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Abstract

Terahertz radiation with its non-ionizing property can be potentially employed
in many fields, for example, medical imaging, security scanning, spectroscopy, and
communication. In this thesis, we investigate one of the potential terahertz genera-
tors based on the cylindrical corrugated waveguide.

We show that by applying the Mathieu equation in Maxwell’s equations specifi-
cally for our symmetric corrugated waveguides, we can find the explicit approximate
solution of the electromagnetic fields. Moreover, we define the coincident inflection
point (CIP) which is the point on the dispersion relation where particles would inter-
act with the broad frequencies range of the electric fields. With this approximation
and the CIP, the design of the symmetric corrugated waveguides is easier compared
to other slow-wave structures e.g., radio frequency cavity.

We utilize the CST studio to compare our analytical results with numerical re-
sults from the CST simulation. The results show good agreement in the longitudinal
electric field graphs and the dispersion relation between these two results, confirming
that our analytical results are good enough to use in practice.

The study in the cylindrical corrugated waveguide is the developed work from
the rectangular corrugated waveguide. Not only did we observe better agreement
between analytical results and numerical results, but also an easier in manufactur-
ing process. We expect that the optical fiber extrusion technique for making the
cylindrical corrugated structure will be relatively easier and cheaper than the CNC
(Computer Numerical Control) technique for the rectangular corrugated structure.
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Chapter 1

Introduction

1.1 Terahertz Radiation

Electromagnetic radiation is the emission or the transferring of energy in the form
of photons or electromagnetic waves. Electromagnetic radiation’s wavelength can
span practically from 0 to nearly infinity, and can be used in various purpose. The
table 1.1 shows electromagnetic spectrum categorized by frequency and wavelength
ranges.

Spectral name Wavelength Frequency (Hz)

Radio waves ≥ 1 m 3 - 3× 108

Microwaves 1 m - 1 mm 3× 108 - 3× 1011

Terahertz 3 mm - 30µm 3× 1011 - 1013

Infrared 1 mm - 750 nm 3× 1011 - 4× 1014

Visible light 750 nm - 400 nm 4× 1014 - 8× 1014

Ultraviolet 400 nm - 1 nm 1015 - 1017

X-rays 1 nm - 1 pm 1017 - 1020

Gamma Rays 1 pm - 0.0001 pm 1020 - 1024

Table 1.1: Electromagnetic spectrum indicating terahertz in gray.

These spectral bands are produced by a wide variety of generators. For instance;
microwave can be produced by klystron and magnetron. However, there is a range
of frequencies that these technologies cannot approach. The electrical technologies
for generating microwave radiation, e.g. traveling tubes that can generate radiation
need to be scaled down to sub-millimeters so they are able to produce radiation in
the range of terahertz. This requires the precise micro-fabricated technologies to
build these devices.

Because of the limitation of technologies for generating the radiation, there is
still range of frequencies that these technologies cannot generate. This range is
called “Terahertz gap[1]” which refers to frequencies 0.3− 10THz (wavelengths are
in range 3mm to 30µm).

Terahertz radiation or sub-millimeter radiation wavelengths lie in the range be-
tween microwave and infrared. With the non-ionizing property, terahertz radiation
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1.2. TERAHERTZ GENERATORS

can penetrate non-conductive materials. Nevertheless, terahertz radiation can be
absorbed by water, this makes terahertz unable to penetrate water, plus it can only
travel with a short distance through fog or cloud which consists of water vapor[2].
Because of this reason, terahertz sources are rarely found in nature.

These properties of terahertz are exploited to be used in a variety of applica-
tions. For example, because of its non-ionizing property, terahertz radiation is safe
for imaging and screening applications, in contrast to X-ray which risks causing
cancer in the human body. Terahertz Pulsed Imaging (TPI) is a non-invasive and
non-destructive medical imaging technique which can be used to expose breast tu-
mors harmlessly in humans with the low power approximately 100 nW, in frequency
range 0.1− 3.0THz[3]. Another example in this area is the imaging of skin cancer,
using terahertz in frequency range of 0.1 − 2.7THz, average power 1mW[4]. Fur-
thermore, the non-conduction materials penetration property makes terahertz useful
for security applications. Terahertz in range 0.5 − 10THz is used to detect metal-
lic weapons, explosives and illicit drugs by analyzing its spectrum characteristic[5].
In addition, communication technology tends to shift from fifth-generation (5G) to
sixth-generation (6G) communications[6] which uses the frequencies range in tera-
hertz. Hence terahertz is high frequency wave, this gives it an advantage in a high
transmission rate. However, because of the quick attenuation in the air containing
with molecules of water, terahertz are used for short-distance wireless communica-
tions.

The development of terahertz generators can open the opportunities for improv-
ing current innovation or new technologies to be more effective. The reinvigoration
of the interested in terahertz radiation and generators started in 1994 with the pub-
lication of quantum cascade laser (QCL)[7] which can generate wavelengths from
the mid-infrared to the sub-millimeter wave (terahertz frequency). This and other
researches in late twentieth century opened the door to the study in the terahertz
radiation research field.

1.2 Terahertz Generators

Since 1990s, numerous methods have been developed to produce terahertz. They
can be categorized into 3 main methods; femtosecond laser excitation including,
photoconductive antennas (PCAs), nonlinear crystals or optical rectification, and
laser-induce gas plasma. The second method is solid state devices such as QCLs.
Another method is electronics and accelerators, for example; vacuum electronics
devices (VEDs).

The first laser-based terahertz pulse is the photoconductive antennas[8] in 1984
and then developed to the large aperture photoconductive antennas (LAPCAs)[9]
in 1993 with the aperture size 3.5 cm, which are able to generally generate low
terahertz frequencies in range between 0.1 and 1 THz. The optical rectification
generate frequencies band from 0.1THz to 6THz depending on the types of nonlinear
crystal. Both LAPCAs and optical rectification has the advantage in producing high
stability terahertz radiation, however there is the limitation which could occur from
laser damage[10].

In addition to these various techniques, other well-known and cost effective meth-
ods of terahertz generation are vacuum electronics devices (VEDs)[11]. VEDs are
devices consisting of the vacuum tube connected to the electron source which emit
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1.2. TERAHERTZ GENERATORS

the electrons to be interacted by an electromagnetic wave through the vacuum tube.
VEDs can be divided into 2 groups, transverse modulation and longitudinal

modulation of the current[12]. The transverse modulation current devices exploit a
magnetic field to modulate an electron’s velocity perpendicularly from its primary
axis. One remarkable technology for this type of VEDs is the Free Electron Laser
(FEL)[13]. The machine works by guiding a bunch of electrons through an undu-
lator to generate radiation. For the research of producing radiation, FEL is one of
the most reliable method. Since they can produce high intensity, coherent light,
not only terahertz radiation is generated but also a broad range of wavelengths
from long (microwave) all the way to short wavelengths (X-ray). Considering the
idea of constructing the FEL in Thailand, there certainly would be advantages from
using such a machine, e.g., drug manufacturing, heavy manufacturing and also aca-
demic research. The construction of FEL in Thailand powered by synchrotron will
boost the economy and research areas. Nevertheless, FEL requires large amounts of
funding and numerous researchers to work on this machine.

The longitudinal current modulation devices utilize an electric field component
of an electromagnetic wave to induce a longitudinal modulation of an electron’s ve-
locity in the same direction with the primary axis. For example, the backward-wave
oscillators (BWOs)[14] use a backward traveling electric field against an electron
beam, this causes the deceleration of electrons, and radiation is generated from this
deceleration. Another example is the traveling-wave tubes (TWTs)[15]. In contrast
to BWOs, TWTs use a forward traveling electric field to interact with an electron
beam. TWTs are used as an amplifier for radio frequency (RF) signals from mi-
crowave up to terahertz frequencies. When electrons enter an electric field, they
experience different regions of a field (accelerating regions and decelerating regions).
The electrons which fall into decelerating region lose their kinetic energy, and this
energy is transferred to an electric field which leads to an increasing of a wave’s
amplitude. At some point where electrons lose their kinetic energy and cannot
keep their velocity synchronism with a wave’s velocity, bunches of electrons start to
disperse and there is no longer the growth in a wave’s amplitude as shown in fig.1.1.

Figure 1.1: The interaction regimes of electrons and an electric field of TWTs and
the changes in amplitude of an electric field.

For this research, we study a cylindrical corrugated waveguide used in TWTs
which continues work from the research in a rectangular corrugated waveguide[16].
The corrugated profile makes this structure different from other conventional waveg-
uides which have a uniform profile. These corrugations can slow down the phase
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1.3. CORRUGATED WAVEGUIDE STRUCTURES

velocity of electromagnetic waves which propagate through the structure. The struc-
tures that have this characteristic are known as “slow-wave structures (SWSs)”.
Because the phase velocity of an electromagnetic wave is slower than the velocity of
light, this allows electrons to interact with an electric field. If electrons are deceler-
ated, radiation is generated (SWSs are also used in BWOs for generating radiation).
If electrons travel along an electric field, electrons that experience decelerating re-
gions will lose their kinetic energies and amplify an amplitude of an electric field
(TWTs are used to amplify RF signals).

1.3 Corrugated Waveguide Structures

The research community shows the interest in corrugated waveguide profiles. For
example; sine waveguide (SWG)[17], flat-roofed sine waveguide (FR-SWG)[18], and
piecewise sine waveguide (PW-SWG)[19]. However, only the PW-SWG is able to
generate radiation in the terahertz range.

(a) PW-SWG (b) SWG (c) FR-SWG

Figure 1.2: Adapted figure from [19]. The image exhibit the examples of various cor-
rugated structure profiles. With slight difference in shape (a) PW-SWG is improved
from SWG and FR-SWG with the property of maximizing particle-wave interaction
because of the lower distribution caused by sine walls. (b) SWG has the advantages
in wide bandwidth, electron beam tunnel, and easy to manufacture. (c) FR-SWG
can work in the W-band (77 − 110GHz regarding Institute of Electrical and Elec-
tronics Engineers (IEEE)).

x̂

ẑ

centre of waveguide

h(z)

spatial period

Figure 1.3: The cross-section height of symmetric corrugated waveguide profile in
this research.
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1.3. CORRUGATED WAVEGUIDE STRUCTURES

The corrugated wall profiles of the two corrugated waveguides which will be
studied in this thesis; the rectangular corrugated waveguide in chapter 3, and the
cylindrical corrugated waveguide in chapter 4, are different from the previous re-
search especially the sine waveguide. Instead of the upper and lower walls simulta-
neously oscillating up and down along longitudinal direction (z axis), this corrugated
waveguide has symmetrical corrugation (the top and bottom corrugation are reflec-
tions of each other) in a cross-section height as shown in fig.1.3. The height of the
corrugated waveguide h(z) is a periodic function to z. Particles would travel at
the center of the waveguide (x = 0, y = 0) where there is only an electric field.
There are 2 remarkable advantages for this specific corrugated structure. Firstly,
the corrugation of the structure is shallow and this makes the huge difference from
other slow-wave structures e.g., radio frequency (RF) cavity. For our corrugated
waveguide, the explicit approximate solutions of the electromagnetic waves can be
solved by Mathieu’s functions. With these solutions, the designing of the structure
corresponding to desirable properties (e.g., particle velocity, cut-off frequency, and
electromagnetic field modes) can be more easily achieved compared to other VEDs.
Secondly, we have defined the point on the dispersion relation of the symmetrical
corrugated waveguide where particles not only interact with an electric field but also
interact in the wide range of frequencies. This point is called “coincident inflection
point (CIP)”, see fig.1.4.
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Figure 1.4: Reproduced figure from [16]. The dispersion relation of the rectangular
corrugated waveguide. A red line is the velocity of light. Gray lines present particles
which have velocities greater than light. A blue line represent particles traveling with
a velocity less than the light velocity. A blue dotted line is the angular frequency of
CIP.

The dispersion relation of the symmetrical corrugated waveguide in fig.1.4 can
be classified into 3 regions; the 1st are always the “super-luminal” where the par-
ticle velocity is greater than the light velocity, the 2nd is often the “super-luminal”
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1.3. CORRUGATED WAVEGUIDE STRUCTURES

depending on the parameters. The 3rd is “sub-luminal” where the particle velocity
is less than the light velocity.

For determining the CIP of the dispersion relation, there are 3 conditions that
need to be considered.

1. A particle can be interacted with an electric field which has a phase velocity
less than the light velocity. A phase velocity of an electromagnetic field need to
be equal to a particle’s velocity and both must be less than the light velocity.

ω̂CIP

k̂CIP

= βe (1.1)

where ω̂CIP and k̂CIP are a normalized angular frequency and a normalized
wavenumber of the CIP, respectively.

