi-scale atmospheric patterns and long-range dependencies,
making it well-suited for dynamic, real-time meteorological applications.
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