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Abstract

This paper develops an asymptotic distribution theory for Generalized Method of Moments

(GMM) estimators, including the one-step and iterated estimators, when the moment conditions

are nonsmooth and possibly misspecified. We consider nonsmooth moment functions that are

directionally differentiable—such as absolute value functions and functions with kinks—but not

indicator functions. While GMM estimators remain
√
n-consistent and asymptotically normal

for directionally differentiable moments, conventional GMM variance estimators are inconsistent

under moment misspecification. We propose a consistent estimator for the asymptotic variance

for valid inference. Additionally, we show that the nonparametric bootstrap provides asymptot-

ically valid confidence intervals. Our theory is applied to quantile regression with endogeneity

under the location-scale model, offering a robust inference procedure for the GMM estimators

in Machado and Santos Silva (2019). Simulation results support our theoretical findings.

1 Introduction

For many important applications of the generalized method of moments (GMM) estimators

(Hansen, 1982), the moment function does not satisfy standard smoothness conditions. Existing

results, such as those in Pakes and Pollard (1989) and Newey and McFadden (1994), establish

asymptotic distribution theory for GMM with nonsmooth criterion functions, assuming correct

specification of the moment conditions. However, over-identified GMM models are subject to mis-

specification of the moment conditions regardless of smoothness of the criterion functions. In

practice, researchers often report (marginally) significant over-identifying restrictions test statistic,
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Causal Inference and Machine Learning, and Bristol Econometric Study Group Conference for helpful comments and
suggestions.
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suggesting potential moment misspecification. It is well documented that moment misspecification

leads to significant bias in conventional GMM variance estimators, which in turn causes size dis-

tortions in hypothesis testing. To ensure the validity of the GMM standard errors and confidence

intervals, it is crucial to develop inference methods that are robust to potential misspecification.

This paper provides an asymptotic distribution theory for GMM estimators based on over-

identified and nonsmooth moment conditions while being robust to potential moment misspecifica-

tion. We extend existing theories for nonsmooth GMM, such as those by Pakes and Pollard (1989)

and Newey and McFadden (1994), to settings where the moment conditions may be misspecified.

Specifically, we consider global misspecification, where the population moments are equal to fixed

nonzero constants. Under global misspecification, the GMM estimator remains consistent for the

pseudo-true value, defined as the unique minimizer of the population GMM criterion. Moreover,

the asymptotic variance includes additional terms that are typically assumed away under correct

specification, rendering conventional heteroskedasticity-robust GMM variance estimators inconsis-

tent.

Robustness to model misspecification does not come for free, as it generally requires stronger

smoothness conditions. Standard asymptotic normality results for smooth GMM estimators require

only once-differentiability under correct specification, whereas asymptotic results for smooth mis-

specified GMM (e.g., Hall and Inoue, 2003; Hansen and Lee, 2021) require moment functions to be

twice continuously differentiable. Our main result (Theorem 1) assumes stochastic differentiability

in addition to the stochastic equicontinuity conditions typically imposed in the literature on nons-

mooth GMM (e.g., Pakes and Pollard, 1989, Theorem 3.3; Newey and McFadden, 1994, Theorem

7.2). While the original stochastic equicontinuity conditions in Pakes and Pollard (1989) and Newey

and McFadden (1994) allow for very weak assumptions—potentially permitting discontinuous mo-

ment functions—the stochastic differentiability condition requires some form of differentiability,

and our theory does not handle discontinuous functions, e.g., indicator functions, and thus restrict

the function classes. We view this additional requirement as a necessary cost of addressing general

moment misspecification.

There are many interesting applications that satisfy our conditions while failing to meet the

stronger requirement of twice continuous differentiability. Examples include GMM estimation of

censored regression models with endogeneity (Honoré and Hu, 2004) and GMM estimation of quan-

tile regression with endogeneity, as considered in Machado and Santos Silva (2019), among others.

Our results allow moment functions to be locally Lipschitz and differentiable with probability one,

encompassing absolute value functions and those with kinks. We also provide sufficient conditions

that are straightforward to verify and align with primitive conditions studied in the literature, such

as those in Pollard (1985) and van der Vaart and Wellner (1996).

The class of GMM estimators we consider in this paper is the iterated efficient GMM estimator,

which includes the one-step GMM estimator with a weight matrix that does not depend on the

parameter as a special case. Under moment misspecification, the asymptotic distribution of the

two-step GMM depends on that of the previous-step (preliminary) GMM estimator at which the
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efficient weight matrix is evaluated, making the asymptotic analysis complicated (Hall and Inoue,

2003). The iterated GMM eliminates this dependence, significantly simplifying its asymptotic

distribution and making inference more straightforward (Hansen and Lee, 2021). We establish the

asymptotic distribution of the iterated GMM estimator with nonsmooth moment functions under

possible misspecification.

In practice, the bootstrap is routinely used to compute standard errors or confidence intervals.

We establish the consistency of the nonparametric bootstrap confidence interval for nonsmooth

GMM estimators, proving that the GMM estimators converge in distribution in probability to the

limit distribution. Our result extends Hahn (1996), who established the first-order validity of the

bootstrap for nonsmooth GMM under correct specification, and Lee (2014), who established the

asymptotic refinement of the nonparametric i.i.d. bootstrap for smooth GMM while allowing for

moment misspecification.

In independent work, Hong and Li (2023) show that misspecified GMM estimators with non-

directionally differentiable moments are n1/3-consistent and have a nonstandard asymptotic distri-

bution. Our results complement theirs in the case of directionally differentiable moment conditions,

where the asymptotic distribution remains
√
n-consistent and asymptotically normal. To handle

both n1/3 and
√
n rates in a unified framework, their results rely on the cube-root asymptotic

theory, similar to Kim and Pollard (1990), and impose assumptions ensuring the finite-dimensional

distribution and stochastic equicontinuity of the scaled empirical process for the sample criterion

functions. Our paper, in contrast, relies on different assumptions on stochastic equicontinuity and

stochastic differentiability that are directly comparable to those in Newey and McFadden (1994)

and Pakes and Pollard (1989). Furthermore, the results on the iterated GMM estimator in Section

3.3 are unique to this paper.

This paper does not consider local misspecification, where the population moment condition is

modeled as a drifting sequence within an n−1/2-neighborhood of zero when evaluated at the true

parameter. However, this approach has recently gained considerable attention in the literature,

e.g., Conley et al. (2012), Andrews et al. (2017), Armstrong and Kolesar (2021), and Bonhomme

and Weidner (2022), among many others. In the locally misspecified GMM setup, the difficulty

arises from the first-order bias that must be accounted for in the asymptotic distribution. Several

important papers develop valid inference in the local misspecification framework; see Armstrong

and Kolesar (2021), Bonhomme and Weidner (2022), Chernozhukov et al. (2023), and references

therein.

In the quasi-maximum likelihood framework, Cho and White (2018) consider a directionally dif-

ferentiable quasi-likelihood function and derive the limit distribution of the standard test statistics.

We note that misspecification of the likelihood function differs from the moment misspecification

considered in this paper, as the latter can occur only in over-identified models.

The remainder of the paper is organized as follows. Section 2 defines the model setup and

GMM estimators and presents two examples. Section 3 establishes the asymptotic theory for the

one-step GMM and iterated GMM. Section 4 discusses the variance estimator and the bootstrap.
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Section 5 presents results for the methods in Machado and Santos Silva (2019) to illustrate the

application of our general results. Section 6 provides simulation evidence, and Section 7 considers

an illustrative empirical example of fish demand. All proofs are in Appendix A, and details on the

implementation of covariance matrix estimation are provided in Appendix B.

2 Model Setup and Estimators

We have observations {Xi} for i = 1, ..., n, and θ ∈ Θ ⊂ Rp is a p-dimensional parameter of

interest. The researcher specifies a vector of moment conditions and assumes that there is a unique

parameter value that satisfies the vector of moment conditions:

E[gn(θ0)] = 0, (1)

where gn(θ) is anm-dimensional vector of data and parameters, which is allowed to be a nonsmooth

function of the parameter θ, withm > p. The hypothesis (1) is referred to as the correct specification

of the model. The conventional nonsmooth GMM theory is established under the assumption of

(1).

We consider the class of minimum distance (MD) estimators, including GMM and classi-

cal minimum distance (CMD) estimators as two important special cases. For GMM, gn(θ) =

n−1
∑n

i=1 gi(θ), where gi(θ) = g(Xi, θ) is an m-dimensional moment function. For CMD, gn(θ) =

sn − s(θ), where s(θ) typically consists of structural parameters or “predictions”under the model,

and sn is a vector of sample statistics or reduced-form estimates.

Along with the nonsmoothness of gn(θ), we allow for moment misspecification, which is defined

as

E[gn(θ)] ̸= 0, ∀θ ∈ Θ, (2)

meaning that no parameter value satisfies the assumed moment condition. For CMD, (2) implies

that the “moment matching” or “mapping” E[sn] = s(θ) does not necessarily hold for all values

of θ (or in the limit, limn→∞ E[sn − s(θ)] ̸= 0). Moment misspecification is technically distinct

from likelihood misspecification (White, 1982), where the moment condition is given by the first-

order conditions (FOCs). In that context, the moment condition holds at the maximizer regardless

of likelihood misspecification because the number of parameters equals the number of FOCs. In

contrast, moment misspecification occurs only in over-identified models. Despite this distinction,

the two concepts share a fundamental similarity: in both cases, the probability limit of the estimator

is defined as the minimizer of a well-specified statistical distance measure, referred to as the pseudo-

true value. A formal definition will be provided in the next section.

Define the GMM criterion function:

Jn(θ, ϕ) = gn(θ)
′Wn(ϕ)gn(θ) (3)
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where the parameter ϕ is the initial value used to form the weight matrix,

Wn(θ) =

(
1

n

n∑
i=1

vi(θ)vi(θ)
′

)−1

for some known function vi(θ) = v(Xi, θ). When vi(θ) = gi(θ) or vi(θ) = gi(θ)−gn(θ), the resulting
estimator is the efficient GMM.

The one-step estimator minimizes the criterion function using the weight matrix Wn(ϕ) = Wn

that does not depend on any unknown parameter:

θ̂1 = argmin
θ

gn(θ)
′Wngn(θ). (4)

We can construct Wn =
(
n−1

∑n
i=1 viv

′
i

)−1
, where vi ≡ v(Xi). Using θ̂1 as an initial value, the

two-step estimator is given by

θ̂2 = argmin
θ∈Θ

Jn(θ, θ̂1),

and the s-step estimator for s ≥ 2 is

θ̂s = argmin
θ∈Θ

Jn(θ, θ̂s−1). (5)

Conventionally, the efficient GMM is obtained by setting s = 2 (two-step efficient GMM) with

vi(θ) = gi(θ) or vi(θ) = gi(θ) − gn(θ). Note that any s-step estimator for s ≥ 2 with the same

form of the weight matrix is efficient under correct specification. In practice, however, the efficient

s-step point estimates can change considerably across steps.

The iterated GMM estimator is an alternative to the s-step estimators, overcoming their ar-

bitrariness. Hansen, Heaton, and Yaron (1996) investigate the finite sample properties of the

iterated GMM, while Hansen and Lee (2021) formally establish its asymptotic properties, allowing

for moment misspecification. The iterated estimator is defined as the limit of the sequence:

θ̂ = lim
s→∞

θ̂s. (6)

Alternatively, the iterated estimator can be viewed as a fixed point. Define the mapping:

θn(ϕ) = argmin
θ∈Θ

Jn(θ, ϕ). (7)

Then, the limit (6) satisfies the fixed-point equation:

θn(θ̂) = θ̂. (8)

Below, we provide examples of nonsmooth moment functions covered in this paper.

Example 1 (Dynamic censored regression). Honoré and Hu (2004) consider the estimation of a
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censored regression model with lagged dependent variables in panel data. Consider the following

simple dynamic censored panel regression model:

yit = max(0, yit−1θ + αi + εit)

where yit is the variable of interest, αi is the individual fixed effect, and {εit}Tt=1 is a sequence

of i.i.d. random variables conditional on (yi0, αi). To estimate the parameter θ, Honoré and Hu

(2004) propose the moment conditions:

E[gi(θ)] = E


gi2(θ)

gi3(θ)
...

giT (θ)

 (9)

where git(θ) = max{0, yit − yit−1θ} − yit−1 = 1{yit > yit−1θ}(yit − yit−1θ)− yit−1 for t = 2, . . . , T ,

with T ≥ 3. Under correct specification, the GMM estimator is consistent for the true parameter

satisfying the moment conditions: E[gi(θ0)] = 0. However, moment conditions can be misspecified,

for example, due to incorrect lag specifications or the presence of heterogeneous effects.

Theorem 1 in Honoré and Hu (2004) establishes the consistency and asymptotic normality

of the GMM estimator based on the moment conditions (9). Their proof follows from Theorem

3.3 of Pakes and Pollard (1989), which assumes correct specification of the moment conditions.

Furthermore, Theorem 3.3 of Pakes and Pollard (1989) considers the identity weight matrix in the

criterion function. However, the limiting distribution in our Theorem 1 differs from theirs under

moment misspecification, even whenWn = I, as our asymptotic variance includes additional terms.

To ensure inference is robust to potential model misspecification, a non-trivial extension of Pakes

and Pollard (1989) with a general random weight matrix Wn is required, which will be presented

in the next section.

Example 2 (Quantile regression with endogeneity). Machado and Santos Silva (2019) consider a

quantile regression model with endogeneity. They focus on the conditional location-scale model of

quantile regression:

Yi = X ′
iβ + σ(X ′

iγ)Ui (10)

where Yi ∈ R is the outcome variable, Xi ∈ Rk is a vector of covariates (which can be potentially

endogenous), and σ(X ′γ) > 0 is a (known) scale function controlling how Xi affects the dispersion

of the distribution of Yi beyond its location. The location-scale model has been widely studied in

the quantile regression literature, including works by Koenker and Bassett (1982), Gutenbrunner

and Jurečková (1992), Koenker and Zhao (1994), He (1997), Zhao (2000), and Koenker and Xiao

(2002), among many others.

