
ImoGenXR: Investigating the Impact on Creativity
Support in a Generative-AI Assisted Immersive

Authoring Workflow
George Limbert

School of Computing and Communications
Lancaster University

Lancaster, UK
g.limbert@lancaster.ac.uk

Abhijit Karnik
School of Computing and Communications

Lancaster University
Lancaster, UK

a.karnik@lancaster.ac.uk

Abstract—Creating interactive extended reality experiences
is currently a complex activity with a high entry barrier of
developer skills. Immersive authoring and no/low code techniques
are a promising direction towards democratizing access to novice
users as they lower the entry barrier while users develop
advanced skills. Similarly, generative-AI has shown potential
for template code generation, 3D model creation and retrieval.
In this paper, we present ImoGenXR, an immersive workflow
integrated with Unity and scaffolded by existing generative-AI.
Users can build scenes within the immersive environment by
inserting 3D models using voice commands. They can also attach
AI-generated code to invoke desired behaviours without leaving
the immersive environment. We use ImoGenXR’s workflow to
explore the effect of creativity support using generative AI on an
existing tool like Unity. The results show significant improvement
in user experience for novice users. ImoGenXR shows the value
of including creativity support through generative AI for existing
XR development tools.

Index Terms—Immersive authoring, Interaction design, Gen-
erative AI, User studies, Creativity Support

I. INTRODUCTION

Virtual Reality (VR) and Augmented Reality (AR) experi-
ences are becoming prevalent since general public are able
to access content using relatively affordable head-mounted
devices (HMDs). Users expect high levels of transformation
in everyday interactions in domains like education, travel
and retail through use of XR experiences. The current tools
available for developing extended reality (XR) are powerful,
but require a substantial degree of domain expertise, such
as programming, 3D modeling and extensive knowledge of
a specific development framework or toolkit. Specifically in
the domain of education, these tools present a high barrier
for entry for topic experts wishing to use the medium of XR
experiences to scaffold pedagogical approaches [1]. Nebeling
and Speicher highlight similar issues across a broader class
of XR development tools [2]. The current limitation with
most off-the-shelf XR development tools is that they do not
allow the novice user to start creating simple interaction-
rich XR experiences whilst the user builds up experience and
expertise to fully leverage the power of the development tools.

The development workflow of the tools can be versatile and
powerful, but at the same time, intimidating and non-intuitive
to a beginner.

Creativity support has been attempted through no/low code
paradigm aiming to abstract the underlying programming
language, or through alternative interfaces that help add inter-
activity to an XR experience [3], [4]. This helps users focus
on the creative aspects without requiring the programming
knowledge needed to achieve similar results through tradi-
tional programming methods. In XR experience development,
the immersive approach is gaining traction. The immersive
approach allows users to edit the environment immersed in the
XR experience and without exiting to the development tool’s
default interface. This allows the user to avoid constant context
switching between the development environment and testing
which normally involves a HMD or a smart device. However,
currently such systems have constraints and limitations to
customisation that make them difficult to integrate into a
creative task workflow.

This paper explores creativity support for users considered
as novices of the XR development tools they wish to use as
a supportive technology. The motivation for this is based in
Schneiderman’s argument that ”Supportive technologies can
become the potter’s wheel and mandolin of creativity” [5].
Innovation in creativity support opens up new means for users
to express their ideas, enabling them to create and disseminate
ideas more freely. To this effect, we present ImoGenXR
(Immersive object Generation in eXtended Reality), as a
immersive no-code workflow that is integrated on top of an
existing XR development tool. ImoGenXR allows users to
build experiences by requesting custom object models, via a
natural language voice interface, that can then be placed into
the virtual environment. The same interface can also be used
to dynamically generate and import code to be attached to
any object without any further effort from the user. Imported
code can either be run as a standalone action or combined
with a trigger to form an interactive behaviour. Akin to the
evolution of photographic slides to slideshow presentation

Fig. 1: User view of ImoGenXR’s workflow showing the key visual elements of the system

programs, and multiplane cameras to 3D animation software,
this work proposes to transform the current time and resource
expensive means of XR content creation into an immersive
no-code experience. ImoGenXR takes the recent advances of
GenAI and existing XR toolkits to implement a system that
supports novice users in immersively creating interaction-rich
XR experiences. ImoGenXR contributes a proof-of-concept
immersive authoring workflow that utilises existing develop-
ment features provided by the base Unity engine. Our work
builds on existing literature around immersive authoring tools,
such as LLMR [6], to propose a workflow that enhances
the user experience during such activities through AI-enabled
creativity support.

II. BACKGROUND

Below we discuss existing applications that enable virtual
content authoring, as well as the current state of the art in
GenAI relevant to the context of ImoGenXR.

A. Immersive Authoring Tools

Authoring tools can be defined as a development environ-
ment that facilitates the creation of new VR content through
means such as reuse of assets [7]. These tools can be classified
by skill and resources required, and fidelity provided [2]. Steed
et al. were among the first to suggest a system which allowed
immersive authoring of VR content through visual dataflow
representations [8]. Immersive authoring as a concept was later
formalised by Lee at al. [9] who define the approach as one
which supports the development of a VR application whilst
inside said application. Since, immersive authoring has only
expanded as a focus of research [10], [11]. Such authoring
tools are often limited by predefined sets of available objects or
simplistic interactive behaviours. Various commercial products
have also incorporated immersive techniques for VR author-
ing, such as Neos Metaverse1 and Zoe 2 which allow end users
to create simple interactive scenes immersively, and without

1Neos Metaverse: https://neos.com/ Last accessed: 01-Sep-2024
2Zoe: https://www.meta.com/en-gb/experiences/5464660053555314/ Last

accessed: 01-Sep-2024

writing any code. Currently, game engines such as Unity and
Unreal are the most popular development environments used to
create VR experiences, despite many developers encountering
steep learning curves [12]. This work aims to contribute to
the sixth category of authoring tools as identified by Nebeling
and Speicher [2] by supporting users in immersively creating
interactive VR experiences without requiring domain-specific
expertise.

