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Abstract

We consider a general framework for multi-type interacting particle systems on graphs,
where particles move one at a time by random walk steps, different types may have different
speeds, and may interact, possibly randomly, when they meet. We study the equilibrium
time of the process, by which we mean the number of steps taken until no further interactions
can occur. Under a rather general framework, we obtain high probability upper and lower
bounds on the equilibrium time that match up to a constant factor and are of order n log n
if there are order n vertices and particles. We also obtain similar results for the balanced
two-type annihilation model of chemical reactions; here, the balanced case (equal density
of types) does not fit into our general framework and makes the analysis considerably more
difficult. Our models do not admit any exact solution as for integrable systems or the duality
approach available for some other particle systems, so we develop a variety of combinatorial
tools for comparing processes in the absence of monotonicity.

1 Introduction

Interacting particle systems have been intensively studied since the 1970s to model a variety
of phenomena in Statistical Physics and Mathematical Biology, such as spin systems, chemical
reactions, population dynamics and the spread of infections. A precise analysis of such systems
in generality seems far out of reach, although there is a large theory for some classical special
models that are more tractable, due to admitting a variety of techniques based on monotonicity
or duality (see [32, 33]) or even exact methods based on the rich theory of Integrable Systems,
Random Matrices and KPZ Universality (see [17]).

On the other hand, there are natural classical models that do not admit such techniques and
for which the theory is much less developed. An important example is the two-type annihilation
model for chemical reactions, studied classically on integer lattices Zd, where a celebrated series
of papers by Bramson and Lebowitz [7, 8, 9] gives order of magnitude estimates for the site
occupancy probability. In this model, there are two types of particles and interactions only
occur between two particles of different type, which makes the analysis particularly difficult.

A single type model introduced by Erdős and Ney [22] is easier to analyse, although even
here it was an open problem whether the origin would be occupied infinitely often, solved in
one dimension by Lootgieter [34] and in higher dimensions by Arratia [3, 4]. There is also a
substantial physics literature starting from [21, 30] on annihilation with ballistic motion which
still has many open problems, such as the Bullet Problem (see e.g. [20]). The analysis of
Bramson and Lebowitz is very model specific, relying on the lattice structure and both particle
types moving at the same speed. Less is known if we move away from these assumptions,
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although Cabezas, Rolla and Sidoravicius [11] showed even if the speeds differ that the system
remains site recurrent on any infinite generously transitive graph.

Considering the real-world motivations for interacting particle systems, it is natural to con-
sider systems on finite graphs and ask for the asymptotics of key parameters when the number
n of vertices is large. Here there is also a large literature (discussed in more detail below),
dating at least to the early 80s, when Donnelly and Welsh [18] studied coalescing particles on
finite graphs via duality with the voter model.

1.1 Balanced two-type annihilation

Before introducing our general models, we will discuss the following two-type annihilation model
for finite graphs, recently considered by Cristali, Jiang, Junge, Kassem, Sivakoff and York [12].
Fix a graph with n vertices and initialise with at most one particle at each vertex, so that there
are equal numbers of red and blue particles and at most one vertex is unoccupied; we refer to
this setting as balanced. At each time step, with probability p a red particle is chosen, uniformly
at random from the remaining red particles, or otherwise a uniformly random blue particle is
chosen. Without loss of generality 0 ≤ p ≤ 1/2, i.e. blue moves at least as fast as red. The
chosen particle performs a simple random walk step. If it reaches a vertex with one or more
particles of the opposite colour, it mutually annihilates with one such particle. This process
almost surely eventually terminates with no particles remaining. The key quantity of interest
is the time taken for this to happen, which we call the extinction time.

We will see below how the analysis of unbalanced annihilation can be subsumed in that of
a much more general class of models (see Corollary 1.7). However, the analysis of balanced
annihilation is much harder due to the total number of particles changing dramatically over
time. Nevertheless, we are able to prove similar results for this model, determining with high
probability the extinction time up to constant factors, for any initial particle distribution on
any regular graph with sufficient spectral expansion (for an introduction to expanders and their
applications, see [29]).

Theorem 1.1. Let G be a regular graph on n vertices with spectral gap at least 0.425. Consider
balanced two-type annihilation on G from any starting configuration and let T be the extinction
time. Then cn log n ≤ T ≤ Cn log n with high probability and in expectation, where c and C are
absolute constants.

We make the following remarks on Theorem 1.1:

1. The upper bound on T holds for any regular expander sequence (i.e. regular graphs G
with spectral gap uniformly bounded away from zero).

2. The spectral gap condition holds with high probability for a random d-regular graph for
any d ≥ 177.

3. The high probability bound is sufficient to imply that E(T ) = Θ(n log n).

The corresponding upper bound for unbalanced two-type annihilation, as one of a much more
general class of models, is provided by Theorem 1.4. However, this does not cover the case
of balanced two-type annihilation, since the proof of Theorem 1.4 depends on the fact that in
the unbalanced case (and more generally in the class of models covered), Θ(n) particles survive
throughout the process.

The special case p = 0 (stationary red particles) is equivalent to the particle-hole model of
Cabezas, Rolla and Sidoravicius [10], which they show has essentially the same behaviour as a
system of activated random walks with infinite sleep rate. Here our lower bound applies for any
regular graph (regardless of expansion) assuming a uniformly random starting state.
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Theorem 1.2. Let G be a regular graph on n vertices. Consider balanced two-type annihilation
with stationary reds from a uniformly random starting configuration and let T be the extinction
time. Then E(T ) ≥ 0.08n log n for n sufficiently large, and with high probability T > 0.04n log n.

The lower bound in Theorem 1.2 may fail starting from a configuration that is adversarial
rather than random: e.g. if G is a disjoint union of small even connected components and the
types are balanced in each component then T is Θ(n) in expectation and with high probability.
The same example shows that our other results below for general regular graphs (Theorems 1.5
and 1.8) would fail if we considered an adversarial rather than random configuration.

While Theorem 1.1 considers the worst-case in the setting of [12], it is much easier to analyse
the ‘absolute worst-case’, permitting multiple particles at the same vertex and maximising over
any speeds and starting positions. We obtain the following bounds, which are optimal up to a
small multiplicative constant and valid for any graph G. The key parameter is the ‘worst-case
hitting time’ Hmax(G) = maxx,y∈V (G)Hx(y), where the ‘hitting time’ Hx(y) is the expected
number of steps taken by a random walk on G started at x and stopped when it first hits y.

Proposition 1.3. Fix any graph G. Let Tk be the worst-case expected extinction time for two-
type annihilation starting from k particles of each type, maximised over any speeds and starting
positions (which may coincide). Then kHmax(G) ≤ Tk < 4kHmax(G).

1.2 Dissipative particle systems

Now we will consider a broad class of models for processes with various types of particles
moving diffusively and interacting in a possibly random way that is a function of their types.
Our models will be dissipative, meaning that each type of particle has an associated energy
(some positive real number) and that the total energy of all particles is strictly decreased
by any effective reaction (i.e. reaction where the output differs from the input); for example,
annihilation models are dissipative (for any energies). This condition gives quite a different
flavour from those models studying population dynamics with reinforcement (see the survey
[36] and [1] for a recent result combining annihilation and growth). It is also perhaps similar
in spirit to the Dissipative Particle Dynamics (DPD) models used for practical simulations of
hydrodynamic phenomena (see [23]).

Our models are specified by giving for each ‘input’ pair (A,B) of types a probability distri-
bution πAB on ‘output’ sets S of types (here πAB is fixed, independently of n). If a particle of
type A arrives at a vertex and ‘meets’ a particle of type B then the process removes both par-
ticles and adds a new particle of each type in S ∼ πAB independently of all other randomness.
(One could distinguish the ordered pairs (A,B) and (B,A), but for simplicity we will assume
πAB = πBA.) For example, for two-type annihilation these ‘distributions’ are supported on a
single output for each input: the output for {A,B} is ∅, for (A,A) is {A,A} and for (B,B) is
{B,B}. When a particle arrives at a vertex with one or more other particles already present,
it is considered to meet each such particle in a random order until either an effective reaction
occurs or all reactions are ineffective. (This seems a natural model for such multiple collisions,
but one could consider other options.)

We may reach an imbalance of types even starting from a balanced position, and it is anyway
often natural to start from a position of imbalance (e.g. as considered for annihilating particles
by Bramson and Lebowitz [7]). To allow for imbalance in our model, we assign speeds to types,
such that the sum over types of their speeds is 1, and in each round of the process we select
the particle to move with probability proportional to its speed. For example, for two-type
annihilation as above we assign speeds p to ‘red’ and 1 − p to ‘blue’. Typically, we think of
fixing the initial number of each type of particle in advance, so that there are n particles in
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total, and of the distribution of these particles as chosen either randomly or adversarially. For
our general models we consider the speeds to be fixed independently of n, although we note
that in our above results on two-type annihilation we allow p to depend on n.

Our key quantity of interest for these models is the time taken until no further reaction
is possible, which we call the equilibrium time. For balanced two-type annihilation this is the
extinction time, for which we obtain Θ(n log n) bounds, as stated above. We will prove the same
bounds on the equilibrium time of general dissipative models, under an additional assumption
regarding ‘active agents’, to be described using the following definitions.

We say that a type is persistent, for a given set of reactions and initial densities of the types,
if there is some ε > 0 such that the density of that type must be at least ε throughout any
possible sequence of reactions in a mean-field setting (meaning that we allow any two particles
to meet at each step, ignoring the graph G). Similarly, we say that the particle system is
persistent if there is some ε > 0 such that the total density of particles must remain at least
ε in a mean-field setting. (This is a strictly weaker condition than having a persistent type.)
A type is ephemeral if it is not persistent. For example, in two-type annihilation, if the initial
densities of red and blue differ by some ε > 0 then the denser type is persistent and the other
is ephemeral, whereas in balanced two-type annihilation both types are ephemeral.

We say that the particle system is agential if there are no effective reactions between two
ephemeral types. The interpretation of this terminology is that in some settings we think of
particles of persistent types as ‘active agents’ and those of ephemeral types as ‘passive reagents’.
Note that by definition no reaction between persistent types is possible, since if it were we could
invoke it repeatedly until one type was eliminated, contradicting persistence. Thus in an agential
system every reaction involves one persistent type and one ephemeral type.

Our general upper bound is as follows.

Theorem 1.4. Let G be a graph on n vertices from a regular expander sequence. Consider
any dissipative agential particle system on G starting from any configuration with at most n
particles. Then the equilibrium time is O(n log n) with high probability and in expectation.

The assumptions in Theorem 1.4 are all ‘somewhat necessary’, for the following reasons.

1. If we allowed the speeds of types to depend on n then collisions involving two types of
speeds o(1) may be necessary for equilibrium but take too long to occur.

2. Dissipative dynamics rules out reversible models that never reach equilibrium, such as
‘catalysed modification’ A+ c → A+ d and B+ d → B+ c (in our examples we adopt the
convention that upper-case letters are persistent types).

3. If we allowed reactions between ephemeral types, one could introduce an inert persistent
type to an otherwise ephemeral process, with such an overwhelming number of inert
particles that reactions are rare. Less trivially, consider a system such as A + c → b
and b + b → c where A is dense enough to be persistent. Then the penultimate reaction
requires two specific particles of type b to meet, and since there are still Θ(n) other
particles remaining, this typically takes time Θ(n2).

For a matching lower bound, one should clearly also assume that Θ(n) reactions are necessary
for equilibrium. Equivalently, one should show that Ω(n log n) steps are necessary to eliminate
any type with positive initial density. We believe that this holds for any such systems as above.
We support this belief by proving it when the initial positions of particles are independent
stationary random vertices and all types have the same speed, for any regular graph (not
necessarily an expander). We deduce this from the following result of independent interest on
‘lonely walkers’ in a system of non-interacting random walks.
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Theorem 1.5. (Lonely Walkers) Let G be a regular graph on n vertices. Consider n inde-
pendent random walks, starting from stationarity, running for time 0.1n log n, with one walk
moving at each time step. Then with high probability there are Ω(n3/4) walks that have never
met any other walk.

Remark. We give explicit constants in Theorem 1.5 for concreteness. The same proof shows
that for any ε > 0 there is δ > 0 so that if the walks run for time δn log n then with high
probability there are Ω(n1−ε) walks that have never met any other walk.

Corollary 1.6. Let G be a regular graph on n vertices. Consider any persistent particle system
on G, where all types have the same speed, and the starting locations of particles are independent
and stationary. Then with high probability, any type of positive initial density has not yet been
eliminated after O(n log n) steps.

Our results apply to a rather broad class of models, whereas much of the previous related
literature considers deterministic interactions for particles of one or two types; here one can
explicitly list the small number of possible models, each of which has been studied in its own
right. We will discuss the implications of our results for these models in Section 1.4.

1.3 Simultaneous movement and the Big Bang

Even for the most well-understood model of coalescence, obtaining a precise understanding of
the early evolution is widely considered a very difficult problem; this has been dubbed the “Big
Bang regime” by Durrett (see e.g. [19]). A recent breakthrough on this problem for coalescing
particles on constant-degree random regular graphs was achieved by Hermon, Li, Yao and Zhang
[27]; comparable results were only previously known on the integer lattice [6], where transience
plays a key role. For other models, such as annihilation, comparable results are still unknown.

