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Abstract

Milgrom and Shannon (1994) provide sufficient conditions in parameterized

optimization problems that guarantee solution sets are globally monotone in the

parameter. We show that these sufficient conditions may be relaxed when focusing

on discrete, binary comparisons between solution sets. Our approach relies upon a

novel method of embedding a new optimization problem “between” the two original

problems of interest. In smooth problems, our sufficient conditions may be verified

by elementary differential comparisons, making them well-suited for applied work;

we illustrate this with several applications.
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1 Introduction

The theory of monotone comparative statics (MCS) relies solely on two complementarity

conditions on the objective function, one between each decision and the parameter and

the other between the components of the decision (Topkis, 1978). In the ordinal theory

(Milgrom and Shannon, 1994, henceforth, MS), these are respectively the single-crossing

property (SCP) and quasi-supermodularity (QSM).1 Intuitively, it is instructive to de-

compose the overall effect of a parameter increase on the optimal choice into two distinct

channels. First, there is a direct effect reflecting how each component changes due to

the parameter change, holding the others constant. Second, there is an indirect effect

that captures the mutual interactions between the different choice components. In this

perspective, the logic of MS’s Monotonicity Theorem is thus: The SCP implies that the

direct effect is positive while QSM of the objective in the choice variables ensures that

the indirect effect reinforces the direct effect via own complementarities.

It is common in applied theory to compare the behavior of an economic agent in

distinct environments (e.g., boom vs. bust), regulatory regimes (e.g., a subsidy vs.

a tax) or draw comparisons between the behavior of two distinct decision makers with

related objectives (e.g., a firm vs. a social planner). Such comparisons are fundamentally

discrete, often binary, and involve comparing optimal behavior under environments that

reflect what one might loosely call a regime change. In such cases, a joint parametric

representation of the two problems may not even be possible.

While such problems could be handled as special cases of the existing theory by

considering a two-parameter space and requiring both complementarity conditions, we

show that these conditions may be relaxed. Our approach entails the construction of

a new auxiliary problem “between” the two original problems, with a QSM objective

function (in the choice variables). The in-betweeness property is defined by the new

objective function lying between the original two according to a SCP order (roughly, the

higher objective is increasing between any two actions whenever the lower one is). While

the SCP and QSM remain central to the theory, the novelty is that QSM is needed only

for the auxiliary objective function, not the original two. Constructing this auxiliary

problem is then a critical step in any successful application of this result.

In order to provide some insight on how this key in-between problem might be con-

structed from the original two, we specify a prototypical setting for applications.

Consider two problems of interest of the form max{F (a1, a2) + tf(a1, a2)} with t < 0

1Shannon (1995) studies variants of SCP and QSM that yield weaker or stronger MCS than MS.
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(e.g., a tax) for one and t > 0 (a subsidy) for the other. The question is to compare

the argmax (a∗1, a
∗
2) sets under these two distinct regimes. To this end, the in-between

problem is the no-policy (or t = 0) case. Our main (three-way-comparison) result implies

that if F is QSM and f is increasing in (a1, a2), the optimal choice set is strong-set

higher under a subsidy (than under no policy) than under a tax.2 The novelty is that

no complementarity assumption on f is needed. An ancillary benefit is that, in contrast

to existing theory, one need not resort to cardinal complementarity conditions on F

to ensure their preservation under sums for additive problems, ubiquitous in economic

theory. Thus, our results enhance the usefulness of MS’s ordinal approach to MCS in a

broad class of economic applications (also see Quah and Strulovici, 2012).

In a nutshell, the new approach pertains to problems of discrete comparative statics

involving some form of regime change. In applications, a key step consists of identify-

ing a suitable in-between problem satisfying QSM, for which the above procedure is a

prototypical example. Both of these constructions underscore the necessary role of some

form of QSM, though not for the original objective functions. With the relaxation of

QSM being the main novelty, we closely follow MS in considering necessary and sufficient

conditions for MCS, but allowing for simultaneous changes (rather than separate ones

in MS) in the choice set and the objective function. Along the way, we develop two

binary relations on functions based on QSM and the SCP properties and provide useful

comparisons between the two, which are of independent interest.