B. Visual Programming
Early visual programming languages were created as less

complicated programming interfaces with novice computer
users in mind [13]. For example, Scratch has become a pop-
ular teaching tool due to its easy-to-understand block-based
interface and abstracted programming concepts. Modern day
XR authoring tools like Unity and Unreal Engine have adapted
visual programming as alternative interfaces to writing code.
Both Unreal’s Blueprint system and Unity’s visual scripting
interface offer developers with a node-based scripting graphs
that allow creation of game-play logic. These interfaces reduce
the coding effort but require specialized understanding to be
used effectively. Visual programming has been explored in
VR to help users interact with complex functionality that
would otherwise necessitate domain-specific knowledge [14].
The challenge with visual programming approaches is that
their low-code paradigm does not always translate into low-
complexity of use or understanding required to use effectively.
Many of these visual programming languages designed to
be low-code expose complex concepts that necessitate extra
learning time, despite being low-code [15]. Thus, there is an
open gap in the implementation of the low-code paradigm for
XR development with the explicit intention to simultaneously
reduce the knowledge and experience requirements.

C. Generative AI
Generative artificial intelligence (GenAI) has seen rapid

development in recent years due to continuous innovation in
computer hardware. GenAI provides an alternative approach
to support the low-code paradigm by reducing the code-
writing effort on the part of the user. The proficiency of

https://neos.com/
https://www.meta.com/en-gb/experiences/5464660053555314/

GenAI to produce correct code [16] has seen its incorporation
into numerous programming support tools such as Github’s
Copilot and Microsoft’s Intellicode. Large language models
(LLMs) have revolutionised the fields of natural language
processing and GenAI, the most notable of these models being
OpenAI’s GPT (Generative Pre-Trained Transformers). LLMs
require a prompt as input, from which intent is predicted
and content generated accordingly [17]. Users can provide a
prompt to an LLM and acquire adequate results. However,
prompt engineering can be employed to fine-tune a more
desirable output [18]. Such a process often requires contextual
information related to the broader task in order to prime the
LLM towards generating relevant responses. Intent extraction,
the process of eliciting intention from a given utterance, gives
rise to virtual assistive approaches [19] that can enable newer
forms of low-code paradigms.

GenAI has also found use in creation of visual artefacts and
models. The generative process for images relies on diffusion
models (e.g. DALL-E). For 3D models, advances in Neural
radiance fields (NeRFs) have unlocked the ability to produce
3D models and scenes, complete with textures, from a single
text prompt or input image. Gaussian splatting, has shown
better result quality in less time than its predecessor (NeRFs).
This is of particular interest when it comes to content authoring
in XR where prompt-based generation or retrieval of models
can alleviate the bottleneck on creativity that emerges from
constraints on availability of models.

D. Integrating AI into XR Development

Given the continuous development of XR technologies, and
the concurrent advancements of AI, the use of AI within
XR applications is a reasonable next step. Hirzle et al.
[20] reviewed 311 articles that explore the use of AI in
the context of XR, showing active interest in integrating AI
with XR. Within the diverse and distinct set of problems
tackled, only one output targets generation of environments
or scenes [21]. More recent research focuses on using AI to
interpret the intent of the user and assist them in using an
existing XR development tool. For e.g., BroomRocket explores
object placement support within a scene in Blender using
an open-source NLP model [22]. Similarly, DreamCodeVR
demonstrates how speech driven prompts can allow no-code
development through Unity [23] and LLMR showcases the
capability of AI to dynamically generate XR scenes in real-
time [6]. These developments show that XR development can
be improved through the use of AI. However, we identify that
there is still a gap in research regarding the interactions that
occur between AI systems and the user within AI-enabled im-
mersive development environments and the creativity support
offered by such tools. Thus, ImoGenXR addresses this gap
by expanding upon existing research and proposes a workflow
that is built on top of the Unity game engine and uses GenAI to
facilitate creativity support during immersive authoring tasks.

E. Conversational User Interfaces

Traditional application development has relied on code cre-
ation by using an integrated development environment (IDE)
to write it. Even within an immersive experience, certain tasks
require text entry. For immersive authoring, this manifests
as situations where users need to create code within the
immersive environment. Whilst a large body of work exploring
text entry in VR exists [24], this modality is often inefficient
and error prone [25], [26]. Conversational user interfaces
(CUIs) offer an alternative method of input. The widespread
availability of CUI-enabled devices like Google Home and
Amazon Echo has made users more comfortable using them
to access information or control smart devices. Weiß et al.
found that a speech interface was easier to learn, simpler to
use and allowed for greater efficiency [25] than 2D and 3D
UIs. Hombeck et al. expand this finding by showing that voice
UIs in VR increased user satisfaction and task efficiency [26].
We use this to inform our design decisions related to text entry
within the virtual environment.

III. DESIGN

A. Design Motivation

ImoGenXR’s motivation is based in improving creativity
support for authoring tasks within existing XR development
tools. Proper creativity support can make it easier for beginners
to focus on exploring their creative vision instead of struggling
with the use of the tool.

Fig. 2: Simplified Unity workflow for creating the scene
described in the Design scenario

1) Design Scenario: To flesh out what could be important
for creativity support, we use a design scenario [27]. Consider
the case of an educator discussing the visuals from Alice
in Wonderland, for example, the setup of the Mad Hatter’s
tea party similar to Figure 1. To engage the students and

to trigger their imagination, the educator wishes to create a
simple VR experience that can be viewed using their school’s
Quest headsets. The scene is that of a tea party which includes
objects such as a table, chairs, a teapot and teacups. Further,
the educator would like to make the scene interactive by
making the objects behave in interesting and unexpected
ways. Assuming that this educator is not an expert in Unity
development, this task presents a high entry barrier for success.

Experienced developers would be able to breakdown the
task into smaller steps or actions they need to take to com-
plete the task. This includes identifying 3D model resources,
importing these into Unity, positioning them, deciding on
what interaction-based animations are needed, creating or
generating scripts for said animations and finally connecting
these to the correct models in the scene. These tasks constitute
steps in a workflow as shown in Figure 2. The educator
from our design scenario above is more likely to struggle and
finally abandon the idea. Even if they persist, the repeated
context switches and the overall complexity of the tool will
lead to higher cognitive load and hinder their creative process.
This leads us to consider an alternative workflow set in an
immersive environment which is discussed next.

2) Design of Workflow: Building upon the scenario of the
educator creating a VR experience, we consider how the
workflow design can make the task simpler for the user,
through direct interaction with the scene and with minimal
context switches out of it. The user could start with the
placement of furniture; verbalising their thoughts directly into
the system. For e.g., “I need furniture, let’s add a table”.
The system then generates a set of tables and returns these
to the educator for them to select from and place into the
virtual environment. The user can repeat this to populate the
scene with more furniture as desired. The user then considers
making objects in the scene interactive; verbalising a trigger
for the interaction (“Now I want the teapot to respond to
touch”) as well as the action to perform (“It would be nice
if it floated away”). Building on the low-code paradigm, the
user is presented with an abstract representation of the code
which they can tack onto the teapot. They would want to
test if the teapot reacts as expected and the system allows
them to interact with options that serve as input parameters to
the ‘float’ script. From the perspective of the user, they can
focus on the creative aspect of the process while leaving the
immersive authoring workflow to address the code and asset
requirements.