Much of the previous literature on interacting particles considers models where particles
move simultaneously, rather than individually as in our models defined above. Considering
simultaneous movements side-steps the Big Bang question, as then the Big Bang is so fast that
it is insignificant compared to the equilibrium time, which is dominated by the slower later
stages. By contrast, as our models have individual moments we cannot ignore the Big Bang: we
need to consider all particles, whereas in synchronous models only the longest-surviving particle
matters. See also [38] for a related model of internal diffusion-limited aggregation (IDLA), where
results are obtained for simultaneous movements, but the problem for individual movements
remains open. This distinction is only significant for ephemeral models, such as coalescence
or balanced two-type annihilation, as for persistent models the two settings are essentially
equivalent: the equilibrium times are related by a Θ(n) factor.

Consequently, while our methods are able to deal with both settings, we state our results
for the more difficult case of individual movements. Another minor advantage is that this
lends itself more naturally to considering types of different speeds (although these could be
implemented in a simultaneous model by moving each particle independently with probability
equal to its speed). Although a speed differential is to be expected in almost all applications
(e.g. owing to different sizes of reacting molecules or enzymes and substrates), most previous
work does not incorporate this factor, perhaps due to the focus on simultaneous movement.

1.4 Special models

Now we will specialise to models with one or two types and a single deterministic reaction which
does not increase the total number of particles. For the two-type case we also assume that the
reaction occurs between the two types (which we call A and B), since otherwise we would have
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a one-type system with additional inert particles. While it would be natural to permit multiple
reactions, allowing a combination of one-type and two-type reactions, this would significantly
increase the number of possibilities. Since we are not aware of previous work covering any such
models, we do not consider them separately here.

The possible ‘special models’ up to relabelling A ↔ B are as follows.

• One type:

(i) A+A → ∅: one-type annihilation.
(ii) A+A → A: coalescence.

• Two type:

(iii) A+B → ∅: two-type annihilation.
(iv) A+B → A: predator-prey.
(v) A+B → A+A: infection / communication.

Besides the annihilation and coalescence models discussed above, we also see models for (iv)
predators of type A eating prey of type B, and (v) infected individuals of type A infecting
healthy individuals of type B. The following, which includes the case of unbalanced two-type
annihilation as mentioned in Section 1.1, is immediate from Theorem 1.4 and Corollary 1.6.

Corollary 1.7. Let G be a graph on n vertices from a regular expander sequence. Consider
any of the special models (i)–(v) from any initial configuration with at most n particles, where
each type has constant speed and positive initial density. For model (iii), suppose also that the
type densities differ by some ε > 0 independent of n. Then the equilibrium time is O(n log n)
with high probability and in expectation, and is Θ(n log n) if the initial positions of particles are
independently uniform and types have the same speed.

Moreover, we have a stronger form of Corollary 1.7: the assumption that both types have
positive density is not needed for the upper bound, except that in models (iv) and (v) we need
type A to have positive density. We have not determined the precise conditions under which
the conclusion holds, but we observe that our conditions cannot be significantly relaxed. For
example, if we have k = ω(1) particles of type B, the proof of Theorem 1.4 gives an O(n log k)
bound, so the lower bound cannot allow k to be subpolynomial. The following result on the
predator-prey model also shows that the upper bound fails if there are o(n/ log n) predators.

Theorem 1.8. Consider predator-prey dynamics on a regular graph G on n vertices, starting
from k predators and n−k prey on distinct vertices, where 4 ≤ k ≤ n/ log n and both types have
some nonzero speed independent of n. Let T be the equilibrium time. Then
(a) If the starting configuration is selected uniformly at random then E(T ) = Ω(n2/k).
(b) If G is from an expander sequence then E(T ) = O(n2/k) for any starting configuration.

1.5 Comparison with previous results

Cooper, Frieze and Radzik [15] gave a unified treatment of the special models considered above,
with three significant additional assumptions: (a) the initial populations are polynomially small
and randomly distributed, (b) the underlying geometry is a random regular graph, and (c) the
types move simultaneously with equal speeds. Removing assumption (a) is the main difficulty
in our work (see the above discussion of the Big Bang), although considering general spectral
expanders rather than (b) and variable speeds rather than (c) also poses additional challenges.

Our model allowing for different speeds is much more general, as can be seen by considering
the possibility of a zero speed (stationary) type, which one might at first think would be simple
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to analyse, but in fact is often an interesting and difficult model in its own right. For example,
balanced annihilation with one type stationary strongly resembles the IDLA setting of [38]
mentioned above, except that in their model the moving particles start from what we might
expect to be the worst-case scenario of all having accumulated at a single vertex.

For the predator-prey or infection models, making type A (predators or infected individuals)
stationary is not so interesting, as the equilibrium time is then just a sum of hitting times from
the type B particles to the set of type A particles. In both cases, making B particles stationary
is more interesting. Predator-prey dynamics with k moving predators and n−k stationary prey
is equivalent to the cover time of the graph by k random walkers, which was analysed in great
detail by Rivera, Sauerwald and Sylvester [39]. Infection with stationary healthy individuals is
closely related to the frog model, where we start from one active frog moving among a system
of sleeping particles, with the latter becoming active frogs once their vertex is visited. (The frog
model often has the further complications that active frogs can die and there may be a random
number of sleeping particles at each site.) Much of the frog literature concerns propagation on
infinite graphs, although there are some results on the cover time (which is analogous to our
model) for special graphs by Hermon [26] and Hoffman, Johnson and Junge [28].

Coalescence has been much studied as the dual process of the voter model, where particles do
not move but update their opinions to that of a random neighbour. This was first considered on
general graphs some 40 years ago by Donnelly and Welsh [18]. More recently, Cooper, Elsässer,
Ono and Radzik [14] gave a general upper bound in terms of the spectral gap and degree
variability of the underlying graph. Haslegrave and Puljiz [25] analysed a generalisation of the
voter process which permits two opinions of different persuasiveness, similar to our variability
in speed; one of their results is that the complete graph has the smallest expected equilibrium
time among regular graphs.

Finally, the balanced two-type annihilation model that we consider in great detail in this
paper was previously only analysed by Cristali et al. [12] for the complete graphs (the mean-
field case) and stars. For these graphs, the one-type annihilation model is easy to analyse, but
the two-type process is much harder, owing to the possibility of multiple particles of the same
type occupying a single site. While they were able to give precise results on the extinction time
for stars, for the mean-field case they gave a lower bound of 2n log n and an upper bound of
20n log2 n/ log logn, thus leaving the open problem of showing that it is Θ(n log n); as discussed
above, we prove this on all regular graphs with sufficiently strong spectral expansion. Moreover,
in [24] we determined the mean-field extinction time asymptotically as (1+o(1))n log n, for any
speeds of the particles, even if the ratio of speeds is allowed to grow with n, which creates
additional difficulties (bounded speed ratio is assumed in [12]). Our methods in [24] are specific
to the complete graph and have no overlap with those introduced in this paper. In particular,
for the complete graph we use the fact that the probability of a collision at each step depends
only on the number of vertices occupied by each type of particle, and that if the number of
sites occupied is sufficiently small compared to the total number of particles, there is a strong
tendency for this disparity to self-correct, irrespective of the precise configuration of particles;
neither of these facts apply to general graphs.

1.6 Methods and organisation

As indicated above, the generality of our models requires the development of new combinatorial
comparison techniques. A basic strategy in many of our proofs is to consider a short segment of
the process, at the start of which we couple the ‘true’ particles with ‘fake’ particles, where the
fake particles go on to follow non-interacting walks, and so gradually become decoupled from
the true particles as time proceeds. We aim to show that with high probability a suitable set
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of collisions have occurred in the non-interacting process, and deduce that a certain number
of reactions must have taken place. The time period of the coupling must be chosen so that
the total number of particles does not change by more than a constant factor, as otherwise the
rates of passing of true time and fake time are not comparable. This highlights the difficulty of
non-agential models such as balanced two-type annihilation, where the total number of particles
decays and many time periods are necessary.

We will divide the paper into two parts, where in the first part we treat general agential
dissipative models, and in the second part we consider the harder setting of balanced two-type
annihilation. The first section of the first part introduces a Moving Target Lemma that will be
useful throughout the paper. An intuitive statement is that we get a roughly tight estimate for
the probability of an approximately stationary random walk on an expander hitting a target,
where the target is allowed to move, but we ‘wait’ a constant number of steps between each
‘attempt’ to hit the target to allow the conditional distribution of the walker to settle back to-
wards approximate stationarity. The second section of the first part introduces a poissonisation
technique for handling dependencies that will also be useful throughout the paper; we combine
this with a second moment argument to prove our result on lonely walkers, which implies the
lower bounds for our general models. The remainder of the first part treats some special models,
using a variety of ideas on hitting times of random walks and toppling of ‘abelian sandpiles’.

In the second part on balanced two-type annihilation, the techniques developed in the first
part are combined with additional technical arguments needed to address the new difficulties
that arise in the proofs of both the upper and lower bounds. For the upper bound, the Moving
Target Lemma can still be used for comparison, although the previous basic argument does
not suffice, so is replaced by a refined argument using Hall’s Matching Theorem. Furthermore,
there are various regimes for the number of remaining particles, where in some regimes the
approximate stationarity needed for the Moving Target Lemma can only be guaranteed for the
faster blue particles, so further technical arguments are needed to either control the distribution
of the slower red particles, or show that even a moderately bad distribution of red particles can
be handled by tighter concentration inequalities.

For the lower bound, we start by illustrating the arguments for the one-type annihilation
model, which has many of the key ideas but the important simplifications that all particles
move at the same speeds and each vertex has at most one particle. The key step is to show
that when k = nx particles remain with x < 1 then there are constants c1, c2, c3 > 0 so that
starting from any configuration A of k particles, with probability at least c1 we need at least c2n
steps to reduce the number of particles to c3k. We prove this via results relating return times
to the spectral gap and using trajectory reversal arguments to control meetings by returns.
For the two-type model, there are additional arguments to handle variation in speeds, and a
subtle application of Reimer’s inequality on disjointly occurring events, which is used to rule
out ‘catastrophic collapse’, i.e. reducing from nc to nc−o(1) remaining particles so rapidly that
the surviving particles do not have time to mix.

1.7 Notation

For a d-regular connected graph G, let Q be the Laplacian, let P be the transition matrix of
the lazy random walk and let A be the adjacency matrix. Then we have Q = dI − A and
P = 1

2I + 1
2dA, giving Q = 2d(I − P ). Let 0 = λ1 ≤ λ2 ≤ · · · be the eigenvalues of Q, and

1 = µ1 ≥ µ2 ≥ · · · ≥ 0 be the eigenvalues of P . Then 1−µ2 =
1
2dλ2. We say that a sequence of

graphs G form an expander sequence if 1− µ2(G) ≥ c for some constant c > 0, i.e. λ2 = Θ(d).
We often consider the modification of our processes where we replace random walk steps by

lazy random walk steps. By suppressing the lazy steps in which a particle does not move we
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obtain a copy of the original process. By Chernoff bounds, with high probability the number of
lazy steps and normal steps are asymptotically equal, so this modification essentially doubles
the equilibrium time. We refer to a particle ”moving” if it is is selected to take a step of the
lazy random walk, even if that step has no effect.

Throughout the paper, our main focus is on systems of discrete-time random walks where
exactly one particle is selected to move at each discrete time. We refer to a single step of this
process as a “time step”. For the purposes of the proofs, we vary this in two ways. First, and
most commonly, we consider two linked copies of this process, where in each time step either
one particle moves in each copy (in which case the two moving particles correspond), or one
particle moves in one copy and nothing happens in the other. We sometimes refer to this as
“fake time”, with “real time” being the number of movements that have occurred in the primary
copy. We ensure that a movement occurring in both copies has constant probability, so that
“real time” and “fake time” differ only by a constant factor with high probability.

Secondly, we occasionally (see Lemmas 7.5 and 7.8 and the proof of Theorem 1.5) approxi-
mate by a continuous-time process where particles independently take (lazy) random walk steps
at given rates (in order to remove dependencies), and then discretise by considering the positions
of particles at integer times. For clarity, we refer to these discrete transitions, during which
more than one particle might move, and an individual particle might move more than once, as
“time intervals”. Each time interval then corresponds to as many time steps as movements that
occur in that interval.

We use standard asymptotic notation throughout and suppress notation for rounding to
integers where it does not affect the argument.
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Part I

General models

In this part we prove our results on general agential dissipative models. We start in Section
2 by proving our general upper bound (Theorem 1.4), via the Moving Target Lemma (Lemma
2.1) that will prove to be a useful tool throughout the paper. In Section 3 we introduce the
Poissonised model that will also be frequently useful, and apply it to prove our result on lonely
walkers (Theorem 1.5), which easily implies Corollary 1.6, and so the lower bounds in Corollary
1.7. The remainder of the part treats some special models. In Section 4 we apply various
results on hitting times and toppling of ‘abelian sandpiles’ to analyse the worst-case expected
extinction time (Proposition 1.3) and the particle-hole model (Theorem 1.2 on stationary reds).
We conclude the part in Section 5 by proving Theorem 1.8 on the predator-prey model with
few predators.