To identify the parameter θ = (β′, γ′)′ ∈ R2k, Machado and Santos Silva (2019) use the moment

conditions E[Ui|Zi] = 0 and E[|Ui||Zi] = 1, based on the normalization of the unobserved random
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variable Ui with instruments Zi ∈ Rm, where m ≥ k (potentially including exogenous regressors

fromXi). They propose the following estimation procedure (GMM-Quantile Regression, hereinafter

GMM-QR):

θ̂ = (β̂′, γ̂′)′ = argmin
θ

gn(θ)
′Wngn(θ),

where the moment function gi(θ) ≡ g(Xi, Yi, Zi, θ) is given by

gi(θ) =

[
ZiUi

Zi (|Ui| − 1)

]
, Ui =

Yi −X ′
iβ

σ(X ′
iγ)

,

and Wn is a positive definite weight matrix that does not depend on any unknown parameter. If

θ = (β′, γ′)′ were known, the following moment condition

E
[
τ − 1

(
Yi −X ′

iβ

σ(X ′
iγ)

≤ q(τ)

)]
= 0

identifies q(τ), the marginal quantile of Ui, such that P (Ui ≤ q(τ)) = P (Ui ≤ q(τ)|Zi) = τ for the

quantile index τ ∈ (0, 1). The structural quantile function is defined as

q(Xi, τ) = X ′
iβ + σ(X ′

iγ)q(τ) (11)

which satisfies P (Yi ≤ q(Xi, τ)) = P (Yi ≤ q(Xi, τ)|Zi) = τ under the assumption Zi ⊥⊥ Ui. The

causal effect of Xi on the τth quantile of the conditional distribution of Yi given Xi, referred to

as the regression quantile coefficient, is defined as α(τ) = (∂/∂Xi)q(Xi, τ), which is typically the

main object of interest. This model, with a general scale function σ(·), allows for nonlinear quantile
effects.

The approach of Machado and Santos Silva (2019) can be useful for estimating the structural

quantile functions defined by Chernozhukov and Hansen (2006, 2008), as GMM estimation in stan-

dard Instrumental Variable Quantile Regression (IVQR) models can be computationally challenging

due to the need for non-smooth and non-convex optimization of the GMM criterion function.1 Ad-

ditionally, the location-scale model structure ensures that structural quantiles do not cross (e.g.,

He, 1997).

However, the simplicity and tractability of the location-scale model suggest that the moment

conditions used in Machado and Santos Silva (2019) may be subject to misspecification. Kaplan

(2022) finds that point estimates using GMM-QR, 2SLS, IVQR, and smoothed IVQR can differ

significantly (although they yield qualitatively similar interpretations) and suggests that this may be

1See Chen and Lee (2018), Zhu (2019), and Kaido and Wüthrich (2021) for recent developments in computational
methods for IVQR-GMM estimation. See also Chernozhukov, Hansen, and Wüthrich (2018) for a review of the
IVQR literature. Alternative computational methods for IVQR models include the quasi-Bayesian approach of
Chernozhukov and Hong (2003) and the Inverse Quantile Regression (IQR) procedures of Chernozhukov and Hansen
(2006, 2008), among others.
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due to misspecification of the location-scale model. Therefore, it is important to conduct inference

that is robust to potential model misspecification.

If the location-scale model is misspecified, the pseudo-true value of the location and scale

parameters θ0 = (β′0, γ
′
0)

′ ∈ R2k is defined as

θ0 = argmin
θ

g(θ)′Wg(θ),

where g(θ) = E[gn(θ)], and Wn
p−→ W > 0. The GMM-QR estimand is statistically well-defined

and can be interpreted as ”the best location-scale parameter” in the sense that it minimizes the

distance between the data and the moment conditions from the location-scale model, coinciding

with the true value under correct model specification. More importantly, the target parameter

here is not the location/scale parameters θ0, but rather the structural quantile function defined

by Chernozhukov and Hansen (2006, 2008) and the marginal effect as in (11).2 In Section 5, we

provide the asymptotic distribution theory of the GMM estimators in Machado and Santos Silva

(2019) that is robust to misspecification of the location-scale structure.

3 Asymptotic Normality

In this section, we provide the asymptotic distribution of the estimator θ̂ while allowing for

misspecification. To do so, we first list and discuss the conditions required to ensure asymptotic

normality.

The following assumptions are presented in a unified framework to accommodate different GMM

estimators. For the one-step estimator, we use the weighting matrix Ŵn =Wn, whereWn
p−→W > 0,

and the pseudo-true value θ0 is defined as the minimizer of the population one-step GMM criterion,

which will be specified in (13).

For the iterated GMM estimator, we use Ŵn = Wn(θ̂), where Wn(θ) =
(
1
n

∑n
i=1 vi(θ)vi(θ)

′)−1
,

and W (θ) = (n−1
∑n

i=1 E[vi(θ)vi(θ)′])−1 for some known function vi(θ) = v(Xi, θ). We define

W =W (θ0), where θ0 is the minimizer of the population iterated-GMM criterion in (16).

Assumption 1.

1. θ0 is a unique minimizer of the population GMM criterion and in the interior of the compact

parameter space Θ.

2. Let g(θ) = E[gn(θ)]. g(θ) is twice differentiable at θ0 with derivatives G = G(θ0) and F =

F (θ0), where G(θ) =
∂
∂θ′ g(θ) and F (θ) =

∂
∂θ′ vec(G(θ)

′).

3. infϕ∈Θ λmin(W (ϕ)) ≥ C > 0 for some constant C where λmin(·) denotes the smallest eigen-

value.

2Wüthrich (2020) investigates the IVQR estimand when some underlying IVQR assumptions (e.g., rank similarity)
are violated under binary treatments and binary instruments in the just-identified setting. In general, characterizing
both IVQR and GMM-QR estimands in over-identified models under moment misspecification is challenging.
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4. gn(θ̂)
′Ŵngn(θ̂) ≤ infθ∈Θ gn(θ)

′Ŵngn(θ) + op(n
−1).

5. θ̂
p−→ θ0.

6. For any δn → 0 there exists Gn such that

sup
||θ−θ0||≤δn

√
n||gn(θ)− gn(θ0)− (g(θ)− g(θ0))− (Gn −G)(θ − θ0)||

||θ − θ0||(1 +
√
n||θ − θ0||)

p−→ 0.

7.

√
n

 gn(θ0)− g(θ0)

(Ŵn −W )g(θ0)

(Gn −G)′Wg(θ0)

 d−→ N


 0

0

0

 ,

 Σ Λ Γ

Λ′ Ψ Υ

Γ′ Υ′ Ξ


 .

Except for Assumption 1.6, the conditions are standard in the literature. Specifically, they

correspond to the conditions in Theorem 7.2 of Newey and McFadden (1994). Assumption 1.1 ex-

tends their Conditions (i) and (iii), allowing for moment misspecification. The correct specification

assumption of the moment condition in Theorem 7.2 of Newey and McFadden (1994) is removed,

and the pseudo-true value is defined as the unique minimizer of the corresponding GMM criterion.

Assumption 1.2 is a slight strengthening of their Condition (ii). Note that the differentiability

of the moment function is generally much stronger than the differentiability of its expected value.

Assumptions 1.3-1.5 correspond to the hypotheses of Theorem 7.2 of Newey and McFadden

(1994). For one-step GMM, Assumption 1.3 reduces to W > 0.

Assumption 1.7 aligns with the condition in Theorem 2 of Hall and Inoue (2003) to establish the

asymptotic distribution of the GMM estimator under misspecification. Notably, when g(θ0) = 0

(correct specification), Assumption 1.7 simplifies to
√
ngn(θ0)

d−→ N(0,Σ), which corresponds to

Condition (iv) of Theorem 7.2 of Newey and McFadden (1994). Assumptions 1.5 and 1.7 can be

replaced by primitive conditions.

3.1 Stochastic Differentiability Condition

Assumption 1.6 (the stochastic differentiability condition) deserves further discussion. Under

the very mild condition Gn−G = op(1), Assumption 1.6 implies the usual stochastic equicontinuity

condition:

sup
||θ−θ0||≤δn

√
n||gn(θ)− gn(θ0)− (g(θ)− g(θ0))||

1 +
√
n||θ − θ0||

p−→ 0

for any δn → 0. This is analogous to condition (v) of Theorem 7.2 of Newey and McFadden (1994)

and condition (iii) of Theorem 3.3 of Pakes and Pollard (1989), except that we require centering

due to misspecification because g(θ0) ̸= 0. For the GMM model, where gn(θ) = n−1
∑n

i=1 g(Xi, θ),

this stochastic equicontinuity condition holds under mild regularity conditions (Andrews (1994),
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Newey and McFadden (1994, Theorem 7.3)).3

Assumption 1.6 is analogous to the stochastic differentiability condition considered in Pollard

(1985) and van der Vaart and Wellner (1996). Pollard (1985) defines that the function g(·, θ) :

R → R is stochastically differentiable at θ0 if it admits the following decomposition with a k × 1

vector-valued function ∆(x) that depends only on x, and a remainder term r(·, θ):

g(x, θ) = g(x, θ0) + ∆(x)′(θ − θ0) + ||θ − θ0||r(x, θ),

for which

sup
Un

n−1/2
∑n

i=1 ||r(Xi, θ)− E[r(Xi, θ)]||
1 +

√
n||θ − θ0||

p→ 0

for each sequence of balls Un that shrinks to θ0 as n→ ∞.

Now, it is worth discussing primitive conditions under which Assumption 1.6 holds for GMM

where gn(θ) = n−1
∑n

i=1 g(Xi, θ). If the moment function g(x, θ) admits a linear approximation near

θ0, i.e., there exists ∆(x, θ0) (not necessarily a pointwise partial derivative) and r(x, θ) ≡ [g(x, θ)−
g(x, θ0) − ∆(x, θ0)(θ − θ0)]/||θ − θ0||, then Assumption 1.6 holds with Gn = n−1

∑n
i=1∆(Xi, θ0),

and G = E[Gn] = E[∆(Xi, θ0)] when

sup
||θ−θ0||≤δn

√
n||n−1

∑n
i=1 r(Xi, θ)− E[r(Xi, θ)]||
1 +

√
n||θ − θ0||

p−→ 0. (12)

Equation (12) is a version of the stochastic differentiability condition defined in Pollard (1985).

Furthermore, the condition (12) is essentially a stochastic equicontinuity condition for the re-

mainder term r(·, θ), as in Pollard (1984, 1985) and van der Vaart and Wellner (1996, Lemma

3.2.19). Therefore, the stochastic differentiability conditions hold when {r(·, θ) = g(·,θ)−g(·,θ0)−∆(·,θ0)(θ−θ0)
||θ−θ0|| :

||θ − θ0|| < δ} is a Donsker class for some δ > 0. This is a very weak condition on the function

class, and many papers in the empirical process literature discuss that it holds in various relevant

cases; see, for example, van der Vaart and Wellner (1996) and Chernozhukov and Hong (2003).

Pollard (1985) provides detailed examples by verifying the stochastic differentiability conditions

using empirical process techniques such as the bracketing method and combinatorial method.

If twice continuous differentiability holds, then Assumption 1.6 automatically holds with Gn =

n−1
∑n

i=1(∂/∂θ
′)g(Xi, θ0) and G = E[Gn]. The existence of Gn in Assumption 1.6 requires some

form of differentiability; however, it is not necessarily a pointwise partial derivative. In the definition

of directional differentiability (in the sense of Gâteaux), one would still require the existence of a

continuous map ∆(·, θ) such that the remainder term is small. In the stochastic differentiability

condition, it suffices that the remainder term be small in an average sense.

In CMD, where the sample moment condition is given by gn(θ) = sn − s(θ), which is linearly

additively separable, this condition is automatically satisfied because Gn = G, and the asymptotic

variance of GMM includes only variation in the weight matrix Ŵn.

3In Lemma 1 in the Appendix, we provide a primitive condition for the stochastic equicontinuity condition without
assuming correct specification g(θ0) = 0.
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We now provide examples where we can verify Assumption 1.6. Examples 1 and 2 in Section 2

satisfy the conditions in Assumption 1.6 but not the stronger continuous differentiability conditions.

Example 1 in Section 2 considers the dynamic censored panel regression model in Honoré and Hu

(2004). For t = 2, . . . , T with T ≥ 3, we first consider each moment function

git(·, θ) = max{0, yit − yit−1θ} − yit−1, θ ∈ R,

and then apply the same idea to the stacked moment conditions in (9). We define

rit(·, θ) =
1{yit > yit−1θ}(yit − yit−1θ)− 1{yit > yit−1θ0}(yit − yit−1θ0) + (θ − θ0)yit−11{yit > yit−1θ}

|θ − θ0|
.

Under mild moment conditions (E supt |yit|2 < ∞), |rit(·, θ)| is uniformly bounded when θ is in a

bounded support, and the envelope function supθ |rit(·, θ)| has a finite second moment. Using the

combinatorial method (Vapnik and Chervonenkis (1971)), similar to the example in Pollard (1985)

on the MLE of the location parameter of the double exponential function, it is straightforward to

verify that the remainder functions form a polynomial class. It follows that rit(·, θ) satisfies the

stochastic differentiability condition (12).

We will formally verify the conditions for Example 2 in Section 5.

3.2 One-step GMM

Now we derive the asymptotic distribution of the one-step GMM estimator. We define the

pseudo-true parameter θ0 as the solution to the population analog of the one-step GMM estimator

θ̂ = θ̂1 in (4),

θ0 = argmin
θ

g(θ)′Wg(θ). (13)

Theorem 1. Suppose that Assumption 1 holds for the one-step estimator θ̂ with Ŵn =Wn in (4)

and θ0 defined in (13). If H ≡ G′WG+ (g(θ0)
′W ⊗ Ip)F is nonsingular, then

√
n(θ̂ − θ0)

d→ N(0, H−1ΩH−1)

where Ω = G′WΣWG+G′WΛG+G′Λ′WG+G′ΨG+G′WΓ + Γ′WG+G′Υ+Υ′G+ Ξ.

Theorem 1 extends the results in Pakes and Pollard (1989, Theorem 3.3) and Newey and Mc-

Fadden (1994, Theorems 3.2 and 7.2) to a setup where the moment conditions may be misspecified.

Under correct specification, where g(θ0) = 0, the asymptotic variance simplifies to

(G′WG)−1G′WΣWG(G′WG)−1,

which is the standard formula in Hansen (1982) for smooth functions and in Pakes and Pollard

(1989) and Newey and McFadden (1994) for potentially nonsmooth functions. Theorem 3.3 in Pakes

11



and Pollard (1989) and Theorem 7.2 in Newey and McFadden (1994) explicitly assume g(θ0) = 0.

Under general misspecification, where g(θ) ̸= 0 for all θ ∈ Θ, the asymptotic variance of GMM

differs from the conventional GMM variance formula by incorporating additional variation in the

sample Jacobian and the sample weight matrix.

The asymptotic distribution in Theorem 1 coincides with those in Hall and Inoue (2003) and

Lee (2014) but under strictly weaker conditions than those papers, which assume twice continuous

differentiability of g(x, θ).