B. Workflow Components

The above mentioned design scenario and the subsequent
visualisation of the user-centric workflow allows us tobegin
identifying the components that need to be combined to
produce ImoGenXR.

1) Portal and CUI: We intend to build the immersive
workflow on top of an existing XR development tool like
Unity. This allows us to focus on the immersion and creativity
support. It also removes the need to build a compilation
pipeline that Unity has already implemented. A naive approach

would first focus on presenting and logically arranging, within
the immersive environment, the 2D UI menus that the develop-
ment tool like Unity already provides. Instead we propose that
the immersive workflow should follow a minimalist approach
to inclusion of workflow UI elements within the immersive
environment. This leads us to consider using the CUI whenever
possible. However, in the simplest form of implementation
CUIs inherently present a hidden affordance. Even when
active, the CUI requires a signifier to provide feedback on
the current state of the system.

We chose gesture input to activate the CUI and present
a visual signifier to show the start of the CUI interaction.
This allows a deliberate start of the interaction The signifier
is shown as a ‘portal’ with the intention to maintain immersion
while presenting an abstract interactive element that the user
manipulates to obtain the desired objects and code. The portal
(see Figure 3 top-1) is chosen over anthropomorphic characters
as the portal signifies a rift in the existing environment
and a connection to a source external to the user’s virtual
world. This supports the desired functionality of interactively
accessing models and code without breaking the immersion of
concurrently experiencing the environment being built. Simple
commands can be issued through the CUI to allow the system
to identify the user’s intention. For example, “Get me a table”
will return a collection of tables for the user to select from.
The user should be given an opportunity to confirm that the
command was processed correctly or, alternatively, correct the
system’s transcription to minimise errors and frustration that
may result from the errors. Once the interaction is complete
and the user is satisfied with the result, the virtual presence
should be hidden from view to reduce visual clutter and
misinterpretation of system state such as the user mistaking
the system as waiting for additional input.

2) Generative AI: The CUI provides an interactive interface
for requesting objects and actions. As shown in Figure 2,
the user is responsible for switching context away from the
development tool to obtain these objects and code that supports
the actions. We avoid this context switch and resulting break
in immersion by using GenAI to fill the gap. For model
generation, we decided to utilise a large 3D object dataset such
as ShapeNet [28] or Objaverse [29]; such databases contain
enough samples for the purposes of the prototype application.
Future iterations of the system could see the use of text-to-3D
generation pipelines, once technically feasible. Interactivity of
in-scene object requires scripts being attached to them. The
workflow can satisfy the low-code paradigm by using GenAI
to generate the code that is attached to the objects but only
showing the user an abstract representation to interact with.
While the user verbalises commands that describe what the
‘object should do’, we can utilize an LLM to extract the user
intent and action. For example, the command “Get me a chair”
would be broken into a “get object” intent, and a “chair”
entity. The component that communicates with the LLM for
code generation will also need prompt engineering to prime
it for producing code in the relevant language and returning
additional meta-data like input parameters in a usable format.

Fig. 3: Workflows of requesting objects (blue) and actions
(orange) whilst using ImoGenXR. Time intervals show where
the system is waiting on external systems to finish processing.

3) Object Palette: When the GenAI returns 3d models, the
user should be able to interact with them meaningfully. An
obvious approach is to display the objects through 2D-based
menus and images. However, to maintain the immersion, we
explored alternative approaches. We settled on the ‘worlds in
miniature’ approach proposed by Stoakley et al. [30] which
situates well within the 3D nature of the immersive environ-
ment. Combining this with a carousel concept that builds upon
Belga et al. [31], we arrive at the design we refer to as the
“object palette” (see Figure 3 top-3).

To keep the object palette’s interactions familiar to users,
we elected for a dunk technique in which the user will be
able to grab their chosen object and place it into the virtual
environment. The middle of the palette displays a larger
preview of the object currently selected by the user. Users can
also attach the object palette to their virtual hand to support
additional manipulation through gestures. The user could tilt it
right to fetch more object results or tilt it left to view previous
set of objects. They could chuck it to disconnect or discard it
once it is no longer needed.

4) Enabling Interactivity: Objects can be given interactivity
by attaching custom code to them within the immersive en-
vironment. Typically, an experienced user would have knowl-
edge of the required components to able to write a script to
achieve this. As discussed in Section III-B2, the user can use
a prompt such as, “Provide code for Unity to make an object
spin when I grab it”. The prompt naturally splits itself into
both a trigger (“when I grab it”) and the action to be executed
(“spin”). Once the script is returned by the LLM, the user can
then customise the input parameters of the script, as well as
its trigger. The user accesses these through a series of nested
interactive 2D menus consisting of behaviours, actions and
triggers. While we seem to choose a naive approach here,
we intentionally chose it to allow us to test if users showed
an explicit preference towards the use of 2D menus. The

low-code paradigm is further supported in the workflow by
allowing the returned script to be tested immediately, without
needing to switch between the immersive environment and the
development environment.

C. Overall Workflow

A typical usage scenario would resemble the following: the
user summons the portal through a gesture, a voice command
for the desired object is made through the CUI, the system
confirms the command, a selection of 3D models is made
available to the user via the object palette, the user chooses
and adds an object into the virtual environment and is able to
immediately interact with it (see Figure 3 top-4). Additionally,
the user can request an action to be added to the object
through the CUI following a similar interaction workflow (see
Figure 3 bottom). Actions can then be previewed, or added
to a behaviour to make the object interactive. As objects
are added into the virtual environment, the data needed to
represent the object (e.g. mesh, position, rotation etc) will
be stored alongside any actions and behaviours the user adds
during runtime. Creating a fully self-contained environment in
this way allows for the virtual environment to be saved and
reloaded at a later date, enabling users to edit scenes they
have previously created or share their scenes with others for
entertainment or educational purposes.