2. To avoid a dispersion of an electromagnetic field, a group velocity and a phase
velocity need to be equal.

ω̂CIP

k̂CIP

=
dω̂CIP

dk̂CIP

(1.2)

3. Due to a frequency of electromagnetic field is not monochromatic, it is bene-
ficial to satisfy a zero group velocity dispersion (GVD) which is an inflection
point on the dispersion to allow the particle-field interaction in a broad range
of frequencies.

d2ω̂CIP

dk̂2
CIP

= 0 (1.3)

The normalized angular frequency ω̂ and the normalized wavenumber k̂ that can
satisfy these 3 conditions are “CIP”. At this point, a particle would interact with
the wide range frequencies of an electric field with the synchronous phase velocity.
With these advantages, they help to enhance efficiency of amplifying RF signals by
our corrugated waveguide at specific frequency.

In this thesis, we will investigate the symmetrical corrugated structure which
has a cylindrical profile fig.1.5. The cylindrical corrugated waveguide is a developed
structure from the rectangular corrugated waveguide[16]. The cylindrical corrugated
waveguide surpasses the rectangular in terms of reducing cost in manufacturing be-
cause of relatively easy fabrication process. The size of the waveguide is an inversely
proportion to a frequency of an electromagnetic wave. Therefore, high frequencies
require a small waveguide. The corrugated waveguide which has rectangular cross-
section profile (e.g., [17], [18], [19], and [16]) can be made by micro-fabrication
technologies[20], e.g., lithographic techniques which can make a waveguide circuit
in a sub-millimeter scale, or computer numerical control (CNC)[21] which achieves
a building of waveguide circuit generating frequencies 300GHz and above. On the
other hand, the cylindrical corrugated waveguide can be fabricated in a similar way
to fiber optic by the extrusion technique[22]. The process has 2 steps. First step
is molding glass into the corrugated shape, the heated glass is extruded to make
the undulated shape. The radius and a period of a corrugation can be designed by
varying the speed of an extrusion, relatively low speed can make the radius bigger
and a corrugation’s period shorter than a high speed extrusion. The next step is
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1.3. CORRUGATED WAVEGUIDE STRUCTURES

covering the cylindrical corrugated glass with silver which is the conducting ma-
terial, and using the chemical solvent to dissolve the glass. The resulting product
from this process will be silver in the shape of cylindrical corrugation which is a con-
ducting waveguide. This process hopefully requires a lower cost than lithographic
techniques. If the manufacturing of the cylindrical corrugated waveguide is low and
uncomplicated, this could lead to commercially available terahertz products that are
accessible to all.

Figure 1.5: 3D model of the cylindrical corrugated waveguide by CST simulation.

For the next chapter, chapter two cover background theory. We discuss a phase
and a group velocity of waveguides in general, followed by a particle-field interaction
for a uniform waveguide. We interpret the uniform waveguide as a periodic structure
and examine its dispersion relation. Then, we discuss the solution of Mathieu equa-
tion, the Floquet’s Theorem which is the important part for finding the analytical
results of electromagnetic fields for our structures and designing our waveguides’
profile. Finally we discuss on the dispersion relation of our symmetric corrugated
waveguides both the rectangular and the cylindrical corrugated waveguide and their
CIP.

In chapter three, building from the work by [16], we investigate the structure
of the rectangular corrugated waveguide. This includes the analytical solution and
geometry parameters that correspond to Floquet theorem. By comparing the an-
alytical solution and the numerical solution from the CST simulation, we can tell
how good our approximate results are.

In chapter four, we develop the analytical solution from chapter three. Instead
of the rectangular corrugated waveguide, we find the analytical solution of the cylin-
drical corrugated waveguide in detail, including optimizing the approximate results
by reducing the errors.

In chapter five, we show the numerical results from the CST of the cylindrical
corrugated waveguide and compare them with the analytical results from chapter
four.

This is followed by the discussion and future works and finally the conclusion of
this project.
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1.4. SUMMARY OF A CHAPTER 1

1.4 Summary of a chapter 1

In section 1.1, we discuss on the terahertz radiation which has frequencies lie within
a range 0.3 − 10THz and their properties, e.g., the non-ionizing property, high
frequency wave. With these properties, terahertz is exploited in wide areas, such
as medical imaging, security detector (detecting weapon, explosives, drugs), and
communication (6G).

There are 3 methods for producing terahertz in section 1.2. The first method
is femtosecond laser excitation, the second method is solid state devices, and the
last method is electronics and accelerators (our structure, the cylindrical corrugated
waveguide is included in this group). We study the cylindrical corrugated waveguide
which is the traveling-wave tube (TWT) which is used for amplifying signals from
microwave to terahertz frequencies. To amplify signals, there must be an interaction
between particles and an electric field. The structures that permits particles-fields
interaction are a slow-wave structures (SWSs).

The rectangular and cylindrical corrugated waveguide (Chapter 3 and Chapter 4)
are slow-wave structures (SWSs) which have the symmetric corrugated profile. This
unique profile provides us the advantages. Firstly, by designing the corrugated wall
to be smooth (shallow corrugation), we can find the explicit approximate solutions
of the electromagnetic waves. For another advantage, we define the “coincident
inflection point (CIP)” where the particles travel with the velocity synchronizing to
a phase velocity of an electric field, plus these particles would interact with wide
range frequencies of an electric field.

In addition, the method of producing the cylindrical corrugated waveguide is the
extrusion technique. By varying the speed of heated glass extrusion, the corrugation
profile is produced. We expect this process has less cost and is easier to produce
than the rectangular corrugated waveguide which uses computer numerical control
(CNC).

8



Chapter 2

Background Theory

2.1 Particle-Field Interaction of Uniform Waveg-

uides

To amplify electromagnetic waves in TWTs, there must be the exchange of energy
between kinetic energy of a particle and an electromagnetic wave. Therefore, when a
particle travels through a waveguide, they must lose energy to an electric field inside
a waveguide. The corrugated structure is a slow-wave structures (SWSs) that can
permit a phase velocity of a propagating electric field (considering TM11 mode for the
rectangular waveguide, and TM01 mode for the cylindrical waveguide, at the center
where there is only an electric field) along waveguides to be lower than the velocity of
light. This property allows particles to interact and exchange energy with an electric
field by being accelerated or decelerated by an electric force. On the other hand,
uniform waveguides have phase velocities more than the velocity of light, particles
cannot travel with velocities more than the velocity of light. Therefore, there is no
energy exchanges in uniform waveguides.

In this chapter, we will show that there is no energy transferring between travel-
ing particles and an electric field in uniform waveguides. For corrugated waveguides,
we will discuss this energy gain in section 2.6 which is symmetric corrugated struc-
tures.

Let us consider an inverse Fourier transform of an electric field in the frequency
domain.

E(t, z) =
1

2π
Re

[ ∫
Ẽ(ω, z)e−iωtdω

]
(2.1)

Where Ẽ(t, z) is an electric field in the time domain at a time t and a position z,
Ẽ(ω, z) is an electric field in the frequency domain at frequency ω = 2πf and a
position z.

Let us first consider the ordinary cylindrical waveguides with uniform profile,
the electric field for TM01 mode in z-direction along the center of waveguides is

E(ω, z) = E0e
ikzz (2.2)

E0 is an amplitude and kz is a wavenumber of electric field for TM01 mode in z-
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2.1. PARTICLE-FIELD INTERACTION OF UNIFORM WAVEGUIDES

direction. Then the electric field in time domain of eq.2.2 is

E(t, z) =
1

2π
Re

[ ∫
E0e

ikzze−iωtρ(ω)dω
]

(2.3)

where ρ(ω) is the spectral density of an electric field. For a monochromatic field
that an electric field carries only one value of frequency, then ρ(ω) = δ(ω − ωs) at
the phase-matched frequency ωs.

If a particle with velocity vp =
ω
kz

= cβe enters a waveguide at a time t0 and at
a position z0, after a time passes to tp = t0 +

zp
cβe

, a particle will be at a position zp.
With these conditions, eq.2.3 becomes

E(tp, zp) =
1

2π
Re

[ ∫
E0e

ikzzpe−iωtpρ(ω)dω
]

=
1

2π
E0Re

[ ∫
eikzzpe−iωtpδ(ω − ωs)dω

]
=

1

2π
E0Re

[
eikzzpe−iωstp

]
=

1

2π
E0Re

[
ei(kzzp−ωstp)

]
=

1

2π
E0Re

[
cos (kzzp − ωstp)− i sin (kzzp − ωstp)

]
=

1

2π
E0 cos(kzzp − ωstp)

(2.4)

The total changes in energy (∆ep) of a particle traveling over a period of the
structure Lz = 2π, is the integrated of an electric force

∆ep =q

∫ Lz

0

E(tp, zp)dzp

=π−1qE0

∫ 2π

0

cos(kzzp − ωstp)dzp

=0

(2.5)

The total changes in energy equals to 0 in uniform waveguides. This means
particles cannot exchange an energy with an electric field in uniform waveguides.
Therefore, we cannot amplify terahertz radiation by uniform waveguides.
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2.2. UNIFORM WAVEGUIDE INTERPRETED AS A PERIODIC STRUCTURE

2.2 Uniform Waveguide Interpreted as a Periodic

Structure

In this section, we will show that a periodic structure–a slow-wave structure, can slow
down a phase velocity of electromagnetic waves. A phase velocity of electromagnetic
waves is lower than the velocity of light because electromagnetic waves reflect with
the periodic element. As a result of this reflection, the dispersion relation curve
repeats itself every certain period of a wavenumber.

Considering a uniform waveguide in the frequency domain, at the center (x = 0,
y = 0) there is only a longitudinal component of an electric field Ez(z)

Ez(z) = e−ikzz (2.6)

kz is a wavenumber of an electric field in z-direction, then the dispersion relation of
a uniform waveguide is

(2.7)ω = c(k2
z + a2)1/2

where ω is an angular frequency, and a is a cut-off frequency.
We interpret an infinite uniform waveguide as a periodic structure, between a

unit cell with a period Lz as shown in fig.2.1

z

Ez(z)
Lz

Ez(z + Lz)

z + Lz

Figure 2.1: An infinite uniform waveguide interpreted as a periodic structure.

Regarding Floquet theorem, the change in a longitudinal electric field from any
position z0 in a unit cell to the same position in a next unit cell can be expressed
by an exponential term

(2.8)Ez(z + Lz) = e−ikzLzEz(z)

an electric field that can satisfy eq.2.8 is

(2.9)Ez(z) = e−ikzzP (z)

where P (z) is a periodic function with a period Lz, P (z + Lz) = P (z) and can be
written as a complex Fourier series

(2.10)P (z) =
+∞∑

n=−∞

Cne
i 2nπ
Lz

z

n is integers from −∞ to +∞, and Cn is a complex Fourier coefficient.

(2.11)Cn =
1

2Lz

∫ Lz

−Lz

P (z)e−i 2nπ
Lz

zdz ;n ∈ Z

11



2.2. UNIFORM WAVEGUIDE INTERPRETED AS A PERIODIC STRUCTURE

Substitute P (z) eq.2.10 into eq.2.9

(2.12)

Ez(z) = e−ikzzP (z)

= e−ikzz

+∞∑
n=−∞

Cne
i 2nπ
Lz

z

=
+∞∑

n=−∞

Cne
−ikzz+i 2nπ

Lz
z

=
+∞∑

n=−∞

Cne
−i(kz− 2nπ

Lz
)z

=
+∞∑

n=−∞

Cne
−ikznz

we defined a new variable kzn

kzn = kz −
2nπ

Lz

;n ∈ Z (2.13)

From eq.2.12 for a uniform waveguide interpreted as a periodic waveguide, there
are an infinite number of traveling waves, called space harmonics[23] (denoted by
index n) and kzn in eq.2.13 is a wavenumber of each space harmonic n. When n = 0,
the traveling wave is the principle wave which is the dominant field. Waves travel
in +z direction when n > 0 and travel in −z direction when n < 0.

Substituting kzn, eq.2.13 into eq.2.7, to derive the dispersion relation of a periodic
structure

(2.14)

ω = c(k2
zn + a2)1/2

= c
(
(kz −

2nπ

Lz

)2 + a2
)1/2

;n ∈ Z

The dispersion relation of a periodic structure in fig.2.2 shows the principle wave
n = 0 and harmonic waves n = −2,−1, 1, 2. Because a period of this structure is
Lz = π, a wavenumber of each harmonic wave shifts every k+2. For large values of
k, electric fields can propagate with low frequencies. This allows a phase velocity of
electric field less than the light velocity. However, because we indicated this periodic
condition in a uniform waveguide, there are no energy gains from this structure.
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2.3. PHASE VELOCITY AND GROUP VELOCITY

n = −2
n = −1

n = 0
n = 1

n = 2

k (m−1)

ω (s−1)

Figure 2.2: The dispersion relation of periodic structure shows dispersion graph
of principle wave n = 0 and harmonic waves n = −2,−1, 1, 2. In the corrugated
waveguide, the crossing in this figure open up for the band gaps as in fig.2.4 and
fig.2.5.