Last but not least, we illustrate the scope of our results, their value added over

existing theory, and relative ease of application via two economic applications.

2 Preliminaries

Let X be a non-empty lattice with partial order ≤. Let P(X) = 2X \{∅} denote the set

of all non-empty subsets of X and L (X) the set of all non-empty sublattices of X. For

A,B ∈ P(X), A is lower than B in the strong set order, A ≤s B, if a ∈ A and b ∈ B

implies a∧b ∈ A and a∨b ∈ B. The strong set order, ≤s, is transitive and antisymmetric

on P(X) and also reflexive on L (X) (Topkis, 1978). We say A is completely lower than

B, A ≤c B, if a ∈ A and b ∈ B implies a ≤ b. Clearly, A ≤c B =⇒ A ≤s B; moreover,

if A ≤c B ≤s C or A ≤s B ≤c C, then A ≤c C.

Let FX denote the set of all real-valued functions on X: FX = {f |f : X → R}.
f ∈ FX is supermodular (SPM) if for all x′, x′′ ∈ X, f(x′)+f(x′′) ≤ f(x′∧x′′)+f(x′∨x′′);

2More generally, tf(a1, a2) may be replaced by f(a1, a2, t) as long as f(a1, a2, 0) = 0.
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f is QSM if for all x′, x′′ ∈ X, f(x′ ∧ x′′) ≤ (<)f(x′) =⇒ f(x′′) ≤ (<)f(x′ ∨ x′′). If

Y is a poset, f : X × Y → R has the SCP in (x; y) if for all x′ < x′′ and y′ < y′′,

f(x′, y′) ≤ (<)f(x′′, y′) =⇒ f(x′, y′′) ≤ (<)f(x′′, y′′). For binary comparisons between

solution sets of optimization problems, the following relation is needed.

Definition 1. Let f, g ∈ FX . g is single-crossing dominated by f (g ≤sc f) if, for all

x′ < x′′, g(x′) ≤ (<)g(x′′) =⇒ f(x′) ≤ (<)f(x′′).

We say that g is strictly single-crossing dominated by f (g <sc f) if for all x′ < x′′,

g(x′) ≤ g(x′′) =⇒ f(x′) < f(x′′). Intuitively, whenever g is (weakly) increasing, f is

strictly so. If g ≤sc f and f ≤sc g we write f ∼sc g. If g is a monotonic transformation

of f then f ∼sc g. Though not antisymmetric, the relation ≤sc is transitive and reflexive

on FX . Moreover, single-crossing dominance is linked to the SCP in that g ≤sc f if and

only if h = tf + (1− t)g has the SCP in (x; t) on X × {0, 1}.
For use in applications, we introduce the cardinal analogs. We say g is (strictly) ID-

dominated by f , written g ≤id f (g <id f), if for all x
′ < x′′, g(x′′)− g(x′) ≤ (<)f(x′′)−

f(x′). If X ⊂ Rn and f and g are differentiable then g ≤id f if and only if ∇g ≤ ∇f ;3

moreover, ∇g ≪ ∇f implies g <id f . Finally, see that g ≤id (<id)f =⇒ g ≤sc (<sc)f.

The next relation plays a key role in our analysis.

Definition 2. Let f, g : X → R. g is QSM-dominated by f (g ≤qsm f) if, for all

x′, x′′ ∈ X, g(x′ ∧ x′′) ≤ (<)g(x′) =⇒ f(x′′) ≤ (<)f(x′ ∨ x′′).

If g ≤qsm f and f ≤qsm g, we write f ∼qsm g. We say g is strictly QSM dominated

by f , written g <qsm f , if, for all x′ ≰ x′′, g(x′ ∧ x′′) ≤ g(x′) =⇒ f(x′′) < f(x′ ∨ x′′).