IV. IMPLEMENTATION

Based on the design discussion of an immersive workflow,
we have the functional requirements to implement the pro-
totype system for ImoGenXR. Due to technical limitations,
we were unable to implement dynamic object generation as we
had originally designed due to the reasons discussed in Section
III-B. We instead use the Objaverse 1.0 3D object dataset [29],
which boasts a collection large enough for the purposes of the
prototype implementation. The Objaverse 1.0 API has support
for LVIS categories, allowing for keyword retrieval of objects
annotated with the requested category (e.g. apple, cup) from
the dataset. The architecture remains otherwise the same, but
we provide an updated system architecture that can be divided
into 5 primary components, these being: the conversational
agent, the visual “portal” effect, object selection and place-
ment via the “object palette”, accessing object properties and
behaviours through the ”interaction menu” and the backend
server.

The prototype was developed using Unity (ver. 2022.3.13f1)
and XR Interaction Toolkit (ver. 3.0.5). Voice support uses the
Meta Voice SDK with Wit.AI for voice recognition. Models
and coded were generated accessed via Objaverse API and
OpenAI’s gpt-4o API.

A. Portal CUI

Users are able to activate (or “summon”) the portal by
performing a clockwise circular motion using one of their
controllers. Similarly, a counter-clockwise circle will remove
the palette from the user’s view. Gesture recognition was

accomplished via a Unity-specific implementation3 of the $1
gesture recogniser [32]. When a user presses the trigger to
begin drawing a gesture, a raycast from the controller collides
with a transparent plane directly in front of the user. These
points of collision produce an array of 2D coordinates that
are passed into the gesture recogniser.

After the user has performed the clockwise gesture, the
portal will open and begin listening to the microphone. At
this stage, a choice of two commands can be given: “Give me
a [object]” or “Make the [object] [action]”. Voice input is
processed using Wit.Ai, which allows for pre-training of an
NLP model that is able to extract pre-defined intents (whether
a user’s utterance was requesting an object or an action) and
entities (the particular object or action that was requested).
Users are then able to confirm that the system heard them
correctly via a “yes” command that will use the returned intent
and entities to either request an object from the Objaverse API,
or code from the ChatGPT API. If the system misheard, a “no”
command will revert to the start of the workflow, permitting
the user to give make the request again. Once objects are
imported into the runtime environment, the palette becomes
accessible to the user, allowing them to choose and place
objects into the immersive environment. Similarly, once the
code for a requested action has finished compiling, it will
appear in the object interaction menu.

B. Object and Code Retrieval

As mentioned previously, we retrieve objects from the
Objaverse API and code for requested actions from OpenAI’s
ChatGPT API. For each “get object” command, we request
a random selection of six objects from those that match the
keyword in the user’s request. The objects are received as
glTF files, cached locally and subsequently imported into
the runtime environment using Unity’s glTFast package. The
models are scaled, positioned and interactive child components
are added. When the user requests an action script, we
employ prompt engineering to coerce the GenAI into returning
responses in a pre-defined format. The prompt requests a Unity
script that performs the specified action and customized to
operate on the interactive components of the target object. All
variables are exposed as float-based properties with human-
readable names, ensuring correct type conversions. The prompt
also states that final response should be a formatted JSON.
Once the response JSON is received, the code part is extracted
and saved to a C# file inside the Unity project’s Assets
directory. Unity triggers a domain reload (an internal Unity
process where all script files are reset and re-compiled),
making the assets and code available for use without needing
to restart the game. Serialization is used to maintain selected
instance states across domain reloads.

C. Backend

The backend server was written in Python using the Flask
framework, acts as middleware to handle requests made to the

3Unity $1 Gesture Recogniser: https://github.com/SteBeeGizmo/
DollarUnity Last accessed: 01-Sep-2024

Objaverse and OpenAI APIs from the Unity application. This
architecture also allows us to easily replace APIs in the future,
such as substituting Objaverse for a cloud-based text-to-3D
model provider (when one becomes feasibly available). We
also use the server to store a small amount of state such as the
last requested object tag and the object IDs that were returned,
which supports the re-request and backwards functionality of
the object palette.

V. EXPERIMENT

A. Study Design

1) Research Question: The main aim of developing Imo-
GenXR is to see if a generative-AI supported immersive
workflow has any impact on creativity support for existing
XR development tools. We ran a user study which compares
ImoGenXR with the baseline workflow from the existing
system i.e. Unity (ver. 2022.3.13f1) to evaluate the perception
of creativity support for both workflows.

2) Task: The task has to provide adequate opportunity
for the users to express their creativity while retaining com-
parability across different users as well as across the two
conditions. We used a task scenario similar to the design
scenario described in Section III-A1. The participants were
asked to recreate a scene resembling the Mad Hatter’s Tea
Party from Alice in Wonderland containing furniture and
cutlery that would react to being interacted with. The creativity
aspect was maintained by allowing the participants to decide
the furniture layout, choose furniture style and configure the
interactive behaviour of the objects as they saw fit. While
using ImoGenXR, they retrieved the furniture and attached AI-
generated scripts as behaviours using ImoGenXR’s interface.
For the Unity-only workflow (UoWF), we provided a selection
of scripts and furniture assets grouped into categories (e.g.
tables, chairs) that they could choose from. We did not allow
participants to import additional assets into the project during
the UoWF to ensure only the workflow within the Unity
engine (and not the participant’s ability to retrieve external
content) was being evaluated. Similarly, content retrieved via
ImoGenXR could not be modified with use of external tools.
In both conditions, there was no time limit on the task and they
were allowed to stop when they were happy with the generated
scene. Additionally, both tasks utilised the same base sandbox
environment including a grass-textured floor and skybox.

Fig. 4: Experimental setup, with participant using ImoGenXR
on the right and the researcher’s view on the left

https://github.com/SteBeeGizmo/DollarUnity
https://github.com/SteBeeGizmo/DollarUnity

3) Apparatus: We used Unity (ver. 2022.3.13f1) as the XR
development tool for both ImoGenXR and UoWF. ChatGPT
4o was used to generate the code for ImoGenXR as well
as pre-generating the scripts used by UoWF. The versions
are reported for completeness and there is no version-specific
feature of these software that underpins the functionality. The
participants used a Windows 11 desktop (Intel i7-14700F,
NVIDIA GeForce RTX 4060, 16GB RAM). A Meta Quest
2 configured in developer mode and connected via USB-C to
the computer (through the Quest Link app) was used to view
the task scene in both workflow conditions. The experimental
setup used in the study is shown in Figure 4.