2.3 Phase Velocity and Group Velocity

We look at particles which enter at a center of a waveguide, x = 0 and y = 0, where
there is only an electric field in z-directionE(ω, z) = E0e

ikzz. After particles entering
a waveguide, an electric field interacts with particles, an electric force accelerates
particles to travel along the waveguide. The important condition of accelerating
particles with an electric field that needs to be considered is a velocity of a particle,
a phase and a group velocity of an electromagnetic wave in a waveguide.

Waves in nature consist of waves with different frequencies and wave numbers,
there are no truly monochromatic waves which means waves with only one frequency
[24]. These broadband waves are consisted of wave packets. A wave group prop-
agates in space with a group velocity, vg = dω

dk
and a phase velocity of component

waves is vp =
ω
k
.

For waves propagating in waveguides, the relation between a phase and a group
velocity of a wave group can be represented with a plot, called “dispersion relation”,
as shown in fig.2.3b. Waves are allowed to propagate in waveguides with frequency
above a cut-off frequency. Therefore, there are no waves propagating under the
dispersion relation curve. A phase velocity of waveguides is a slope of a line from an
origin to a point on a dispersion curve vp =

ω
k
, and a group velocity is derivative at

a point on a dispersion curve vg = dω
dk
. For uniform waveguides in general, a phase

velocity is faster than the velocity of light.
To gain the most efficient particle acceleration, a phase and a group velocity need

to be equal. This makes wave groups remain the same shape through a waveguide,
and particles are always interact with an electric field at its amplitude throughout
the acceleration.
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2.3. PHASE VELOCITY AND GROUP VELOCITY

ω (s−1)

k (m−1)

(a) A periodic structure.

ω (s−1)

k (m−1)

(b) A uniform waveguide.

Figure 2.3: Dispersion relation of a uniform waveguide indicated as a periodic struc-
ture (a) the black line is the principle wave n = 0, the gray and the blue line are
harmonic waves n = −20 and n = 20 respectively. (b) Dispersion relation of a
uniform waveguide. The red line in both figures is the light line.

In addition, particles can be accelerated when a phase velocity of electromagnetic
wave is lower than the velocity of light. For fig.2.3, we shows that for a periodic
structure, there are harmonic waves (eq.2.14 where n > 0) that can propagate with
a velocity lower than a velocity of light (the blue line of a harmonic wave n = 20
has a phase velocity lower than a velocity of light).

In this study, we introduce the coincident inflection point (CIP) where a phase
and a group velocity coincide, and at the point of inflection of the dispersion relation
to allow particles to interact with a range of frequencies. We will utilize this CIP to
determine the structure of the waveguide.

14



2.4. SOLUTION OF MATHIEU EQUATION: FLOQUET’S THEOREM

2.4 Solution of Mathieu Equation: Floquet’s The-

orem

For the symmetric corrugated structures both the rectangular and the cylindrical
shape, the electromagnetic fields at the wall are perturbed because of the corrugated
wall. So we begin solving Maxwell’s equations with a magnetic field function from
a uniform waveguide but with the addition of ϕ(ηz) for adjusting the field due to
the perturbation.

For the rectangular corrugated waveguide TM mode

B̃rec = B0c
−2(−iω)ϕ(ηz)

(
κy cos (κxx) sin (κyy)ex

− κx sin (κxx) cos (κyy)ey

) (2.15)

and the cylindrical corrugated waveguide TM mode

B̃cyl = B0c
−2(−iω)ϕ(ηz)J1(rg(ηz))eθ (2.16)

So both magnetic fields and electric fields are approximate solutions of Maxwell’s
equations. After minimizing the error for a good approximation, we get ϕ(ηz) in
the form of Ordinary Differential Equation (ODE)

ϕ′′(ζ) + (a− 2q cos(2ζ)ϕ(ζ)) = 0 (2.17)

which is the Mathieu’s equation where ζ = ηz = (π/Lz)z, η = π/Lz, Lz is a period
of a corrugated waveguide, a and q are real-value parameters.

The solution of Mathieu’s equation eq.2.17 can be solved by Floquet Theorem
which has the definition of ϕ(ζ) as

ϕa,q(ζ) = eik̂ζΨa,q,k̂(ζ) (2.18)

ϕ(ζ) is composed of a characteristic number eik̂ζ and Ψa,q,k̂(ζ) is a periodic function
Ψa,q,k̂(ζ + π) = Ψa,q,k̂(ζ).

We define the parameter a = ω̂2 − ω̂2
c where ω̂ = (Lzω)/(πc) is a normalized an-

gular frequency, and ω̂c is a normalized cut-off angular frequency, for the rectangular
corrugated waveguide ω̂c = (L2

z/L
2
0 + L2

z/L
2
y)

1/2 and for the cylindrical corrugated
waveguide ω̂c = (χ1

0Lz)/(πR0). q can be determined as a depth of the corrugation,
and k̂ is the Mathieu exponent and relates to the wavenumber k = ηk̂ = πk̂/Lz.
These parameters a, q, and k̂ are physical parameters that determine the geometry
of the symmetric corrugated structures which will be discussed further in chapter 3
and chapter 4.

Periodic function Ψa,q,k̂(ζ) can be represented by the complex Fourier series.

Ψa,q,k̂(ζ) =
∞∑

n=−∞

cne
2inζ (2.19)

where n is integers, and cn is a complex Fourier coefficient.
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2.4. SOLUTION OF MATHIEU EQUATION: FLOQUET’S THEOREM

ϕ(ζ) in eq.2.18 can be written in the form of complex Fourier series

ϕa,q(ζ) = eik̂ζ
∞∑

n=−∞

cne
2inζ

=
∞∑

n=−∞

cne
i(k̂+2n)ζ

(2.20)

substitutes eq.2.20 into Mathieu’s equation eq.2.17

−
∞∑

n=−∞

cn(k + 2n)2ei(k̂+2n)ζ + (a− qe2ζi − qe−2ζi)
∞∑
−∞

cne
i(k̂+s2n)ζ = 0

∞∑
n=−∞

[
(
a− (k̂ + 2n)2

)
cne

i(k̂+2n)ζ − qcne
i(k̂+2n+2)ζ − qcne

i(k̂+2n−2)ζ ] = 0

∞∑
n=−∞

[
(
a− (k̂ + 2n)2

)
cne

i(k̂+2n)ζ + (−qcn−1 − qcn+1)e
i(k̂+2n)ζ ] = 0

∞∑
n=−∞

[−qcn−1 +
(
a− (k̂ + 2n)2

)
cn − qcn + 1] = 0

(2.21)

eq.2.21 can be written in an infinite matrix form



. . . . . . . . . . . . . . . . . . . . .

. . . −q 0 0 0 0 . . .

. . . a− (k̂ − 4)2 −q 0 0 0 . . .

. . . −q a− (k̂ − 2)2 −q 0 0 . . .

. . . 0 −q a− k̂2 −q 0 . . .

. . . 0 0 −q a− (k̂ + 2)2 −q . . .

. . . 0 0 0 −q a− (k̂ + 4)2 . . .

. . . 0 0 0 0 −q . . .

. . . . . . . . . . . . . . . . . . . . .





. . .
c−2

c−1

c0
c1
c2
. . .


= 0

(2.22)
from matrix equation in matrix.2.22, the coefficient of the series is

−qcn−1 + (a− (k̂ + 2n)2)cn − qcn + 1 = 0

cn =
q(cn+1 + cn−1)

a− (k̂ + 2n)2

When |n|→ ±∞ then

lim
n→±∞

cn = lim
n→±∞

q(cn+1 + cn−1)

a− (k̂ + 2n)2

lim
n→±∞

cn = 0

This means cn converges to 0 when |n|→ ±∞. So the infinite matrix in fig.2.22
can be truncated. to the finite matrix. Here we have chosen a 5× 5 matrix.
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a− (k̂ − 4)2 −q 0 0 0

−q a− (k̂ − 2)2 −q 0 0

0 −q a− k̂2 −q 0

0 0 −q a− (k̂ + 2)2 −q

0 0 0 −q a− (k̂ + 4)2



c−2

c−1

c0
c1
c2

 = 0

(2.23)
By comparing to a 7×7 truncation, we can show that this is a good approximation

for the values of q ≈ 0.1 which we are interested in.
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2.4. SOLUTION OF MATHIEU EQUATION: FLOQUET’S THEOREM

To guarantee that Floquet’s eq.2.18 has at least one-non trivial solution, the
determinant of matrix in fig.2.23 must be equal to 0

∣∣∣∣∣∣∣∣∣∣∣

a− (k̂ − 4)2 −q 0 0 0

−q a− (k̂ − 2)2 −q 0 0

0 −q a− k̂2 −q 0

0 0 −q a− (k̂ + 2)2 −q

0 0 0 −q a− (k̂ + 4)2

∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.24)

We have the relation between q and the geometry of structure, a = ω̂2 − ω̂2
c . By

fixing the depth of corrugations q and a normalized cut-off angular frequency ω̂c,
then we can find the dispersion relation ω̂ - k̂ of the structure from the determinant
in eq.2.24.

In fig 2.4 we show how dispersion relation changes if q is varied. From the figures,
if q increases, a gap of the dispersion is expanded. If q = 0, there is no corrugation
but the plane wall which is the uniform structure indicated as periodic structure in
section 2.2, so there are no gaps between the dispersion as shown in fig.2.2. Our
approximate analytical solutions are limited by the value of q. We can find a good
approximation when q is small (the smooth corrugation). In contrast, when q is large
(> 0.1) e.g., the structure of RF cavity, we can no longer use our approximation
2.15 and 2.16 in this case.

In addition in fig.2.5, with the fixed value of q, we vary a normalized cut-off
angular frequencies ω̂c. When ω̂c increases the lowest angular frequency of electro-
magnetic waves which are allowed to propagate in a waveguide increases as well.
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ω̂

k̂

(a) q = 0.05, ω̂c = 1.0

ω̂

k̂

(b) q = 0.1, ω̂c = 1.0

ω̂

k̂

(c) q = 0.15, ω̂c = 1.0

ω̂

k̂

(d) q = 0.2, ω̂c = 1.0

Figure 2.4: Reproduced figure from [16]. The dispersion relation with the fixed ωc

and varying q. The red line is ω̂ = k̂ and equals to the light line.

19
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ω̂

k̂

(a) q = 0.3, ω̂c = 0.5

ω̂

k̂

(b) q = 0.3, ω̂c = 1.0

ω̂

k̂

(c) q = 0.3, ω̂c = 1.5

ω̂

k̂

(d) q = 0.3, ω̂c = 2.0

Figure 2.5: Reproduced figure from [16]. The dispersion relation with the fixed q
and varying ωc. The red line is ω̂ = k̂ and equals to the light line.
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2.5. DISPERSION RELATION AND CIP

2.5 Dispersion Relation and CIP

The values of parameters ω̂, ω̂c and k̂ depend on the structures we considered,
the (TM11 mode) rectangular corrugated waveguide or the (TM01 mode) cylindrical
corrugated waveguide.

Parameters Rectangular corrgated Cylindrical corrgated
ω̂ (Lzω)/(πc) (Lzω)/(πc)

k̂ (Lzk)/π (Lzk)/π

ω̂c (L2
z/L

2
0 + L2

z/L
2
y)

1/2 (χ1
0Lz)/(πR0)

In this research, we impose q = 0.1, because of a good agreement between
analytical and numerical results of longitudinal electric fields that it can provide
(section 3.2 and 5.2). When q = 0.1, the value of ω̂c which there will be the CIP is
1.254. For the rectangular corrugated waveguide ω̂c = (L2

z/L
2
0 + L2

z/L
2
y)

1/2 = 1.254,
we can choose the width Ly = 0.55mm, the length of a period Lz = 0.464mm,
and the average height L0 = 0.5mm. For the cylindrical corrugated waveguide
ω̂c = (χ1

0Lz)/(πR0) ≈ 1.254, then the length of a period Lz = 0.59mm, and the
average radius R0 = 0.36mm. With these geometry parameters, the dispersion
relation of q = 0.1, and ω̂c = 1.254 is shown in fig.2.6.