3.3 Efficient GMM

Consider the iterated GMM estimator, defined in (8). We derive the asymptotic distribution of

the estimator allowing for misspecification. Define the population GMM criterion function

J(θ, ϕ) = g(θ)′W (ϕ)g(θ). (14)

Also define the population analog of the mapping (7):

θ(ϕ) = argmin
θ∈Θ

J(θ, ϕ). (15)

Under correct specification, Hansen and Lee (2021) show that θ(ϕ) = θ0, ∀ϕ ∈ Θ where θ0 is the

true value that satisfies the moment condition. Under misspecification, however, θ(ϕ) varies with

ϕ in general. This is also pointed out by Hall and Inoue (2003), who showed that the one-step and

two-step GMM estimators have different limits under misspecification.

The iterated GMM pseudo-true value θ0 does not depend on ϕ, even under misspecification. It

is defined as the fixed point that solves:

θ0 = argmin
θ∈Θ

J(θ, θ0). (16)

In other words, θ(θ0) = θ0. Hansen and Lee (2021) establish the existence of the fixed point (16)

by showing that for some 0 ≤ c < 1 and for any ϕ1, ϕ2 ∈ Θ,

∥θ(ϕ1)− θ(ϕ2)∥ ≤ c ∥ϕ1 − ϕ2∥ (17)

and thus a unique θ0 that satisfies (16) exists by the Banach fixed point theorem. Sufficient con-

ditions are provided in Assumption 1 of Hansen and Lee (2021), which include our Assumptions

1.2-1.3, along with other conditions ensuring that the degree of misspecification is not too large.

Based on their result, we assume that the iterated GMM pseudo-true value θ0 satisfies our As-

sumption 1.1.

For the iterated GMM estimator (8), Hansen and Lee (2021) show the existence of this limit

by assuming twice differentiability of the moment function. Below, we establish the existence

and uniqueness of the iterated GMM estimator with possibly nonsmooth moment functions. To

12



do this, we assume uniform convergence for the sample moment condition and the inverse of the

weight matrix.

Assumption 2.

1. supθ∈Θ ∥gn(θ)− g(θ)∥ p−→ 0

2. supθ∈Θ
∥∥Wn(θ)

−1 −W (θ)−1
∥∥ p−→ 0

We can find primitive conditions for uniform convergence. For example, Assumption 2 holds

if (i) Xi are i.i.d., (ii) E∥g(Xi, θ)∥ < ∞ and E∥v(Xi, θ)∥2 < ∞, ∀θ ∈ Θ, and (iii) a Lipschitz

condition (W-LIP in Andrews, 1992) holds for g(Xi, θ) and v(Xi, θ)v(Xi, θ)
′, respectively. For

clustered observations, Hansen and Lee (2019) provide primitive conditions for the uniform law of

large numbers in their Theorems 5 and 6. Since the main result of this paper applies to both i.i.d.

and clustered samples, we maintain Assumption 2 instead of listing primitive conditions.

The following theorem establishes the existence and uniqueness of the iterated GMM estimator

and its consistency.

Theorem 2. Suppose that Assumption 1.1 holds for θ(ϕ) defined in (15) for all ϕ ∈ Θ, and

Assumption 1.3 and Assumption 2 hold. Then for θ0 defined in (16), θ̂
p−→ θ0 as n→ ∞.

Next, we establish the asymptotic distribution of the iterated GMM estimator. For differentiable

moment functions, the standard asymptotic distribution of the iterated GMM estimator is obtained

by applying the first-order Taylor expansion in the sample first-order condition. However, this

approach is not possible for non-smooth moment conditions.

As we cannot directly apply asymptotic distribution results in the literature, e.g., Huber (1967)

and Newey and McFadden (1994), to our setup where the weight matrix W (θ) depends on the

parameter, we require non-trivial extensions of the general results for the GMM estimator. For

examples, the nonsingular second derivative of the population criterion function plays an important

role in the asymptotic distribution of Theorem 7.1 of Newey and McFadden (1994) and Theorem

2 of Pollard (1985). We observe that the population criterion function Q0(θ) = −J(θ, θ)/2 =

−g(θ)′W (θ)g(θ)/2 has a second derivative at θ0, which is different than the matrix H below in

Theorem 3. The latter includes the derivative of the weight matrix W (θ) under misspecification.

Let S = S(θ0) where S(θ) =
∂
∂θ′ vec

(
W (θ)−1

)
.

Theorem 3. Suppose that Assumption 1 holds for the iterated GMM estimator θ̂ with Ŵn =Wn(θ̂)

in (6) and θ0 defined in (16). If H ≡ G′WG+(g(θ0)
′W ⊗Ip)F −(g(θ0)

′W ⊗G′W )S is nonsingular,

then,
√
n(θ̂ − θ0)

d→ N(0, H−1ΩH−1)

where Ω = G′WΣWG+G′WΛG+G′Λ′WG+G′ΨG+G′WΓ + Γ′WG+G′Υ+Υ′G+ Ξ.
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4 The Asymptotic Variance and the Bootstrap

For inference robust to moment misspecification, the covariance matrix of the GMM estimators

needs to be estimated. We can directly estimate the variance matrix by plugging in the estimates

of H and Ω from Theorems 1 and 3 using standard numerical derivatives. See Appendix B for

implementation details.

In some applications, however, variance estimation can be complicated. For example, in quantile

regression with endogeneity, where Ω depends on conditional density functions, nonparametric

density estimation is required. A popular alternative is to use bootstrap methods to construct

confidence intervals, similar to the standard quantile regression literature (e.g., Buchinsky, 1995;

Hahn, 1995).

Existing results for the first-order validity of the bootstrap for nonsmooth GMM assume correct

specification, such as Proposition 1 of Hahn (1996). Below, we establish the first-order validity of

the bootstrap under moment misspecification. Therefore, one can use critical values from the

bootstrap distribution of the GMM estimators to conduct tests and construct confidence intervals.

Let {X∗
i }ni=1 be drawn randomly with replacement from the original data {Xi}ni=1, and let g∗n(θ)

be the same sample moment condition as gn(θ) but based on the bootstrap data, so that g∗n(θ) =

n−1
∑n

i=1 g(X
∗
i , θ). Hereinafter, the superscript

∗ denotes a probability or moment computed under

the bootstrap distribution conditional on the original data {Xi}ni=1.

We define the bootstrap GMM criterion function:

J∗
n(θ, ϕ) = g∗n(θ)

′W ∗
n(ϕ)g

∗
n(θ), (18)

where the weight matrix W ∗
n(ϕ) is based on the bootstrap data with the initial value ϕ.

The bootstrap estimator for the one-step GMM is

θ̂∗1 = argmin
θ

g∗n(θ)
′W ∗

ng
∗
n(θ). (19)

where W ∗
n(ϕ) =W ∗

n does not depend on any unknown parameter. Using θ̂∗1 as an initial value, the

two-step estimator is θ̂∗2 = argminθ∈Θ J
∗
n(θ, θ̂

∗
1), and the s-step estimator is

θ̂∗s = argmin
θ∈Θ

J∗
n(θ, θ̂

∗
s−1). (20)

The bootstrap estimator for the iterated GMM is the limit of this sequence

θ̂∗ = lim
s→∞

θ̂∗s . (21)

Define the mapping

θ
∗
n(ϕ) = argmin

θ∈Θ
J∗
n(θ, ϕ). (22)

14



Then, the limit (21) is a fixed point of the equation

θ
∗
n(θ̂

∗) = θ̂∗. (23)

We show in the following theorem that the conventional nonparametric bootstrap consistently

estimates the asymptotic distribution of
√
n(θ̂ − θ0), and thus provides valid asymptotic coverage

probabilities of the bootstrap percentile confidence intervals.4 A word on notation:
p∗−→ and

d∗−→
denote the convergence in probability, in probability, and the convergence in distribution in prob-

ability, respectively. In addition, we write ξ∗n = op∗(1) if ξ
∗
n

p∗−→ 0 and ξ∗n = Op∗(1) if ξ
∗
n is bounded

in probability, in probability.

Theorem 4. Suppose that Xi is i.i.d. and Assumption 1 holds. In addition, assume that the

following conditions hold for the bootstrap estimator θ̂∗ = θ̂∗1 in (19);

1. g∗n(θ̂
∗)′W ∗

ng
∗
n(θ̂

∗) ≤ infθ∈Θ g
∗
n(θ)

′W ∗
ng

∗
n(θ) + o∗p(n

−1).

2. θ̂∗
p∗−→ θ0.

3. For any δn → 0 there exists G∗
n such that

sup
||θ−θ0||≤δn

√
n||g∗n(θ)− g∗n(θ0)− (gn(θ)− gn(θ0))− (G∗

n −Gn)(θ − θ0)||
||θ − θ0||(1 +

√
n||θ − θ0||)

p∗→ 0.

Then,
√
n(θ̂∗ − θ̂)

d∗−→ N(0, H−1ΩH−1)

where Ω and H are defined in Theorem 1.

Condition 3 is a bootstrap stochastic differentiability assumption analogous to Assumption 1.6.

From Giné and Zinn (1990), Condition 3 holds under the same Assumption 1.6 when Gn consists

of sample averages. For example, as discussed in Section 3.1, when there exists ∆(x, θ0) such

that g(x, θ) = g(x, θ0) + ∆(x, θ0)(θ − θ0) + r(x, θ)||θ − θ0||, Assumption 1.6 holds if the remainder

function r(·, θ) satisfies the stochastic equicontinuity condition. Then, by Giné and Zinn (1990),

the stochastic equicontinuity of r(·, θ) implies the bootstrap stochastic equicontinuity:

sup
||θ−θ0||≤δn

√
n
∣∣n−1

∑n
i=1 r(X

∗
i , θ)−

∑n
i=1 r(Xi, θ)

∣∣
1 +

√
n||θ − θ0||

p∗−→ 0.

which implies Condition 3 with G∗
n = n−1

∑n
i=1∆(X∗

i , θ0).

4For brevity, we only provide results for the one-step GMM, but analogous results for the iterated GMM can be
shown similarly as in Theorem 4 using the results in the proof of Theorem 3.
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5 Quantile Regression with Endogeneity

We consider the following conditional location-scale model of quantile regression, as introduced

in Koenker and Bassett (1982):

Yi = X ′
iβ + σ(X ′

iγ)Ui, (24)

where Yi ∈ R is the outcome variable, Xi ∈ Rk is a vector of covariates (which can be potentially

endogenous), and σ(X ′γ) > 0 is a known function. We explore the properties of the GMM-QR

estimator proposed in Machado and Santos Silva (2019):

θ̂ = (β̂′, γ̂′)′ = argmin
θ

gn(θ)
′Wngn(θ), (25)

based on the moment function gn(θ) = n−1
∑n

i=1 gi(θ), where gi(θ) = g(Xi, Yi, Zi, θ) = (ZiUi, Zi(|Ui|−
1)) with instruments Zi ∈ Rm (m ≥ k). The weight matrix Wn is a 2m × 2m positive definite

matrix of the form (n−1
∑n

i=1 viv
′
i)
−1. Common choices for viv

′
i include the identity matrix and

ZiZ
′
i, where Zi is the instrument vector. The default choice for Wn in the Stata command ivqreg2

is the identity matrix.

Since the moment conditions used in Machado and Santos Silva (2019) are based on the nor-

malization of the unobserved random variable Ui, they may be subject to misspecification, i.e.,

E[gn(θ)] =
1

n

n∑
i=1

E

 Zi

(
Yi−X′

iβ
σ(X′

iγ)

)
Zi

(∣∣∣Yi−X′
iβ

σ(X′
iγ)

∣∣∣− 1
)  ̸= 0, ∀θ ∈ Θ. (26)

Under the misspecified model (26), we define the pseudo-true value of the location and scale

parameters θ0 = (β′0, γ
′
0)

′ ∈ R2k as:

θ0 = argmin
θ

g(θ)′Wg(θ), (27)

where g(θ) = E[gn(θ)], and Wn
p−→W > 0.5

Given (β0, γ0), we define q0(τ), the marginal quantile of Ui, such that P (Ui ≤ q0(τ)) = P (Ui ≤
q0(τ)|Zi) = τ , which satisfies the following moment condition:

E
[
τ − 1

(
Yi −X ′

iβ0
σ(X ′

iγ0)
≤ q0(τ)

)]
= 0, (28)

where τ ∈ (0, 1) is the quantile index. As in Chernozhukov and Hansen (2006), we are interested

in the conditional quantiles that satisfy P (Yi ≤ q0(Xi, τ)|Zi) = τ . Given the location-scale model,

5Although Machado and Santos Silva (2019) only consider the one-step estimator with Wn = I2m, the iterated
GMM estimator can also be obtained by iterating the s-step estimator with the efficient weight matrix Wn(ϕ) until
convergence. The iterated GMM pseudo-true value θ0 is similarly defined as in (16).
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we define the structural quantile function as:

q0(Xi, τ) = X ′
iβ0 + σ(X ′

iγ0)q0(τ),

and define the regression quantile coefficient as α0(Xi, τ) ≡ ∂q0(Xi,τ)
∂Xi

= β0+σ
′(X ′

iγ0)γ0q0(τ), where

σ′(x) = ∂σ(x)/∂x.

Given the GMM-QR estimator θ̂ = (β̂′, γ̂′)′ in (25), q̂(τ) is estimated by the sample moment

function of (28):

1

n

n∑
i=1

[
τ − 1

(
Yi −X ′

iβ̂

σ(X ′
iγ̂)

≤ q̂(τ)

)]
= 0, (29)

or by the τth quantile of the standardized residuals Ûi = (Yi − X ′
iβ̂)/σ(X

′
iγ̂). The structural

quantile function is estimated as:

q̂(Xi, τ) = X ′
iβ̂ + σ(X ′

iγ̂)q̂(τ). (30)

The following theorem shows the joint asymptotic distribution of the one-step GMM-QR esti-

mator θ̂ under moment misspecification.

Theorem 5. Consider the model (24) with a sample of i.i.d observations {Yi, Xi, Zi}ni=1. Suppose

that the following assumptions hold.

1. θ0 is a unique value in the interior of the compact parameter space Θ ⊂ R2k.

2. The random variables Ui are independent of Zi, and have a continuous density function fU (u),

and the cumulative density function FU (u). fU (u) is bounded away from 0. For some ϵ > 0,

[lim
τ↘ϵ

q(τ), lim
τ↗1−ϵ

q(τ)] is bounded τ ∈ T = (ϵ, 1− ϵ).

3. E[|Ui|2+ν ], E[||Xi||2+ν ], E[||vi||4+ν ], E[||Zi||2+ν ], E[||ZiX
′
i||2+ν ], E[σ′(X ′

iγ)|2+ν ], E[1/|σ(X ′
iγ)|2+ν ] <

∞ for some ν > 0.