2 Hitting moving targets

In this section we prove our main upper bound for general models (Theorem 1.4). The key lemma
is the following result on an approximately stationary random walk hitting a moving target.
Intuitively, such a walk should hit a target k-set with probability O(k/n), so the probability of
missing the target sn/k times should decay exponentially in s. However, the hitting events are
not independent, so the idea of the proof is to show that conditioning on missing a target only
increases the L2 distance to stationarity by a constant factor, which is counterbalanced by a
constant number of random walk steps before the next target is considered.

Lemma 2.1. (Moving Target Lemma) Let G be a regular graph on n vertices and k, r, s be
positive integers with k ≤ n/8 and µ2(G)2r < 1/17. Suppose A0, A1, . . . are deterministic sets
of k vertices. Let a particle p follow a lazy random walk v0, v1, . . . on G, where∑

v∈V (G)

(P(v0 = v)− 1/n)2 ≤ k

4n2
. (1)

For each i let Ei be the event vir ∈ Air and let Xi be the event that Ej does not hold for any
j < i. Let ℓ := ⌈6n/k⌉. Then e−18s ≤ P(Xsℓ) ≤ e−3s.

Remark. When applying Lemma 2.1, we will be interested in whether the particle p hits some
other set of particles, located at the target set Ai at step i. This can be reduced to the setting of
the lemma by revealing the times at which each particle moves and all positions and movements
of all particles other than p. The only randomness is then in the random walk followed by p,
and the corresponding target sets Ai are deterministic conditional on the revealed randomness.

Proof. We will prove the following claim for each i:

k

2n
≤ P(Ei | Xi) ≤

3k

2n
. (2)

This will suffice to prove the lemma, using P(Xsℓ) =
∏sℓ

i=0 P(Ec
i | Xi) and e−2t ≤ 1 − t ≤ e−t

for t ∈ [0, 1/2]. To prove the claim, it suffices to show that∑
v∈V (G)

(P(vir = v | Xi)− 1/n)2 ≤ k

4n2
. (3)

10



Indeed, if (2) failed then the triangle inequality would give∑
v∈Air

∣∣∣∣P(vir = v | Xi)−
1

n

∣∣∣∣ > k

2n
,

but this contradicts (3) by Cauchy–Schwarz.
It remains to show (3). We use induction on i. It holds for i = 0 by assumption. Now

suppose inductively that it holds for some i ≥ 0. For each j = 0, . . . , r, let

dj =
∑

v∈V (G)

(P(vir+j = v | Xi+1)− 1/n)2.

Writing qj for the vector of P(vir+j = v | Xi+1) for v ∈ V (G), we have qj = P qj−1, for P
as in Section 1.7. Note that P has an orthogonal basis of eigenvectors z1, . . . , zn, where the
Perron–Frobenius eigenvector z1 has all entries 1/n. Since dj = ∥qj−z1∥2, and qj−1 ·z1 = ∥z1∥2,
it follows that dj ≤ µ2

2dj−1. As Xi+1 ⇒ Ec
i ⇒ vir /∈ Air, we have

P(vir = v | Xi+1) =
P(vir = v | Xi)

P(Ec
i | Xi)

1v ̸∈Air
,

so d0 =
k

n2
+

∑
v ̸∈Air

(
P(vir = v | Xi)

P(Ec
i | Xi)

− 1

n

)2

. (4)

We partition V (G) \Air as (U−, U+), where U− =
{
v : P(vir=v|Xi)

P(Ec
i |Xi)

< 1/n
}
. Now

∑
v∈U−

(
P(vir = v | Xi)

P(Ec
i | Xi)

− 1

n

)2

≤
∑
v∈U−

(
P(vir = v | Xi)−

1

n

)2

≤ k

4n2
(5)

by the inductive hypothesis (3). We also have P(Ec
j | X)−1 ≤ (1 − 3k/2n)−1 ≤ 1 + 2k/n, by

(2), which follows from the inductive hypothesis (3). For any v ∈ U+, we consider

(apv − 1/n)2 − a2(pv − 1/n)2 =
a− 1

n

(
2apv −

a+ 1

n

)
<

2k

n2
· 5pv

4

with a = P(Ec
j | X)−1 ≤ 1 + 2k/n and pv = P(vir = v | Xi). Summing over v, using

∑
pv = 1

and
∑

v(pv − 1/n)2 ≤ k
4n2 by (3), we deduce

∑
v∈U+

(
P(vir = v | Xi)

P(Ec
i | Xi)

− 1

n

)2

<

(
1 +

2k

n

)2 k

4n2
+

5k

2n2
<

3k

n2
. (6)

Combining (4), (5) and (6) gives d0 ≤ 17k
4n2 . As µ2(G)2r < 1/17, we deduce dr ≤ k

4n2 , i.e. (3)
holds for i+ 1, as required.

Our next lemma provides a useful property of dissipative agential models. We require the
following definition. Let ≺ be a total ordering on the ephemeral types. We say ≺ is an ephemeral
ordering if for any ephemeral type x, no particle can become type x after all ephemeral types
prior to x in ≺ are eliminated.

Lemma 2.2. Any dissipative agential particle system has an ephemeral ordering.

11



Proof. Consider any dissipative agential particle system. Recall that for such systems every
reaction involves one persistent type and one ephemeral type. We define a relation ≺ on
ephemeral types as follows. If x and y are ephemeral types then x ≺ y if there is some effective
reaction with input including x and output including y. We will show that ≺ can be extended
to a total ordering, which will then be the required ephemeral ordering, as after all types prior
to x have been eliminated then all output ephemeral particles must come after x.

First we note that ≺ is irreflexive, i.e. we cannot have x ≺ x. Indeed, we would have an
effective reaction with input {A, x} for some persistent type A and output including x but not
A (as the system is dissipative). However, repeating this reaction can eliminate A, contradicting
persistence. It remains to show that ≺ has no directed cycles, i.e. we cannot find ephemeral
types x1, . . . , xr such that x1 ≺ · · · ≺ xr ≺ x1. Suppose that such a cycle exists, where for
each i there is an effective reaction with input {Ai, xi} for some persistent type Ai and output
including xi+1 (where xr+1 := x1). From any starting configuration with at least one particle
of type x1, we can invoke these reactions in order (all Ai are available by persistence). After
these reactions, the total energy of ephemeral particles has not decreased, whereas the total
energy has decreased (as the system is dissipative), so the total energy of persistent particles
has decreased. However, repeating this cycle will then decrease the energy of persistent particles
until some persistent type is eliminated, which is a contradiction.

Before proving the main result of the section, we pause to collect some standard facts on
mixing of random walks on expanders. Recall that P = 1

2I + 1
2dA is the transition matrix of

the lazy random walk on G, which is a d-regular connected graph on n vertices with eigenvalues
1 = µ1 ≥ µ2 ≥ · · · ≥ 0. Thus P t

uv for any vertices u, v is the probability that the lazy random
walk started at u arrives at v at time t. By a simple calculation (see e.g. [35, (3.1)], noting that
the stationary distribution is uniform),

|P t
uv − 1/n| ≤ µt

2. (7)

Thus the mixing time is O(log n). To be precise, for t ≥ 3 logn
− log µ2

we have

1

n
− 1

n3
≤ P t

uv ≤ 1

n
+

1

n3
. (8)

We conclude this section by proving our main upper bound on general models.

Proof of Theorem 1.4. Let G be a graph on n vertices from a regular expander sequence. Con-
sider any dissipative agential particle system on G starting from any configuration with at most
n particles. As no reaction between persistent types is possible, to bound the equilibrium time
it suffices to prove that in time O(n log n) all ephemeral types are completely eliminated (with
high probability and in expectation). As noted above, we can consider the modified process
with lazy random walks.

We consider the ephemeral types according to the ephemeral ordering provided by Lemma
2.2. It suffices to show for each type x in the ordering that, starting from any configuration
where all types prior to x have been eliminated, with high probability and in expectation in
time O(n log n), either (a) all particles of type x react effectively, or (b) there are at least cn
effective reactions, for some fixed c > 0. This indeed suffices, as option (a) can only occur once
for each ephemeral type and option (b) can only occur O(1) times for a dissipative system. We
fix some type A with some positive probability of an effective reaction when meeting x; note
that A must be persistent.

We first consider a ‘mixing phase’, in which we run the process for time T1 = K1n log n,
for some large constant K1. For the analysis, we consider a parallel system of non-interacting
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‘fake’ particles, starting in the same positions as the current particles, and maintain a partial
pairing between the true particles and the fake particles (initially a complete pairing with each
true particle paired to the fake particle starting at the same vertex). Paired particles become
unpaired if the true particle in the pair participates in an effective reaction. In each step,
we select a particle to take a random walk step with probability proportional to its speed (as
described in Section 1.2), where we simultaneously consider true and fake particles, but count
paired particles as a single particle. If a pair is selected then they take the same random walk
step in both systems. If an unpaired particle from one system is selected then the other system
ignores this step. We note that this coupling gives the correct marginal distribution for the true
system.

At any step, by persistence of A, for some fixed α > 0 we can assume there are at least αn
paired type A particles (otherwise there are αn effective reactions, so option (b) holds). There
is some constant C depending on the model such that there can be at most Cn particles by the
dissipative property. We say that a paired type A particle is visible if at least α/2C proportion
of the particles at its site (including itself) are paired type A particles. Then there are at least
αn/2 visible paired type A particles.

Throughout, the true and fake populations both have Θ(n) particles (by persistence), so
both take Θ(n log n) steps during the mixing phase. (Using the assumption that the speeds are
fixed independently of n; henceforth this will not be explicitly mentioned.) Also, by any time
t = Ω(n log n), with high probability each fake particle takes Θ(log n) steps. Conditional on the
initial locations of the fake particles, and the number of random walk steps each has taken, all
being Θ(log n), their locations are independent random variables and approximately uniform in
the sense of (8).

Next we let ε = zα/3, with z > 0 being a lower bound on the probability that a type x
particle will have an effective reaction with a visible paired type A particle when it arrives at
a site containing such a particle. We claim that for some η > 0, with high probability at each
time t with Ω(n log n) = t = O(n2), any set of εn paired type A particles occupies at least ηn
vertices. To see this, first note by (8) each paired particle is at any given site with probability
at most 2/n, independently given the above conditioning. Let Et be the event that there is
some set of ηn vertices that includes the locations at time t of at least εn particles. Then

P(Et) ≤
(
n

εn

)(
n

ηn

)
(2η)εn ≤ (exp(1 + η/ε)ε−1η1−η/ε)εn < ηεn/2

for η sufficiently small. The claim follows by a union bound over t.
Now we will consider the elimination of type x, via the Moving Target Lemma. We will show

that this occurs with high probability and in expectation by time T2 = K2n log n, for some large
constant K2. Fix any particle i of type x. We consider the particle system up to the stopping
time τ which is the minimum of T2 and the time at which i undergoes an effective reaction.
Thus i has not yet undergone an effective reaction before time τ . We need to bound P(τ = T2).
We reveal (a) which particle moves at each time step and (b) all movements and reactions not
involving i; thus the only remaining randomness is in the random walk and reactions of i. We
associate to every visible paired type A particle j independent Bernoulli random variables Zj

with probability z > 0, which we couple to the process so that if i meets j and this has not
previously occurred and Zj = 1 then an effective reaction occurs. By Chernoff bounds, with
high probability at all times t with Ω(n log n) = t = O(n2) there is some set of εn paired type
A particles j each having Zj = 1. By the previous claim, we can assume that these occupy at
least ηn vertices.

Now we apply Lemma 2.1, with k = ηn (we can assume η ≤ 1/8) and s = 2 log n, where
p = i and the sets Ai are the vertices occupied by the paired type A particles j with Zj = 1,
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as described above. We conclude that with probability 1 − O(n−6) within 12η−1 log n steps
taken by particle i it arrives at a vertex occupied by a particle with which it has an effective
reaction. Taking a union bound over i, with high probability every particle of type x reacts in
time Θ(n log n). Repeated trials give the same bound in expectation. As discussed above, we
accumulate O(1) such time periods, so this completes the proof.

3 Poissonised lonely walkers

In this section we prove our result on lonely walkers (Theorem 1.5), which easily implies Corol-
lary 1.6. We have previously noted that Corollary 1.7 is immediate from Theorem 1.4 and
Corollary 1.6. Next we show how Corollary 1.6 follows from Theorem 1.5.

Proof of Corollary 1.6 assuming Theorem 1.5. Let G be a regular graph on n vertices. Consider
any persistent particle system on G, where all types have the same speed, and the starting
locations of particles are independent and stationary. We couple this to a system of non-
interacting walks corresponding to fake particles as in the proof of Theorem 1.4, where the
starting locations are independent and stationary and we randomly assign types according to
the starting distribution. We consider the coupled process up to time 0.1n log n, noting that by
persistence both systems have Θ(n) particles at all times, so the true system takes Ω(n log n)
steps with high probability. By Theorem 1.5, with high probability there are ω(1) walks that
never met another walk. For any given type A of initial density c > 0, each such walk has
probability c of being assigned type A, so with high probability some such walk corresponds to
a surviving type A particle.