As previously introduced in section 1.3, the dispersion relation in fig.2.6 shows the
relation between normalized angular frequencies ω̂ and normalized wavenumbers k̂
of the symmetric corrugated waveguide q = 0.1 and ω̂c = 1.254. With this particular
value of geometric parameters, particles with velocity βe = 0.53 (92KeV) would be
allowed to phase-synchronize with electric fields at k̂ = 2.857 and ω̂ = 1.513 (for
the rectangular corrugated waveguide f = 488.764 GHz, and for the cylindrical
corrugated waveguide f = 384.464 GHz ). Therefore, for the structures which have
q = 0.1, ω̂c = 1.254, the CIP is ω̂ = 1.513, and k̂ = 2.857.
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= 2.875

Figure 2.6: Reproduced figure from [16]. The dispersion relation of the rectangular
corrugated waveguide with parameters q = 0.1 and ωc = 1.254. A red line is the
velocity of light. Gray lines and a blue line represent particle beam velocities that
would interact with an electromagnetic wave: the fist zone where a particle beam
velocity is 1.8c, the second zone where a particle beam velocity is 1.29c, and the
third zone is where a particle beam velocity is β0 = 0.53 (92KeV).

By varying values of ω̂c, and k̂ for each q in the determinant of matrix eq.2.24,
we can solve the determinant for each set these values in Maple software. As a
result, we found the particular set of ω̂c, k̂CIP , and βe for each q that can satisfy
3 conditions for the CIP in section 1.3. We observed a parameter q from 0.00 to
0.30, the CIP only exists when ω̂c correspond to q as shown in table 2.1 and fig.2.7.
In addition, the velocity of a particle that would interact with an electric field runs
from 0.47c to 0.56c as shown in fig.2.7b.

q ω̂c k̂CIP βe

0.01 1.379 2.967 0.568
0.05 1.312 2.907 0.548
0.1 1.254 2.857 0.53
0.15 1.208 2.818 0.514
0.2 1.168 2.785 0.499
0.25 1.134 2.757 0.485
0.3 1.104 2.732 0.472

Table 2.1: The table selected sample of q, and ω̂c and their CIP.
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ω̂c

q

(a) A graph between parameters q and
normalized cut-off angular frequencies ω̂c

βe

q

(b) A graph between parameters q and
particle velocities at the CIP βe

Figure 2.7: Reproduced figure from [16]. The relation between q and ω̂c, and q and
βc determine that with these values there will be the CIP.

Nevertheless, because the CIP only exists for particular group of parameters
(q, ω̂c, and k̂CIP ), this leads to the limitation that only a particle travels with the
specific velocity (βe corresponds to each q in table 2.1) would synchronize with a
phase velocity of an electric field.

2.6 Particle-Field Interaction of CorrugatedWave-

guides

From the magnetic field of the symmetric corrugated waveguide in eq.2.15 and
eq.2.16, the longitudinal electric fields TM11 at the center x = 0, y = 0 of the
rectangular corrugated waveguide is

Ez(rec) = B0(κ
2
x(z) + κ2

y)ϕ(ηz)ez (2.25)

and the longitudinal electric fields TM01 at the center r = 0 of the cylindrical
corrugated waveguide is

(2.26)Ez(cyl) = B0g(ηz)ϕ(ηz)J0(0)ez

we will show that there is an exchange of energy between particles and electric field
for these structures.

Let us consider the electric field in time domain of the rectangular corrugated
waveguide eq.2.25 is

E(t, z) =
1

2π
B0(κ

2
x(z) + κ2

y)Re
[ ∫

ϕ(ηz)e−iωtρ(ω)dω
]

=
1

2π
B0(κ

2
x(z) + κ2

y)Re
[ ∫

eik̂zΨa,q,k̂(πL
−1
z z)e−iωtρ(ω)dω

] (2.27)

after time pass tp = t0 +
zp
cβe

the electric field is

E(tp, zp) =
1

2π
B0(κ

2
x(zp) + κ2

y)Re
[ ∫

eik̂zpΨa,q,k̂(πL
−1
z zp)e

−iω(t0+zp/cβe)ρ(ω)dω
]
(2.28)
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2.6. PARTICLE-FIELD INTERACTION OF CORRUGATED WAVE-GUIDES

because ρ(ω) = δ(ω − ωs), then

E(tp, zp) =
1

2π
B0(κ

2
x(zp) + κ2

y)Re
[
Ψa,q,k̂(πL

−1
z zp)

]
cos (ωst0) (2.29)

substitute κx = π(L−2
0 + 2L−2

z q cos 2πL−1
z z)1/2 and κy = πL−1

y in eq.2.29

E(tp, zp) = πB0L
−2
z

(
ω̂2
c + 2q cos (2πL−1

z zp)
)
Re

[
Ψa,q,k̂(πL

−1
z zp)

]
cos (ωst0) (2.30)

The integrated of an electric force, the total change in energy (∆ep) of a particle
traveling over a period of structure Lz is

∆ep = q

∫ Lz

0

E(tp, zp)dzp

= qπB0L
−2
z cos (ωst0)

∫ Lz

0

(
ω̂2
c + 2q cos (2πL−1

z zp)
)
Re

[
Ψa,q,k̂(πL

−1
z zp)

]
dzp

(2.31)
The fig.2.8 is the graph from eq.2.31 between the force which is felt by particles

and the traveling distance. The graph shows that all the zones of different k̂, the
total force that a particle experiences (the total change in energy (∆ep)) is not equal
to 0. This means there is an energy exchange between a particle and an electric field.

Figure 2.8: The figure from [16]. The graph between the force which is felt by
particles in the rectangular corrugated waveguide with q = 0.1 and ω̂c = 1.255. The
amplitude of an electric field is 1Vm−1. We determine 4 zones, the first zone (black)
is the super-luminal particle where k̂ = 0.857, βe = 1.766, total force ∆ep = 4.81.

The second zone (blue) is also the super-luminal particle, k̂ = 1.143, βe = 1.143,
∆ep = −0.516. The third zone (red) is the sub-luminal particle, k̂ = 2.857, βe =
0.53, where is the CIP of this structure, the total force is ∆ep = 0.244. The sub-

luminal particle fourth zone (orange), k̂ = 3.142, βe = 0.481, total force ∆ep =
−0.043.

We show that there is the change in the energy of a particle traveling along
a corrugated waveguide (the rectangular corrugated waveguide [16]) as shown in
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2.6. PARTICLE-FIELD INTERACTION OF CORRUGATED WAVE-GUIDES

fig.2.9. The average energy of a particle that travels across the rectangular cor-
rugated waveguide decreases and transfers to an electric field. This enhances an
amplitude of an electromagnetic wave. So, by using the corrugated waveguide in
TWTs, we can amplify RF signals.

Figure 2.9: The figure from [16]. The graph between the change in the kinetic
energy of a synchronous electron, from 92KeV (β0 = 0.53, in the third zone which
is the sub-luminal particle) in an RF field of 1Vm−1, and the traveling distance in
the rectangular corrugated waveguide with q = 0.1 and ω̂c = 1.255. The blue line is
the average of energy loss.

Similar to the cylindrical corrugated waveguide, the electric field in time domain
is

E(tp, zp) =
1

2π
B0J0(0)g(πL

−1
z zp)Re

[
Ψa,q,k̂(πL

−1
z zp)

]
cos (ωst0) (2.32)

where g(πL−1
z zp) = π

(
(χ1

0)
2π−2R−2

0 + 2L−2
z q cos(2πL−1

z zp)
)1/2

, the total change in

energy of a particle is

∆ep =qπB0J0(0) cos (ωst0)

∫ Lz

0

(
(χ1

0)
2π−2R−2

0 + 2L−2
z q cos(2πL−1

z zp)
)1/2

Re
[
Ψa,q,k̂(πL

−1
z zp)

]
dzp

(2.33)

The total change in the energy of a particle is not equal to 0 in the cylindrical
corrugated waveguide.

Therefore, the symmetric corrugated waveguides both the rectangular and the
cylindrical corrugated waveguide allow particles and electric field to exchange the
energy, we can amplify the amplitude of RF signals by using our structure in TWTs.
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2.7. SUMMARY OF A CHAPTER 2

2.7 Summary of a chapter 2

In section 2.1 to 2.3, we shows that there is no interaction between a particle and an
electric field in a uniform waveguide (the total change in energy is equal 0) because
a phase velocity is greater than the velocity of light. However, this problem can be
solved by using the periodic structure instead of a uniform structure as shown in
fig.2.3 where a phase velocity is less than the velocity of light and a particle can
exchange the energy with an electric field (section 2.6).

For our structure, the symmetric corrugated waveguide, in section 2.4, we intro-
duce Mathieu parameters, q which is a depth of the corrugation, parameter a which
is equal to ω̂2 − ω̂2

c (ω̂ is a normalized angular frequency and ω̂c is a normalized
cut-off angular frequency). We apply Floquet’s theorem to solve Mathieu equation,
then we get the relation between q and a = ω̂2− ω̂2

c from the determinant in eq.2.24.
From this determinant, we can plot the dispersion relation ω̂ − k̂ (k̂ is a normal-
ized wavenumber), and can design our structure by considering these parameters.
For example, in chapter 4 the dispersion relation parameters of TM01 mode for
the cylindrical corrugated waveguide structure are ω̂ = (Lzω)/(πc), k̂ = (Lzk)/π,
ω̂c = χ1

0Lz/πR0 where Lz is the length of a period of the corrugation, R0 is an
average radius of the waveguide. We define q = 0.1, R0 = 0.36mm, Lz = 0.59mm,
then ω̂c ≈ 1.254. From these parameters, our waveguide allows the electromagnetic
wave at frequency above 318.09GHz (determine from ω̂ = 1.252 at k̂ = 0) to pass
through the structure.

In addition, in section 2.5, we found the CIP of each parameter q as shown in
table 2.1. The table shows that the CIP can be found only if we design our structure
ω̂c corresponding to the value of q. This means if we use q = 0.1, we need to design
the structure that has ω̂c = 1.254, and there will be the CIP for this structure that
particles would interact with the wide range frequencies of an electric field with the
particular synchronous phase velocity βe = 0.53 (92KeV). However, due to the CIP
only exists for particular group of parameters (q, ω̂c, and k̂CIP as shown in table 2.7),
this means the particle with only specific velocity (βe) will synchronize with a phase
velocity of an electric field. Therefore, to enhance the interaction between particles
and an electric field, we need to chose the velocity of particles corresponding to the
CIP of the structure.
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Chapter 3

Rectangular Corrugated
Waveguide

3.1 Electric Field and Magnetic Field

The rectangular corrugated waveguide has a slow-wave profile as shown in fig.3.1,

x̂ ẑ

ŷ

cen
ter

of w
ave

guid
e

Lz

Ly

Lx (z)

Figure 3.1: The rectangular corrugated waveguide profile.

The waveguide’s height Lx (z) depends on z, because of the corrugation. This
Lx (z) oscillates around an average value, we define this value as L0. The width is
represented by Ly. The length of each corrugation is Lz. Both parameters are fixed.

Because our solutions for an electromagnetic field are an approximation, there
are errors needed to consider, we expressed these errors in Maxwell’s equations

∇ · Ẽ = 0 ∇× Ẽ − iωB̃ = εMax

∇ · B̃ = 0 ∇× B̃ + iωc−2Ẽ = 0
(3.1)

and in the boundary conditions

Ẽ∥|Bdd= εBdd B̃⊥|Bdd= 0 (3.2)
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3.1. ELECTRIC FIELD AND MAGNETIC FIELD

Because there are errors (ϵMax and ϵBdd) occurring, the solution which is solved
from these Maxwell’s equations will be an approximation.