Then, 
√
n(β̂ − β0)√
n(γ̂ − γ0)√

n(q̂(τ)− q0(τ))

 d→ N(0,Ω), (31)
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where Ω = E(ψiψ
′
i),

ψi =

(
H−1mi

1
fU (q0(τ))

[τ − 1(Ui ≤ q0(τ))]

)
,

H =G′WG+ (g(θ0)
′W ⊗ I2k)F,

mi =G
′Wgi(θ0) +Gi(θ0)

′Wg(θ0)−G′Wviv
′
iWg(θ0),

gi(θ) =

 Zi
Yi−X′

iβ
σ(X′

iγ)

Zi

(∣∣∣Yi−X′
iβ

σ(X′
iγ)

∣∣∣− 1
) 

Gi(θ) =

 − 1
σ(X′

iγ)
ZiX

′
i −σ′(X′

iγ)(Yi−X′
iβ)

σ(X′
iγ)

2 ZiX
′
i

− 1
σ(X′

iγ)
sgn

(
Yi−X′

iβ
σ(X′

iγ)

)
ZiX

′
i −σ′(X′

iγ)(Yi−X′
iβ)

σ(X′
iγ)

2 sgn
(
Yi−X′

iβ
σ(X′

iγ)

)
ZiX

′
i

 ,

sgn(x) = 1{x ≥ 0} − 1{x ≤ 0} is a sign function, G = G(θ0) with the population Jacobian

G(θ) = E[Gi(θ)], W = E[viv
′
i]
−1, and F = F (θ0), F (θ) =

∂
∂θ′ vec(G(θ)

′), provided that H is non-

singular.

Theorem 5 extends the result in Machado and Santos Silva (2019) to allow for potential moment

misspecification. Under correct specification, where g(θ0) = 0, the asymptotic variance Ω = E(ψiψ
′
i)

simplifies to:

ψi =

(
(G′WG)−1G′Wgi(θ0)
1

fU (q0(τ))
[τ − 1(Ui ≤ q0(τ))]

)
.

Furthermore, under the just-identified model (k = m), the asymptotic variance does not depend on

the weight matrix and reduces to the formula in Theorem 5 of Machado and Santos Silva (2019).

Inference about the regression quantile coefficient can be performed using Theorem 5 and the

delta method. For example, in the linear case when σ(·) is the identity function, the regression

quantile coefficient is α̂(τ) = β̂ + γ̂q̂(τ), and we have:

√
n(α̂(τ)− α0(τ))

d→ N(0, AΩA′), (32)

where A = (Ik×k q0(τ)Ik×k γ0) is a k × (2k + 1) matrix. The misspecification-robust variance

estimator of α̂(τ) can then be obtained from (32):

V̂mr(α̂(τ)) = ÂΩ̂Â′,

Â = (Ik×k q̂(τ)Ik×k γ̂),

Ω̂ =
1

n

n∑
i=1

ψ̂iψ̂
′
i, ψ̂i =

(
Ĥ−1m̂i

1
f̂U (q̂(τ))

[τ − 1(Ûi ≤ q̂(τ))]

)
,
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where:

Ĥ = Ĝ′WnĜ+ (gn(θ̂)
′Wn ⊗ I2k)F̂ ,

m̂i = Ĝ′Wngi(θ̂) +Gi(θ̂)
′Wngn(θ̂)− Ĝ′Wnviv

′
iWngn(θ̂).

The derivative matrices Ĝ, F̂ can be estimated using standard numerical derivative methods, as

described in Appendix B. We use the standard kernel density estimator for fU (·):

f̂U (q̂(τ)) =
1

hn
K

(
q̂(τ)

hn

)
,

where K(·) is a kernel function and hn is a bandwidth satisfying hn → 0,
√
nhn → ∞. We

use the Hall-Sheather (1988) bandwidth for hn, which is the standard choice for kernel density

estimation (e.g., Koenker 1994). The standard error is obtained by taking the diagonal elements

of

√
V̂mr(α̂(τ))/n.

For the iterated GMM estimator, the standard error is constructed in the same way using

Theorem 3, with:

Ĥ = Ĝ′Wn(θ̂)Ĝ+ (gn(θ̂)
′Wn(θ̂)⊗ I2k)F̂ − (gn(θ̂)

′Wn(θ̂)⊗ Ĝ′Wn(θ̂))Ŝ,

m̂i = Ĝ′Wn(θ̂)gi(θ̂) +Gi(θ̂)
′Wn(θ̂)gn(θ̂)− Ĝ′Wn(θ̂)vi(θ̂)vi(θ̂)

′Wn(θ̂)gn(θ̂),

where Ĝ, F̂ , and Ŝ can be estimated using numerical derivative methods.

Similar to the standard quantile regression literature (e.g., Hahn (1995) and Buchinsky (1995)),

we can avoid nonparametric density estimation by using bootstrap methods, as discussed in Section

4.

6 Simulation

In this section, we investigate the finite sample performance of the GMM-QR estimator and the

misspecification-robust asymptotic and bootstrap standard errors under both correct specification

and misspecification. We consider the following simple location-scale model, as introduced in

Section 5:

yi = β0 + β1Di + (γ0 + γ1Di)ui,

where Di is a scalar endogenous variable. The instrumental variables are Zi = (z1i, z2i, z3i)
′ and

the moment function is gi(β, γ) =
(
Zi

(
yi−β0−β1Di

γ0+γ1Di

)
, Zi

(∣∣∣yi−β0−β1Di

γ0+γ1Di

∣∣∣− 1
))

.
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The data-generating process (DGP) allowing misspecification is

yi = β0 + β1Di + δ(z1i − z2i) + (γ0 + γ1Di)ui,

Di = Φ(z1i + z2i + z3i + vi),

Zi ∼ N (0, I3) ,

(
ui

vi

)
∼ N

((
0

0

)
,

[
1 0

0 1

])
.

We set the location and scale parameters as (β0, β1) = (−1, 1) and (γ0, γ1) = (1, 1). The number

of observations is set to n = 500, 1000, and we consider the quantiles τ = 0.5, 0.7, 0.9.

Here, δ controls the degree of misspecification, and we vary δ ∈ {0, 0.1, 0.2, 0.3}. When δ = 0,

the model is correctly specified, and we can write the structural quantile function in the form:

q(Di, τ) = η0(τ)+α0(τ)Di, where η0(τ) = β0+γ0F
−1
u (τ) and α0(τ) = β1+γ1F

−1
u (τ), with F−1

u (τ)

being the inverse CDF of the unobservable ui evaluated at τ . The parameter δ controls the degree

of misspecification by allowing for the violation of the exclusion restriction on the instruments. For

δ ̸= 0,

E
[
Zi

(
yi − β0 − β1Di

γ0 + γ1Di

)]
= δE

[
Zi

z1i − z2i
γ0 + γ1Di

]
̸= 0,

so the moment condition fails to hold.

The mean and the standard deviation of GMM-QR estimator for regression quantile coefficient

α0(τ) are computed in Tables 1 and 2. We consider the one-step GMM (α̂1(τ)) and iterated GMM

(α̂(τ)) estimators, and report the means of the conventional (heteroskedasticity-robust) standard

errors (se α̂(τ)) and the misspecification robust standard error (semr α̂(τ)).

Tables 1 and 2 show that the proposed misspecification-robust standard errors are consistent

under misspecification (δ ̸= 0), and remain accurate even under correct specification (δ = 0) for

almost all cases across τ . The means of robust standard errors (semr α̂(τ)) are very close to the

standard deviations (sd α̂(τ)) for all values of δ. The conventional standard error is not consistent

and severely downward biased under misspecification, and this bias increases with δ. Furthermore,

the iterated GMM estimator tends to have smaller variance than the one-step estimator. Hansen

and Lee (2021) provides a heuristic argument of the variance reduction due to the contraction

property of the iteration mapping.

The simulation results show that the proposed misspecification-robust standard errors approxi-

mate the standard deviations of the GMM-QR estimators well regardless of model misspecification.
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δ (degree of misspecification) 0 0.1 0.2 0.3

τ = 0.5 α̂1(τ) 1.0144 0.9995 1.0159 0.9976
sd α̂1(τ) 0.2183 0.2362 0.2496 0.2870
se α̂1(τ) 0.2102 0.2120 0.2156 0.2203
semr α̂1(τ) 0.2202 0.2070 0.2276 0.2743

α̂(τ) 1.0164 0.9998 1.0088 0.9943
sd α̂(τ) 0.2215 0.2382 0.2499 0.2777
se α̂(τ) 0.2077 0.2094 0.2127 0.2170
semr α̂(τ) 0.2271 0.2120 0.2342 0.3213

τ = 0.7 α̂1(τ) 1.5389 1.5061 1.4896 1.3989
sd α̂1(τ) 0.2341 0.2493 0.2716 0.3114
se α̂1(τ) 0.2256 0.2278 0.2316 0.2380
semr α̂1(τ) 0.2395 0.2243 0.2510 0.3107

α̂(τ) 1.5416 1.5182 1.5298 1.5001
sd α̂(τ) 0.2362 0.2491 0.2665 0.2927
se α̂(τ) 0.2225 0.2245 0.2277 0.2327
semr α̂(τ) 0.2438 0.2286 0.2493 0.3288

τ = 0.9 α̂1(τ) 2.2766 2.2449 2.1301 2.0058
sd α̂1(τ) 0.3005 0.3199 0.3632 0.4034
se α̂1(τ) 0.2954 0.2972 0.3019 0.3122
semr α̂1(τ) 0.3171 0.3129 0.3623 0.4523

α̂(τ) 2.2753 2.2699 2.2501 2.2624
sd α̂(τ) 0.3043 0.3203 0.3370 0.3569
se α̂(τ) 0.2900 0.2917 0.2954 0.3029
semr α̂(τ) 0.3141 0.3039 0.3299 0.3902

Table 1: Monte Carlo Results for Quantile Regression: n = 500

6.1 Finite Sample Coverage

We investigate the finite sample performance of the confidence intervals (CIs). We report

the coverage properties of the CIs based on the one-step and iterated GMM estimators, using

conventional (non-robust) standard errors and misspecification-robust standard errors. We also

report the coverage of bootstrap-based CIs.

Based on the same simulation setup described above, Table 3 reports the nominal 95% coverage

properties of the following CIs under different degrees of misspecification (δ = 0, 0.2, 0.4, 0.6) and

quantiles (τ = 0.5, 0.7, 0.9). First, we report the coverage of CICONV based on the conventional

heteroskedasticity-robust standard errors (se(α̂(τ))):

CICONV = [α̂(τ)± 1.96× se(α̂(τ))].

CIMR is based on the misspecification-robust standard errors (seMR(α̂(τ))):

CIMR = [α̂(τ)± 1.96× seMR(α̂(τ))].
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δ (degree of misspecification) 0 0.1 0.2 0.3

τ = 0.5 α̂1(τ) 0.9946 1.0036 0.9952 1.0077
sd α̂1(τ) 0.1559 0.1632 0.1659 0.1947
se α̂1(τ) 0.1497 0.1505 0.1526 0.1569
semr α̂1(τ) 0.1526 0.1416 0.1482 0.1694

α̂(τ) 0.9934 1.0029 0.9923 1.0075
sd α̂(τ) 0.1566 0.1623 0.1667 0.1910
se α̂(τ) 0.1487 0.1496 0.1516 0.1557
semr α̂(τ) 0.1548 0.1433 0.1500 0.1793

τ = 0.7 α̂1(τ) 1.5141 1.5156 1.4650 1.4000
sd α̂1(τ) 0.1582 0.1682 0.1917 0.2131
se α̂1(τ) 0.1605 0.1614 0.1642 0.1688
semr α̂1(τ) 0.1642 0.1528 0.1613 0.1871

α̂(τ) 1.5135 1.5297 1.5142 1.5057
sd α̂(τ) 0.1587 0.1691 0.1861 0.1960
se α̂(τ) 0.1594 0.1602 0.1627 0.1666
semr α̂(τ) 0.1654 0.1552 0.1597 0.1876

τ = 0.9 α̂1(τ) 2.2796 2.2380 2.1394 1.9763
sd α̂1(τ) 0.2139 0.2202 0.2499 0.2930
se α̂1(τ) 0.2086 0.2100 0.2129 0.2205
semr α̂1(τ) 0.2145 0.2115 0.2334 0.2746

α̂(τ) 2.2798 2.2696 2.2670 2.2260
sd α̂(τ) 0.2145 0.2148 0.2377 0.2580
se α̂(τ) 0.2066 0.2080 0.2106 0.2164
semr α̂(τ) 0.2128 0.2068 0.2141 0.2383

Table 2: Monte Carlo Results for Quantile Regression: n = 1000

Finally, we report the coverage of the percentile bootstrap CI:

CIBOOT−PC = [α̂∗
0.025(τ), α̂

∗
0.975(τ)]

where α̂∗
0.025(τ) and α̂∗

0.975(τ) are the 0.025 and 0.975 quantiles of the bootstrap distribution of

α̂∗(τ).6

We find that the coverage of CICONV falls significantly below 95% under misspecification (δ ̸=
0), and the coverage decreases as the degree of misspecification increases. Using misspecification-

robust standard errors for the one-step and iterated GMM estimators improves coverage when the

degree of misspecification is large (δ = 0.4, 0.6). Yet, CIMR exhibits undercoverage for δ ̸= 0. This

may be due to the nonparametric density estimation in the variance-covariance matrix, as discussed

in Sections 4 and 5.

Finally, without any direct density estimation, the bootstrap percentile CIs (CIBOOT−PC) per-

6Simulation results are based on 10,000 bootstrap replications using the warp-speed methods proposed in Giaco-
mini, Politis, and White (2013).
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δ (degree of misspecification) 0 0.2 0.4 0.6

CICONV 0.940 0.914 0.820 0.663
τ = 0.5 One-step CIMR 0.946 0.899 0.881 0.863

CIBOOT−PC 0.950 0.957 0.961 0.978

CICONV 0.935 0.912 0.834 0.676
Iterated CIMR 0.947 0.906 0.914 0.946

CIBOOT−PC 0.952 0.955 0.956 0.973

CICONV 0.937 0.912 0.828 0.684
τ = 0.7 One-step CIMR 0.945 0.906 0.904 0.910

CIBOOT−PC 0.951 0.954 0.959 0.975

CICONV 0.932 0.912 0.842 0.698
Iterated CIMR 0.947 0.909 0.917 0.947

CIBOOT−PC 0.953 0.954 0.960 0.969

CICONV 0.941 0.911 0.838 0.740
τ = 0.9 One-step CIMR 0.949 0.942 0.956 0.964

CIBOOT−PC 0.958 0.955 0.958 0.976

CICONV 0.936 0.917 0.861 0.745
Iterated CIMR 0.944 0.925 0.928 0.956

CIBOOT−PC 0.956 0.956 0.956 0.969

Table 3: Coverage Probabilities of 95% Confidence Intervals (CI). Sample sizes n = 500
CICONV : CI based on the conventional GMM standard errors. CIMR: CI based on the

Misspecification-robust GMM standard errors. CIBOOT−PC : The percentile bootstrap CI.

form well across different values of τ and δ, with coverage close to 95% in most cases.7

7 An Illustrative Empirical Application: Demand for Fish

We illustrate our methods in an empirical application of estimating the demand for fish. We use

the dataset from Graddy (1995), which records transactions of whiting in the New York fish market.