It remains to prove the lower bound on lonely walkers. The key idea is to remove depen-
dencies via the following Poisson approximation.

Poissonised model : We start Po(1.1) particles at each vertex independently. Each inde-
pendently takes random walk steps at rate 1/n, for time N := 0.11n log n. However, we then
discretise by considering the transitions between integer time points. Thus we divide into N
time intervals, and retain only the information of what movements occur in an interval. Note
that in each interval, each particle independently takes Po(1/n) random walk steps.

We note that the initial distribution of particles is stationary under these dynamics: at any
time there are Po(1.1) particles at each vertex independently. This follows from two well-known
properties of Poisson variables, used henceforth without further comment:

1. (Combining) If X,Y are independent Poissons then X + Y is Poisson.
2. (Splitting) If X is Poisson and Y ∼ Bin(X, p) then Y is Poisson.

Before starting the proof, we record a tail bound for Poisson variables from [13]:

P(Po(λ) ≥ r) ≤ exp(−r log(r/λ) + r − λ) ∀r > λ. (9)

Proof of Theorem 1.5. Let G be a regular graph on n vertices. Consider n independent random
walks, starting from stationarity, running for N ′ := 0.1n log n discrete time steps, with one walk
moving at each time step.

We attempt to couple this system to a subset of the particles of the Poissonised model
described above, as follows. First, if the Poissonised model has at least n particles, select n
of these particles uniformly at random, and independently of their movement. Then, for each
time interval, order the movements occurring in that interval uniformly at random. Now divide
into time steps such that exactly one selected particle moves in each time step. Provided the
n selected particles move at least N ′ times in the N time intervals, we can couple the particles
of the original process to the selected particles from the Poissonised model so that they follow
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the same movements for the first N ′ time steps of the latter. This coupling succeeds provided
it is possible to select n particles, and these made at least N ′ movements in N time intervals,
both of which happen with high probability.

It suffices to show that the Poissonised model with high probability has Ω(n3/4) particles that
have never met another particle, as then with high probability Ω(n3/4) of these were selected,
and correspond to walks in the original system that have never met any other walk.

For each particle and time interval of the Poissonised model, we define the vertices visited
by that particle in that interval to consist of the vertex occupied by that particle at the start of
that interval together every vertex that is the end of a step taken by that particle during that
interval, if any.

We say that two particles of the Poissonised model collide strongly if they are at the same
vertex at some integer time (i.e. at the start or end of some time interval). We say that they
collide weakly if they do not collide strongly, but there is some vertex visited by both particles
in the same time interval. For two particles to collide weakly, one of the following must occur
in some time interval:

• both particles move more than once;
• one particle moves more than once, visiting a vertex occupied by the other particle at the
start or end of the interval;

• both particles move exactly once, with the departure vertex of one being the arrival vertex
of the other.

We claim that with high probability only O(log n) particles have any weak collisions. To
see this, first note that P(Po(1/n) ≥ 2) = Θ(1/n2) and P(Po(1/n) ≥ 3) = Θ(1/n3). Thus with
high probability no particle ever moves more than twice in a single time interval, and there are
only O(log n) pairs (a, t) such that particle a moves twice at time t, with all such pairs being
disjoint (i.e. no repeated particles or times). We assume this is the case and reveal the pairs
(v, t) such that some particle visits vertex v while moving twice in the interval [t − 1, t]. By
independence, the total number of other particles at v either at time t or time t − 1, over all
such pairs (v, t), is Poisson with mean O(log n), so with high probability is O(log n) by (9).
Similarly, given that some particle moves from u to v in a given interval, the number of other
particles moving to u or from v in the same time interval, in total over all such moves, is with
high probability O(log n). The claim follows.

For each vertex v, let Av be the event that exactly one particle starts at v and it has no
strong collisions. Let X be the number of these events that occur. It suffices to show with
high probability X = Ω(n3/4). We will show that E(X) = Ω(n3/4) and Var(X) = Õ(E(X)) =
o(E(X)2), which will suffice by Chebyshev’s inequality.

We define a trajectory to be a sequence T = (v
(T )
0 , . . . , v

(T )
N ) of vertices. We say that a

particle follows trajectory T if for each integer time t its position at time t is v
(T )
t . We say

trajectories T and T ′ meet at an integer time t if particles following these trajectories occupy
the same position at time t but not at time t− 1. Thus particles collide strongly if and only if
their trajectories meet.

By construction of the Poissonised model
(a) each particle independently has some fixed probability of following T ,
(b) the number NT of particles following T is Po(wT ) for some real ‘weight’ wT , and
(c) the variables (NT )T are independent.

We call a trajectory valid if it has at most log n movements. By (9), the expected number of
particles following invalid trajectories is o(1), so we will ignore such trajectories, as with high
probability this does not affect the process.

Next we estimate E(X) =
∑

v P(Av). Fix v and consider the event that exactly one particle
starts at v and follows a trajectory T that moves at most 0.11 log n times. This has probability
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1.1 exp(−1.1)(1 − o(1)) ≥ exp(−1.1). We estimate the total weight of trajectories T ′ meeting
T as follows. For each time interval at which T moves, the total weight of trajectories T ′ that
meet T at the end of that interval is 1.1, so summing over at most 0.11 log n such intervals gives
weight at most 0.121 log n. For each time interval during which some T ′ moves to meet T at
the end of that interval, the total weight of such T ′ is at most 1.1(1−e−1/n) < 1.1/n. Summing
over at most 0.11n log n such intervals gives weight at most 0.121 log n. The total weight of such
T ′ is then at most 0.242 log n < 1

4 log n, so with probability Ω(n−1/4) no such trajectory has a

particle. Summing over v we obtain E(X) = Ω(n3/4).
It remains to bound Var(X). For each v, we partition Av into events Bv,T that exactly one

particle starts at v, it follows trajectory T , and no other particle meets it. Writing

Dv :=
∑
u

(P(Au | Av)− P(Au)) and Dv,T :=
∑
u

(P(Au | Bv,T )− P(Au)),

we have Var(X) =
∑
v

P(Av)Dv and Dv =
∑
u

∑
T

P(Bv,T | Av)Dv,T .

Thus Var(X)/E(X) is a convex combination of the Dv,T , so it suffices to show that each Dv,T =
o(E(X)). In fact, we will show Dv,T = O(log3 n).

To bound Dv,T , note that starting from the unconditional process, setting the number of
particles following T to 1, setting the number following any trajectory T ′ meeting T to 0, and
leaving all other trajectories unchanged, we obtain a process with the same law as the process
conditioned on Bv,T .

Now, in order for some Au to occur after these changes but not before, the unconditioned
process must have an occupied trajectory T ′ starting at u, such that T ′ meets some trajectory
T ′′ occupied in the unconditioned process but not after the changes, due to T ′′ meeting T . Thus
Dv,T is bounded by the sum over u of the probability that some such pair (T ′, T ′′) has particles
in both trajectories, which is the sum over such pairs of O(wT ′wT ′′).

To estimate this sum we introduce some further notation. We call a sequence S of positions

v
(S)
i , . . . , v

(S)
j with 0 < i < j a subtrajectory and say that a trajectory T is consistent with S if

v
(T )
t = v

(S)
t for all i ≤ t ≤ j. We write wS for the total weight of all trajectories consistent with

S. Also, we write w∗
S = wS(1− e−1/n) ∼ wS/n for the total weight of all trajectories consistent

with S that move in the time interval [i− 1, i].
We consider various cases for pairs (T ′, T ′′) as above. Suppose first that (a) T ′′ meets T ′

before it meets T , and (b) T ′ moves in the time interval immediately before it first meets T ′′.
Let t be the time when T ′ and T ′′ first meet, let S′ be the subtrajectory of T ′ from its start
at u up to time t, and let S′′ be the subtrajectory of T ′′ from t up to its first meeting with T .
We can bound the sum over such (T ′, T ′′) of wT ′wT ′′ by the sum over such (S′, S′′) of wS′wS′′ .
Now wS′wS′′ = 1.1wS , where S = S′ ◦S′′ is some subtrajectory from u to some vertex x visited
by T of some length k ≤ 2 log n. Note that S moves in the interval [t− 1, t] by (b), so there are
O(log n) choices for t. There are also O(log n) choices for each of x and k, so the total of such
wT ′wT ′′ is O(log3 n).

The remaining cases for (T ′, T ′′) are similar and also contribute O(log3 n). Indeed, suppose
next that again (a) T ′′ meets T ′ before it meets T , but now (b’) T ′ moves in the time interval
immediately before it first meets T ′′. Now there are O(n log n) choices for t (defined as before),
but we sum over wS′w∗

S′′ ∼ 1.1wS/n, so the bound is again O(log3 n). The final case is (a’) T ′′

meets T before it meets T ′. Here we consider S = S′ ◦ S′′ where S′ is the subtrajectory of T ′

from u to its first meeting with T ′′ and S′′ is the reverse of the subtrajectory of T ′′ from its first
meeting with T to its first meeting with T ′. This case is simpler than (a), as S must move in
the interval preceding the meeting of T ′ and T ′′, and again the bound is O(log3 n).

In conclusion, Dv,T = O(log3 n), so Var(X) = Õ(E(X)) = o(E(X)2), as required.
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4 Hitting times and toppling

In this section we analyse two problems on annihilation: the worst-case expected extinction time
(Proposition 1.3) and the particle-hole model (Theorem 1.2 on stationary reds). Both results
use results on hitting times: for the former we use a result of Coppersmith, Tetali and Winkler
[16] on meeting times for adversarially controlled random walks; for the latter we prove a lower
bound on the hitting time of a small set from a random position. For the particle-hole model,
we also need an interpretation of the model as an ‘abelian sandpile’, meaning that the order in
which blues are ‘toppled’ does not matter, and to devise a method for overcoming dependencies
between their initial positions.

For our bounds on the worst-case expected extinction time, we consider adversarial meeting
times, defined as follows. Let G be a graph. Start with two particles, one at some vertex x
and another at some vertex y. A strategy S is a possibly random rule that decides for each
possible history of the process which particle should take a random walk step. The meeting
time MS(x, y) is the expected number of steps until the tokens meet. We use the following
consequence of [16, Theorem 2]:

MS(x, y) ≤ 2Hmax(G). (10)

Proof of Proposition 1.3. Fix any graph G. For the lower bound, we consider p = 0, i.e. sta-
tionary reds. Let x and y be vertices such that Hmax(G) = Hx(y). We consider the starting
configuration with k blue particles on x and k red particles on y. Then the extinction time is
the sum of k variables each with expectation Hx(y), so has expectation kHmax(G).

For the upper bound, we consider an arbitrary partition of the particles into k oppositely
coloured pairs. For each pair, we count the total number of steps taken by that pair until at
least one of them is destroyed. This is bounded by a meeting time MS(x, y), where one particle
starts at x and one at y, with the strategy that at each time step red moves with probability
p and blue moves with probability 1 − p. By (10) we have MS(x, y) ≤ 2Hmax(G). After each
annihilation, if this involves the destruction of two particles from different pairs then we create
a new pair consisting of the two remaining particles from the previous pairs.

Since the number of particles decreases by 2 each time a new pair is created, at most k − 1
new pairs are created, and so there are at most 2k−1 pairs in total. Each step in the process is
counted by some pair, and the expected number of steps taken by each pair is at most 2Hmax(G),
so the expected extinction time is less than 4kHmax(G).

Now we consider the case of stationary reds, i.e p = 0. The abelian property for this case is
discussed in [10], using an alternative ‘site-wise randomness’ construction of the process. Each
vertex is first equipped with a fixed list of instructions, where each instruction moves a particle
to some given adjacent vertex, and each instruction is sampled independently at random. We
‘topple’ a site by performing the first unused instruction in its list. A sequence α of sites is a
legal toppling sequence if each instruction can be implemented, i.e. it topples a site with at least
one blue particle. A toppling sequence reaches equilibrium if it removes all blue particles. For
a vertex v, we write mα(v) for the number of times v appears in α. The following is rephrased
from [10, Lemma 1]; for further details see [40, Section 3].

Lemma 4.1. Fix an initial configuration. If α and β are both legal toppling sequences that
reach equilibrium then mα(v) = mβ(v) for every vertex v.

In particular, the total number of movements does not depend on the order in which particles
move, and so it suffices to prove the lower bound for some choice of toppling sequence.

We also require the following lower bound on hitting times.
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Lemma 4.2. Suppose A and B are disjoint non-empty vertex sets in a regular graph G. Let
HA(B) be the first time a random walk, started from a uniformly random vertex of A, reaches

a vertex of B. Then P
(
HA ≥ |A|

2|B|
)
≥ 1/2 and E(HA(B)) ≥ |A|+|B|

2|B| .

Proof. Consider a stationary random walk X0, X1, . . . on G, i.e. a random walk starting from a
uniformly random vertex, which is therefore at a uniformly random vertex at each future step.
For any positive integer k, the expected number of visits to B by X1, . . . , Xk is k|B|/|V (G)|.
On the other hand, this is at least the probability that there is some such visit, which is at least
P(X0 ∈ A)P(HA(B) ≤ k), so we deduce P(HA(B) ≤ k) ≤ k|B|/|A|.

Taking k =
⌊ |A|
2|B|

⌋
proves the first statement.