To allow a particle and an electric field interact, we chose TM mode of an elec-
tromagnetic field. Since there is only the electric field at the center of the waveguide
where a particle is accelerated. For the TM mode magnetic field is

B̃ = B0c
−2(−iω)ϕ(ηz)

(
κy cos (κxx) sin (κyy)ex

− κx sin (κxx) cos (κyy)ey

) (3.3)

and the electric field is

Ẽ = B0

(
(κ′

x sin (κxx) + κ′
xκxx cos (κxx) + ηκx sin (κx)ϕ

′(ηz))ϕ(ηz)) cos (κyy)ex

)
+B0κy

(
−κ′

xx sin (κxx)ϕ(ηz) + η cos (κxx)ϕ
′(ηz)

)
sin (κyy)ey

−B0(κ
2
x + κ2

y) cos (κxx) cos (κyy)ϕ(ηz)ez.
(3.4)

with parameters κx(z), κy, and η as defined by the following equations

κx(z) =
πpx
Lx (z)

κy =
πpy
Ly

η =
π

Lz
(3.5)

We introduce a function ϕ(ηz) which has the role to adjust the electromagnetic
field according to the corrugated wall, by substituting B̃ and Ẽ into Faraday’s law
eq.3.1 gives the 2nd order ODE of ϕ(ζ)

ϕ′′(ζ) + η−2
(
c−2ω2 − κ2

x − κ2
y

)
ϕ(ζ) = 0 (3.6)

where ζ = ηz is dimensionless parameter. The eq.3.6 can be rewritten in the form
of Mathieu equation

ϕ′′(ζ) +
(
a− 2q cos(2ζ)

)
ϕ(ζ) = 0 (3.7)

By comparing eq.3.6 and eq.3.7, we get parameters of the rectangular corrugated
waveguide (Lx (z), L0, Ly, and Lz) in the term of Mathieu equation variables (q and
a)

a− 2q cos (2ζ) ≡ η−2
(
c−2ω2 − κ2

x − κ2
y

)
= L2

z

(
c−2π−2ω2 − p2xLx (z)

−2 − p2yL
−2
y

)
= L2

z

(
c−2π−2ω2 − p2xL

−2
0 − p2yL

−2
y

)
− L2

z

(
p2xLx (z)

−2 − p2xL
−2
0

)
(3.8)

From eq.3.8, the first term of Mathieu equation, parameter a is

a = L2
z(c

−2π−2ω2 − p2xL
−2
0 − p2yLy

−2) (3.9)

to simplify eq.3.9, we define 2 dimensionless variables, a normalized angular fre-
quency ω̂ is a variable depends on angular frequency of the electromagnetic wave
propagating through the waveguide, and a normalized wavenumber ω̂c is a cut-off
angular frequency depends on a geometry of the structure.

a = ω̂2 − ω̂2
c (3.10)
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3.1. ELECTRIC FIELD AND MAGNETIC FIELD

where

ω̂ =
Lz

πc
ω and ω̂c =

(L2
z

L2
0

+
L2
z

L2
y

)1/2

(3.11)

The second term of eq.3.8 is

2q cos (2ζ) = L2
z

(
p2xLx (z)

−2 − p2xL
−2
0

)
(3.12)

this yields the relation between Mathieu’s parameter q and the function Lx (ζ) which
can be used to design the profile of corrugations

Lx (ζ) =
(
L−2
0 + 2L−2

z p−2
x q cos (2ζ)

)− 1
2 (3.13)

To get a good approximation of solutions, q and δ = L0/Lz need to be small (this
approximation will be discussed in detail in chapter4. We can make an assumption
that qL2

0L
−2
z is small, the simplified form of Lx (ζ) is

Lx (ζ) ≈ L−2
0 − L3

0L
−2
z p−2

x q cos (2ζ) (3.14)

From eq.3.14 and fig.3.2, L0 is the average height of the structure and a parameter
q can be interpreted as the depth of the corrugations. If q is small, the depth of
corrugations are small or smooth corrugation. On the other hand, the corrugations
are getting deeper when q increases.
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3.1. ELECTRIC FIELD AND MAGNETIC FIELD

Lx (ζ)

z

(a) q = 0.1, L0 = 0.4

Lx (ζ)

z

(b) q = 0.2, L0 = 0.4

Lx (ζ)

z

(c) q = 0.1, L0 = 0.5

Lx (ζ)

z

(d) q = 0.2, L0 = 0.5

Figure 3.2: The rectangular corrugated profile with the variation in parameter q
and L0.
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3.2. NUMERICAL SOLUTION OF A RECTANGULAR CORRUGATED
WAVEGUIDE

3.2 Numerical Solution of a Rectangular Corru-

gated Waveguide

To check the validity of the analytical solution that would predict particle-wave
interaction, the commercial numerical simulation software CST is employed. CST
is able to solve Maxwell integral equation on a tetrahedral mesh. The rectangu-
lar corrugated waveguide is designed with the boundary condition as perfect electric
conductor (PEC) at all the walls. This makes a waveguide becomes resonator, there-
fore it is easier to determine the modes inside the structure because the amplitude
of the electric field always starts at the entrance of the structure z = 0 and ends at
the end of the structures z = nLz.

Figure 3.3: The rectangular corrugated waveguide profile with q = 0.1,Ly = 0.55mm
L0 = 0.5mm, Lz = 0.464mm, ωc = 1.254 and 10 periods structure simulated by CST
simulation (the reason that we use only 10 periods, because the software requires
more time to process the results for the structure with more periods. For the future
works, we will work on the corrugated waveguide with more periods, this will increase
the accuracy of finding a phase and a group velocity of CST results fig.3.6b).

The geometry of the rectangular corrugated waveguide that used to simulate the
results in CST is q = 0.1,Ly = 0.55mm L0 = 0.5mm, Lz = 0.464mm, and 10 periods
structure. With this profile a normalize cut-off angular frequency is ω̂c = 1.254, the
CIP k̂CIP = 2.857, ω̂CIP = 1.513 which are equivalent to kCIP = 19.344mm−1,
fCIP = 488.764GHz and βe = 0.53.

We examine the normalized longitudinal electric field Ez TM11 mode along the
center (x = 0, y = 0) of the structure. By plotting the Ez vs z of the CST’s exported
data and the analytical results

Ez = B0(κ
2
x + κ2

y) cos (κxx) cos (κyy)ϕ(ηz)ez (3.15)

we can compare the analytical and numerical results as shown in fig.3.4. Although
they ane not perfectly fit, overall the analytical graphs are match with the numerical
field patterns with different k̂.
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Ez

z (mm)

(a) k̂ = 2.1, k = 14.218mm−1,
fCST = 402.788GHz, fanlt = 405.795GHz

Ez

z (mm)

(b) k̂ = 2.3, k = 15.573mm−1,
fCST = 412.135GHz, fanlt = 415.900GHz

Ez

z (mm)

(c) k̂ = 2.5, k = 16.927mm−1,
fCST = 429.878GHz, fanlt = 435.373GHz

Ez

z (mm)

(d) k̂ = 2.8, k = 18.958mm−1,
fCST = 466.513GHz, fanlt = 479.078GHz

Figure 3.4: The electric field TM11 mode at the center x = 0, y = 0 of the rectangular
corrugated waveguide q = 0.1, Ly = 0.55mm, L0 = 0.5mm, Lz = 0.464mm, 10

period structure, ω̂c = 1.254, the CIP is k̂CIP = 2.857, ω̂CIP = 1.513 which are
equivalent to kCIP = 19.344mm−1, fCIP = 488.764GHz and βe = 0.53.
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WAVEGUIDE

We collect the frequencies of k̂ values from CST simulation, plot and compare
them with the analytical frequencies, the dispersion relation between analytical and
numerical results is shown in fig.3.5.

k̂

k (mm−1)

ω̂ f (GHz)

ω̂CIP = 1.513

fCIP = 488.764GHz

k̂CIP = 2.857

kCIP = 19.344mm−1

Figure 3.5: The dispersion relation result from CST (black dots) and analytical
equation (blue line and blue dots) of the rectangular corrugated waveguide q = 0.1,
Ly = 0.55mm, L0 = 0.5mm, Lz = 0.464mm, 10 period structure, ω̂c = 1.254, and

the CIP is k̂CIP = 2.857, ω̂CIP = 1.513 which are equivalent to kCIP = 19.344mm−1,
fCIP = 488.764GHz and βe = 0.53.

From our analytical solution we expect to see the CIP of structure q = 0 and
ω̂c = 1.254 (which the geometry parameters of the rectangular corrugated waveguide
are Ly = 0.55mm, L0 = 0.5mm, Lz = 0.464mm) at kCIP = 19.344mm−1, fCIP =
488.764GHz. We can observe whether there is the CIP for our structure, by examine
phase and group velocities graph.

Fig.3.6 presents phase and group velocities of analytical (3.6a) and numerical
(3.6b) results of the structure q = 0.1 and ω̂c = 1.254. For analytical results, there
is the CIP at fCIP = 488.764GHz and βe = 0.53 exactly the same point which
predicted by the mathematic model.

On the other hand, from the works by [16], we found that for numerical results,
the CIP for q = 0.1 is available when ω̂c = 1.06 (for structure Ly = 1mm, L0 =
0.41mm, and Lz = 0.475mm) as appearing in fig.3.7. Where the CIP is fCIP =
394GHz and βe = 0.46.
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βe

βe=0.53

vphase

vgroup

fCIP=488.764GHz

f (GHz)

(a) Phase and group velocity of analytical
results

βe
βe=0.53

vphase

vgroup

fCIP=488.764GHz

f (GHz)

(b) Phase and group velocity of numerical
(CST) results

Figure 3.6: Phase (dash line) and group (solid line) velocities of analytical results
(blue) and numerical results (black) of the rectangular corrugated waveguide q =
0.1, Ly = 0.55mm, L0 = 0.5mm, Lz = 0.464mm, 10 period structure n = 10,

ω̂c = 1.254, and the CIP of analytical solution is k̂CIP = 2.857, ω̂CIP = 1.513 which
are equivalent to kCIP = 19.344mm−1, fCIP = 488.764GHz and βe = 0.53 (92KeV).

Figure 3.7: Figure from [16]. (a) The dispersion relation result from CST (orange)
of structure ω̂c = 1.06 and analytical equation (black) of structure ω̂c = 1.255.
(b) Phase (dash line) and group (solid line) velocities of CST (orange) of structure
ω̂c = 1.06 and analytical equation (black) of structure ω̂c = 1.255. Where the CIP
of numerical results is fCIP = 394GHz and βe = 0.46 (65KeV).
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3.3. SUMMARY OF A CHAPTER 3

3.3 Summary of a chapter 3

In section 3.1, we show that with the modified Maxwell’s equation eq.3.1 and the
boundary conditions eq.3.2, we can find the analytical results of the TM11 magnetic
field eq.3.3, and the electric field eq.3.4. We introduce ϕ(ηz) to be a function for
adjusting the electromagnetic fields due to the corrugated wall. Because ϕ(ηz) can
be solved by Mathieu equation, we rewrite parameters of the waveguide in the form of
Mathieu equation. Therefore parameters for the rectangular corrugated waveguide
are ω̂ = (Lzω)/(πc), k̂ = (Lzk)/π, and ω̂c = (L2

z/L
2
0+L2

z/L
2
y)

1/2. In addition, we can
define the waveguide’s height from this rewritten parameters in the form of Mathieu
equation as shown in eq.3.14, where L0 is the average height of the waveguide.

In section 3.2, a simulation software CST is utilized to solve Maxwell’s equations
of a rectangular corrugated waveguide. We design the structure which has q = 0.1,
Ly = 0.55mm, L0 = 0.5mm, Lz = 0.464mm, and ω̂c = 1.254, with these parameters

the CIP of this structure is k̂CIP = 2.857, ω̂CIP = 1.513, βe = 0.53 (92KeV),
fCIP = 488.764GHz. We plot the normalized longitudinal electric field TM11 mode
at the center of the waveguide Ez and z, and compare results from our analytical
results with the CST results as shown in fig.3.4. The graph shows a good agreement
between these two results. However, the CIP from analytical results is not the same
point as the numerical results from CST. As shown in fig.3.6, and fig.3.7, the CIP of
numerical results is the point where a phase velocity, a group velocity, and a particle
velocity are coincided. Hence, for the rectangular corrugated waveguide q = 0.1,
the CIP of numerical results exists for the structure Ly = 1mm, L0 = 0.41mm,
Lz = 0.475mm, and ω̂c = 1.06. The CIP of this structure is fCIP = 394GHz, and
βe = 0.46 (65KeV).
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Chapter 4

Theory of the Cylindrical
Corrugated Waveguide

4.1 Electric Field and Magnetic Field

The particles such as electrons can be accelerated by the electric field along the z-
direction, so that the mode of waveguide will be Transverse Magnetic (TM) modes.
To find the analytical solutions of the cylindrical corrugated waveguide, we will start
with the 4 equations of Maxwell’s in vacuum in the frequency domain

∇ · Ẽ = 0 (4.1)

∇ · B̃ = 0 (4.2)

∇× Ẽ − iωB̃ = εMax (4.3)

∇× B̃ + iωc−2Ẽ = 0 (4.4)

For a Faraday’s law in eq.4.3, the right hand side of an equation is equal to the
error (εMax), due to the solution that we will find later is an approximation.

In addition, because the wall of the waveguide is the corrugation. This leads to
the boundary condition of the electromagnetic field that is parallel to the wall of
the waveguide is not equal to 0 but equal to an error at boundary (εBdd).