To shed some light on the two relations on functions at hand, we compare them on

Euclidean spaces. If X = R, QSM dominance is equivalent to single-crossing dominance:

g ≤qsm f ⇐⇒ g ≤sc f . If X = R2 then g ≤qsm f if and only if (i) g ≤sc f and (ii) for

each k and x′
−k ≤ x′′

−k, g(·, x′
−k) ≤sc f(·, x′′

−k). Intuitively, (i) says that whenever it pays

to take a higher action under g, then it pays to take a higher action under f . (ii) says

that if it pays to take a higher action in dimension k when the other action is low and

the objective function is g, then it pays to take the higher action in dimension k when

the other action is high and the objective function is f .

If X = Rn, n > 2, QSM dominance implies (i) and (ii), but involves other restrictions.

In general, QSM dominance is stronger than single-crossing dominance, but weaker than

the combination of single-crossing dominance and QSM; in particular, if f or g is QSM

3∇f(x) is the vector of first partials of f . We write ∇g ≤ ∇f if ∇g(x) ≤ ∇f(x) for all x ∈ X.
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and g ≤sc f then g ≤qsm f . Hence, if T is a poset and f : X × T → R is QSM on X and

has the SCP in (x; t), then for all t′ ≤ t′′, f(·, t′) ≤qsm f(·, t′′).
The next result shows that ≤qsm is transitive on FX and formalizes some useful

relationships between QSM dominance and QSM/SCP. Proofs are in the Appendix.

Lemma 1. Let f, g, h ∈ FX . (i) If g ≤qsm f then g ≤sc f . (ii) If h ≤qsm g and g ≤qsm f

then h ≤qsm f . (iii) If f or g is QSM and g ≤sc f then g ≤qsm f . (iv) f ∼qsm g if and

only if f ∼sc g and f and g are QSM. In particular, f ∼qsm f if and only if f is QSM.

For S ∈ P(X) and f ∈ FX , we let D = (S, f) denote the problem, maxx∈S f(a),

and we let M(D) = M(S, f) denote the set of solutions:

M(S, f) = argmax
x∈S

f(a).

We restrict attention to the case M(S, f) ̸= ∅. Let D ⊆ P(X) × FX denote the set of

all problems under consideration: D = {(S, f) ∈ P(X)× FX |M(S, f) ̸= ∅}.
We introduce the following relation on P(X)× FX :

Definition 3. Let D0, D1 ∈ P(X) × F (X). We write D0 ≤D D1, if S0 ≤s S1 and

f 0 ≤sc f
1. We write D0 <D D1 if S0 ≤s S

1 and f 0 <sc f
1.

Since ≤s is transitive on P(X) and ≤sc is transitive on FX , ≤D is transitive on P(X)×
F (X). Furthermore, since ≤sc is reflexive on FX and ≤s is reflexive on L (X), it follows

that ≤D is reflexive on L (X)× F (X).

3 Results

Our first result complements MS’s Monotonicity Theorem.

Theorem 1. Let f 0, f 1 ∈ FX and restrict attention to problems in D .

(i) M(S0, f 0) ≤s M(S1, f 1) ∀S0 ≤s S
1 if and only if f 0 ≤qsm f 1.

(ii) If f 0 <qsm f 1 then M(S0, f 0) ≤c M(S1, f 1) ∀S0 ≤s S
1.

To provide a precise comparison of our Theorem 1 with MS’s Monotonicity Theorem,

let us state their main conclusions in our context:

Theorem (MS). Let f, f 0, f 1 ∈ FX and restrict attention to problems in D .
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(a) If f 0 and f 1 are QSM and f 0 ≤sc f
1 then M(S0, f 0) ≤s M(S1, f 1) ∀S0 ≤s S

1.

(b) M(S0, f) ≤s M(S1, f) ∀S0 ≤s S
1 if and only if f is QSM.

(c) If M(S, f 0) ≤s M(S, f 1) ∀S then f 0 ≤sc f
1.