4) Participants: Participants were recruited from the staff
and student cohort of Lancaster University via the snowball
sampling. The participants were not offered any compensation
for the study. In total, 20 participants participated in the study.
We recorded generic participant demographics like age-range
(18-20: two, 21-25: nine; 26-30: six; >30: three), gender
(M:11; F:7; Other:2), English language proficiency (Native
speakers: 10; CEFR C2: 8; CEFR C1: 2). We also recorded
context specific participant demographics like experience with
VR applications or games (Yes: 19; No: 1), propensity for
motion sickness (Yes: 4; No: 16). We asked the participants
to self-report their expertise with using game engines and
to select the ones they had used. Ten participants reported
themselves to be knowledgeable or experts while the rest
mentioned they had passing or no knowledge. The participants
selected the engines they had used. This showed a prevalent
awareness of Unity (11) and Unreal (4) with some awareness
of others (7).

5) Metrics: The study design is a mixed-methods design
consisting of qualitative as well as quantitative metrics. To
measure the creativity support, we used the Creativity Support
Index (CSI) [33] questionnaire which provides a CSI score
(out of 100) for each workflow within the context of the task.
We also used the System Usability Score (SUS) questionnaire
to evaluate the overall usability of both workflows. For the
post-study questionnaire, we used Plutchik’s emotion wheel
[34] to capture affect emerging from use of each workflow
and finally included open-ended feedback questions. Qualtrics
XM was used to administer the questionnaires and log all the
participant responses. We also used screen recording to capture
the user interactions with both workflows. For ImoGenXR we
also used additional logging to capture time intervals between
different events within the system.

6) Procedure: The study was set up in quiet room with
only the researcher and participant present. Participants filled
out a consent form followed by a pre-study questionnaire.
Then the participants received a tutorial on how to use the
first workflow. The choice of the first workflow as either Imo-
GenXR or UoWF was counterbalanced to alleviate learning-
order effects. The participants then completed the task using
the first workflow. After this, they filled up the questionnaire
for the first tool. They were then given a tutorial on the second
workflow and again asked to complete the same task with
the second tool. Once they completed the task, they filled up

the questionnaire for the second tool. Finally, they filled up a
post-study questionnaire. For each workflow, we allowed the
participants to decide when they were happy enough with the
scene to stop and we made it clear that there was no time-
pressure to complete the task quickly. The study was run after
getting ethics approval from the University Research Ethics
Committee.

The UoWF tutorial consisted of an overview of adding
objects into the scene, basic camera controls and UI navi-
gation, components required to make objects interactive and
variable customisation within added scripts. The participants
were also shown how to deploy the scene and view it in the
HMD. Similarly, for ImoGenXR, users were shown the basic
locomotion controls and introduced to the key mechanics of
the system such as accessing the CUI, retrieving objects and
actions, use of the object palette, adding behaviours to objects
and customising object properties. Participants received no
other training besides these tutorials.

B. Results

1) Processing: Qualtrics was setup to pre-compute the CSI
and SUS scores for each participant. We analysed these scores
using IBM SPSS 29. System logs were processed using Python
to produce aggregated results.

2) Comparative: CSI and SUS Scores: We used repeated
measures ANOVA on both SUS and CSI scores, and found a
significant difference between the SUS scores for the UoWF
(µ=46.00) and ImoGenXR (µ=65.50), F(1,19) = 9.56, p<.01.
A significant difference was also found between the CSI
scores for the UoWF (µ=42.27) and ImoGenXR (µ=65.67),
F(1,19) = 10.28, p<.005. We also analysed individual CSI
factors (Effort, Exploration, Immersion, Expressiveness and
Enjoyment) as per the protocol [33] and ran the tests on the
weighted scores. The results of these tests are presented in
Table I. We see significant difference for Effort, Immersion
and Enjoyment with ImoGenXR scoring higher than UoWF.
Users rated Effort as the most important factor. Since the task
and the workflows don’t have a collaborative component, it
scores zero but is still reported as per the reporting protocol.

3) Comparative: Workflow Usage Logs: We processed the
system logs and screen-recordings to extract the task com-
pletion time (TCT), counts of models explored, models in-
serted and finally actions attached to objects. The TCT for
ImoGenXR (µ=16m 22s) is similar to that of UoWF (µ=19m
06s). Users explored nearly similar number of objects in
ImoGenXR (µ=5.10) versus UoWF (µ=4.75). Scenes created
in ImoGenXR (µ=13.15) had some more objects than UoWF
(µ=11.55). The number of actions added for UoWF (µ=4.75)
is also similar to ImoGenXR (µ=1.55). None of these results
could be considered statistically significant differences with
p>.05 in all cases. The implication of these results in discussed
in Section VI-A.

4) Comparative: Affect and User Responses: Plutchik’s
Emotion Wheel [34] is widely used for sentiment analysis
but lacks a standard method for comparing affect between
systems. We developed a strategy based on prior work [35],

TABLE I: Statistical analysis of workflow scores with mean values and standard deviation (s.d.)

Metric Workflow ⇒ UoWF µ (s.d.) ImoGenXR µ (s.d.) F-val Sig.

SUS 46.00 (23.98) 65.50 (18.68) 9.56 <.01
CSI 42.27 (25.73) 65.67 (23.09) 10.28 <.005

CSI Factors Counts µ (s.d.) Score µ (s.d.) Wt. Score µ (s.d.) Score µ (s.d.) Wt. Score µ (s.d.) Wt. Score Tests

Reward for Effort 3.80 (1.24) 8.05 (5.34) 29.00 (21.03) 12.85 (5.44) 48.15 (25.65) 8.82 <.01
Exploration 3.20 (.95) 9.00 (5.47) 29.35 (22.85) 12.35 (4.30) 39.25 (17.69) 3.24 N.S.
Collaboration∗ 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) N/A N/A
Immersion 2.30 (1.49) 7.15 (4.43) 16.7 (18.99) 13.10 (4.98) 34.15 (28.25) 11.57 <.005
Expressiveness 2.50 (1.47) 9.05 (6.10) 21.45 (20.70) 13.20 (4.87) 31.45 (22.45) 3.03 N.S.
Enjoyment 2.95 (1.15) 9.80 (5.61) 30.30 (23.89) 13.95 (4.93) 43.10 (26.61) 7.89 <.05

* Participants marked collaboration questions as ”Not Applicable” and ranked it lowest as a factor because no collaboration was required.