Ẽ∥|Bdd = εBdd

B̃⊥|Bdd = 0
(4.5)

Regarding to a uniform cylindrical waveguide, the magnetic field along the waveg-
uide in z-direction of TM modes are the Bessel functions of the first kind

B̃ = B0c
−2(−iω)J1(rkρmn)eθ (4.6)

kρmn = Pmn/R, where Pmn is the nth root of Jm, and R is a radius of a uniform
waveguide. Then we can modify it to the cylindrical corrugated waveguide model
from eq.4.6

B̃ = B0c
−2(−iω)ϕ(ηz)J1(rg(ηz))eθ (4.7)
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4.2. THE ERROR MAX (εMax) MINIMIZATION

ϕ(ηz) is an additional function inserted into the magnetic field equation of a uni-
form waveguide. This ϕ(ηz) allows the magnetic field adjust itself along z-direction,
because of the corrugated wall.

Substituting B̃ in eq. 4.4 to find the electric field Ẽ, then

(4.8)
Ẽ =g−1B0[−g′grϕ(ηz)J0(rg)− gηϕ′(ηz)J1(rg) + g′ϕ(ηz)J1(rg)]er

(0)eθ +B0gϕ(ηz)J0(rg)ez

Now we have the approximate results of the magnetic field and the electric field
of the cylindrical waveguide. Next sections, we can find the values of ϕ(ηz) by
minimizing an error max εMax and the solutions of Mathieu function.

4.2 The Error Max (εMax) Minimization

The error (εMax) of an approximation is a result of Faraday’s law by substituting Ẽ
and B̃ in eq.4.3

(4.9)
εMax =(0)er −B0{[−g′′g−1ϕ+ (−g′

2
r2 + 2g′

2
g−2 − g2 + c−2ω2)ϕ

+ η2ϕ′′ − g′g−2ηϕ

2
]J1 + [

g′ηϕ

2
+ g′′η − g′

2
g−2ϕ]rJ0}eθ + (0)ez

We consider smooth corrugation by letting g′′ and g′ be very small. To obtain a
good approximate result, εMax needs to be minimized, when

ϕ′′(ζ) + η−2(c−2ω2 − g2(ζ))ϕ(ζ) = 0 (4.10)

(ζ is a scaled variable, ζ := πz
Lz

= ηz).Then εMax is

(4.11)
εMax =(0)er −B0{[−g′′g−1ϕ+ (−g′

2
r2 + 2g′

2
g−2)ϕ− g′g−2ηϕ

2
]J1

+ [
g′ηϕ

2
+ g′′η − g′

2
g−2ϕ]rJ0}eθ + (0)ez

The corrugated structure causes errors to analytical solution. We group these
errors into 2 groups, an εMax and an εBdd. At the center of the structure, εMax =
0, this means there is no error causing by the corrugation, the error is gradually
decreasing if we move from the center and end up be the most error at the wall
of the structure. From the errors that we analyze, there are 2 constrains to be
considered for designing the cylindrical corrugated structure.

1. The center of the cylindrical corrugated structure, εMax is equal to 0. We can
exploit this advantage by injecting particles at the center.

2. Good approximation can be achieved by reducing the parameter q.

4.3 Boundary Conditions

At the boundary, the radius of the cylindrical corrugated waveguide (r) varies along
the structure, so r = R(z). We can categorized vectors at the boundary into 2
vectors, a normal vector and a tangent vector.
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4.4. MATHIEU EQUATION OF THE CYLINDRICAL CORRUGATED
WAVEGUIDE

1. normal vector (1 +R′(z)2)−
1
2 (er −R(z)′ez).

2. tangent vector eθ and (1 +R′(z)2)−
1
2 (ez +R(z)′er).

Then, we can consider elements of the magnetic field B̃ and the electric field Ẽ
in a normal and a tangent vector.

A normal magnetic field at the boundary along the corrugations is

B̃⊥ = B̃ · (1 +R′(z)2)−
1
2 (er −R′(z)ez) = 0B0c

−2(−iω)ϕ(ηz)J1(rg(ηz))eθ (4.12)

and a tangent magnetic field is

B̃∥ = B̃ · (1 +R′(z)2)−
1
2 (ez +R′(z)er) = 0 (4.13)

A normal electric field at the boundary along the corrugations is

Ẽ⊥ =Ẽ · (1 +R′(z)2)−
1
2 (er −R′(z)ez)

=−B0(1 +R′2)
1
2 g−1[(gηϕ′ − g′ϕ)J1 + (rg′ +R′g)gϕJ0]|r=R(z)

(4.14)

and from the boundary conditions in eq. 4.5

Ẽ∥ =εBdd

=Ẽ · (1 +R′(z)2)−
1
2 (ez +R′(z)er)

=−B0(1 +R′2)
1
2 g−1[R′(gηϕ′ − g′η)J1 + (rR′g′ − g)gϕJ0]|r=R(z)

(4.15)

4.4 Mathieu Equation of the Cylindrical Corru-

gated Waveguide

To complete the analytical solution, we have to find the value of ϕ(ζ). We obtain the
ϕ(ζ) from minimizing the εMax, ϕ

′′(ζ) + η−2(c−2ω2 − g2(ζ))ϕ(ζ) = 0, This equation
can be rewritten into formal Mathieu equation

ϕ′′(ζ) + (a− 2q cos(2ζ))ϕ(ζ) = 0 (4.16)

comparing eq.4.10 and eq.4.16, then

ϕ′′(ζ) + (a− 2q cos(2ζ))ϕ(ζ) =ϕ′′(ζ) + η−2(c−2ω2 − g2(z))ϕ(ζ)

a− 2q cos(2ζ) =η−2(c−2ω2 − g(ζ)2)

=L2
z(c

−2π−2ω2 − π−2g(ζ)2)

(4.17)

We introduce R0 as a physical parameter with a unit [m] into eq.4.17

a− 2q cos(2ζ) =L2
z(c

−2π−2ω2 − (χn
m)

2π−2R−2
0 + (χn

m)
2π−2R−2

0 − π−2g(ζ)2)

=L2
z(c

−2π−2ω2 − (χn
m)

2π−2R−2
0 )− L2

z(π
−2g(ζ)2 − (χn

m)
2π−2R−2

0 )
(4.18)

then from eq.4.18, a parameter a and 2q cos(2ζ) of the Mathieu equation is

a =L2
z(c

−2π−2ω2 − (χn
m)

2π−2R−2
0 )

=ω̂2 − ω̂c
2

(4.19)
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here we define a dimensionless parameter; a normalized angular frequency ω̂

ω̂ =
Lz

πc
ω (4.20)

and a normalized cut-off angular frequency ω̂c

ω̂c =
χn
mLz

πR0

(4.21)

The cosine term of Mathieu function can be expressed as

2q cos(2ζ) = L2
z(π

−2g(ζ)2 − (χn
m)

2π−2R−2
0 )

g(ζ) = π
(
(χn

m)
2π−2R−2

0 + 2L−2
z q cos(2ζ)

) 1
2

(4.22)

A boundary condition at R(z) ( R(z) is the radius of the cylindrical corrugated
waveguide which a function depends on z), electric field which is tangent to the
corrugated side (E∥) is equal to the error at the boundary εBdd

εBdd =Ẽ · 1

(1 +R′2)
1
2

(ez +R′er)

=−B0(1 +R′2)
1
2 g−1[R′(gηϕ′ − g′η)J1 + (RR′g′ − g)gϕJ0]

(4.23)

When R′(z) is 0 in the smooth corrugated, the error at the boundary is 0 (similar
to a uniform cylindrical waveguide where Ẽ∥|Bdd= 0), then E∥ is

εBdd = 0 = B0g(ζ)ϕ(ηz)J0(R(z)g(ζ)) (4.24)

the Bessel functions of the first kind, J0(R(z)g(ζ)) = 0 when

R(z)g(ζ) = χn
m (4.25)

because we consider the TM01 mode, so χ1
0 is the solution. Then, the radius function

of the cylindrical corrugated waveguide is

R(z) =
χ1
0

g(ζ)

=χ1
0π

−1
(
(χ1

0)
2π−2R−2

0 + 2L−2
z q cos(2ζ)

)− 1
2

=
(
R−2

0 + 2(χ1
0)

−2π2L−2
z q cos(2ζ)

)− 1
2

(4.26)

The R(z) is a function we use to define the structure of a corrugated waveguide
structure. By applying Taylor’s expansion to eq.4.26, q is assumed to be small

R(z) ≈R0

(
1− (χ1

0)
−2π2R2

0L
−2
z q cos(2ζ)

)
(4.27)

from this expansion, we can see that the radius of the cylindrical R(z) will oscillate
around the value of R0.
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R(ζ)

z

(a) q = 0.1, R0 = 0.35

R(ζ)

z

(b) q = 0.2, R0 = 0.35

R(ζ)

z

(c) q = 0.1, R0 = 0.4

R(ζ)

z

(d) q = 0.2, R0 = 0.4

Figure 4.1: The cylindrical corrugated profile when varying parameter q and R0.

4.5 The Ansatz Optimization

Recalling the error of an approximation in the Faraday’s Law

(4.28)
εMax =(0)er −B0{[−g′′g−1ϕ+ (−g′

2
r2 + 2g′

2
g−2)ϕ− g′g−2ηϕ

2
]J1

+ [
g′ηϕ

2
+ g′′η − g′

2
g−2ϕ]rJ0}eθ + (0)ez

and the error at the boundary Ẽ∥|Bdd= εBdd

εBdd = −B0(1 +R′2)
1
2 g−1[R′(gηϕ′ − g′η)J1 + (rR′g′ − g)gϕJ0]|r=R(z) (4.29)

We can notice that both errors depend on factors g′, g′′ or R′. From eq.4.26 g′

and g′′ in term of R(ηz) are

g′(ηz) = −χ1
0ηR(ηz)−2R′(ηz) (4.30)

g′′(ηz) = 2χ1
0η

2R(ηz)−3R′(ηz)2 − χ1
0η

2R(ηz)−2R′′(ηz) (4.31)
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4.5. THE ANSATZ OPTIMIZATION

The smaller of R′ and R′′ are, the smaller of the errors of an approximation. When
the R′ and R′′ are small, the corrugated wall is smooth. This means if we want a
good approximation, we have to keep the corrugation smooth.

From eq.4.22 and 4.26, g′ and g′′ are

g′(πL−1
z z) = − 2π3q

L3
zg(πL

−1
z z)

sin (2πL−1
z z) (4.32)

and

g′′(ηz) = − 4π6q2

L6
zg(πL

−1
z z)3

sin2 (2πL−1
z z)− 4π4q

L4
zg(πL

−1
z z)

cos (2πL−1
z z) (4.33)

with the fixed q and R0, the errors εMax and εBdd approach zero when L−3
z → ∞.

We can define this condition when the errors go to zero as a dimensionless factor
δ.

δ =
R0

Lz

(4.34)

With the parameter δ, we could predict that our approximation would be getting
better when the value of δ is getting smaller (approach 0).
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4.6. SUMMARY OF A CHAPTER 4

4.6 Summary of a chapter 4

Chapter 4 is the continue work from the rectangular corrugated waveguide [16],
so the mathematical process for finding solutions of Maxwell’s equations is similar
to chapter 3 section 1, but with more details. We start with modified Maxwell’s
equations (4.1-4.4) and boundary conditions eq.4.5. By substituting the magnetic
field equation of the cylindrical corrugated waveguide eq.4.7 into Maxwell’s eq.4.4,
we obtain the electric field eq.4.8.

In section 4.2, we show that from our modified Maxwell’s equations (Faraday’s
law eq.4.3), we can manipulate the error (ϵMax) to be small for the good approxima-
tion. From minimizing the ϵMax, we get the function of ϕ(ζ) which will be rewritten
into Mathieu equation in section 4.4. In addition, we found 2 constrains to be con-
sidered when designing the cylindrical corrugated waveguide. Firstly, at the center
of waveguide, we get the best approximation due to ϵMax = 0. Secondly, The smaller
the parameter q is, the better the approximation.

We consider the electromagnetic field at the boundary in section 4.3, we get
the equation of the tangent electric field at the boundary Ẽ∥ eq.4.15 which will be
considered further in section 4.4.

By rewriting ϕ(ζ) eq.4.10 into Mathieu eq.4.16 in section 4.4, we found a nor-
malized angular frequency ω̂ = (Lzω)/(πc) and a TM01 normalized cut-off angular
frequency ω̂c = (χ1

0Lz)/(πR0), where χ1
0 is the 1st root of J0, and R0 is an aver-

age radius of the structure. Furthermore, we define our model to have a smooth
corrugated, Ẽ∥|Bdd= ϵBdd = 0. Therefore, the radius function of the cylindrical

corrugated waveguide is R(z) ≈ R0

(
1− (χ1

0)
−2π2R2

0L
−2
z q cos(2ζ)

)
.