For the second statement, noting that P(HA(B) = 0) = 0 as A ∩B = ∅, we have

E(HA(B)) =
∑
k≥0

P(HA(B) > k) ≥
⌊|A|/|B|⌋∑

k=0

(1− k|B|/|A|)

= (1 + ⌊|A|/|B|⌋)(2− ⌊|A|/|B|⌋|B|/|A|)/2.

Writing x = |A|/|B| − ⌊|A|/|B|⌋ ∈ [0, 1) we calculate

2|B|E(HA(B)) ≥ (|A|+ |B| − x|B|)(1 + x|B|/|A|) = |A|+ |B|+ x(1− x)|B|2/|A|.

This gives the required bound.

We will conclude this section by proving Theorem 1.2 on stationary reds. To illustrate
the idea of the proof, one can consider a variant model where the reds are positioned at some
arbitrary set S of n/2 vertices and the blues each independently start at a random vertex not in
S. We can construct a toppling sequence by considering each blue particle in turn and revealing
its starting location and random walk steps until it hits a red particle not hit by a previous blue.
The expected extinction time is thus the sum of hitting times HA(B) as in Lemma 4.2, with
|A| = n/2 and |B| = n/2, n/2 − 1, . . . , 1, which is Ω(n log n). For the actual model where we
start one blue from each vertex not in S we will need a further device to overcome dependencies.

Proof of Theorem 1.2. We show how to randomly construct a legal toppling sequence with at
least the required length, which is sufficient by Lemma 4.1. For ease of writing, we assume that
⌊n/2⌋ is even.

First we reveal the locations of half the blues, and the empty vertex if n is odd, giving a set
S1 with |S1| = ⌈n/4⌉. We build up a set S2, initially empty, as follows. We consider each blue
particle in S1 in turn and reveal its random walk steps until it reaches V (G)\ (S1∪S2), then we
add its current location to S2. This gives a legal sequence, since every vertex in S1 either has
one blue or is unoccupied, and every vertex in S2 either has two blues (if the particle originally
there was blue) or is unoccupied (if the particle originally there was red, and was annihilated
by the blue that reached it). After these steps we have a partition V (G) = S1 ∪ S2 ∪ U , where
S2 ∪ U originally contained ⌊n/4⌋ blue and ⌊n/2⌋ red particles, |S2| = ⌊n/4⌋ and |U | = ⌊n/2⌋.

Now we reveal the number k of blue particles that started in S2, thus also revealing that
⌊n/4⌋−k blue particles started in U , ⌊n/4⌋−k red particles started in S2 and ⌊n/2⌋−⌊n/4⌋+k
red particles started in U . We note that the above construction of S2 was independent of the
initial distribution of particles in S2∪U , so with high probability we have k = (1/12+o(1))n, and
given the value of k, the vertices of S2 that initially contained blue particles form a uniformly
random k-subset of S2. After following the toppling sequence above, each of these k vertices
contains two blue particles, and the remaining vertices in S2 are empty.
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Next we reveal the colours of all particles in U and for each blue particle in U in turn, move
that particle until it hits a red particle in U . This gives a legal sequence because U contains
more red than blue particles and every particle in S1 ∪ S2 is either unoccupied or contains two
blue particles. We also note that this process of eliminating particles in U is independent of
the locations of the k vertices with two blue particles. After this toppling sequence, we have a
partition S1 ∪ S2 ∪U1 ∪U2 where S1 ∪U1 is unoccupied, |S2| = ⌊n/4⌋ and k uniformly random
vertices of S2 have two blue particles each, and |U2| = 2k with one red particle at each vertex
in U2.

Now, as in the illustration before the proof, we repeat the following procedure. At each step,
we reveal an occupied vertex v in S2 uniformly at random, move one blue particle at v until it
hits a red particle not hit by a previous blue, then do the same for the other blue particle at v.
We remove v from S2 and the two hit vertices from U2, then continue to the next step.

Note that at each step we have |S2| > n/4 − k = (1 − o(1))n/6. As v is uniform in S2, by
Lemma 4.2 both of the blue particles at v hit U2 in expected time at least |U2|−1(1−o(1))n/12.

By linearity of expectation, we obtain E(T ) ≥ (1 − o(1))n
∑n/12

i=1 (12i)−1 > 0.08n log n for n
sufficiently large.

Furthermore, by Lemma 4.2, the hitting time for the first particle of a pair is at least
(1 − o(1))n|U2|−1/12 with probability at least 1/2, independently of earlier hitting times, so

we can write T ≥ (1 − o(1))nΣ, where Σ =
∑n/12

i=1 Xi(24i)
−1 with the Xi being independent

Bernoulli random variables with parameter 1/2. Now Σ has expectation 1
24 log n − O(1) and

variance O(1), so by Chebyshev’s inequality with high probability T > 0.04n log n.

5 Few predators

We conclude this part of the paper by proving Theorem 1.8 on the predator-prey model with
few predators.

Proof of Theorem 1.8. We start with the lower bound. Similarly to the proof of Theorem 1.4,
we will consider a parallel system of non-interacting ‘fake’ particles, where the fake particles
start from, and hence remain at, independent uniformly random positions. We will have 2k fake
predator particles and n−k fake prey particles, so that with high probability we can couple the
starting distributions of true and fake particles via a partial pairing between particles of the
same types in the same location, so that every true predator particle is paired with some fake
predator particle and n/2 true prey particles are each paired with fake prey particles. Here it is
necessary to have significantly more fake particles of each type than the number of true particles
we intend to pair, in order that the pairing succeeds with high probability despite the different
starting distributions of true and fake particles. For the lower bound, we need all true predator
particles to be paired, so that unpaired particles cannot destroy paired particles, but we do not
need all prey particles to be paired. The predator pairs remain paired throughout the process,
whereas a fake prey particle becomes unpaired if its paired true particle is eliminated. In each
step, we select a particle to take a random walk step with probability proportional to its speed,
where we simultaneously consider true and fake particles, but count paired particles as a single
particle. If a pair is selected then they take the same random walk step in both systems. If an
unpaired particle from one system is selected then the other system ignores this step.

We note that a paired true prey particle is destroyed only if its paired fake prey particle
meets a paired fake predator particle (since all true predator particles are paired). We define
the ‘fake time’ at any step as the total number of movements by fake particles and let Xt be
the number of meetings between opposite-type fake particles by fake time t. Writing sA, sB for
the speeds of predators and prey respectively, where sA+sB = 1, at any given step when a fake
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particle moves, as fake particles are independent and uniformly distributed, the probability of
Xt increasing is at most

ksA
n−k
n + (n− k)sB

k
n

ksA + (n− k)sB
=

k(n− k)/n

ksA + (n− k)sB
≤ k

nsB
.

Let τ be the stopping time with Xτ = n/4. Note that the true process has not yet reached
equilibrium, as at least n/4 paired true prey particles have not been eliminated. As E(Xt) ≤ kt

nsB
,

we have P(τ ≤ t) ≤ P(Xt ≥ n/4) ≤ 4kt
n2sB

by Markov’s inequality, so

E(τ) =
∑
t≥0

P(τ > t) ≥
⌊n2sB/4k⌋∑

t=0

(
1− 4tk

n2sB

)
≥ n2sB

8k
.

Write Mt be the number of movements by true particles by fake time t. Then Mτ is a lower
bound on the equilibrium time. To relate Mτ to τ , we note that for any t < τ , with probability
at least 1/4 the fake movement at fake time t is paired with a corresponding true movement.
Indeed, there are k paired predator particles and at least n/4 paired fake prey particles, so the

required probability is at least ksA+sBn/4
2ksA+sB(n−k) ≥ 1/4. It follows that Mt − t/4 is a submartingale

for t ≤ τ , so E(Mτ ) ≥ E(τ)/4 = Ω(n2/k).
Now we prove the upper bound, arguing similarly to the proof of Theorem 1.4. We divide

into rounds, where within each round with high probability at least half of the remaining prey
particles are destroyed. At the start of each round we couple to a system of fake non-interacting
particles, now starting each round with a bijective pairing as in the proof of Theorem 1.4.
Again, predator particles remain paired, but prey particles can become unpaired. The true and
fake populations differ by at most a factor of two before half of the remaining prey particles are
destroyed.

In each round i, writing mi for the number of remaining particles, we consider a mixing
phase of O(mi log n) steps and then O(min/k) additional steps for destroying prey particles.
Continuing to follow the proof of Theorem 1.4, with high probability each fake particle takes
Θ(log n) steps in the mixing phase, and conditional on the initial locations of the fake particles,
and the number of random walk steps each has taken, all being Θ(log n), their locations are
independent random variables and approximately uniform in the sense of (8).

We claim that with high probability at each time t in round i with Ω(mi log n) = t = O(n2),
the predator particles occupy at least k/4 positions. Indeed, if this fails at some time t then when
revealing the positions of predator particles one by one there are at least 3k/4 times when we
reveal a particle in one of at most k/4 occupied positions. Any particle has probability at most
2/n of being in some given position, so this event has probability at most 2k(k/2n)3k/4 = o(n−2)
for k ≥ 4. The claim follows by a union bound.

Now we apply Lemma 2.1 to each prey particle p in turn, with the moving target sets Ai

corresponding to k/4 locations of predator particles. For a suitable choice of constants, with
high probability each such p takes at least 12rn/k steps, so by Lemma 2.1 hits a predator particle
with probability at least 2/3, say, so with high probability at least half the prey particles are
destroyed in this round. We may rerun any unsuccessful rounds without changing the expected
time by more than a 1 + o(1) factor. Since mi ≤ 21−i(n − k) + k and O(log n) rounds are
needed, the total expected time is O(n log n+ k log2 n) = O(n log n) = O(n2/k) for mixing and
O(n2/k + n log n) = O(n2/k) for hitting, as required.
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Part II

Annihilation

In this second part of the paper we focus on the balanced two-type annihilation model, for
which the lack of persistence poses several additional challenges not seen when analysing the
models in the first part of the paper. Our main result here is Theorem 1.1. We divide the proof
into two sections, presenting the upper bound in Section 6 and the lower bound in Section 7.

6 Annihilation upper bound

In this section we prove the upper bound for Theorem 1.1. While our main interest is in the
two-type model, our proof also applies to the one-type model, and sometimes the one-type
model is useful for giving a simpler illustration of the proof ideas (the main simplification is
that here all particles move at the same speed). We deduce it from the following stronger result,
where we do not need any specific lower bound on the spectral gap, but get a constant that
depends on the spectral gap.

Theorem 6.1. For any µ > 0 there is C = C(µ) > 0 such that the following holds. Let G be
a regular graph on n vertices with 1 − µ2(G) > µ. Consider one-type annihilation or balanced
two-type annihilation with arbitrary speeds from an arbitrary valid initial configuration. Let T
be the extinction time. Then T ≤ Cn log n with high probability and in expectation.

It suffices to focus on the high probability statement in Theorem 6.1. Indeed, by increasing
C we will see that we can get any polynomial failure probability. To deduce the expectation
statement in Theorem 6.1, we combine this with the bound from Proposition 1.3 that the
expected extinction time from any configuration is O(nHmax(G)) = O(n2), as the maximum
hitting time of a regular expander is Θ(n) (see e.g. [35, Corollary 3.3]).

6.1 A Hall matching argument

Similarly to the proof of the upper bound in Theorem 1.8, the overall plan for the proof of the
upper bound in Theorem 6.1 is to divide into rounds, where in each round 1/4 of the remaining
particles are destroyed. Again we will use the Moving Target Lemma, but we cannot use the
simple sequential argument as for predator-prey, as for annihilation the targets disappear as
they are hit by other particles.

Instead, our plan will be to use a Hall matching argument to find a large collection of
(vertex-)disjoint pairs of oppositely coloured meeting fake particles, arguing that this implies
that many annihilations happen in the true process. Suppose there are k particles of each type
remaining. As before, we couple to a system of non-interacting fake particles, where initially
there is a bijective pairing of true and fake particles. Then we have the following simple fact.

Lemma 6.2. Suppose that at least ℓ disjoint pairs of oppositely coloured fake particles have met
after t fake steps. Then at least ℓ/2 particles of each type have been destroyed after at most t
true steps.

Proof. For any i ≤ t, the first i fake steps correspond to j true steps for some j ≤ i. If two fake
particles of opposite colours reach the same vertex after i fake steps, then either they annihilate
one another within j ≤ i ≤ t true steps, or at least one of them has been destroyed before that
point. Thus we can choose at least one particle from each pair which is destroyed within t true
steps.
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To find the disjoint pairs assumed in Lemma 6.2, we will consider an auxiliary bipartite
graph where edges represent meeting pairs of oppositely coloured fake particles, to which we
will apply the following version of Hall’s theorem (see e.g. [5, III.3, Corollary 9]).

Theorem 6.3. Let H be a bipartite graph with parts A and B. Suppose that any S ⊆ A has at
least |S| − d neighbours in B. Then H contains at least |A| − d disjoint edges.

We now come to the main lemma of this subsection, in which we apply Hall Matching and
the Moving Target Lemma to find disjoint pairs as in Lemma 6.2, provided the red particles are
sufficiently spread out and the blue particles move sufficiently many times.