Part (c) is orthogonal to our results, but, using Lemma 1, we see that parts (a) and

(b) are implied by our Theorem 1: (b) follows by choosing f 0 = f 1 = f and noting that

f ≤qsm f if and only if f is QSM; (a) follows since QSM dominance is implied by single-

crossing dominance and QSM of each objective function. Importantly, QSM dominance

does not require QSM of either objective function.

The next result follows by combining parts (ii) and (iii) of Lemma 1:

Lemma 2. Let f 0, f c, f 1 ∈ FX . If f c is QSM and f 0 ≤sc f c ≤sc f 1 then f 0 ≤qsm

f c ≤qsm f 1. If, in addition, f 0 <sc f
c or f c <sc f

1 then f 0 <qsm f 1.

Thus, a sufficient condition for f 1 to QSM dominate f 0 is the existence of a QSM

function that single-crossing dominates f 0 and is single-crossing dominated by f 1.

Combining Theorem 1 and Lemma 2 yields our main result:

Theorem 2. Let D0, D1 ∈ D . If there exists Dc = (Sc, f c) in D such that f c is QSM

and D0 ≤D Dc ≤D D1 then M(D0) ≤s M(Dc) ≤s M(D1). If, in addition, D0 <D Dc or

Dc <D D1 then M(D0) ≤c M(D1).

Theorem 2 is a powerful and practical result for economic applications, as it provides

sufficient conditions for the comparison of two argmax sets in terms of well-known and

tractable concepts. If X ⊂ Rn and objective functions are differentiable, there are simple

sufficient differential conditions. Recall that ∇g ≤ ∇f implies g ≤sc f and that QSM is

implied by SPM. Hence, if one can find a SPM function, f c, such that∇f 0 ≤ ∇f c ≤ ∇f 1,

then Theorem 2 applies (provided the choice sets are suitably ordered).

The following examples illustrate the practical value of Theorem 2. In addition to

deriving new results of interest for a basic economic model, the first example cements

a methodological bridge between MCS and common binary comparisons in economics

(involving two distinct agents). While not necessary for our results, for ease of exposition,

all objective functions are tacitly assumed to be sufficiently differentiable below.

Example 1A. In this example, we compare the output choices of a multiproduct mo-

nopolist with those of a surplus maximizing social planner. Let q = (q1, · · · , qM) denote

a vector of quantities, where qm ∈ [0, q] ⊂ R. Let P : [0, q]M → RM denote the inverse
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demand system, which is derived from the choices of a representative consumer with

quasilinear utility function, Ũ(q, q0) = U(q)+ q0. P then satisfies the gradient condition,

∇U(q) = P (q) (see, e.g. Vives, 1999, Ch. 3). Let C : [0, q]M → R denote the firm’s

cost function, and π(q) = q · P (q) − C(q) its profit (x · y denotes the dot product of

vectors x and y). The firm chooses q ∈ [0, q]M to maximize profit, while the planner

chooses q ∈ [0, q]M to maximize social welfare, W (q) = U(q) − C(q). We ask: Under

what conditions does the firm produce less of each good than the planner?

For each m and all q, assume ∂Pm(q)/∂qm ≤ 0 and
∑M

j=1 qj
∂Pj(q)

∂qm
≤ 0; equivalently,

∂π(q)

∂qm
= Pm(q) +

M∑
j=1

qj
∂Pj(q)

∂qm
− ∂C(q)

∂qm
≤ Pm(q)−

∂C(q)

∂qm
=

∂W (q)

∂qm
. (1)

It follows that, ∇π ≤ ∇W . Next, consider the following condition:

W is SPM:
∂2W (q)

∂qi∂qj
=

∂Pi(q)

∂qj
− ∂2C(q)

∂qi∂qj
≥ 0 for all q and i ̸= j. (2)

Under conditions (1)-(2), Theorem 2 implies (with W serving as the “middle” objective

function in the theorem) that the set of optimal monopoly outputs is below that of the

planner. To our knowledge, this is the first general result on this basic question; as it is

central in industrial organization, we discuss the economic scope of our conditions.

To this end, (1) is the well-known diagonal dominance property of the Jacobian matrix

of the inverse demand function, which is commonly assumed in industrial organization.