Fig. 5: Analysis of affect: (Left) Response counts for each
emotion. Emotions that were not selected are greyed out.
(Right) Emotion vector visualization across the 8 dimensions.
Labels (U/I) denote which workflow has higher values for the
associated dimension

where participants select a single emotion per workflow in
a questionnaire (Figure 5-left). Each selection is converted
into scores for the eight basic emotions from the wheel’s
middle ring. The strongest emotions (innermost ring) score
three, while the weakest (outermost ring) score one. Unse-
lected emotions score zero. Dyad emotions split their score (1
each) between adjacent basic emotions (e.g., ‘Optimism’ gives
‘Anticipation’ and ‘Joy’ a score of one each). We then compute
an 8-dimensional PEW vector (Joy, Anticipation, Surprise,
Trust, Anger, Disgust, Sadness, Fear) by summing weighted
emotion scores across participants and normalizing. This unit
vector represents affect per workflow. For UoWF, the PEW
vector is (0.07, 0.55, 0.07, 0.21, 0.76, 0.21, 0.14, 0.00), while
for ImoGenXR it is (0.44, 0.87, 0.15, 0.15, 0.05, 0.00, 0.00,
0.05). The histogram and vector comparison of participant
responses is shown in Figure 5-left. ImoGenXR scores higher
on three of four positive emotions (Joy, Anticipation, Surprise,
Trust), while UoWF scores significantly higher (i.e., worse)
on three of four negative emotions (Anger, Disgust, Sadness,
Fear).

5) ImoGenXR-specific Results: We asked participants to
choose one feature that they felt was most exciting and
also the one they felt was least important. The participants
chose the Portal (8), CUI (6) and Palette (6) as the most

important. No one chose the menus, which incidentally were
the most selected option (9) as the least important feature. We
also analysed the system logs from ImoGenXR to see how
the external features affected the total playtime. As seen in
Figure 3, the voice command is processed externally, but the
voice external (Wit) processing (µ=3.12s) happens in parallel
with the voice internal time (µ=6.29s) spent listening. Thus its
impact on overall playtime is low. However the external time
for object retrieval (µ=3.64s) and the code retrieval (µ=2.60s)
do affect the overall playtime. The voice transcription error
rates (where the user confirmed that the system had heard them
wrong) were (µ=2.55) for objects and (µ=1.10) for actions per
participant session.

VI. DISCUSSION

A. Study Results

1) Questionnaires: With a significant difference in CSI
scores (µ=65.67 versus µ=42.27 for ImoGenXR and UoWF re-
spectively), we can see that participant found that ImoGenXR
provided better creativity support than UoWF. The SUS scores
also show similar results. Thus, we can say that ImoGenXR
was successful in achieving its objective of providing better
creativity support for the tool itself. Individual weighted factor
comparison showed that participants found ImoGenXR to
be more enjoyable, immersive and more rewarding for the
amount of effort expended. The CSI score for ImoGenXR is
still not very high and shows that there is further scope for
improvement.

2) Affect: The PEW vector puts ImoGenXR higher than
UoWF for three of the four positive emotions. UoWF scores
higher for three of the four negative emotions too. Thus, for
the affect part of creativity support, ImoGenXR scores better
than UoWF on six out of the eight dimensions of the PEW
vector. Novice users and even more experienced users all seem
to have a negative affect towards Unity. This relates to the
impression that the tool is difficult to learn and sometimes
difficult to use. ImoGenXR, on the other hand, was able to
elicit mainly positive affect. This is encouraging for research
focusing on immersive authoring.

3) Workflow Usage Logs: We did not find significant
differences for the system usage logs between ImoGenXR
and UoWF. We intentionally avoided context switches out

of UoWF. The users did not have to search and retrieve
a model or ask ChatGPT to generate code. These were
provided, conveniently organized, in the assets area of Unity.
We undercount the UoWF task completion time due to this;
were these not provided, additional time would be added onto
the task completion time that is already accounted for in our
analysis of ImoGenXR.

4) Participant #13: This participant presented as an outlier,
giving ImoGenXR a CSI score of 22.0 while rating UoWF as
76.3. We looked at their comments and workflow videos to
understand what resulted in this score. The individual reported
that their expertise with Unity as knowledgeable. They liked
the placement controls but found Unity’s alternatives better
due to the lack of fine-grained placement control. This obser-
vation feeds into our expectation that ImoGenXR is used as
a workflow rather than a replacement for the interface Unity
offers. As users of ImoGenXR gain experience and establish
their expertise, they are likely to customize their use of and
switching between the workflows to what suits their needs
best. This also shows that creativity support is more nuanced
and needs to be tailored to suit the expertise of the user.

B. Workflow not Tool

Our study compared ImoGenXR against the standard Unity-
based workflow showing negative trends for creativity support
and a generally negative affect towards Unity. However, we
stress that we do not consider this as a negative assessment
of Unity. ImoGenXR is built on top of Unity. Unity provides
a powerful set of features that can be exploited well by an
expert user and ImoGenXR benefits from these features. For
developers of XR development tools, our study highlights
how tools like Unity can benefit from providing immersive
workflows like ImoGenXR as a part of their offering.

VII. APPLICATIONS

We believe that the strengths of ImoGenXR fully emerge in
progressing the democratization of VR content authoring for
novice users, explained through three scenarios.

Developing immersive story-telling experiences
Interactive story-telling is a creative activity that parents and
children can use to support various learning goals [36], [37].
ImoGenXR can be used by a parent to recreate a scene based
on a story, and to reinforce a particular learning objective or
moral in a more engaging way. An expanded system could also
process more complex prompts, directly taken from the story
to retrieve or visualize a scene further as the story progresses.

Simple experiences for educators
ImoGenXR can allow educators to build simple interactive
experiences that engage the students’ attention and allow
the educators to develop pedagogically sound experiences.
ImoGenXR would also alleviate the challenges of learning
how to use Unity, and allow the educators to scaffold their
expertise in creating VR experiences in Unity.

Rapid prototyping of experiences
Many novice users have a desire to create a VR experience,
but lack the knowledge to fully execute the design and

development. ImoGenXR enables users to be able to rapidly
explore multiple alternatives, without having to write complex
code. In effect, the system could also allow XR developers to
discuss and explore multiple scenarios with clients by treating
the system as a 3D wireframing tool.

VIII. LIMITATIONS AND FUTURE WORK

ImoGenXR has some limitations, which we discuss next.
In our current implementation, asset generation is limited
to the Objaverse library. However, we believe that future
advances—such as NeRFs or Gaussian Splatting—will enable
the generation of more complex assets, including animated or
rigged models, thus broadening the scope of what systems
like ImoGenXR can achieve. For the code scripts, we do not
perform any error checking or verification that the output is
correct. If script compilation fails, we request another one
immediately. More complex actions, and scripts, would likely
require more thorough error handling strategies such as those
utilised in DreamCodeVR [23] and LLMR [6]. Additionally,
the use of GenAI has well-documented sustainability and
ethical concerns, which we do not discuss in detail here but
should remain a focus of future research.