In addition, section 4.5 is an optimization of the ansatz. We find that by adjust-
ing δ = R0/Lz to be small (approach 0), we expect to receive a good approximation
of our analytical results.
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Chapter 5

CST Simulation of the Cylindrical
Corrugated Waveguide

CST or Computer Simulation Technology is a software package for analyzing 3-
dimension of the electromagnetic field. We use CST to find the numerical solutions
of the electromagnetic field inside the cylindrical corrugated waveguide and compare
these results with the analytical results. We begin with creating the corrugated
cylindrical structure with geometry q = 0.1, R0 = 0.36mm, Lz = 0.59mm, and
ω̂c ≈ 1.254.

However, we need to be reminded that the accuracy of the numerical results
depends on many factors, such as solver options, mesh types, the density of the
mesh. So, there are still more areas for an improvement in the numerical accuracy,
and this will be our future works.

5.1 Set Up the Conditions for Simulation

Before running a simulation, we set up the conditions in the following steps.

1. In Home → Click a drop-down of Setup Solver → Select Eigenmode Solver.

2. Because the structure is vacuum, we set a background properties to be a
Perfect Electric Conductor (PEC).

In Simulation → Click Background → Choose Material type: PEC.
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5.1. SET UP THE CONDITIONS FOR SIMULATION

Figure 5.1: For a Background Properties setup, chose Material type to be PEC.

3. For the boundary conditions, we set the tangential electric field (Et = 0) at
boundaries (at the corrugated wall, the beginning, and the end of the waveg-
uide) equal to 0. So, this structure is basically the resonant cavity, forming the
standing electromagnetic waves. Alternatively, we can choose Et = periodic

which has the property of E(z) = E(z + LZ). However, the amplitude of the
electric field always starts at z = 0 in the first condition, making it easy to
compare the numerical results to the analytical results.

In Simulation → Click Boundaries → Choose “electric (Et = 0)” in all direc-
tions.

Figure 5.2: For a Boundary Conditions setup, choose “electric (Et = 0)” in all
directions.

4. We can refine mesh of a structure with Global Properties
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5.1. SET UP THE CONDITIONS FOR SIMULATION

Figure 5.3: For a Boundary Conditions setup, choose “electric (Et = 0)” in all
directions.

Figure 5.4: For a Boundary Conditions setup, choose “electric (Et = 0)” in all
directions.

5. In Simulation → Click Setup Solver → Set up Eigenmode Solver Parameters.

Figure 5.5: For Eigenmode Solver Parameters.
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5.1. SET UP THE CONDITIONS FOR SIMULATION

Fig.5.6 shows one of the simulation results of the corrugated cylindrical structure
with geometry q = 0, R0 = 0.36mm, Lz = 0.59mm, a periods of the corrugation
n = 10 and ω̂c ≈ 1.254. The electric field TM01 in a cross-section y − z plane
has frequency 327.028GHz and we can calculate a normalized wavenumber by a
wavenumber and geometry of the structure.

n · Lz = 5.9mm

Figure 5.6: The example of the TM01 mode electric field simulated by CST.

n · Lz = 5.9mm

z (mm)

Ez

Figure 5.7: The graph of a normalized longitudinal electric field and z, plotting from
data of a simulation fig.5.6.

The relation between normalized wavenumbers k̂ and wavenumbers k

k̂ =
Lz

π
k

=
Lz

π

2π

λ

(5.1)
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5.2. ANALYTICAL AND NUMERICAL RESULTS COMPARISON

from fig5.7, wavelength of the electric field is

νλ =n · Lz

λ =
n · Lz

ν

(5.2)

where ν is the number of waves, substitute λ in eq.5.2 to eq.5.1

k̂ =
Lz

π
k

=
2πLz

π

ν

n · Lz

=
2ν

n

(5.3)

For example, the longitudinal electric field Ez in fig.5.6 or fig.5.7 has n = 10,
and the number of wave is 1/2, therefore k̂ is

k̂ =
2ν

n
=

2 · 1
10 · 2

= 0.1 (5.4)

5.2 Analytical and Numerical Results Compari-

son

The analytical result of Maxwell’s equations for the TM01 electric field at the center
r = 0

(5.5)Ez = B0g(ηz)ϕ(ηz)J0(0)ez

we use Maple software to generate graphs of the normalized longitudinal electric field
Ezn and z from eq.5.5 then compare these results to the data from CST simulation.
We analyze the corrugated cylindrical structure with geometry q = 0, R0 = 0.36mm,
Lz = 0.59mm, periods of corrugation n = 10 and ω̂c ≈ 1.254. These comparisons
are shown in fig.5.8.
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Ez

z (mm)

(a) k̂ = 2.1, k = 11.182mm−1,
fCST = 318.038GHz, fanlt = 319.231GHz

Ez

z (mm)

(b) k̂ = 2.3, k = 12.247mm−1,
fCST = 325.747GHz, fanlt = 327.175GHz

Ez

z (mm)

(c) k̂ = 2.6, k = 13.844mm−1,
fCST = 350.145GHz, fanlt = 352.595GHz

Ez

z (mm)

(d) k̂ = 2.8, k = 14.909mm−1,
fCST = 372.402GHz, fanlt = 376.848GHz

Figure 5.8: The normalized longitudinal electric fields TM01, Ez at the center x = 0,
y = 0, or r = 0 of the cylindrical corrugated waveguide with geometry q = 0.1,
R0 = 0.36mm, and Lz = 0.59mm, periods of corrugation n = 10 and ω̂c ≈ 1.254.
The blue graph is an analytical result and the black dot line is the numerical result
from CST simulation.

The results show better matching in the graph than the rectangular corrugated
waveguide. When k is small, the graph of these two results are nearly align perfectly.
However, when k̂ increases, there are differences in the peak between these graphs.
we also collect the data both analytical and numerical results as shown in table
5.1 to plot the dispersion relation. We found the CIP of the analytical dispersion
is k̂CIP = 2.857, kCIP = 15.213mm−1, ω̂CIP = 1.513, fCIP = 384.464GHz, and
βe = 0.53.
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5.2. ANALYTICAL AND NUMERICAL RESULTS COMPARISON

k̂ k
Analytic Numeric

f (GHz) ω̂ f (GHz) ω̂
2.1 11181.94 319.231 1.257 318.038 1.252
2.2 11714.413 322.234 1.268 320.955 1.263
2.3 12246.887 327.175 1.288 325.747 1.282
2.4 12779.36 333.965 1.315 332.311 1.308
2.5 13311.833 342.485 1.348 340.508 1.340
2.6 13844.307 352.595 1.388 350.145 1.378
2.7 14376.78 364.126 1.433 360.947 1.421
2.8 14909.253 376.848 1.483 372.402 1.466
2.9 15441.727 390.21 1.536 383.134 1.508
3.0 15974.2 399.501 1.572 388.515 1.529

Table 5.1: Collection of data from the analytical and numerical result of the cylin-
drical corrugated waveguide q = 0.1, ωc ≈ 1.254.

k̂

k (mm−1)

ω̂ f (GHz)

ω̂CIP = 1.513

fCIP = 384.464GHz

k̂CIP = 2.857

kCIP = 15.213mm−1

Figure 5.9: The dispersion relation result from CST (black dots) and analytical
equation (blue line and blue dots) of the cylindrical corrugated waveguide with
geometry q = 0.1, R0 = 0.36mm, and Lz = 0.59mm, periods of corrugation n = 10
and ω̂c ≈ 1.254. The CIP for analytical results of this structure is k̂CIP = 2.857,
kCIP = 15.213mm−1, ω̂CIP = 1.513, fCIP = 384.464GHz, and βe = 0.53.
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5.2. ANALYTICAL AND NUMERICAL RESULTS COMPARISON

In addition, we examine if our analytical models can be used with another point
beside r = 0. In fig.5.10 we observe the longitudinal electric field Ez in the x − y
cross-section at the widest z = 4Lz and the narrowest z = 6.5Lz of the cylindrical
corrugated waveguide with geometry q = 0.1, R0 = 0.35mm, and Lz = 0.56mm,
periods of corrugation n = 10 and ω̂c ≈ 1.225. We can observe the good matching
of these two graphs of Ez in the x− y cross-section.

Ez

x (mm)

(a) k̂ = 2.1, x− y cross-section at z = 4Lz

(b) Cross-section x− y axis of
model by CST at z = 4Lz

Ez

x (mm)

(c) k̂ = 2.1, x− y cross-section at z = 6.5Lz

(d) Cross-section x− y axis of
model by CST at z = 6.5Lz

Figure 5.10: A graph of the normalized longitudinal electric field TM01 mode of the
cylindrical corrugated waveguide and distance in z-direction at cross-section x− y.
The TM01 mode of the normalized longitudinal electric fields Ez at z = 4Lz of
the cylindrical corrugated waveguide with geometry q = 0.1, R0 = 0.35mm, and
Lz = 0.56mm, periods of corrugation n = 10 and ω̂c ≈ 1.225. The blue graph is
an analytical electric field and the black dot line is the numerical result from CST
simulation.
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5.3. PHASE AND GROUP VELOCITIES

5.3 Phase and Group Velocities

We observe the CIP of analytical and numerical results by generating graphs of
phase and group velocities and observe the point where there is the coincide of these
two plots.

βe

βe=0.53

vphase

vgroup

fCIP=384.464GHz

f (GHz)

(a) Phase and group velocity of analytical
results

βe
βe=0.53

vphase

vgroup

fCIP=384.464GHz

f (GHz)

(b) Phase and group velocity of numerical
(CST) results

Figure 5.11: Phase velocities (dash line) and group velocities (solid line) of analytical
results (blue) and numerical results (black) of the cylindrical corrugated waveguide
q = 0.1, R0 = 0.36mm, Lz = 0.59mm, n = 10, and ω̂c ≈ 1.254. The CIP of
analytical results is fCIP = 384.464GHz, and βe = 0.53 (92KeV).

Fig.5.11 shows graphs of analytical phase and group velocities (5.11a) and nu-
merical phase and group velocities (5.11b) of the structure q = 0.1, R0 = 0.36mm,
Lz = 0.59mm, n = 10, and ω̂c ≈ 1.254. For analytical results, there is the CIP at
fCIP = 384.464GHz and βe = 0.53 (92KeV) exactly the same point which predicted
by the mathematic model. However, we cannot find the CIP of the numerical results
from this geometry. Therefore, we change the geometry of the structure, result to
ω̂c be varied. Then, plot the results of phase and group velocities from this varying
to find the CIP of numerical results as shown in fig.5.12.
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βe

βe=0.47

vphase

vgroup

fCIP=376.6GHz

f (GHz)

(a) Phase and group velocity of analytical
results

βe βe=0.47

vphase

vgroup

fCIP=376.6GHz

f (GHz)

(b) Phase and group velocity of numerical
(CST) results

Figure 5.12: Phase velocities (dash line) and group velocities (solid line) of analytical
results (blue) and numerical results (black) of the cylindrical corrugated waveguide
q = 0.1, R0 = 0.361mm, Lz = 0.512mm, n = 10, and ω̂c ≈ 1.086. The CIP of
numerical results is fCIP = 376.6GHz, and βe = 0.47 (68KeV).

k̂

k (mm−1)

ω̂ f (GHz)

ω̂CIP = 1.286

fCIP = 376.6GHz

k̂CIP = 2.738

kCIP = 16.800mm−1

Figure 5.13: The dispersion relation results from CST (black dots) and analytical
results (blue line and blue dots) of the cylindrical corrugated waveguide with ge-
ometry q = 0.1, R0 = 0.361mm, Lz = 0.512mm, n = 10, and ω̂c ≈ 1.086. The
CIP for analytical results of this structure is k̂CIP = 2.738, kCIP = 16.800mm−1,
ω̂CIP = 1.286, fCIP = 376.6GHz, and βe = 0.47 (68KeV).
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5.3. PHASE AND GROUP VELOCITIES

From fig. 5.12, we found that for the cylindrical corrugated waveguide q = 0.1,
R0 = 0.361mm, Lz = 0.512mm, n = 10, and ω̂c ≈ 1.086, there is no the CIP of
the analytical results fig.5.12a. In the other hand, for numerical results, there is the
CIP at fCIP = 376.6GHz and βe = 0.47 (68KeV).

The dispersion relation of the cylindrical corrugated waveguide q = 0.1, R0 =
0.361mm, Lz = 0.512mm, n = 10, and ω̂c ≈ 1.086 is shown in fig.5.13. There
are noticeable differences in results between analytical results and numerical results
for this value of ω̂c ≈ 1.086, comparing to ω̂c ≈ 1.254 in fig.5.9 which has a better
agreement.
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5.4 Variation of δ and q

From our models, we predict that for a small value of δ = R0/Lz and q, we will get
the good approximation. Therefore, we examine the graphs between analytical and
numerical results when δ and q is varied.