Intuitively, this condition means that own market effects are “large” compared to cross

market effects; i.e., the impact of raising output m on the price of m is large in magnitude

compared to the impact on all other prices (see e.g., Vives, 1999, for further details).

Next, for (2) to hold, it is sufficient to have (i) complementary goods in demand, i.e.,
∂Pi

∂qj
≥ 0 for i ̸= j, together with (ii) economies of scope in production, i.e., ∂2C

∂qi∂qj
≤ 0 for

i ̸= j, although neither of these conditions is necessary, since (2) restricts only the sum.

Example 1B. We continue with the multiproduct monopoly model studied in Example

1A, but we ask another basic and fundamental question: Under what conditions does a

reduction in marginal costs yield an increase in all optimal monopoly outputs?

Let C0 and C1 be two cost functions, and let πk(q) denote the firm’s profit when its

cost is Ck. Suppose total revenue is SPM and marginal costs are uniformly ranked:

q · P (q) is SPM:
∂Pi

∂qj
+

∂Pj

∂qi
+
∑
m

qm
∂2Pm

∂qi∂qj
≥ 0, for all i ̸= j, (3)
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There exists c ∈ RM s.t. for each m,
∂C1(q)

∂qm
≤ cm ≤ ∂C0(q)

∂qm
for all q. (4)

Let πc(q) = q · (P (q)− c) denote the profit to a monopolist facing constant marginal

cost for each good, where c is as given in (4). See that (3) implies πc is SPM and (4)

implies ∇π0 ≤ ∇πc ≤ ∇π1. By Theorem 2, the set of optimal outputs is higher when

the firm faces cost function C1 than when it faces C0, while the set of optimal outputs

for a firm with constant marginal costs is between the two.

A related comparison concerns a firm with economies versus diseconomies of scope.

Instead of (4), let C1 denote a cost function for a production process with economies of

scope and C0 with diseconomies of scope; formally, for each i ̸= j, ∂2C1

∂qi∂qj
≤ 0 ≤ ∂2C0

∂qi∂qj
.

Abusing notation, let ∂Ck(qm,0)
∂qm

denote marginal cost of product m when qm units of good

m and 0 units of each other good are produced. Suppose for each m and qm,

∂C1(qm, 0)

∂qm
≤ ∂C0(qm, 0)

∂qm
.

It follows that ∇π0 ≤ ∇π1. Moreover, condition (3), together with economies of scope,

imply π1 is SPM. Therefore, by Theorem 2, the set of optimal outputs for the monopolist

is higher under economies of scope than under diseconomies of scope.

Example 2. Consider a model of environmental regulation in the spirit of Fischer and

Newell (2008): A monopolist operating in a polluting industry chooses both its output,

q ∈ [0, q] ⊂ R, and R&D investment, a ∈ [0, a] ⊂ R. The firm’s product market profit is

π(q, a) and its emissions are e(q, a). Assume π is QSM in (q, a), which is natural for both

product and process innovations (i.e., marginal revenue or marginal cost is increasing in

a). Further, assume that e is increasing in q. We compare the firm’s behavior under

different tax and subsidy policies (fixed exogenously by a government agency).

Setting 1: First, suppose emissions depend only on output. Let f 0 denote the firm’s

objective function under an emissions tax: f 0(q, a) = π(q, a)− τ(e(q)), where τ(e) ≥ 0 is

the tax when emissions are e; assume τ is increasing. Let f 1 denote the firm’s objective

function under an R&D subsidy: f 1(q, a) = π(q, a)+σ(a), where σ(a) ≥ 0 is the subsidy

when R&D investment is a; assume σ is increasing. Finally, let f c represent the objective

function under the laissez-faire policy: f c(q, a) = π(q, a).