While the above limitations emerge due to integration with
external systems, we also identified an issue with how Unity
handles hot reloading; once a script is imported, Unity recom-
piles the entire project, resulting in the HMD view becoming
temporarily static. This can be jarring, and a workaround
would enhance the experience. Most participants ranked the
interaction menu as the least important feature, highlighting
the potential for further research into comparisons between
alternative methods of displaying information and interaction
designs that more easily support users in customising object
interactivity. Multiple participants noted that the interaction
with objects created from the palette was difficult at times.
Future work on ImoGenXR will look into selective use of
gravity, toggling rigid-body collisions and making fine control
of placement easier when working with the objects.

IX. CONCLUSION

In this paper we propose ImoGenXR, a novel immersive
authoring workflow that allows novice users to create interac-
tive XR scenes through dynamic loading of objects and code
produced by generative AI. We also conduct a user study
that compares creativity support offered by ImoGenXR and
a popular alternative authoring tool Unity. The results show
that users greatly prefer the creativity support offered by Imo-
GenXR. The work contributes to and motivates future research
to enhance creative support in novice content authoring, while
finding immediate use in a variety of creative scenarios such
as storytelling and creation of XR-based educational material.

REFERENCES

[1] R. Sims and A. Karnik, “Opportunities and challenges for vr-mediated
educational resources: An educator’s perspective,” in EDULEARN22
Proceedings, ser. 14th International Conference on Education and New
Learning Technologies. IATED, 4-6 July, 2022 2022, pp. 8810–8819.
[Online]. Available: https://doi.org/10.21125/edulearn.2022.2109

https://doi.org/10.21125/edulearn.2022.2109

[2] M. Nebeling and M. Speicher, “The trouble with augmented reality/vir-
tual reality authoring tools,” in 2018 IEEE International Symposium on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, Oct
2018, pp. 333–337.

[3] M. Nebeling, K. Lewis, Y.-C. Chang, L. Zhu, M. Chung, P. Wang,
and J. Nebeling, “Xrdirector: A role-based collaborative immersive
authoring system,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’20. ACM, 2020, p.
1–12. [Online]. Available: https://doi.org/10.1145/3313831.3376637

[4] V. Frau, L. D. Spano, V. Artizzu, and M. Nebeling, “Xrspotlight:
Example-based programming of xr interactions using a rule-based
approach,” Proc. ACM Hum.-Comput. Interact., vol. 7, no. EICS, jun
2023. [Online]. Available: https://doi.org/10.1145/3593237

[5] B. Shneiderman, “Creativity support tools,” Commun. ACM, vol. 45,
no. 10, p. 116–120, oct 2002. [Online]. Available: https://doi.org/10.
1145/570907.570945

[6] F. De La Torre, C. M. Fang, H. Huang, A. Banburski-Fahey,
J. Amores Fernandez, and J. Lanier, “Llmr: Real-time prompting
of interactive worlds using large language models,” in Proceedings
of the 2024 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’24. ACM, 2024. [Online]. Available: https:
//doi.org/10.1145/3613904.3642579

[7] H. Coelho, P. Monteiro, G. Gonçalves, M. Melo, and
M. Bessa, “Authoring tools for virtual reality experiences: a
systematic review,” Multimedia Tools and Applications, vol. 81,
no. 19, pp. 28 037–28 060, 3 2022. [Online]. Available:
http://dx.doi.org/10.1007/s11042-022-12829-9

[8] A. Steed and M. Slater, “A dataflow representation for defining be-
haviours within virtual environments,” in Proceedings of the IEEE 1996
Virtual Reality Annual International Symposium, 1996, pp. 163–167.

[9] G. Lee, C. Nelles, M. Billinghurst, and G. Kim, “Immersive authoring
of tangible augmented reality applications,” in International Symposium
on Mixed and Augmented Reality (ISMAR’04), 2004, pp. 172–181.

[10] L. Zhang and S. Oney, “Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality,” ACM Symposium on User
Interface Software and Technology, 2020.

[11] V. Krauß, M. Nebeling, F. Jasche, and A. Boden, “Elements of xr
prototyping: Characterizing the role and use of prototypes in augmented
and virtual reality design,” in Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’22. ACM, 2022.
[Online]. Available: https://doi.org/10.1145/3491102.3517714

[12] N. Ashtari, A. Bunt, J. McGrenere, M. Nebeling, and P. K. Chilana,
“Creating augmented and virtual reality applications: Current practices,
challenges, and opportunities,” International Conference on Human
Factors in Computing Systems, 2020.

[13] T. D. Kimura, J. W. Choi, and J. M. Mack, A visual language for
keyboardless programming. Washington University, Department of
Computer Science, 1986.

[14] J. Vincur, M. Konopka, J. Tvarozek, M. Hoang, and P. Navrat,
“Cubely,” VRST ’17: 23rd ACM Symposium on Virtual Reality
Software and Technology. ACM, 11 2017. [Online]. Available:
http://dx.doi.org/10.1145/3139131.3141785

[15] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and
challenges of low-code development: The practitioners’ perspective,”
in Proceedings of International Symposium on Empirical Software
Engineering and Measurement (ESEM ’21’). ACM, 2021. [Online].
Available: https://doi.org/10.1145/3475716.3475782

[16] C. E. A. Coello, M. N. Alimam, and R. Kouatly, “Effectiveness of
chatgpt in coding: A comparative analysis of popular large language
models,” Digital, vol. 4, no. 1, pp. 114–125, 2024. [Online]. Available:
https://www.mdpi.com/2673-6470/4/1/5

[17] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun,
“A comprehensive survey of ai-generated content (aigc): A history
of generative ai from gan to chatgpt,” 2023. [Online]. Available:
https://arxiv.org/abs/2303.04226

[18] B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential
of prompt engineering in large language models: a comprehensive
review,” 2024. [Online]. Available: https://arxiv.org/abs/2310.14735

[19] H. Weld, X. Huang, S. Long, J. Poon, and S. C. Han, “A survey
of joint intent detection and slot filling models in natural language
understanding,” ACM Comput. Surv., vol. 55, no. 8, dec 2022. [Online].
Available: https://doi.org/10.1145/3547138

[20] T. Hirzle, F. Müller, F. Draxler, M. Schmitz, P. Knierim, and
K. Hornbæk, “When xr and ai meet - a scoping review on extended

reality and artificial intelligence,” CHI ’23: CHI Conference on Human
Factors in Computing Systems. ACM, 4 2023, pp. 1–45. [Online].
Available: http://dx.doi.org/10.1145/3544548.3581072