This dataset has also been used in the quantile regression literature, including Chernozhukov and

Hansen (2008), Chernozhukov, Hansen, and Jansson (2009), and Chen and Lee (2018).

We consider the location-scale model of the demand equation:

Qi = β0 + β1Pi + β′2Xi + (γ0 + γ1Pi + γ′2Xi)Ui, (33)

where Qi is the logarithm of the total amount of whiting sold each day, and Pi is the logarithm of

the average daily fish price, which is endogenous. The vector Xi includes exogenous explanatory

7We also investigated results for CIs based on bootstrap standard errors; however, they are not reported here for
brevity, as the results were overly conservative—coverage was nearly 99% in most cases. This finding aligns with the
theoretical results in Hahn and Liao (2021).
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τ = 0.25 τ = 0.5 τ = 0.75

GMM-QR α̂(τ) -1.2390 -1.1026 -1.0405
(one-step) se(α̂(τ)) (0.6059) (0.3744) (0.3925)

seMR(α̂(τ)) [0.6205] [0.7086] [0.7949]
95% Bootstrap CI [-2.5290, -0.0384] [-2.0987, -0.2680] [-2.0830, -0.2069]

GMM-QR α̂(τ) -1.3918 -1.0766 -0.9461
(iterated) se(α̂(τ)) (0.6150) (0.3311) (0.3181)

seMR(α̂(τ)) [1.5624] [0.9496] [0.7230]
95% Bootstrap CI [-2.4305, -0.0982] [-1.9112, -0.2829] [-1.7269, -0.2654]

QR α̂(τ) -0.5295 -0.5449 -0.5571
se(α̂(τ)) (0.1857) (0.1626) (0.1845)

IVQR α̂(τ) -1.0880 -0.8876 -0.9755
se(α̂(τ)) (0.4773) (0.5056) (0.3027)

SIVQR α̂(τ) -1.2860 -0.7610 -1.0176
se(α̂(τ)) (1.3004) (0.4753) (0.6032)

Inverse-QR α̂(τ) -1.3680 -0.8860 -1.2685
se(α̂(τ)) (0.5704) (0.4673) (0.3911)

Table 4: GMM-QR estimation of demand elasticity.
Baseline specification without day fixed effects

OLS: −0.5408
(0.1650)

, 2SLS: −1.0141
(0.3841)

variables, such as indicators for the days of the week (Monday, Tuesday, Wednesday, and Thursday).

The structural quantile function can be estimated using the GMM-QR estimator, with two indicator

variables for weather conditions at sea (Stormy and Mixed) as instruments.8

We are interested in the regression quantile coefficient:

α̂(τ) = β̂1 + γ̂1q̂(τ), τ ∈ (0, 1), (34)

where q̂(τ) is the τth quantile of the standardized residuals, Ûi =
Qi−β̂0−β̂1Pi−β̂′

2Xi

γ̂0+γ̂1Pi+γ̂′
2Xi

. The regression

quantile coefficient α̂(τ) estimates the price elasticity of demand, which varies across different

quantile levels.

Tables 4 and 5 report α̂(τ) based on the one-step and iterated GMM-QR estimators with

conventional standard errors (se(α̂(τ))) and misspecification-robust standard errors (seMR(α̂(τ))).

We also report bootstrap standard errors and 95% percentile bootstrap confidence intervals, using

10,000 bootstrap replications.

Table 4 presents results for the baseline specification without day fixed effects, while Table 5

shows results for the specification with day fixed effects. For comparison, we report estimation

8Stormy is a dummy variable indicating wave height greater than 4.5 feet and wind speed greater than 18 knots,
while Mixed indicates wave height greater than 3.8 feet and wind speed greater than 13 knots. See Chernozhukov
and Hansen (2008), Chernozhukov, Hansen, and Jansson (2009) for a detailed description of the data.
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τ = 0.25 τ = 0.5 τ = 0.75

GMM-QR α̂(τ) -0.9806 -1.0415 -1.0917
(one-step) se(α̂(τ)) (0.4123) (0.3256) (0.3809)

seMR(α̂(τ)) [0.3492] [0.3445] [0.4660]
95% Bootstrap CI [-2.5825, -0.0563] [-2.0871, -0.3030] [-2.1256, -0.2179]

GMM-QR α̂(τ) -1.0190 -0.9303 -0.8620
(iterated) se(α̂(τ)) (0.4139) (0.3088) (0.2970)

seMR(α̂(τ)) [0.6373] [0.4703] [0.3904]
95% Bootstrap CI [-2.7555, -0.1278] [-1.8934, -0.2544] [-1.6820, -0.1762]

QR α̂(τ) -0.5812 -0.5674 -0.5558
se(α̂(τ)) (0.1706) (0.1364) (0.1592)

IVQR α̂(τ) -0.6915 -0.7152 -1.0904
se(α̂(τ)) (0.3253) (0.4828) (0.2465)

SIVQR α̂(τ) -0.7920 -0.6487 -0.8980
se(α̂(τ)) (0.7626) (0.4071) (0.5694)

Inverse-QR α̂(τ) -1.3635 -0.5950 -1.1790
se(α̂(τ)) (0.5304) (0.4398) (0.3653)

Table 5: GMM-QR estimation of demand elasticity.
Specification with day fixed effects

OLS: −0.5625
(0.1521)

, 2SLS: −0.9301
(0.3577)

results from ordinary least squares (OLS) and two-stage least squares (2SLS), which do not vary

with quantile levels. We then present quantile regression (QR) estimates based on the location-

scale model without addressing endogeneity. Finally, we report IVQR estimation results, including

the exact computation of the GMM estimator for IVQR models using mixed integer quadratic

programming, as proposed by Chen and Lee (2018), and the smoothed IVQR (SIVQR) estimator

of Kaplan and Sun (2017). Additionally, we report the inverse QR estimation (Inverse-QR) results

by Chernozhukov, Hansen, and Jansson (2009).

Chernozhukov, Hansen, and Jansson (2009, Table 1) and Chen and Lee (2018, Table 6) report

the same results for IVQR and Inverse-QR.

For the baseline specification in Table 4, we find that the point estimates for all methods

accounting for endogeneity are similar at quantile levels τ ∈ {0.25, 0.75}, although results differ

slightly between GMM-QR and other methods at τ = 0.5. We also find that the QR method,

which does not account for endogeneity, can yield significantly different results compared to other

methods. Notably, the misspecification-robust standard errors are generally larger than the con-

ventional standard errors. The demand elasticity coefficients are not statistically significant at the

conventional 5% level when using robust standard errors, except for the one-step GMM-QR esti-

mator at τ = 0.25. However, the percentile bootstrap CIs do not include zero for both the one-step

and iterated estimators at all values of τ , and they are narrower than the normal-based CIs using
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the misspecification-robust standard errors.

When the day fixed effects are included in the model, Table 5 indicates that the misspecification-

robust standard errors are not necessarily larger than the conventional standard errors. We find that

both the one-step and iterated GMM-QR coefficient estimates, α̂(τ), are close to -1 and statistically

significant at all quantile levels using the misspecification-robust standard errors, except for the

iterated estimator at τ = 0.25. The percentile bootstrap CIs again do not include zero for all values

of τ and both estimators.

We also find that the demand elasticity coefficient can vary significantly across different methods

at τ ∈ {0.25, 0.5}, as discussed in Chen and Lee (2018). Table 5 indicates that both IVQR and

Inverse-QR lead to statistically significant results at τ ∈ {0.25, 0.75}. However, we do not reject

α(τ) = 0 at τ = 0.5 for IVQR and Inverse-QR, nor at any quantile level τ ∈ {0.25, 0.5, 0.75} for

SIVQR.

We note that using conventional GMM standard errors for these methods in the IVQR model

is not valid under misspecification, and this warrants further investigation.9

8 Conclusion

This paper develops an asymptotic theory for GMM estimators under nonsmooth and possibly

misspecified moment conditions. While the estimators remain
√
n-consistent and asymptotically

normal with directionally differentiable moment conditions, conventional variance estimators are

inconsistent under misspecification. We provide a consistent variance estimator and establish the

validity of nonparametric bootstrap inference. Our results apply to many economic examples, and

we illustrate our theoretical findings in the quantile regression model of Machado and Santos Silva

(2019).

Our result has an important practical implication: Hahn (1996) established the validity of

the GMM bootstrap percentile interval based on under correct specification. We show that the

bootstrap interval remains valid under misspecification. Thus, in popular applications such as

quantile regressions with IV, the GMM bootstrap percentile intervals enable misspecification-robust

inference, whereas other existing methods are not valid under moment misspecification.

While it is beyond the scope of this paper, several potential directions exist for extending the

results. First, developing an asymptotic distribution theory for a general semiparametric class

of M-estimators under misspecification would be an interesting avenue of research. Notably, we

do not consider fully nonparametric or semiparametric conditional moment restriction models.

Identification, estimation, and inference for general conditional moment restriction models with

possibly nonsmooth moment functions have been studied by Chen, Linton, and van Keilegom

(2003), Chen and Pouzo (2009, 2012), and Chen and Liao (2015). Ai and Chen (2007) develop

estimation and inference methods for general conditional moment restriction models with potential

9Because IVQR moment conditions involve indicator functions, the GMM estimator is
√
n-consistent under correct

specification but n1/3-consistent under misspecification. Hong and Li (2023) propose a rate-adaptive bootstrap
procedure to consistently estimate the asymptotic distribution regardless of model specification.
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misspecification, assuming smooth moment functions.

Second, investigating the pseudo-true value in general econometric models and its relationship

with the true value is of interest. See Andrews et al. (2024) and references therein for recent

developments on this topic. We leave these directions for future research.

Appendix A: Proofs

The following Lemma 1 provides a primitive condition for the stochastic equicontinuity condition

that allows for g(x, θ) be Lipschitz at θ0 and differentiable at θ0 with probability one, rather than

continuously differentiable. Lemma 1 extends Theorem 7.3 of Newey and McFadden (1994), which

establishes the same result under correct specification E[gn(θ0)] = 0.

Lemma 1. Suppose that g(θ) = E[gn(θ)] ̸= 0, ∀θ ∈ Θ where gn(θ) = n−1
∑n

i=1 g(Xi, θ). Sup-

pose there exists ∆(x, θ0) and ε > 0 such that with probability one r(x, θ) ≡ ||g(x, θ) − g(x, θ0) −
∆(x, θ0)(θ − θ0)||/||θ − θ0|| → 0 as θ → θ0, E[sup||θ−θ0||<ε r(x, θ)] < ∞, n−1

∑n
i=1∆(Xi, θ0)

p→
E[∆(Xi, θ0)]. Then, for any δn → 0, sup||θ−θ0||≤δn

√
n||gn(θ)−gn(θ0)−(g(θ)−g(θ0))||

1+
√
n||θ−θ0||

p→ 0 and g(θ) is

differentiable at θ0 with derivative G = E[Gn] where Gn = n−1
∑n

i=1∆(Xi, θ0).

Proof of Lemma 1:

For any ε > 0, let r(x, ε) = sup||θ−θ0||<ε r(x, θ). Note that r(x, ε) → 0 as ε→ 0 with probability

one, and thus E[(r(x, ε)] → 0 as ε→ 0 by the dominated convergence theorem. For all θ such that

||θ − θ0|| ≤ δn,

sup
||θ−θ0||≤δn

√
n||gn(θ)− gn(θ0)− (g(θ)− g(θ0))||

1 +
√
n||θ − θ0||

≤
√
n|| 1n

∑n
i=1(∆(Xi, θ0)− E[∆(Xi, θ0)])× (θ − θ0)||+

√
n( 1n

∑n
i=1 r(Xi, δn) + E[r(Xi, δn)])||θ − θ0||

1 +
√
n||θ − θ0||

≤ 1

n

n∑
i=1

(∆(Xi, θ0)− E[∆(Xi, θ0)]) +Op(E[r(Xi, δn)])
p→ 0

by the definition of r(x, ε) and the Markov Inequality.

We also note that ||g(θ)−g(θ0)−G(θ−θ0)|| = ||n−1
∑n

i=1{E[g(Xi, θ)]−E[g(Xi, θ0)]−E[∆(Xi, θ0)](θ−
θ0)}||. For θ → θ0 and ε = ||θ − θ0||,

||g(θ)− g(θ0)−G(θ − θ0)|| ≤ E[r(Xi, ε)]||θ − θ0|| → 0

which shows g(θ) is differentiable at θ0 with derivative G. This completes the proof.

Lemma 2 shows
√
n-consistency and the asymptotic distribution of the bootstrap estimator

θ̂∗ which maximizes the bootstrap sample criterion function. Lemma 2 provides the bootstrap

extension of the Theorem 7.1 of Newey and McFadden (1994).
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Let Q∗
n(θ) be the same criterion function as Qn(θ) but based on the bootstrap data. Define the

remainder terms as

Rn(θ) =
Qn(θ)−Qn(θ0)−D′

n(θ − θ0)− (Q(θ)−Q(θ0))

∥θ − θ0∥
, (35)

R∗
n(θ) =

Q∗
n(θ)−Q∗

n(θ0)−D∗′
n (θ − θ0)− (Qn(θ)−Qn(θ0))

∥θ − θ0∥
. (36)

Lemma 2. Suppose that Q(θ) is maximized on Θ at θ0 ∈ int(Θ), Q(θ) is twice differentiable at θ0

with nonsingular second derivative H, and that θ̂
p−→ θ0. Suppose that

(i) Qn(θ̂) ≥ supθ∈ΘQn(θ)− op(n
−1);

(ii)
√
nDn

d−→ N(0,Ω);

(iii) for any δn → 0, sup∥θ−θ0∥≤δn |
√
nRn(θ)/[1 +

√
n∥θ − θ0∥]|

p−→ 0.