Ez

z (mm)

(a) δ = 1.1667, k̂ = 2.1,
fCST = 309.334GHz, fanlt = 329.717GHz

Ez

z (mm)

(b) δ = 1.1667, k̂ = 2.3,
fCST = 328.264GHz, fanlt = 358.574GHz

Ez

z (mm)

(c) δ = 0.350, k̂ = 2.1,
fCST = 330.566GHz, fanlt = 328.01GHz

Ez

z (mm)

(d) δ = 0.350, k̂ = 2.3,
fCST = 327.868GHz, fanlt = 330.719GHz

Figure 5.14: The TM01 mode of the normalized longitudinal electric fields Ez at the
center x = 0, y = 0, or r = 0 of the cylindrical corrugated waveguide with geometry
q = 0.1, R0 = 0.35mm, periods of corrugation n = 10. For (a) and (b) Lz = 0.3mm
and δ = 1.1667, and ω̂c = 0.656. For (c) and (d) Lz = 1.0mm, δ = 0.350, and
ω̂c = 2.187. The blue graph is analytical results and the black dot line is numerical
results from CST simulation.
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Ez

z (mm)

(a) q = 0.05, k̂ = 2.3,
fCST = 327.227GHz, fanlt = 327.580GHz

Ez

z (mm)

(b) q = 0.15, k̂ = 2.3,
fCST = 323.237GHz, fanlt = 326.5GHz

Figure 5.15: The TM01 mode of the normalized longitudinal electric fields Ez at the
center x = 0, y = 0, or r = 0 of the cylindrical corrugated waveguide with geometry
R0 = 0.36mm, periods of corrugation n = 10 with different q. For (a) and (b)
q = 0.05, (c) and (d) q = 0.15. The blue graph is analytical results and the black
dot line is numerical results from CST simulation.

From fig.5.15, the results follow our prediction, when q is small, we receive a
better agreement in analytical and numerical results. However, this prediction does
not apply to the value of δ. Instead of getting the good matching when δ = 0.350,
we can observe the unmatched graphs. The best results we get are when the δ is
equal to 0.610, which is the cylindrical corrugated waveguide with R0 = 0.36mm
and Lz = 0.59mm in fig.5.8.
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5.5. SUMMARY OF A CHAPTER 5

5.5 Summary of a chapter 5

In section 5.1, we demonstrate the set up for CST studio step by step. The geometry
of our structure is q = 0.1, R0 = 0.36mm, Lz = 0.59mm, and ω̂c ≈ 1.254. The CIP
of this structure is k̂CIP = 2.857, ω̂CIP = 1.513, fCIP = 384.464GHz, and βe = 0.53
(92KeV). We use eigenmode solver to find the results of Maxwell’s equations. The
boundary condition is a perfect electric conductor, PEC. Therefore this condition
allows the amplitude of an electric field always starts at z = 0, this makes it easy
to compare numerical results to analytical results. Then we can export the data of
the longitudinal electric fields TM01 (Ez) at any positions (z). We identify k̂ of the
mode from CST by using eq.5.3.

By exploiting CST studio, we compare analytical results and numerical results
in section 5.2, and can observe a good agreement between these two results fig.5.8.
In addition, we examine the off-center electric field of the waveguide q = 0.1, R0 =
0.35mm, and Lz = 0.56mm, periods of corrugation n = 10 and ω̂c ≈ 1.225. As a
result, we also found a good match between analytical results and numerical results
as well (fig.5.10).

However, the CIP for numerical results is not the same as the results from ana-
lytic. From phase and group velocities graph in section 5.3, we found the CIP from
the point where phase velocities, group velocities, and the velocity of particle (βe)
of results from CST are coincided. Hence, for the cylindrical corrugated waveguide
q = 0.1, the CIP of numerical results is available for the structure R0 = 0.361mm,
Lz = 0.512mm, and ω̂c ≈ 1.086. The CIP for this structure is k̂CIP = 2.738,
ω̂CIP = 1.286, fCIP = 376.6GHz, and βe = 0.47(68KeV) as shown in fig.5.12.

Regarding section 4.2 and 4.5, we expect to observe a better agreement of an-
alytical and numerical results when δ = R0/Lz and q are very small (approach 0).
From a fig.5.14,when δ is small (δ = 0.350), instead of the good matching plot from
these two results, we found the unmatched which does not follow our prediction. In
the other hand, our prediction can apply when q is small as shown in fig.5.15. The
graph between analytical and numerical results has a better correspondence when
q = 0.05, comparing to a graph which q = 0.15.
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Chapter 6

Future Works

In this section we will discuss the future direction of the theoretical work that can
advance the goal of making the cylindrical corrugated waveguide.

The Delta and an Approximation

From our approximation, we predict that the smaller the δ is (δ = R0

Lz
for the cylin-

drical corrugated waveguide and δ = L0

Lz
for the rectangular corrugated waveguide),

the better of an approximation it will be. We first observe the cylindrical corrugated
waveguide with δ = 0.6102 in fig.5.8, the analytical results give a good matching
graph with the results from CST. However, when the δ increases to δ = 1.1667 and
decreases to δ = 0.350 in fig.5.14, the analytical results are not close to the numerical
results. This lead to the future works to improve our approximation, we found that
by dividing the magnetic field in eq.4.7 by g(ηz) can improve the analytical results
to get a good matching with numerical results when δ is small (less than δ = 0.6102)

B̃ = B0c
−2(−iω)g(ηz)−1ϕ(ηz)J1(rg(ηz))eθ (6.1)

then the longitudinal electric field TM01 mode at the center of the waveguide will
be

(6.2)Ẽ = B0ϕ(ηz)J0(rg)ez

Furthermore, we also can improve analytical solutions for the rectangular corru-
gated waveguide with the division by (κ2

x+κ2
y) in the magnetic field eq.3.3. Therefore,

the longitudinal electric field TM11 mode at the center of the waveguide will be

Ẽ = B0 cos (κxx) cos (κyy)ϕ(ηz)ez. (6.3)

and we will find the reasons why the first model does not work like the prediction.

CIP of Numerical Results from CST

As shown in fig.5.11 and fig.5.12, the CIP of analytical results and numerical results
are not the same. We find the numerical CIP by running the simulation CST with the
variant of geometry parameters. In this thesis, we set up the periods of corrugations
equal to 10, this makes the scale of k̂ is 0.1, then we utilize the interpolate function
in Maple software and draw a phase and group velocity graph. We can improve
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these results by applying periods of corrugation to be more than 10. For example,
in fig.3.7 the work by[16] the periods of corrugation is 20, so the of k̂ will be finer to
0.05. Furthermore, we will find the right factors (the set up of the simulation) that
will improve the accuracy of numerical results.

Simulation with Particles

We will use our model, the cylindrical corrugated waveguide to examine the particles-
electric field interaction by Particle-in-Cell simulator or PIC in CST particle studio.
We have the structure with q = 0, R0 = 0.36mm, Lz = 0.59mm, and ω̂c ≈ 1.255,
we know the CIP from analytical results k̂ = 2.857, f = 384.464 GHz that would
interact with the particles with velocity 0.53c. Firstly, we will observe an input
continue DC beam imported to the structure, we expect to see the output signal if
there is an interaction occurred. Another way to test the particle-beam interaction,
injecting a bunch of Gaussian beam, this is more practical compare to the DC beam.
If an interaction occurred, we could detect the rising in amplitude of the signal.

Experimental Prototype

After we have examined the interaction between particles and an electric field, the
next step is producing the experimental prototype. By using the optic fiber extrusion
technique, we would fabricate the sub-millimeter cylindrical corrugated waveguide
regarding the geometry in eq.4.26. However, this is a challenge for us to working on
in the future. Because there have not been the works on this type of structure yet,
in common the optical fibers are manufactured in the cylinder shape to send the
signal via light. We expect that with varying the speed of extrusion, the cylindrical
corrugation shape would be constructed.
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Chapter 7

Conclusion

We show that for our symmetric corrugated waveguide, both the rectangular and
the cylindrical corrugated waveguide can accelerate particles and allow particle to
exchange the energy with the electromagnetic field to generate terahertz radiation.
With the fiber optic extrusion technique, we can manufacture the cylindrical corru-
gated structure in the scale of sub-millimeter and the cost is relatively lower than
making the rectangular corrugated waveguide by CNC.

By modifying the magnetic field with ϕ(ηz) which can be solved by Mathieu
equation, we can find the relation explicit approximate solutions of magnetic fields
and electric fields. We aim to find the geometry of the structure corresponds to the
defining point on the dispersion relation, the coincident inflection point (CIP) where
particles would interact with broad frequencies range electric field.

With the CST simulation, we compare our analytical results with numerical
results from CST for the cylindrical corrugated structure with q = 0.1 and ω̂c. As
the result, we can observe a good matching in Ez-z graph between analytical and
numerical results fig.5.8 which is slightly better than the rectangular corrugated
waveguide fig.3.4. In addition, we examine phase and group velocities and the
CIP where the graph of phase and group velocities coincide. For the cylindrical
corrugated waveguide, the CIP of analytical results is 384.46 GHz and 376.6 GHz
when ω̂c ≈ 1.086 for numerical results.

However, there are constraints that need to be considered. Firstly, a parameter
q need to be small to get the good approximation, we found that by keeping q = 0.1
(smooth corrugation) there will still be a good matching in graphs of analytical and
numerical electric fields as shown in fig.5.15. For q = 0.1, ω̂c must be equal to 1.254
so there will be the CIP for this structure, k̂ = 2.857, βe = 0.53 (92KeV).

Another constraint for the good approximation is R′(z), R′′(z) for the cylindrical
corrugated waveguide and L′

x(z), L
′′
x(z) for rectangular corrugated waveguide have

to be small values. The smaller R′ and R′′ or L′
x(z) and L′′

x(z), the better of the
approximation is. We represent this condition in δ = R0

Lz
and δ = L0

Lz
. Our math-

ematical model predicts that if δ is small, the graph of analytical and numerical
results will match. Nevertheless, the results do not follow the prediction as shown
in fig.5.14. To improve an approximation and find out the reason of this, we will
continue on this problem as future works.
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Appendix A

Create a Structure

1. Create a new template → Choose Microwaves and RF/Optical Antennas →
Select workflow Waveguide (Horn, Cone, etc.) → Click Next → Click Finish .

2. In Modeling→ Click a drop-down of Curves→ Select Analytic Curve to create
the corrugated line.

Figure A.1: Analytical definitions, we define X(t) = 0, Y (t) = (R−2
0 +

2(χ1
0)

−2π2L−2
z q cos(2π(t + Lz/2)/Lz))

− 1
2 , and Z(t) = t. The length of the struc-

ture spans from t = 0 to t = n · Lz, where n is periods of structure.
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3. In Modeling → Click a drop-down of Curves → Select 3D Polygon to create
a line at the beginning z = 0, the end z = n · Lz and line at the center of the
structure.

Figure A.2: Line at the beginning of the structure from a point (x1 = 0, y1 = 0,

z1 = 0) to a point (x2 = 0, y2 = (R−2
0 + 2(χ1

0)
−2π2L−2

z q cos(2π(0 + Lz/2)/Lz))
− 1

2 ,
z2 = 0).

Figure A.3: Line at the end of the structure from a point (x1 = 0, y1 = 0, z1 =

n ·Lz) to a point (x2 = 0, y2 = (R−2
0 +2(χ1

0)
−2π2L−2

z q cos(2π(n ·Lz +Lz/2)/Lz))
− 1

2 ,
z2 = n · Lz).

Figure A.4: Line at the center of the structure from a point (x1 = 0, y1 = 0, z1 = 0)
to a point (x2 = 0, y2 = 0, z2 = n · Lz).
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4. In Modeling → Select Picks → Click at the lines that created in step 2 and
step 3 → Click a drop-down of Extrude Curve → Select Cover Curve.

Figure A.5: In the Cover Planer Curve setup, choose Vacuum for being the Material
of the planer.

5. In Modeling → Click Rotate Face → Set up a rotated axis → set up a Rotate
Face.

Figure A.6: Set up a rotated axis numerically, from a point (x1 = 0, y1 = 0, z = 0)
to a point (x2 = 0, y2 = 0, z2 = n · Lz).

Figure A.7: Set up a Rotate Face, choose an Angle to be 360 (degree) and Material
to be Vacuum.
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After rotate a surface, the result is the vacuum cylindrical corrugated.

Figure A.8: The cylindrical corrugated waveguide which its material is vacuum.
With parameters; q = 0.1, R0 = 0.35mm, Lz = 0.56mm, n = 10 and ωc ≈ 1.225.
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