Lemma 6.4. Let G be a regular graph on n vertices, 0 < c ≤ 1/4 and r, s, k be positive integers
with k ≤ n/2 and µ2(G)2r < 1/17. Consider a system of at least k red particles and at least k
blue particles all following non-interacting lazy random walks on G, with one particle moving

at each time step. Suppose the initial positions X
(0)
i of the blue particles are independent and

satisfy ∑
v∈V (G)

(P(X(0)
i = v)− 1/n)2 ≤ ck

4n2
.

Then with probability at least 1− 0.8sk/4 there are
(i) at most 3k/4 blue particles that move at least 6nrs/(ck) times, or
(ii) at least k/2 red particles at some time occupying a set of fewer than ck vertices, or
(iii) at least k/2 meetings of disjoint pairs of oppositely coloured particles.

Proof. We can assume that there are exactly k particles of each colour, by restricting attention
to an arbitrary set of k red particles and the k blue particles with the most movements. We
reveal the times at which each particle moves and the position of the red particles at each time.
By independence of the initial positions of the walks, the positions of the blue particles at each
time are independent conditional on the times at which each walk moves. Thus the events of
different blue particles hitting any subset of the red particles are independent conditional on
the positions of the red particles at each time.

We will bound the probability that events (i), (ii) and (iii) all fail. To do so, we estimate
the probability of the event (iii’) that one cannot find a subset A of k/2 red particles and a
subset B of k/2 blue particles with no meeting between a particle in A and a particle in B. By
Theorem 6.3 event (iii’) implies event (iii). We will show that when events (i) and (ii) fail then
it is very unlikely that event (iii’) fails.

Fix some A and B as above. As event (ii) fails, at each time i we can fix a ‘target’ set
Ai of ck vertices which are occupied by particles in A at time t′. We will apply Lemma 2.1
with these target sets (replacing k by ck), which are likely to hit by particles in B moving at
least ℓrs = 6nrs/(ck) times. As event (i) fails, the subset B′ of such particles in B has size
|B′| ≥ k/4. Applying Lemma 2.1, each blue particle in B′ hits some At′ with probability at
least 1− e−3s > 1− 20−s. Thus the probability that the particles in A and B do not meet is at
most 20−sk/2. Since there are at most 4k choices for the sets A and B, the failure probability is
at most 4k/20sk/2 ≤ 0.8sk/2.

In order to apply Lemma 6.4, we will repeatedly need to show that most of the blues move
sufficiently many times in some period.

Lemma 6.5. Suppose there are k ≤ n/2 particles of each type. Fix r′ ≥ 1. Consider 96nr′

steps of the fake process. Then with probability 1 − o(n−4), at least 3k/4 blue particles each
move at least 24nr′/k times.
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Proof. We will bound the probability that there is some set of k/4 blue particles where each

moves at most 24nr′/k times. There are at most
(n/2
n/8

)
≤ (4e)n/4 sets of k/4 blue particles. The

total number of movements made by such a set is binomially distributed with mean at least
12nr′, since p ≥ 1/2. By a standard Chernoff bound, this is at least 6nr′ with probability at
least 1− exp(−3n/2). If it is, then at least one of those particles moves at least 24nr′/k times.
The result follows from a union bound, since (4e)n/4 exp(−3n/2) = o(n−4).

We conclude this section by recording a bound on how many fake steps are needed in the
mixing phase of each round. Depending on the parameters, we may have enough time to mix
all particles or only time to mix the faster blue particles.

Lemma 6.6. Fix α > 0, let β = β(α) > 1 with α(β − log β − 1) = 4, and define

tbluek := ⌈2αβk log n⌉ and tallk := ⌈p−1αβk log n⌉. (11)

Consider the fake process with k ≤ n/2 particles of each colour. Then with probability at least
1− n−3,
(i) by time tbluek each blue particle has moved at least α log n times,
(ii) by time tallk every particle has moved at least α log n times.

Proof. We consider a union bound of probabilities that some given particle moves fewer than
α log n times. This is at most the probability that a binomial random variable with mean
µ ≥ αβ log n (in the first case, using 1− p ≥ 1/2) attains a value less than µ/β. By a standard
Chernoff bound, using the definition of β, this has probability at most (e1/β−1β1/β)µ ≤ n−4.

When applying Lemma 6.6 we shall always take the specific value α = −3/ logµ2 = Θ(1)
required to achieve approximate uniform distribution as in (8).

6.2 Bounded speed ratio

Here we prove Theorem 6.1 under the simplifying assumption of bounded speed ratio, i.e. the red
particles move at a speed p ∈ [c, 1/2] for some fixed c > 0. This allows us to give a streamlined
proof showcasing the main technique, to be followed by a full proof for all p in Section 6.3.

As discussed above, our basic strategy is to divide into rounds, in each of which we eliminate
1/4 of the remaining particles. Given a round that starts with k particles of each type, we will
use our usual coupling of true and fake particles to bound the time taken by the round by the
time for finding k/2 disjoint opposite-coloured meeting pairs of fake particles; this is sufficient
by Lemma 6.2 and achievable by Lemma 6.4.

We start with some basic reductions. We can assume that n is sufficiently large. We can
assume that at the start of any round k is at least some large constant, say 100. Indeed, consider
the process when only 100 particles of each colour remaining. Then we may mix all blues with
high probability in time O(log n), then wait until some blue has moved 6rn log n times, which
takes time O(n log n) with high probability. By Lemma 2.1 with k = 1, this blue hits any fixed
red particle with probability at least 1 − n−3. Repeating 100 times eliminates all remaining
particles in time O(n log n) with suitable probability.

To bound the time taken by any given round, we think of it as broken up into phases: first a
‘mixing phase’ of tallk fake steps, as defined in Lemma 6.6, followed by a ‘hitting phase’ of 96nr
fake steps, with r as in Lemma 6.4. The round ends as soon as k/4 particles of each colour have
been destroyed (which may happen during the mixing phase). By Lemma 6.6, if the mixing
phase runs to completion then with probability at least 1−n−3 mixing ‘succeeds’, meaning that
every particle moves at least α log n times.
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Assuming that mixing succeeds, we reveal the positions of the blues before the mixing phase
and the number of times each has moved within it. Then the conditional distribution of the
blues is independent with each being approximately uniform as in (8), which is easily good
enough to apply Lemma 6.4. This tells us that during the hitting phase, with probability at
least 1− 0.8k/4 there are
(i) at most 3k/4 fake blue particles that move at least 24nr/k times, or
(ii) at least k/2 fake red particles at some time occupying a set of fewer than k/8 vertices, or
(iii) at least k/2 meetings of disjoint pairs of oppositely coloured fake particles.
Here (iii) is our desired outcome for hitting to ‘succeed’, and we can assume that (i) does not
hold by Lemma 6.5. Thus we need to bound the probability of (ii), as follows.

Lemma 6.7. At any step in the hitting phase, the probability that there is some set of k/2 fake
red particles occupying fewer than k/8 vertices is at most (1.5k/n)3k/8.

Proof. By approximate uniformity as in (8), a union bound over
(

k
k/2

)
choices for the set of

particles and
(

n
k/8

)
choices for the set of vertices gives

(
k

k/2

)(
n

k/8

)(
k

8

(
1

n
+

1

n3

))k/2

≤ (1 +O(k/n2))2k
(
8en

k

)k/8( k

8n

)k/2

≤ 2

(
ek3

2n3

)k/8

≤ (1.5k/n)3k/8, as 100 ≤ k ≤ n/2.

For 100 ≤ k ≤ n/2, the bound in Lemma 6.7 is maximised at k = 100, and is easily O(n−50),
say. Thus with suitably high probability mixing and hitting succeed throughout the process.
There are O(log n) rounds, so the total time spent in hitting phases is at most O(n log n).
The total time spent in mixing phases is bounded by the sum of tallk := ⌈p−1αβk log n⌉ for
k = (3/4)in, i ≥ 0. This is also O(n log n), by our assumption that p is bounded away from
zero. This completes the proof of Theorem 6.1 in this case.

6.3 General speeds

Now we will prove Theorem 6.1 in full generality. Our approach is similar to that for the case of
bounded speed ratio, except that we may not have time to mix the slower red particles, so we
need some other way to argue that they are well-distributed. We consider up to three separate
regimes according to the number of remaining particles. In the first ‘dense’ regime, the red
particles will be well-distributed because most of them have not had enough time to move from
their starting locations. In the third ‘sparse’ regime, there are so few particles that we have
time to mix the reds. In the second ‘intermediate’ regime, neither of these approaches works,
but as it is relatively narrow we can afford a worse distribution of the red particles.

We define these regimes in terms of the number k of remaining particles in each colour,
as follows. The first regime covers all k greater than k∗ := max{c1pn log n, 20 log n}, for some
constant c1 depending on the spectral gap of G to be defined below, the third regime covers all
k ≤ pn, and the second regime covers all intermediate values. We note that over the second
regime k varies by a factor at most c1 log n (since we shall have c1 ≥ 20).

We start by indicating how the third regime is handled by the same proof as in the previous
subsection. Recall that in the round starting with k particles of each colour, we reduce from k
to 3k/4, analysing the time taken by considering a mixing phase of fake time tallk followed by
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a hitting phase of fake time 96nr. We showed that with suitably high probability mixing and
hitting succeed throughout the process. There are O(log n) rounds, so the total time spent in
hitting phases is at most O(n log n). The total time spent in mixing phases is bounded by the
sum of tallk = ⌈p−1αβk log n⌉ for k = (3/4)ipn, i ≥ 0, which is also O(n log n), as required. Thus
with high probability in the third regime extinction occurs in time O(n log n).

For the first regime, we use the same analysis, except that we can only allow a mixing phase
of fake time tbluek . This ensures that the total time spent in mixing phases is bounded by the
sum of tbluek = ⌈2αβk log n⌉ for k = (3/4)in, i ≥ 0, which is O(n log n). Now success of the
mixing phase means that every fake blue particle moves αn times. The previous proof will still
show that mixing and hitting succeed with high probability if we can find a replacement for
Lemma 6.7. This is achieved by the following lemma, which implies that with high probability
throughout the first regime there is no set of k/2 red particles occupying a set of fewer than
k/4 vertices.

Lemma 6.8. The probability that more than k∗/4 red particles move in time c1
20n log n is at

most n−4.

Proof. A standard Chernoff bound gives that for a binomial random variable with mean at
most a/5 has value exceeding a with probability at most (e4/5/5)a < e−4a/5. Now the number
of movements of red particles in c1

20n log n time steps is binomial, with expectation c1
20pn log n ≤

k∗/20. Thus this exceeds k∗/4 with probability at most e−k∗/5, and since also k∗ ≥ 20 log n,
this gives the desired bound.

Choosing c1 ≥ 20(8αβ+96r/ log(4/3)) we see that in time c1
20n log n the first regime succeeds

with high probability, meaning that we reduce k to k∗.

6.3.1 The intermediate regime

The main challenge of the intermediate regime is that we cannot rule out the admittedly im-
plausible scenario that the slow red particles huddle together on a few sites that are hard for
the blue particles to hit. We start with a lemma showing that at least this scenario cannot be
too extreme. (A similar bound appears for the complete graph in [12], but their argument is
specific to that case.)

Lemma 6.9. Position one red particle at every vertex of a regular graph of order n. Consider
a process where in each step an arbitrary (possibly empty) set of red particles is removed and
then a uniformly random particle takes a random walk step. Then with probability 1−O(n−3),
no vertex has more than 8 log n/ log logn red particles at any point in the first n2 steps.

The intended application of this lemma is that at time 0 all of the ‘red’ particles that
should be blue are removed, and thereafter red particles will be removed by annihilation in
some random way for which we consider an adversarial model. It is an immediate consequence
of the following lemma, as by Chernoff bounds with high probability every particle moves at
least n2 times in the first n3 steps if we ignore removals, so no matter how the removals are
chosen these n3 steps cover at least n2 steps (or all the steps, if fewer).

Lemma 6.10. Position one red particle at every vertex of a regular graph of order n. Consider
a process where in each step a uniformly random particle takes a random walk step. Then with
probability 1 − O(n−3), no vertex has more than 8 log n/ log log n red particles at any point in
the first n3 steps.

25



Proof. We will find it more convenient to analyse a similar process with n green particles
independently positioned at uniformly random vertices. We say that a red particle is ‘covered’
if at least one green particle was placed at its starting position; note that each red particle
is uncovered with probability (1 − 1/n)n < 1/e. Pair each covered red particle with a green
particle starting in the same position. We couple the green process to the red process as follows.
If a covered red particle is selected to move at a given time step, select the corresponding green
particle and move it to the same vertex. Otherwise, select and move an unpaired green vertex
uniformly at random.

Suppose that k red particles occupy a given vertex at a given time step. Since the expected
number of these that are uncovered is at most k/e, Markov’s inequality gives a constant prob-
ability that at most k/2 of them are uncovered, and hence that at least k/2 green particles
occupy that vertex at that time. Thus it suffices to prove that the probability of some vertex
having more than 8 log n/ log log n green particles at any time step is O(n−3).