Further, suppose the following holds for the bootstrap estimator θ̂∗ such that θ̂∗
p∗−→ θ0. Suppose

that

(i∗) Q∗
n(θ̂

∗) ≥ supθ∈ΘQ
∗
n(θ)− o∗p(n

−1);

(ii∗)
√
nD∗

n
d∗−→ N(0,Ω);

(iii∗) for any δn → 0, sup∥θ−θ0∥≤δn |
√
nR∗

n(θ)/[1 +
√
n∥θ − θ0∥]|

p∗−→ 0.

Then,
√
n(θ̂ − θ0)

d−→ N(0, H−1ΩH−1), and
√
n(θ̂∗ − θ̂)

d∗−→ N(0, H−1ΩH−1).

Proof of Lemma 2: By the hypotheses of the Lemma, the asymptotic distribution results for θ̂

directly follow from Theorem 7.1 of Newey and McFadden (1994). Therefore, it suffices to show that

the bootstrap estimator converges in distribution to the same asymptotic distribution in probability.

We first prove
√
n-consistency of the bootstrap estimator θ̂∗. By the same argument for θ̂, the

negative definiteness10 of H and θ̂∗
p∗−→ θ0 imply that

Q(θ̂∗) ≤ Q(θ0)− C∗∥θ̂∗ − θ0∥2 (37)

for some C∗ > 0. Choose U∗
n so that θ̂∗ ∈ U∗

n w.p.a.1, so that by (iii∗)

|R∗
n(θ̂

∗)| ≤ (1 +
√
n∥θ̂∗ − θ0∥)o∗p(n−1/2). (38)

10Note that this H corresponds to −H in the main text.
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Then by (i∗), (35), (36), (37), and (38),

0 ≤Q∗
n(θ̂

∗)−Q∗
n(θ0) + o∗p(n

−1)

=Qn(θ̂
∗)−Qn(θ0) +D∗′

n (θ̂
∗ − θ0) + ∥θ̂∗ − θ0∥R∗

n(θ̂
∗) + o∗p(n

−1)

=Q(θ̂∗)−Q(θ0) + (Dn +D∗
n)

′(θ̂∗ − θ0) + ∥θ̂∗ − θ0∥(Rn(θ̂
∗) +R∗

n(θ̂
∗)) + o∗p(n

−1)

≤− C∗∥θ̂∗ − θ0∥2 +O∗
p(n

−1/2)∥θ̂∗ − θ0∥+ ∥θ̂∗ − θ0∥
(
1 +

√
n∥θ̂∗ − θ0∥

)
o∗p(n

−1/2) + o∗p(n
−1)

≤− (C∗ + o∗p(1))∥θ̂∗ − θ0∥2 +O∗
p(n

−1/2)∥θ̂∗ − θ0∥+ o∗p(n
−1).

Since C∗+o∗p(1) is bounded away from zero with probability approaching 1 in probability, it follows

that ∥θ̂∗ − θ0∥+O∗
p(n

−1/2) ≤ O∗
p(n

−1/2). Therefore, by the triangle inequality

∥θ̂∗ − θ0∥ ≤
∣∣∣∥θ̂∗ − θ0∥+O∗

p(n
−1/2)

∣∣∣+ ∣∣∣O∗
p(n

−1/2)
∣∣∣ ≤ O∗

p(n
−1/2). (39)

Thus,
√
n-consistency is proved.

Next, let θ̃∗ = θ̃ −H−1D∗
n. Then θ̃

∗ is
√
n-consistent for θ0 because

∥θ̃∗ − θ0∥ ≤ ∥θ̃ − θ0∥+ ∥H−1∥∥D∗
n∥ ≤ O∗

p(n
−1/2) (40)

by (ii∗). Now by (36), (35), twice differentiability of Q(θ), and
√
n-consistency of θ̂∗,

2
(
Q∗

n(θ̂
∗)−Q∗

n(θ0)
)

=2
(
Qn(θ̂

∗)−Qn(θ0)
)
+ 2D∗′

n (θ̂
∗ − θ0) + 2R∗

n(θ̂
∗)∥θ̂∗ − θ0∥

=2
(
Q(θ̂∗)−Q(θ0)

)
+ 2(Dn +D∗

n)
′(θ̂∗ − θ0) + 2(Rn(θ̂

∗) +R∗
n(θ̂

∗))∥θ̂∗ − θ0∥

=(θ̂∗ − θ0)
′H(θ̂∗ − θ0) + 2(Dn +D∗

n)
′(θ̂∗ − θ0) + 2(Rn(θ̂

∗) +R∗
n(θ̂

∗))∥θ̂∗ − θ0∥+ o
(
∥θ̂∗ − θ0∥2

)
=(θ̂∗ − θ0)

′H(θ̂∗ − θ0) + 2(Dn +D∗
n)

′(θ̂∗ − θ0) + o∗p(n
−1).

Since

D∗′
n (θ̂

∗ − θ0) = −(θ̃∗ − θ̃)′H(θ̂∗ − θ0) = −(θ̃∗ − θ0)
′H(θ̂∗ − θ0)−D′

n(θ̂
∗ − θ0),

it follows that

2
(
Q∗

n(θ̂
∗)−Q∗

n(θ0)
)
= (θ̂∗ − θ0)

′H(θ̂∗ − θ0)− 2(θ̃∗ − θ0)
′H(θ̂∗ − θ0) + o∗p(n

−1).

Similarly, it can be shown that

2
(
Q∗

n(θ̃
∗)−Q∗

n(θ0)
)
= −(θ̃∗ − θ0)

′H(θ̃∗ − θ0) + o∗p(n
−1).
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By (i∗) and θ̂∗
p∗−→ θ0,

o∗p(n
−1) ≤Q∗

n(θ̂
∗)−Qn(θ̃

∗)

=2
(
Q∗

n(θ̂
∗)−Q∗

n(θ0)
)
− 2

(
Q∗

n(θ̃
∗)−Q∗

n(θ0)
)

=(θ̂∗ − θ̃∗)′H(θ̂∗ − θ̃∗) + o∗p(n
−1)

≤− C∗∥θ̂∗ − θ̃∗∥+ o∗p(n
−1)

for some C∗ > 0 (note that this is a generic positive constant). Thus, ∥θ̂∗ − θ̃∗∥ = o∗p(n
−1/2). Since

∥θ̂ − θ̃∥ = op(n
−1/2), by the triangle inequality

∥
√
n(θ̂∗ − θ̂)− (−H−1√nD∗

n)∥ =∥
√
n(θ̂∗ − θ̂)−

√
n(θ̃∗ − θ̃)∥

≤
√
n∥θ̂∗ − θ̃∗∥+

√
n∥θ̂ − θ̃∥ = o∗p(1).

The conclusion follows by the Slutsky theorem.

Proof of Theorem 1:

The proof proceeds by checking the conditions of Theorem 7.1 of Newey and McFadden (1994),

which establish the asymptotic distribution of the maximizer of the nonsmooth sample criterion

function. We refer the theorem to as TNM in this proof. We restate the conditions here for

convenience: (0) for the sample criterion function Qn(θ), Qn(θ̂) ≥ supθ∈ΘQn(θ) − op(n
−1) and

θ̂
p−→ θ0; (i) the population criterion function Q(θ) is maximized on the parameter space Θ at θ0;

(ii) θ0 is an interior point of Θ; (iii) Q(θ) is twice differentiable at θ0 with nonsingular second

derivative H; (iv)
√
nDn

d−→ N(0,Ω) where Dn is a random vector that appears in the remainder

term Rn(θ), analogous to the derivative of the sample criterion function, if exists; (v) for any

δn → 0, sup||θ−θ0||≤δn |Rn(θ)/[1 +
√
n∥θ − θ0∥]|

p−→ 0 where

Rn(θ) =
√
n[Qn(θ)−Qn(θ0)− (Q(θ)−Q(θ0))−D′

n(θ − θ0)]//||θ − θ0||.

First, we define

Q(θ) = −g(θ)′Wg(θ)/2, Qn(θ) = −gn(θ)′Wngn(θ)/2 + ∆n(θ)

where ∆n(θ) = εn(θ)
′Wnεn(θ)/2 + (gn(θ0) − g(θ0))

′Wnεn(θ) + g(θ0)
′(Wn −W )εn(θ), and εn(θ) =

[gn(θ)− gn(θ0)− (g(θ)− g(θ0))]/[1 +
√
n||θ − θ0||].
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Note that for δn → 0, and U = {θ : ||θ − θ0|| ≤ δn},

sup
U

√
n||εn(θ)|| = sup

U

√
n||gn(θ)− gn(θ0)− (g(θ)− g(θ0))||

1 +
√
n||θ − θ0||

≤ sup
U

√
n||gn(θ)− gn(θ0)− (g(θ)− g(θ0))− (Gn −G)(θ − θ0)||

(1 +
√
n||θ − θ0||)

+ sup
U

√
n||(Gn −G)(θ − θ0)||
(1 +

√
n||θ − θ0||)

≤ sup
U

√
n||gn(θ)− gn(θ0)− (g(θ)− g(θ0))− (Gn −G)(θ − θ0)||

||θ − θ0||(1 +
√
n||θ − θ0||)

+ ||Gn −G|| = op(1).

by Assumptions 1.6 and 1.7.

For any δn → 0,

sup
||θ−θ0||≤δn

|∆n(θ)| = sup
||θ−θ0||≤δn

|εn(θ)′Wnεn(θ)/2 + (gn(θ0)− g(θ0))
′Wnεn(θ) + g(θ0)

′(Wn −W )εn(θ)|

≤ Op(1) sup
||θ−θ0||≤δn

||εn(θ)||(||εn(θ)||+ ||gn(θ0)− g(θ0)||+ ||Wn −W ||) = op(n
−1)

by sup||θ−θ0||≤δn

√
n||εn(θ)|| = op(1), ||gn(θ0) − g(θ0)|| = Op(n

−1/2), and ||Wn −W || = Op(n
−1/2)

under Assumption 1.7. Then, we have Qn(θ̂) ≥ sup||θ−θ0||≤δn Qn(θ) − op(1/n) by Assumption 1.4.

Together with Assumption 1.5, Condition (0) of TNM is satisfied.

Conditions (i) and (ii) of TNM are satisfied by our Assumption 1.1.

By the second-order Taylor expansion, we obtain

g(θ) = g(θ0) +G(θ − θ0) +
1

2

m∑
j=1

(θj − θj)
∂G

∂θj
(θ − θ0) + o(||θ − θ0||2).

where θj denotes the jth element of θ. It follows then,

Q(θ) =− 1

2

g(θ0) +G(θ − θ0) +
1

2

m∑
j=1

(θj − θj)
∂G

∂θj
(θ − θ0)

′

W

×

g(θ0) +G(θ − θ0) +
1

2

m∑
j=1

(θj − θj)
∂G

∂θj
(θ − θ0)

+ o(||θ − θ0||2)

=− g(θ0)
′Wg(θ0)/2− g(θ0)

′WG(θ − θ0)− (θ − θ0)
′G′WG(θ − θ0)/2

− g(θ0)
′W

m∑
j=1

(θj − θj0)
∂G

∂θj
(θ − θ0)/2 + o(||θ − θ0||2)

=Q(θ0) + (θ − θ0)
′(−G′WG−

(
g(θ0)

′W ⊗ Ip)F
)
(θ − θ0)/2 + o(||θ − θ0||2)

=Q(θ0)− (θ − θ0)
′H(θ − θ0)/2 + o(||θ − θ0||2)

so that Q(θ) is twice differentiable at θ0, where in the third equality we use G′Wg(θ0) = 0 from

the population FOC. Thus, Condition (iii) of TNM is satisfied.
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For Condition (iv) of TNM, we define Dn = −G′
nWngn(θ0). Under g(θ0) ̸= 0, we have

√
nDn = −

√
nG′

nWngn(θ0) = −
√
nG′

nWn[gn(θ0)− g(θ0)]−
√
nG′

nWng(θ0)

= −
√
nG′

nWn[gn(θ0)− g(θ0)]−
√
nG′

n(Wn −W )g(θ0)−
√
n(Gn −G)′Wg(θ0)

d→ N(0,Ω)

by Assumption 1.7, the Slutzky theorem, and the population FOC, G′Wg(θ0) = 0.

It remains to check Condition (v) of TNM. To do so, we first derive the terms included in the

remainder Rn(θ). Since gn(θ) = gn(θ0) + g(θ)− g(θ0) + εn(θ)(1 +
√
n∥θ − θ0∥),

gn(θ)
′Wngn(θ) =(1 +

√
n||θ − θ0||)2εn(θ)′Wnεn(θ) + g(θ)′Wng(θ)

+ (gn(θ0)− g(θ0))
′Wn(gn(θ0)− g(θ0)) + 2(gn(θ0)− g(θ0))

′Wng(θ)

+ 2[(gn(θ0)− g(θ0)) + g(θ)]′Wnεn(θ)(1 +
√
n||θ − θ0||).

Since εn(θ0) = 0,

gn(θ)
′Wngn(θ)− gn(θ0)

′Wngn(θ0)− 2∆n(θ)

=(n∥θ − θ0∥2 + 2
√
n∥θ − θ0∥)εn(θ)′Wnεn(θ) + 2(gn(θ0)− g(θ0))

′Wnεn(θ)
√
n||θ − θ0||

+ 2(g(θ)− g(θ0))
′Wnεn(θ)(1 +

√
n||θ − θ0||) + 2g(θ0)

′(Wn −W )εn(θ)
√
n||θ − θ0||

+ 2g(θ0)
′Wεn(θ)(1 +

√
n||θ − θ0||) + 2(gn(θ0)− g(θ0))

′Wn(g(θ)− g(θ0))

+ g(θ)′Wng(θ)− g(θ0)
′Wng(θ0).