[21] M. Sra, P. Maes, P. Vijayaraghavan, and D. Roy, “Auris,” Symposium
on Virtual Reality Software and Technology (VRST’17). ACM, 11
2017. [Online]. Available: http://dx.doi.org/10.1145/3139131.3139139

[22] S. Bonic, J. Bonic, and S. Schmid, “Broomrocket: Open source
text-to-3d algorithm for 3d object placement,” ACM Games, vol. 2,
no. 3, aug 2024. [Online]. Available: https://doi.org/10.1145/3648233

[23] D. Giunchi, N. Numan, E. Gatti, and A. Steed, “Dreamcodevr:
Towards democratizing behavior design in virtual reality with speech-
driven programming,” 2024 IEEE Conference Virtual Reality and
3D User Interfaces (VR). IEEE, 3 2024. [Online]. Available:
http://dx.doi.org/10.1109/VR58804.2024.00078

[24] T. J. Dube and A. S. Arif, “Text entry in virtual reality: A comprehensive
review of the literature,” in Human-Computer Interaction. Recognition
and Interaction Technologies, M. Kurosu, Ed. Cham: Springer Inter-
national Publishing, 2019, pp. 419–437.

[25] Y. WeiB, D. Hepperle, A. SieB, and M. Wolfel, “What user interface
to use for virtual reality? 2d, 3d or speech–a user study,” 2018
International Conference on Cyberworlds (CW). IEEE, 10 2018.
[Online]. Available: http://dx.doi.org/10.1109/CW.2018.00021

[26] J. Hombeck, H. Voigt, and K. Lawonn, “Voice user interfaces
for effortless navigation in medical virtual reality environments,”
Computers & Graphics, p. 104069, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0097849324002048

[27] J. M. Carroll, Scenario-Based Design, 2003, pp. 45–70.
[28] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,

Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute at
Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[29] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. VanderBilt,
L. Schmidt, K. Ehsani, A. Kembhavi, and A. Farhadi, “Objaverse: A
universe of annotated 3d objects,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[30] R. Stoakley, M. J. Conway, and R. Pausch, “Virtual reality on a
wim: interactive worlds in miniature,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 1995, pp. 265–272.

[31] J. Belga, T. D. Do, R. Ghamandi, R. P. McMahan, and J. J. LaViola,
“Carousel: Improving the accuracy of virtual reality assessments for
inspection training tasks,” in Proceedings of the 28th ACM Symposium
on Virtual Reality Software and Technology, ser. VRST ’22. ACM,
2022. [Online]. Available: https://doi.org/10.1145/3562939.3565618

[32] J. O. Wobbrock, A. D. Wilson, and Y. Li, “Gestures without libraries,
toolkits or training: a $1 recognizer for user interface prototypes,” in
Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’07. ACM, 2007, p. 159–168.
[Online]. Available: https://doi.org/10.1145/1294211.1294238

[33] E. Cherry and C. Latulipe, “Quantifying the creativity support of
digital tools through the creativity support index,” ACM Trans.
Comput.-Hum. Interact., vol. 21, no. 4, jun 2014. [Online]. Available:
https://doi.org/10.1145/2617588

[34] R. Plutchik, “A psychoevolutionary theory of emotions,” Social Science
Information, vol. 21, no. 4-5, pp. 529–553, 1982. [Online]. Available:
https://doi.org/10.1177/053901882021004003

[35] S. Wang, A. Maoliniyazi, X. Wu, and X. Meng, “Emo2vec: Learning
emotional embeddings via multi-emotion category,” ACM Trans.
Internet Technol., vol. 20, no. 2, apr 2020. [Online]. Available:
https://doi.org/10.1145/3372152

[36] Z. Zhang, Y. Xu, Y. Wang, B. Yao, D. Ritchie, T. Wu, M. Yu, D. Wang,
and T. J.-J. Li, “Storybuddy: A human-ai collaborative chatbot for
parent-child interactive storytelling with flexible parental involvement,”
in Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’22. ACM, 2022. [Online]. Available:
https://doi.org/10.1145/3491102.3517479

[37] H. Dang, F. Brudy, G. Fitzmaurice, and F. Anderson, “Worldsmith:
Iterative and expressive prompting for world building with a generative
ai,” in Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’23. ACM, 2023.
[Online]. Available: https://doi.org/10.1145/3586183.3606772

https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/3593237
https://doi.org/10.1145/570907.570945
https://doi.org/10.1145/570907.570945
https://doi.org/10.1145/3613904.3642579
https://doi.org/10.1145/3613904.3642579
http://dx.doi.org/10.1007/s11042-022-12829-9
https://doi.org/10.1145/3491102.3517714
http://dx.doi.org/10.1145/3139131.3141785
https://doi.org/10.1145/3475716.3475782
https://www.mdpi.com/2673-6470/4/1/5
https://arxiv.org/abs/2303.04226
https://arxiv.org/abs/2310.14735
https://doi.org/10.1145/3547138
http://dx.doi.org/10.1145/3544548.3581072
http://dx.doi.org/10.1145/3139131.3139139
https://doi.org/10.1145/3648233
http://dx.doi.org/10.1109/VR58804.2024.00078
http://dx.doi.org/10.1109/CW.2018.00021
https://www.sciencedirect.com/science/article/pii/S0097849324002048
https://doi.org/10.1145/3562939.3565618
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/2617588
https://doi.org/10.1177/053901882021004003
https://doi.org/10.1145/3372152
https://doi.org/10.1145/3491102.3517479
https://doi.org/10.1145/3586183.3606772

	Introduction
	Background
	Immersive Authoring Tools
	Visual Programming
	Generative AI
	Integrating AI into XR Development
	Conversational User Interfaces

	Design
	Design Motivation
	Design Scenario
	Design of Workflow

	Workflow Components
	Portal and CUI
	Generative AI
	Object Palette
	Enabling Interactivity

	Overall Workflow

	Implementation
	Portal CUI
	Object and Code Retrieval
	Backend

	Experiment
	Study Design
	Research Question
	Task
	Apparatus
	Participants
	Metrics
	Procedure

	Results
	Processing
	Comparative: CSI and SUS Scores
	Comparative: Workflow Usage Logs
	Comparative: Affect and User Responses
	ImoGenXR-specific Results

	Discussion
	Study Results
	Questionnaires
	Affect
	Workflow Usage Logs
	Participant #13

	Workflow not Tool

	Applications
	Limitations and Future Work
	Conclusion
	References