Since the green particles are in the stationary distribution, for any vertex v and time t the
number of green particles at v at time t has distribution Bin(n, 1/n). For any r ≥ 3 we have

P(Bin(n, 1/n) = r) < r!−1(1− 1/n)n < P(Po(1) = r),

so applying (9) with r = 8 log n/ log log n and λ = 1 gives the probability bound

exp

(
−8 log n

log log n
(log log n− log log log n+ log 8)− 1

)
= n−8+o(1).

The result follows from a union bound over all vertices v and t ≤ n3.

Now we proceed to the analysis of the process. As in the first regime, in each round we
have a mixing phase of fake time tbluek . Again mixing succeeds with high probability, so we can
assume that every fake blue moves at least αn times in each round. For the hitting phases, we
do not attempt to show that each is small but instead focus on bounding their total time.

We will apply Lemma 6.4 to bound the hitting phases, replacing our previous c = 1/4 in (ii)
by ck = max{ log logn

16 logn , 1/k}. This is justified by Lemma 6.9: we can assume that at no point do

we ever have more than 8 logn
log logn red particles at a given vertex. We say k is ‘small’ if ck = 1/k

and ‘large’ otherwise. A convenient unit for measuring time will be B := 1920rn log n/ log logn;
we will call a period of B fake steps a ‘block’. For (i), in any s′ blocks, by Lemma 6.5 at least

3k/4 fake blue particles each move at least s′B/4k = 480nrs′ logn
k log logn times. If k is large, by Lemma

6.4 with s = 5s′, the probability of the hitting phase lasting for more than s′ blocks is at
most 0.85s

′k/4 < zs
′
, where z = exp(−4 logn

log logn). If k is small, we instead apply Lemma 6.4 with

s = ⌊80s
′ logn

log logn ⌋, and easily have 0.8sk/4 < zs
′
since k ≥ 20.

In other words, the number of blocks in any round is stochastically dominated by a geometric
random variable with parameter 1 − z, i.e. to bound the number of blocks in a round we
generate independent Bernoulli(z) variables until the first 0. Our bound for the total of the
hitting phases is B times the total number of Bernoulli variables needed across all rounds.
Since at most log4/3(c1 log n) rounds take place, the probability of needing more than m =
log4/3(c1 log n) + log log n Bernoulli variables is at most P(Bin(m, z) ≥ log logn), which can be

bounded by 2mzlog logn = Õ(n−4). Thus, with suitably high probability the total time for this
regime is O(B log logn) = O(n log n), as required.

7 Annihilation lower bound

In this final section of the paper, we conclude the proof of Theorem 1.1 by establishing the
lower bound.
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7.1 One-type annihilation

To illustrate the main ideas in a simpler setting, we start by considering one-type annihilation,
as follows.

Theorem 7.1. Let G be a regular graph on n vertices with spectral gap more than 1/3. Consider
one-type annihilation on G and let T be the time until only one particle remains. Then T ≥
cn log n with high probability and in expectation, where c is an absolute constant.

The main action in the proof will take place while the number k of remaining particles
satisfies n1−x ≥ k ≥ nx for some constant x ∈ (0, 1/2). The key step is to show that in this
regime there are constants c1, c2, c3 > 0 so that starting from any configuration A of k particles,
with probability at least c1 we need at least c2n steps to reduce the number of particles to c3k.
This will suffice to prove the result, as then with high probability Ω(log n) such intervals take
Ω(n) steps to traverse. The proof of this key step has three main ideas:

1. We consider a mixing phase (with the usual coupling of true and fake particles) and use
the explicit spectral gap to argue that only a small constant proportion of the particles
return to the starting set A during the mixing phase.

2. Considering the survival during the mixing phase of particles not returning to A, we note
that (a) not many can be annihilated by the few particles that do return to A, and show
that (b) annihilations between two particles both not returning to A can be bounded
similarly to those returning to A by a trajectory reversal argument.

3. Once we have enough surviving mixed particles we are essentially done, as then at each
step collisions occur with probability O(k/n), so with constant probability Ω(n) steps are
required for Ω(k) collisions.

Before starting to fill in the details of this sketch, we record some further facts on mixing and
hitting for random walks. We consider the lazy random walk X0, X1, . . . on some multigraph
on n′ vertices, with stationary distribution π and 1− µ2 bounded away from zero.

(a) The return time H+
v is the first positive time at which the walk started at X0 = v reaches

v; it has mean E(H+
v ) = 1/πv (see [2, Lemma 5 of Chapter 2]).

(b) A strong stationary stopping time τ is a stopping time such that Xτ is stationary and
independent of τ . By (8) and [31, Lemma 24.7] there is such τ with E(τ) = O(log n′). By
ignoring the first log2 n′ steps, there is such τ with τ ≥ log2 n′ and E(τ) = O(log2 n′).

(c) The expected hitting time of v starting from π is

Eπ(H(v)) = π−1
v Zvv, where Zvv :=

∑
t≥0

(P t
vv − πv) ≤ (1− µ2)

−1. (12)

Here the equality is [2, Lemma 11 of Chapter 2], and the inequality, noted in [14, Lemma
3], is immediate from |P t

vv − πv| ≤ µt
2, which is the general form of (7).

We also require some notation and a simple result for ‘collapsed chains’ (see [2, Section
7.3 of Chapter 2 and Corollary 27 of Chapter 3]). Given A ⊂ V (G), we write G/A for the
multigraph obtained by contracting A to a single vertex vA. This is defined on the vertex set
V (G/A) = (V (G) \A)∪ {vA}. For each x ∈ V (G) write xA = vA if x ∈ A or xA = x otherwise.
Then for each edge xy of G we have an edge xAyA of G/A, included with multiplicity and
allowing loops at vA. The variational characterisation of eigenvalues implies µ2(GA) ≤ µ2(G),
i.e. the spectral gap of GA is at least as good as that of G.

Throughout the remainder of this subsection we fix G as in Theorem 7.1. By decreasing c
we can assume that n is sufficiently large. We are now ready to implement the first part of the
above sketch, with the following definition and accompanying lemma.
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Definition 7.2. Given A ⊂ V (G) and a time T , we let pA,T be the probability that a lazy
random walk on G starting from the uniform distribution on A visits A before time T after at
least one non-lazy step.

Lemma 7.3. Fix x > 0 and A ⊂ V (G) with |A| < n1−x. Then pA,log2 n ≤ 2µ2 − 1 + o(1).

Proof. Let H+
A be the first return time to A of a lazy random walk starting from the uniform

distribution on A. We consider H∗
A defined in the same way except that we require at least one

non-lazy step. We claim that

E(H+
A ) = n/|A| and E(H∗

A) = 1 + 2n/|A|. (13)

To see this, we consider the natural coupling of such a random walk to a random walk in
G/A started from vA, observing that H+

A has the same distribution as H+
vA
. The stationary

probability of vA is |A|/n, so E(H+
A ) = E(H+

vA
) = n/|A|. Writing E for the event that the first

step is lazy, we have E(H+
A ) = E(H+

A1E)+E(H+
A1Ec) = 1

2 +E(H+
A1Ec). Also, H∗

A is obtained by
waiting for the first non-lazy step, which takes expected time 2, then adding E(H+

A1Ec |1Ec) =
2E(H+

A1Ec). Therefore E(H∗
A) = 2 + 2E(H+

A1Ec) = 2 + 2(E(H+
A )− 1/2) = 1 + 2n/|A|.

Now we let τ be a strong stationary stopping time with τ ≥ L := log2 n and E(τ) = O(L).
We consider the estimate

E(H∗
A) = E(H∗

A1H∗
A<L) + E(H∗

A1H∗
A≥L) ≤ L+ (1− pA,L)(E(τ) + (1− µ2)

−1n/|A|),

where for the second term, given that the return time is larger than L, we bound it by waiting
until time τ and then using (12). Combining with (13), as E(τ) = O(L) = o(n/|A|), we deduce
pA,L ≤ 2µ2 − 1 + o(1).

The next lemma implements the second part of the above sketch, in which we consider the
probability that a fixed particle starting at some v in A hits some other particle before either has
returned to A. For later use in analysing two-type annihilation, we prove a more general lemma
in which we only consider collisions with particles starting in some set B (this will correspond
later to the other colour).

Definition 7.4. Given B ⊂ V (G), v ∈ V (G) \B and a time T , we let pv,B,T be the probability
that a lazy random walk on G starting from v visits B before time T .

Lemma 7.5. Let C > 0, x ∈ (0, 1/2) and A ⊂ V (G) with nx < k = |A| < n1−x. Fix v ∈ A
and B ⊆ A \ {v}. One walker starts at each vertex of A and at each time step a randomly
selected walker takes a lazy random walk step on G. For each w ∈ B, let Ew be the event that
the walkers started from v and w collide within Tk steps, where T := C log n, with the former
not having reached B and the latter not having returned to B. Let X =

∑
w∈B 1Ew . Then

E(X) ≤ (1 + o(1))pv,B,3T .

Proof. As in Section 3, it will be convenient to consider a Poissonised model, where each particle
independently takes Po(1/k) lazy random walk steps in each time interval. Then with high
probability there are Tk movements within (1+o(1))Tk steps and each particle takes (1+o(1))T
steps. Let E′

w be the event that the particle started at v reaches B within 3T time intervals,
with w being the first vertex of B it reaches. Clearly pv,B,3T =

∑
w∈B P(E′

w), and so it is
sufficient to prove that P(Ew) ≤ (1 + o(1))P(E′

w) for each w ∈ B. Here we can replace Ew

by the same event with the additional restriction that neither particle moves away from the
collision site in the same time interval that the collision occurs, i.e. we may assume that the two
particles coincide at some integer time. Indeed, it is not hard to see that this change affects the
overall probability by a factor 1 +O(1/k) = 1 + o(1).
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Now we will implement the trajectory reversal strategy mentioned in the proof sketch. This
will let us compare P(Ew) with P(E′

w) indirectly via the following closely related ‘occupancy
variables’. We relate Ew to the variable Y , defined by considering the first 1.5T time intervals,
setting Y = 0 if there is no collision satisfying Ew, or otherwise considering the first such
collision, and letting Y be the number of time intervals that both particles remain at the collision
site. We claim that E(Y ) = (1− o(1))kP(Ew). This holds, as if a collision satisfying Ew occurs,
then it does so within time T , and within the remaining time period of Y the expected time
before either particle leaves is (1−o(1))k, as the rate of either particle leaving is (1/2)(1/k+1/k)
by Poisson splitting and combining. Similarly, we define Y ′ with E(Y ′) = (1− o(1))kP(E′

w) by
considering the first 3T time intervals, setting Y ′ = 0 if the walker started at v does not first
hit B at w, or otherwise letting Y ′ be the number of time intervals ending at an even time that
the walker remains at w after this first hit.

Now consider any trajectories S, S′ for the particles started at v, w that lead to some time
interval [t− 1, t] being counted in the random variable Y . Following S and then the reverse of
S′ gives a trajectory S′′ with P(S′′) = P(S&S′) that leads to [2t − 1, 2t] being counted for Y ′.
Summing over such trajectories we deduce E(Y ) ≤ E(Y ′), and so P(Ew) ≤ (1 + o(1))P(E′

w), as
required.

We conclude this section with the proof of the lower bound for one-type annihilation.

Proof of Theorem 7.1. Let G be a regular graph on n vertices with spectral gap more than 1/3,
i.e. µ2 = 2/3 − c for some c > 0. Consider one-type annihilation on G using lazy random
walks from any starting configuration and let T be the extinction time. We fix x ∈ (0, 1/2)
and consider the regime while the number k of remaining particles satisfies n1−x ≥ k ≥ nx. As
discussed at the beginning of the section, it suffices to show the following ‘key step’: in this
regime there are constants c1, c2, c3 > 0 so that starting from any configuration A of k particles,
with probability at least c1 we need at least c2n steps to reduce the number of particles to c3k.

Following the sketch at the beginning of the section, we consider a mixing phase of Θ(k log n)
steps (with the usual coupling of true and fake particles). With high probability each fake
particle takes Θ(log n) steps in this phase. By Lemma 7.3 the expected number of such particles
that return to A is at most (2µ2 − 1 + o(1))k = (1/3− 2c+ o(1))k. The same bound applies to
the number of particles annihilated by such particles. By Lemma 7.5, taking B = A \ {v} and
summing over v, the same bound applies to the expected number of such particles that collide
with another particle before either has returned to A. Excluding these three sets leaves a set of
particles surviving the mixing phase with expected size at least (6c− o(1))k. Letting E1 be the
event that at least 2ck particles survive the mixing phase, we have P(E1) > 2c.

After the mixing phase, at each time step we bound the probability of a collision of true
particles by the probability of a collision of fake particles, which is at most 2k/n, say. We let
E2 be the event that there are at least ck such collisions in the c2n/2 steps following the mixing
phase. Then P(E2) ≤ c by Markov’s inequality, so P(E1 ∩ Ec

2) > c. On this event, at least ck
true particles have survived, so in the c2n/2 steps following the mixing phase, by Chernoff, with
high probability there are at least c3n/4 steps by true particles. Thus we have established the
required key step with c1 = c3 = c and c2 = c3/4.