It is also useful to note that

g(θ)′Wng(θ)− g(θ0)
′Wng(θ0)− g(θ)′Wg(θ) + g(θ0)

′Wg(θ0)

=(g(θ)− g(θ0))
′(Wn −W )(g(θ)− g(θ0)) + 2(g(θ)− g(θ0))

′(Wn −W )g(θ0)

Using these algebraic results, we have

Qn(θ)−Qn(θ0)− (Q(θ)−Q(θ0))−D′
n(θ − θ0)

=− gn(θ)
′Wngn(θ)/2 + ∆n(θ) + gn(θ0)

′Wngn(θ0)/2−∆n(θ0) + g(θ)′Wg(θ)/2− g(θ0)
′Wg(θ0)/2

+ [G′
nWn(gn(θ0)− g(θ0)) +G′

n(Wn −W )g(θ0) + (Gn −G)′Wg(θ0)]
′(θ − θ0)

=
10∑
j=1

rjn(θ),
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where

r1n(θ) = −(n||θ − θ0||2 + 2
√
n||θ − θ0||)εn(θ)′Wnεn(θ)/2

r2n(θ) = −[gn(θ0)− g(θ0)]
′Wnεn(θ)

√
n||θ − θ0||

r3n(θ) = −[g(θ)− g(θ0)]
′Wnεn(θ)(1 +

√
n||θ − θ0||)

r4n(θ) = −g(θ0)′(Wn −W )εn(θ)
√
n||θ − θ0||

r5n(θ) = −g(θ0)′W [εn(θ)(1 +
√
n||θ − θ0||)− (Gn −G)(θ − θ0)]

r6n(θ) = −(g(θ)− g(θ0))
′[Wn −W ](g(θ)− g(θ0))/2

r7n(θ) = −[g(θ)− g(θ0)−G(θ − θ0)]
′(Wn −W )g(θ0)

r8n(θ) = [(Gn −G)(θ − θ0)]
′Wn(gn(θ0)− g(θ0))

r9n(θ) = −[g(θ)− g(θ0)−G(θ − θ0)]
′Wn(gn(θ0)− g(θ0))

r10n(θ) = [(Gn −G)(θ − θ0)]
′(Wn −W )g(θ0)

using ∆n(θ0) = 0, and G′Wg(θ0) = 0. Condition (v) of TNM is satisfied if

sup
||θ−θ0||≤δn

|Rn(θ)|
1 +

√
n||θ − θ0||

= sup
||θ−θ0||≤δn

√
n
∑10

j=1 |rjn(θ)|
||θ − θ0||(1 +

√
n||θ − θ0||)

= op(1). (41)

We now show (41). For r1n(θ),

sup
U

√
n|r1n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ Cn sup
U

||εn(θ)||2||Wn|| = op(1)

for some constant C > 0 because supU
√
n||εn(θ)|| = op(1) by Assumption 1.6 and 1.7. For r2n(θ),

sup
U

√
n|r2n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤
√
n||gn(θ0)− g(θ0)|| · ||Wn|| sup

U

√
n∥εn(θ)∥ = op(1)

by ||gn(θ0)− g(θ0)|| = Op(n
−1/2). For r3n(θ),

sup
U

√
n|r3n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ sup
U

||g(θ)− g(θ0)||
||θ − θ0||

sup
U

√
n∥εn(θ)∥ · ||Wn|| = op(1)

by ||g(θ)− g(θ0)|| = O(||θ − θ0||). For r4n(θ),

sup
U

√
n|r4n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ ||g(θ0)||
√
n||Wn −W || sup

U

√
n∥εn(θ)∥ = op(1)
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by ||Wn −W || = Op(n
−1/2). For r5n(θ),

sup
U

√
n|r5n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

= sup
U

√
n
|g(θ0)′W [gn(θ)− gn(θ0)− (g(θ)− g(θ0))− (Gn −G)(θ − θ0)]|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤||g(θ0)|| · ||W || sup
U

√
n
||[gn(θ)− gn(θ0)− (g(θ)− g(θ0))− (Gn −G)(θ − θ0)]||

||θ − θ0||(1 +
√
n||θ − θ0||)

= op(1)

where the last inequality holds by Assumption 1.6. For r6n(θ),

sup
U

√
n|r6n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ sup
U

||g(θ)− g(θ0)||
√
n||Wn −W || = op(1),

by ||g(θ)− g(θ0)|| = O(||θ − θ0||). For r7n(θ),

sup
U

√
n|r7n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ sup
U

||g(θ)− g(θ0)−G(θ − θ0)||
||θ − θ0||

√
n||Wn −W || · ||g(θ0)||

=sup
U
O(||θ − θ0||)Op(1) = op(1).

For r8n(θ),

sup
U

√
n|r8n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ sup
U

√
n||Gn −G|| · ||Wn|| · ||gn(θ0)− g(θ0)|| = op(1).

For r9n(θ),

sup
U

√
n|r9n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ sup
U

||g(θ)− g(θ0)−G(θ − θ0)||
||θ − θ0||

||Wn||
√
n||gn(θ0)− g(θ0)||

=sup
U
O(||θ − θ0||)Op(1) = op(1).

Finally, for r10n(θ),

sup
U

√
n|r10n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

≤ sup
U

√
n||Gn −G|| · ||Wn −W || · ||g(θ0)|| = op(1).

Thus, the conclusion follows by TNM and we have

√
n(θ̂ − θ0) = H−1√nDn + op(1)

d→ N(0, H−1ΩH−1).

This completes the proof.

Proof of Theorem 2: The proof proceeds by showing the following steps. For the GMM estimator

θn(ϕ) defined in (7), (i) supϕ∈Θ
∥∥θn(ϕ)− θ(ϕ)

∥∥ p−→ 0; (ii) With probability tending to one, the map

θn(ϕ) is a contraction and the fixed point θ̂ exists and is unique; (iii) ∥θ̂ − θ0∥
p−→ 0.
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The proof of (i) is identical to that of Theorem 3.1 of Hansen and Lee (2021) because the

uniform convergence of gn(θ) and Wn(θ) hold by our Assumption 2, the uniform invertibility of

W (ϕ) holds by our Assumption 1.3, and the existence of unique minimizer of the population s-step

GMM criterion holds by Assumption 1.1.

Since we do not assume differentiability of the moment function, the proof of (ii) proceeds

differently from that of Theorem 3.2 of Hansen and Lee (2021). We show the following: For some

0 ≤ c < 1 and for any ϕ1, ϕ2 ∈ Θ, with probability tending to one,

∥∥θn(ϕ1)− θn(ϕ2)
∥∥ ≤ c ∥ϕ1 − ϕ2∥ . (42)

Since ϕ1 = ϕ2 is trivial, suppose that ϕ1 ̸= ϕ2. Suppose that (17) holds with 0 ≤ c0 < 1. For any

ϕ1, ϕ2 ∈ Θ, (i) implies that for a large enough n,

sup
ϕ∈Θ

∥∥θn(ϕ)− θ(ϕ)
∥∥ ≤ 1− c0

3
∥ϕ1 − ϕ2∥. (43)

Now by the triangle inequality, (17), and (43),

∥∥θn(ϕ1)− θn(ϕ2)
∥∥ =

∥∥θ(ϕ1)− θ(ϕ2) + θn(ϕ1)− θn(ϕ2)− θ(ϕ1) + θ(ϕ2)
∥∥

≤ ∥θ(ϕ1)− θ(ϕ2)∥+
∥∥θn(ϕ1)− θ(ϕ1)− (θn(ϕ2)− θ(ϕ2))

∥∥
≤ c0 ∥ϕ1 − ϕ2∥+ 2 sup

ϕ∈Θ

∥∥θn(ϕ)− θ(ϕ)
∥∥

≤ c0 + 2

3
∥ϕ1 − ϕ2∥

with probability tending to one. Since the map θn(ϕ) is a contraction with probability tending to

one, the fixed point exists and is unique by the Banach fixed point theorem.

Lastly, the proof of (iii) is identical to that of Theorem 3.3 of Hansen and Lee (2021).

Proof of Theorem 3:

Since the iterated GMM criterion function takes a different form with those considered in

Theorem 7.1 of Newey and McFadden (1994), we cannot proceed by directly checking the conditions

of Theorem 7.1. as we did in the proof of Theorem 1. Instead, the proof proceeds by taking similar

steps with that of Theorem 7.1 of Newey and McFadden (1994) but extending their proof to allow

for the iterated estimator under moment misspecification.

First, we want to show that
√
n||θ̂ − θ0|| = Op(1). We define the sample and the population

criterion function as follows:

Qn(θ, ϕ) =− Jn(θ, ϕ)/2 + ∆n(θ, ϕ) = −gn(θ)′Wn(ϕ)gn(θ)/2 + ∆n(θ, ϕ)

Q(θ, ϕ) =− g(θ)′W (ϕ)g(θ)/2,

where ∆n(θ, ϕ) = εn(θ)
′Wn(ϕ)εn(θ)/2 + (gn(θ0) − g(θ0))

′Wn(ϕ)εn(θ) + g(θ0)
′(Wn(ϕ) −W )εn(θ),
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and εn(θ) = [gn(θ)− gn(θ0)− (g(θ)− g(θ0))]/[1 +
√
n||θ − θ0||].

Also define

Rn(θ, θ̂) = [Qn(θ, θ̂)−Qn(θ0, θ̂)− (Q(θ, θ0)−Q(θ0, θ0))−D′
n(θ − θ0)]/||θ − θ0||

where Dn = −G′
nWn(θ̂)gn(θ0). Under g(θ0) ̸= 0, we have

√
nDn =−

√
nG′

nWn(θ̂)[gn(θ0)− g(θ0)]−
√
nG′

n(Wn(θ̂)−W )g(θ0)−
√
n(Gn −G)′Wg(θ0)

d→ N(0,Ω)

by Assumption 1.7, the Slutsky theorem, and using G′Wg(θ0) = 0 by the population FOC.

Unlike Theorem 7.1 of Newey and McFadden (1994) where the population criterion function

depend only on θ, our population criterion function depends on θ and ϕ, and ϕ converges to the

fixed point as we iterate. The second-order Taylor expansion of Q(θ, ϕ = θs−1) with respect to θ

evaluated at θ = θs for any s ≥ 2,

Q(θ, θs−1) =Q(θs, θs−1) +
∂Q(θ, ϕ)

∂θ′

∣∣∣∣
θ=θs,ϕ=θs−1

(θ − θs)

+
1

2
(θ − θs)

′∂
2Q(θ, ϕ)

∂θ∂θ′

∣∣∣∣
θ=θs,ϕ=θs−1

(θ − θs) + o(||θ − θs||2).

Let s→ ∞, then we have

Q(θ, θ0) =Q(θ0, θ0) +
∂Q(θ, ϕ)

∂θ′

∣∣∣∣
ϕ=θ=θ0

(θ − θ0)

+
1

2
(θ − θ0)

′∂m(θ)

∂θ

∣∣∣∣
θ=θ0

(θ − θ0) + o(||θ − θ0||2) (44)

where m(θ) ≡ ∂Q(θ,ϕ)
∂θ

∣∣∣∣
ϕ=θ

= −G(θ)′W (θ)g(θ). Using the alternative representations of m(θ),

G(θ)′W (θ)g(θ) = (g(θ)′ ⊗G(θ)′) vecW (θ) = (g(θ)′W (θ)⊗ Ip) vecG(θ)
′,

and the identity
∂

∂θ′
vecW (θ) = −(W (θ)⊗W (θ))

∂

∂θ′
vec(W (θ)−1),

we have

∂m(θ)

∂θ′
=
∂2Q(θ, ϕ)

∂θ∂θ′
+
∂2Q(θ, ϕ)

∂ϕ∂θ′

∣∣∣∣
ϕ=θ

(45)

= −
(
G(θ)′W (θ)G(θ) + (g(θ)′W (θ)⊗ Ip)F (θ)− (g(θ)′W (θ)⊗G(θ)′W (θ))S(θ)

)
(46)

≡ −H(θ), (47)
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where F (θ) = ∂
∂θ′ vec(G(θ)

′) and S(θ) = ∂
∂θ′ vec(W (θ)−1). Since G′Wg(θ0) = 0, (44) becomes

Q(θ, θ0) = Q(θ0, θ0)− (θ − θ0)
′H(θ − θ0)/2 + o(||θ − θ0||2) (48)

where H = H(θ0). By θ0 being the maximum and H being nonsingular, H > 0.11 Therefore, by

θ̂
p−→ θ0, with probability approaching one,

Q(θ̂, θ0) ≤ Q(θ0, θ0)− C||θ̂ − θ0||2

for some C > 0.

Choose Un so that θ̂ ∈ Un with probability approaching 1, so that

√
n|Rn(θ, θ̂)| ≤ (1 +

√
n||θ̂ − θ0||)op(1), (49)

which holds by the same arguments to show (41) by replacingWn withWn(θ̂). It can be also shown

that sup||θ−θ0||≤δn |∆n(θ, θ̂)| = op(n
−1) for any δn → 0, similarly as in the proof of Theorem 1 by

replacing Wn with Wn(θ̂) under the Assumption 1.7, and thus Qn(θ̂, θ̂) ≥ sup||θ−θ0||≤δn Qn(θ, θ̂) −
op(1/n) by the Assumption 1.4.

Then we have

0 ≤Qn(θ̂, θ̂)−Qn(θ0, θ̂) + op(n
−1) = Q(θ̂, θ0)−Q(θ0, θ0) +D′

n(θ̂ − θ0) +Rn(θ̂, θ̂)||θ̂ − θ0||+ op(n
−1)

≤− C||θ̂ − θ0||2 + ||Dn|| ||θ̂ − θ0||+ ||θ̂ − θ0||(1 +
√
n||θ̂ − θ0||)op(n−1/2) + op(n

−1)

≤− [C + op(1)]||θ̂ − θ0||2 +Op(n
−1/2)||θ̂ − θ0||+ op(n

−1).

Thus, we have ||θ̂ − θ0||2 ≤ Op(n
−1/2)||θ̂ − θ0||+ op(n

−1) because C + op(1) is bounded away from

zero with probability approaching one. Then, by the same arguments in the proof of Theorem 7.1

in Newey and McFadden (1994), we have ||θ̂ − θ0|| = Op(n
−1/2).

Next, let θ̃ = θ0 +H−1Dn, and then θ̃ is
√
n consistent by construction. It follows that

2[Qn(θ̂, θ̂)−Qn(θ0, θ̂)] =− (θ̂ − θ0)
′H(θ̂ − θ0) + 2D′

n(θ̂ − θ0) + op(n
−1)

=− (θ̂ − θ0)
′H(θ̂ − θ0) + 2(θ̃ − θ0)

′H(θ̂ − θ0) + op(n
−1) (50)

by (48) and (49) . Similarly,

2[Qn(θ̃, θ̂)−Qn(θ0, θ̂)] = −(θ̃ − θ0)
′H(θ̃ − θ0) + 2(θ̃ − θ0)

′H(θ̃ − θ0) + op(n
−1)

= (θ̃ − θ0)
′H(θ̃ − θ0) + op(n

−1). (51)

Then, since θ̃ is contained within Θ with probability approaching one, by Assumption 1.4,

2[Qn(θ̂, θ̂)−Qn(θ0, θ̂)]− 2[Qn(θ̃, θ̂)−Qn(θ0, θ̂)] ≥ op(n
−1),

11Note that our definition of H corresponds to −H in Theorem 7.1 of Newey and McFadden (1994).
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so by using (50) and (51),

op(n
−1) ≤ −(θ̂ − θ0)

′H(θ̂ − θ0) + 2(θ̃ − θ0)
′H(θ̂ − θ0)− (θ̃ − θ0)

′H(θ̃ − θ0)

= −(θ̂ − θ̃)′H(θ̂ − θ̃) ≤ −C||θ̂ − θ̃||2.