7.2 Two-type annihilation

Now we consider the lower bound for two-type annihilation, which introduces several complica-
tions not seen in the one-type model. Firstly, we need to adapt the previous argument to allow
for colours of differing speeds. Secondly, the potential to have multiple particles at the same
location causes two issues:
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1. The events that a first returns to A at the location of a given other particle b are not
disjoint for two different choices of b at the same vertex,

2. Our previous argument for particles escaping from A works for a particle chosen from a
uniformly random occupied site, so does not say much about escape of a uniformly random
particle if the particles are concentrated at ‘bad’ sites in A.

Our approach is to first consider representative walks obtained by starting a single particle
at each occupied site. The argument from the one-type model can be adapted to show that
with high probability a positive proportion of these representatives are unlikely to encounter
any opposite-coloured representatives in Ω(n) steps. The key idea is that we can then use
Reimer’s inequality [37] to argue that when the additional particles on multiply-occupied sites
are taken into account, an n−o(1) proportion of these particles still survive. While we cannot
afford repeated loss of an n−o(1) factor, we then show that the surviving particles are sufficiently
well-behaved that we can thereafter follow the approach used for the one-type process.

7.2.1 Very slow reds

Our argument requires an adaptation of the trajectory reversal argument in Lemma 7.5 which
breaks down when the red particles are very slow. We therefore start by disposing of the case
p ≤ n−2/3, which is not hard to handle more directly, and in fact our result here is stronger, as
no quantitative assumption about expansion is needed: it applies to any expander sequence.

The first observation for this regime is that with high probability at most n1/3 log2 n red
movements occur during the first n log n steps. We consider stages where k = nc particles of
each colour remain with c ≥ 1/2. If we have not yet taken enough steps for the required lower
bound then the red particles occupy at least (1−n−0.1)k distinct vertices. The following lemma
will therefore complete the proof for this regime.

Lemma 7.6. There exist constants c1, c2, c3 and n0 (depending only on µ2(G)) with the fol-
lowing property. Let n ≥ n0 and p ≤ n−2/3. Fix a starting state with k = nc particles of each
colour, where 1/2 ≤ c ≤ 3/4, arranged arbitrarily subject to having at least (1− 1/ log n)k ver-
tices occupied by red particles. Then with probability at least c1, at least c2n steps are required
to reduce to c3k particles of each colour.

The proof of Lemma 7.6 uses the following fact about independent Bernoulli random vari-
ables: if the expected number of successes is bounded, but the probability of at least one success
is high, then there must be some individual trial that has a high probability of success.

Lemma 7.7. Fix x ∈ (0, 1) and let p1, p2, . . . be any sequence satisfying 0 ≤ pi ≤ x for each i
and

∑
i pi ≤ y. Then

∏
i(1− pi) ≥ (1− x)y/x.

Proof. It is sufficient to show for any fixed ℓ ≥ y/x that
∏ℓ

i=1(1 − pi) ≥ (1 − x)y/x. Given ℓ,

by compactness, we can consider a sequence p1, p2, . . . that minimises
∏ℓ

i=1(1 − pi). Clearly∑ℓ
i=1 pi = y. Observe that if 0 < pi ≤ pj < x for some i ̸= j ∈ [ℓ] then we can increase the

product by replacing (pi, pj) by (pi − δ, pj + δ). Thus p1, p2, . . . can have at most one term not
equal to 0 or x. Writing α = y/x−⌊y/x⌋ we can assume that pi = x for i ≤ ⌊y/x⌋, p⌊y/x⌋+1 = αx
and pi = 0 for i > ⌊y/x⌋+ 1. Since 1− αx ≥ (1− x)α for x, α ∈ [0, 1], the result follows.

Proof of Lemma 7.6. With high probability at most k/ log n red movements occur in the next
n steps, so we may assume at least k − 2k/ log n red particles start at different vertices and do
not move. As in the proof for one-type annihilation, it is sufficient to show that with constant
probability a constant proportion of these survive the mixing phase.

The expansion condition implies that we may choose some constant q, depending only on the
spectral gap, such that at least 2/3 of the occupied vertices are ‘good’ in that a walker starting
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from that vertex will return to the occupied set within the mixing phase with probability at
most q. If a constant fraction of blues are in good spots, we are done, since this implies a
constant fraction of the blue particles, and hence a constant fraction of the red, will survive.
Otherwise almost all the blues are in bad spots, and there are at least twice as many good reds
as blue spots.

For each blue spot, there is at most one good red spot which has more than 1/2 probability
of being the first one hit. Each other good spot has at most probability (1 + q)/2 of being
hit at all – since it has at most probability q of being hit given that it is not the first one hit.
Moreover, the total over all good red spots of the probability of that spot being hit is at most
(1− q)−1, since this is a bound on the expected number of times a particle hits a good spot.

In particular, there are at least k/2 good red spots such that no individual blue has more
than (1 + q)/2 probability of reaching that spot. Note that (1− q)−1 is an upper bound on the
expected number of good red spots hit by any given blue particle. Thus at most k/4 good red
spots will be hit by more than 4(1− q)−1 blue particles in expectation.

Fix a red spot, and let (pi)
k
i=1 be the probabilities of each blue particle reaching that spot.

By the analysis above, there are at least k/4 red spots with the property that maxi pi ≤ (1+q)/2
and

∑
i pi ≤ 4(1− q)−1. It follows from Lemma 7.7 that each such red has constant probability

of avoiding being hit. Thus, by Markov’s inequality, a constant fraction of red particles survive
the mixing phase with constant probability.

7.2.2 Reds are not too slow

Henceforth we can assume p ≥ n−2/3. Let A be the occupied set when k = nc particles of each
colour remain, for c in some suitable range. Consider starting one representative lazy random
walk per site. By the proof of Lemma 7.3, the probability of a uniformly random representative
non-trivially returning to A before taking T := εn/k steps is pA,T ≤ 2µ2 − 1 + oε(1). We fix
some parameter q to be optimised later. We say that v ∈ A is good if pv,A,T ≤ 1 − q. Thus a
good representative has probability at least q of not returning non-trivially to A within time T .
As pA,T = Ev(pv,A,T ), at least σk − o(k) vertices are good, where (1− σ)(1− q) = 2µ2 − 1.

Next we consider an optimisation problem according to the distribution of colours at good
vertices. Suppose that A has xik sites of colour i, of which σik are good, for i = 0, 1, labelling
‘red’ as 0 and ‘blue’ as 1. Then x0 + x1 = 1 and σ0 + σ1 ≥ σ − o(1), so we can fix i with
σi/x1−i ≥ σ. We can assume x1−i = Ω(1), as otherwise we can choose 1− i instead. The easier
case is i = 1 (blue is good), so we will consider the case i = 0 (red is good). Our next lemma
is an adaptation of Lemma 7.5. The intended application is that v is a good red representative
and B is the set of blue representatives. The conclusion is that if the reds are not too slow
then we have the analogue of the second part of our argument in the one-type case. We may in
particular assume p ≥ n−2/3, and so the condition below will easily hold provided c ≤ 1/4.

Lemma 7.8. Let c, ε > 0, p ∈ (0, 1) with p > ε−2k/n, v ∈ V (G) and B ⊂ V (G) \ {v} with
k = |B| = nc. One walker starts at each vertex of B ∪{v}. The walkers independently take lazy
random walk steps on G, at rate p/k for v and (1 − p)/k for B. For each w ∈ B, let Ew be
the event that the walkers started from v and w collide within time pkT with T := εn/k, with
the former not having reached B and the latter not having returned to B. Let X =

∑
w∈B 1Ew .

Then E(X) ≤ (1 + oε(1))pv,B,3T .

Proof. As in Lemma 7.5, it suffices to show P(Ew) ≤ (1 + o(1))P(E′
w) for each w ∈ B, where

E′
w is the event that the particle started at v reaches B within 3T steps, with w being the first

vertex of B it reaches. Instead of discretising time, we relate Ew to the variable Y , defined by
considering continuous time up to time 1.5pkT , setting Y = 0 if there is no collision satisfying
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Ew, or otherwise considering the first such collision and letting Y be the length of time that
both particles remain at the collision site. Then E(Y ) = (1 − oε(1))2kP(Ew), as pkT > ε−1k
and the rate of either particle leaving is (1/2)(p/k + (1 − p)/k) = 1/2k. Similarly, we define
Y ′ with E(Y ′) = (1− o(1))2p−1kP(E′

w) by considering continuous time up to time 3kT = 3εn,
setting Y ′ = 0 if the walker started at v does not first hit B at w, or otherwise letting Y ′ be
the time that the walker remains at w after this first hit.

Now consider any trajectories S, S′ for the particles started at v, w that lead to some time
segment (t, t+ dt) being counted in the random variable Y . Let S′′ range over the trajectories
obtained by following S to some time in (t, t+dt) and then the reverse of S′ with a time change
factor 1−p

p . Then P(S′′) = P(S&S′) and S′′ leads to counting p−1(t, t+dt) in Y ′. Integrating over

such trajectories we deduce p−1E(Y ) ≤ E(Y ′), and so P(Ew) ≤ (1+o(1))P(E′
w), as required.

For p ≥ n−2/3 and c ≤ 1/4 we can apply Lemma 7.8, so each good red representative v has
probability at least 2q − 1 of not returning to A and not hitting a blue representative that has
not returned to the blue set B.

It remains to control meetings with the setB′ of blue representatives that have returned to B.
By Lemma 7.3 applied to B, we have E(B′) ≤ (2µ2−1+oε(1))|B|. For each w ∈ B, similarly to
the proof of Lemma 7.8 we can bound the expected number of meetings of the w-representative
with the v-representative by the expected number of visits by the w-representative to v, which
is at most 1/q as v is good. Recalling that σ0/x1 ≥ σ, the expected number of v not meeting
such w is at least

(2q − 1)σ0k − (2µ2 − 1 + oε(1))x1k/q ≥ σ0k

(
2q − 1− 2µ2 − 1 + oε(1)

qσ

)
= Ω(k),

provided that we can choose q so that

(2q − 1)qσ > 2µ2 − 1, where (1− σ)(1− q) = 2µ2 − 1.

Some calculations (we omit the details) show that this is possible if µ2 < 0.575.
We therefore expect some positive proportion η of the good red representatives to avoid

collisions with blue representatives. We say that a good red representative is excellent if has
probability at least η/2 of avoiding such collisions. Then at least η/2 proportion of the good
red representatives are excellent.

Now we consider the multiplicities of true particles for each representative; with high proba-
bility these are at most 8 log n/ log log n by Lemma 6.9. We lower bound the survival probability
of each excellent red representative by considering 8 log n/ log logn independent samples of the
blue representatives. The survival probability is thus at least exp(−Ω(log n/ log log n)) = n−o(1),
so we expect nc−o(1) particles to survive the mixing phase. If they do, they are a subset of nc

mixed particles, and with high probability no ten (say) of these particles occupy the same vertex
in the next n log n steps. Thus we may thereafter reapply the same analysis revealing only ten
samples of blue trajectories, which gives constant probability of a constant fraction surviving
the mixing phase, as required to complete the proof as in the case of one-type annihilation.

It remains to convert the above expected survival of nc−o(1) particles to a high probability
statement. We need to bound the probability that too many red representatives are destroyed,
given that each is destroyed with probability at most 1 − α with α = n−o(1) by the samples
of the blue representatives. For a given set of red representatives to be destroyed, it must be
possible to assign them to meets with distinct blue representatives (possibly from the same
vertex in different samples). This corresponds to events occurring disjointly in the sense of
Reimer’s inequality [37], i.e. each annihilation event is determined by the outcomes of some set of
coordinates in the total product probability space such that all these sets are disjoint for different
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annihilation events. Thus the probability of destroying a given set of t red representatives is at
most (1 − α)t, so the number destroyed is stochastically dominated by a binomial with mean
(1− α)nc. By Chernoff, with high probability nc−o(1) particles survive, as required.
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[14] C. Cooper, R. Elsässer, H. Ono, and T. Radzik, Coalescing random walks and voting on
connected graphs. SIAM J. Discrete Math. 27:4 (2013), 1748–1758.

[15] C. Cooper, A. Frieze and T. Radzik, Multiple random walks in random regular graphs.
SIAM J. Discrete Math. 23 (2009), 1738–1761.

33



[16] D. Coppersmith, P. Tetali and P. Winkler, Collisions among random walks on a graph.
SIAM J. Discrete Math. 6:3 (1993), 363–374.

[17] P. Deift and P. Forrester, Random Matrix Theory, Interacting Particle Systems and Inte-
grable Systems (2014), Cambridge University Press.

[18] P. Donnelly and D. Welsh, Finite particle systems and infection models. Math. Proc.
Camb. Phil. Soc. 94 (1983), 167–182.

[19] R. Durrett, Some features of the spread of epidemics and information on a random graph.
Proc. Natl. Acad. Sci. USA 107 (2010), 4491–4498.

[20] B. Dygert, C. Kinzel, M. Junge, A. Raymond, E. Slivken and J. Zhu, The bullet problem
with discrete speeds. Electron. Commun. Probab. 24 (2019), 1–11.

[21] Y. Elskens and H. L. Frisch, Annihilation kinetics in the one-dimensional ideal gas. Phys.
Rev. A, 31 (1985), 3812–3816.
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ules sur Z avec destruction. Ann. Inst. H. Poincaré Sect. B (N.S.) 13:2 (1977), 127–139.
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