Therefore, ||
√
n(θ̂−θ0)−(H−1√nDn)|| =

√
n||θ̂− θ̃|| p−→ 0, so the conclusion follows by the Slutsky

theorem and H−1√nDn
d−→ N(0, H−1ΩH−1).

Proof of Theorem 4:

First we define,

Q∗
n(θ) = −g∗n(θ)′W ∗

ng
∗
n(θ)/2 + ∆∗

n(θ), Qn(θ) = −gn(θ)′Wngn(θ)/2 + ∆n(θ)

where ∆∗
n(θ) = ε∗n(θ)

′W ∗
nεn(θ)/2+(g∗n(θ0)−g(θ0))′W ∗

nε
∗
n(θ)+g(θ0)

′(W ∗
n−W )ε∗n(θ), ε

∗
n(θ) = [g∗n(θ)−

g∗n(θ0)− (g(θ)− g(θ0))]/[1+
√
n||θ− θ0||]. Q(θ),∆n(θ), εn(θ) are defined in the proof of Theorem 1.

The rest of the proof proceeds by verifying the conditions of Lemma 2 using the results in the

proof of Theorem 1. Note that for δn → 0, and U = {θ : ||θ − θ0|| ≤ δn},

sup
U

√
n||ε∗n(θ)||

= sup
U

√
n||g∗n(θ)− g∗n(θ0)− (g(θ)− g(θ0))||

1 +
√
n||θ − θ0||

≤ sup
U

√
n||g∗n(θ)− g∗n(θ0)− (gn(θ)− gn(θ0))||

(1 +
√
n||θ − θ0||)

+ sup
U

√
n||gn(θ)− gn(θ0)− (g(θ)− g(θ0))||

(1 +
√
n||θ − θ0||)

≤ sup
U

√
n||g∗n(θ)− g∗n(θ0)− (gn(θ)− gn(θ0))− (G∗

n −Gn)(θ − θ0)||
||θ − θ0||(1 +

√
n||θ − θ0||)

+ ||G∗
n −Gn||+ op(1)

= op∗(1)

by the triangle inequality, Conditions 3 and 4 of the Theorem, and supU
√
n||εn(θ)|| = op(1). Also

let

D∗
n = −G∗′

nW
∗
ng

∗
n(θ0) +G′

nWngn(θ0)

= −G∗′
nW

∗
n(g

∗
n(θ0)− gn(θ0))−G∗′

n (W
∗
n −Wn)gn(θ0)− (G∗

n −Gn)
′Wngn(θ0), (52)

Dn = −G′
nWngn(θ0) +G′Wg(θ0)

= −G′
nWn(gn(θ0)− g(θ0))−G′

n(Wn −W )g(θ0)− (Gn −G)′Wg(θ0). (53)

Conditions (i)-(iii) of Lemma 2 hold under the same assumptions in Theorem 1. For Conditions

(i∗)-(iii∗), first note that the bootstrap version of Assumption 1.7 holds due to Giné and Zinn (1990):

√
n

 g∗n(θ0)− gn(θ0)

(W ∗
n −Wn)gn(θ0)

(G∗
n −Gn)

′Wngn(θ0)

 d∗→ N


 0

0

0

 ,

 Σ Λ Γ

Λ′ Ψ Υ

Γ′ Υ′ Ξ


 . (54)
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Therefore, Condition (i∗) holds because sup||θ−θ0||≤δn |∆
∗
n(θ)| = op∗(1/n) by using ||g∗n(θ0)−g(θ0)|| ≤

||g∗n(θ0) − gn(θ0)|| + ||gn(θ) − g(θ0)|| = Op∗(n
−1/2), ||W ∗

n − W || ≤ ||W ∗
n − Wn|| + ||Wn − W || =

Op∗(n
−1/2), and thus Q∗

n(θ̂
∗) ≥ sup||θ−θ0||≤δn Q

∗
n(θ) − op∗(1/n). Condition (ii∗) follows by (54).

Thus, we remain to verify Condition (iii∗) of Lemma 2.

By (36),

R∗
n(θ)∥θ − θ0∥

=Q∗
n(θ)−Q∗

n(θ0)− (Qn(θ)−Qn(θ0))−D∗′
n (θ − θ0)

=Q∗
n(θ)−Q∗

n(θ0)− (Q(θ)−Q(θ0)− (D∗
n +Dn)

′(θ − θ0)

−
(
Qn(θ)−Qn(θ0)− (Q(θ)−Q(θ0))−D′

n(θ − θ0)
)

=Q∗
n(θ)−Q∗

n(θ0)− (Q(θ)−Q(θ0))

+ [G∗′
nW

∗
n(g

∗
n(θ0)− g(θ0)) +G∗′

n (W
∗
n −W )g(θ0) + (G∗

n −G)′Wg(θ0)]
′(θ − θ0)−Rn(θ)(θ − θ0)

=
10∑
j=1

r∗jn(θ)−Rn(θ)(θ − θ0),

where r∗jn(θ) is similarly defined as in the proof of Theorem 1 by replacing gn(θ), Gn,Wn, εn(θ)

with g∗n(θ), G
∗
n(θ),W

∗
n(θ), ε

∗
n(θ), respectively. Using the same argument as in the proof of (41), we

can show that

sup
||θ−θ0||≤δn

√
n
∑10

j=1 |r∗jn(θ)|
||θ − θ0||(1 +

√
n||θ − θ0||)

= op∗(1). (55)

For example,

sup
U

√
n|r∗5n(θ)|

||θ − θ0||(1 +
√
n||θ − θ0||)

= sup
U

√
n
|g(θ0)′W [g∗n(θ)− g∗n(θ0)− (g(θ)− g(θ0))− (G∗

n −G)(θ − θ0)]|
||θ − θ0||(1 +

√
n||θ − θ0||)

≤||g(θ0)|| · ||W || sup
U

√
n
||[g∗n(θ)− g∗n(θ0)− (g(θ)− g(θ0))− (G∗

n −G)(θ − θ0)]||
||θ − θ0||(1 +

√
n||θ − θ0||)

≤||g(θ0)|| · ||W ||
[
sup
U

√
n
||[g∗n(θ)− g∗n(θ0)− (gn(θ)− gn(θ0))− (G∗

n −Gn)(θ − θ0)]||
||θ − θ0||(1 +

√
n||θ − θ0||)

+ sup
U

√
n
||[gn(θ)− gn(θ0)− (g(θ)− g(θ0))− (Gn −G)(θ − θ0)]||

||θ − θ0||(1 +
√
n||θ − θ0||)

]
=op∗(1),

where the last equality holds by Assumption 1.6 (stochastic differentiability) and Condition 3 of

the Theorem (the bootstrap stochastic differentiability).

Therefore, for δn → 0, and U = {θ : ||θ − θ0|| ≤ δn}, we have

sup
U

∣∣∣∣ √
nR∗

n(θ)

1 +
√
n∥θ − θ0∥

∣∣∣∣ ≤ sup
U

∣∣∣∣∣
√
n
∑10

j=1 |r∗jn(θ)|
||θ − θ0||(1 +

√
n||θ − θ0||)

∣∣∣∣∣+ sup
U

∣∣∣∣ √
nRn(θ)

1 +
√
n∥θ − θ0∥

∣∣∣∣ = op∗(1).
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The conclusion follows by Lemma 2 and we have

√
n(θ̂∗ − θ̂)

d∗→ N(0, H−1ΩH−1).

This completes the proof.

Proof of Theorem 5:

We first verify the assumptions of Theorem 1. By the standard consistency arguments (Newey

and McFadden, 1994, Theorem 2.6) and the Central Limit Theorem, Assumption 1.5 and Assump-

tion 1.7 are satisfied with Gn =
∑n

i=1Gi(θ0), where

Gi(θ) =

 − 1
σ(X′

iγ)
ZiX

′
i −σ′(X′

iγ)(Yi−X′
iβ)

σ(X′
iγ)

2 ZiX
′
i

− 1
σ(X′

iγ)
sgn

(
Yi−X′

iβ
σ(X′

iγ)

)
ZiX

′
i −σ′(X′

iγ)(Yi−X′
iβ)

σ(X′
iγ)

2 sgn
(
Yi−X′

iβ
σ(X′

iγ)

)
ZiX

′
i

 ,

sgn(x) = 1{x ≥ 0} − 1{x ≤ 0} is a sign function.

Let

F = {ri(·, θ) =
gi(θ)− gi(θ0)−Gi(θ0)(θ − θ0)

||θ − θ0||
: ||θ − θ0|| < δ}

be a class of functions indexed by θ = (β′, γ′)′ ∈ Θ for some δ > 0, where gi(θ) and Gi(θ) are defined

in the Theorem 5. As the moment function gi(θ) involves the absolute function, we can verify that

|ri(·, θ)| are uniformly bounded, supθ |ri(·, θ)| has a finite second moment under the conditions 1

and 3 in Theorem 5. Further, we can show F is a Vapnik-Chervonenkis (VC) class by using the

same arguments as in Pollard (1985, Example 8), which implies Assumption 1.6.

Thus, all assumptions of Theorem 1 hold, and thus we have

√
n(θ̂ − θ0) = −H−1√nDn + op(1) = −H−1 1√

n

n∑
i=1

mi + op(1) (56)

where

mi = G′Wgi(θ0) +Gi(θ0)
′Wg(θ0)−G′Wviv

′
iWg(θ0).

Under the Assumptions in Theorem 5, using the same arguments in the proof of Machado and

Santos Silva (2019, Theorem 5), we have the following linear representation conditional on
√
n

consistent estimators of θ0 = (β′0, γ
′
0)

′,

√
n(q̂(τ)− q0(τ)) = − 1

fU (q0(τ))

1√
n

n∑
i=1

τ − 1(Ui ≤ q0(τ)) + op(1) (57)

where fU (·) is a density function of the random variable Ui. Note that (56) and (57) hold jointly,

and thus we have the limiting distribution as in (31). Furthermore, asymptotic distribution of the
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regression quantile coefficient estimator α̂(τ) in (32) is obtained by the standard delta-method.

This completes the proof.

Appendix B: Covariance Matrix Estimation

We now consider estimation of the covariance matrix of the GMM estimators. First, we consider

the one-step GMM estimator θ̂. Let Ω̂ be an estimator of Ω, where

Ω = lim
n→∞

V ar
(√
n{G′

nWn[gn(θ0)− g(θ0)] +G′
n(Wn −W )g(θ0) + (Gn −G)′Wg(θ0)

)
.

If gn(θ) = n−1
∑n

i=1 g(Xi, θ) and g(Xi, θ) be Lipschitz at θ0 and differentiable with probability

one (see Lemma 1), i.e., there exists ∆(x, θ0) and ε > 0 such that with probability one r(x, θ) ≡
||g(x, θ)− g(x, θ0)−∆(x, θ0)(θ− θ0)||/||θ− θ0|| → 0 as θ → θ0, then the following estimator can be

used

Ω̂ =
1

n

n∑
i=1

m̂im̂
′
i,

m̂i = Ĝ′Wngi(θ̂) +Gi(θ̂)
′Wngn(θ̂)− Ĝ′WnW (Xi)Wngn(θ̂) (58)

where Ĝ = n−1
∑n

i=1Gi(θ̂), Gi(θ) = ∆(Xi, θ). For example, we can construct the asymptotic

covariance matrix for GMM-QR estimator using (58) in Section 5.

Numerical derivative methods can be used to estimate G,H and are consistent under weak

conditions (see, for example, Newey and McFadden (1994), Hong, Mahajan, and Nekipelov (2015)).

A numerical derivative estimator Ĝ for G has jth column,

Ĝj = gn(θ̂ + ejεn)− gn(θ̂ − ejεn)/2εn

where ej is the ith unit vector, εn is a small positive constant that depends on the sample size.

Similarly, H can be estimated by a second-order numerical derivative of the criterion function

Jn(θ) = gn(θ)
′Wngn(θ),

Ĥi,j =
[
Jn(θ̂+ eiεn + ejεn)− Jn(θ̂− eiεn + ejεn)− Jn(θ̂+ eiεn − ejεn) + Jn(θ̂− eiεn − ejεn)

]
/4ε2n.

Alternatively, H can be estimated by the explicit formula

Ĥ = Ĝ′WnĜ+ (gn(θ̂)
′Wn ⊗ Ip)F̂

where F̂ is a numerical derivative estimator for F , which is the mp × p matrix with i, jth block

column matrix

F̂i,j =
[
gn(θ̂ + eiεn + ejεn)− gn(θ̂ − eiεn + ejεn)− gn(θ̂ + eiεn − ejεn) + gn(θ̂ − eiεn − ejεn)

]
/4ε2n.
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Then, we construct the variance estimator as

V̂mr(θ̂) = Ĥ−1Ω̂Ĥ−1′

and the standard error is obtained by taking the diagonal elements of

√
V̂mr(θ̂)/n.

12

Next, we consider the iterated GMM estimator. Similar to the one-step GMM case where

Gn takes the form of sample averages, we construct the following misspecification-robust variance

estimator

V̂mr(θ̂) = Ĥ−1Ω̂Ĥ−1′ ,

Ĥ = Ĝ′Wn(θ̂)Ĝ+ (gn(θ̂)
′Wn(θ̂)⊗ Ip)F̂ − (gn(θ̂)

′Wn(θ̂)⊗ Ĝ′Wn(θ̂))Ŝ,

Ω̂ =
1

n

n∑
i=1

m̂im̂
′
i,

m̂i = Ĝ′Wn(θ̂)gi(θ̂) +Gi(θ̂)
′Wn(θ̂)gn(θ̂)− Ĝ′Wn(θ̂)W (Xi, θ̂)Wn(θ̂)gn(θ̂),

where Ĝ = n−1
∑n

i=1Gi(θ̂), Gi(θ) = ∆(Xi, θ), F̂ and Ŝ can be estimated by the numerical derivative

methods similar to the one-step GMM case. H can be also estimated by the numerical methods

based on the criterion functions Jn(θ, ϕ) = gn(θ)
′Wn(ϕ)gn(θ), similar to Hansen and Lee (2021).

Finally, the asymptotic standard errors of the iterated GMM estimator is obtained by taking

the diagonal elements of

√
V̂mr(θ̂)/n.
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