While f c is QSM, this property is not preserved by summation.4 But under the

assumptions made herein, the key condition f 0 ≤sc f
c ≤sc f

1 clearly holds. Hence, The-

4Indeed, even with the relatively simple summation we have here (a QSM function plus/minus an
increasing function of one of the variables), neither f0 nor f1 need be QSM.
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orem 2 implies that the set of optimal outputs/investments is higher under the subsidy

than the tax (with the set of optimal choices under laissez-faire between the two).

Setting 2: Now suppose emissions depend both on output and R&D investment.

Here, we will assume π is SPM in (q, a). Let f 0 represent the firm’s problem under a

tax, which may now depend on both q and a: f 0(q, a) = π(q, a)− τ(q, a).5 Let f 1 be the

objective function under the subsidy regime considered in the first setting.

Suppose, for each a, τ(·, a) is increasing and, for each q, σ(·) + τ(q, ·) is increasing.

Then, ∂f0

∂q
− ∂f1

∂q
= −∂τ

∂q
≤ 0, and ∂f0

∂a
− ∂f1

∂a
= −

(
σ′ + ∂τ

∂a

)
≤ 0. Hence, ∇f 0 ≤ ∇f 1.

Moreover, since π and σ are SPM, f 1 is SPM. By Theorem 2, the set of optimal out-

puts/investments is greater in the subsidy regime than the tax regime. Note that SPM

of π (rather than QSM as in setting 1) is used in this example insofar as it ensures f 1 is

SPM, which provides the intermediate problem needed to apply Theorem 2. The same

conclusion would be reached if we assumed directly that f 1 (or f 0) is QSM.

Last, we compare two different tax policies – a fixed rate emissions tax, τ 0(q, a) =

t0e(q, a), for t0 ∈ R+, and an output tax with R&D tax credits, τ 1(q, a) = t1(q − c(a)),

where t1 ∈ R+ and c(·) is a non-negative increasing function, representing the tax credits.

Let fk(q, a) = π(q, a) − τ k(q, a) denote the payoff to the firm under tax policy k. If

t1 ≤ t0 ∂e
∂q

and −t1c′(·) ≤ t0 ∂e
∂a

then ∇f 0 ≤ ∇f 1. And while f 0 is not necessarily QSM,

since π is SPM and τ 1 is additively separable, f 1 is SPM. Theorem 2 implies that the

set of optimal output/investment choices is greater under tax τ 1 than τ 0.

For brevity, we limit our exposition to two applications to give an instructive flavor of

the novelty and versatility of our results. As these examples suggest, binary comparative

statics questions are prevalent in many contexts in economics. Our approach offers a new

way to leverage the powerful MCS machinery to address them at a level of generality

clearly exceeding that in the extant treatments in the various literature strands.

We next exposit in some detail the links between our approach and MS’s results.

Parametric Optimization

To conclude, we discuss how Theorem 2 applies in parameterized optimization problems

and further elucidate the relationship between our result and MS’s Theorem. Let T be

5We do not impose any particular structure on τ , which allows for a host of different tax poli-
cies, including, a fixed-rate emissions tax: τ(q, a) = te(q, a); a variable-rate emissions tax: τ(q, a) =
g(e(q, a))e(q, a); a production tax: τ(q, a) = g(q); or a production tax with R&D tax credits:
τ(q, a) = g(q − c(a)), where c(a) represents the earned tax credits.
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a poset, f : X × T → R, S : T → P(X) and M(t) = argmaxx∈S(t) f(x, t). Assume that

S(·) is increasing in the strong set order and that M(t) ̸= ∅ for each t.

Let t′ < t′′ and suppose we’re interested in comparingM(t′) andM(t′′). Let I(t′, t′′) =
{t ∈ T |t′ ≤ t ≤ t′′}. If f has the SCP in (x; t) on X×I(t′, t′′) and f(·, t) is QSM for each

t ∈ I(t′, t′′), then by MS, M(·) is monotone increasing on I(t′, t′′), and as a consequence,

M(t′) ≤s M(t′′). However, monotonicity of M(·) on I(t′, t′′) is unnecessary if the aim is

only to compare the optimal choices at the two relevant parameters t′ and t′′, and our

results facilitate this comparison under weaker conditions than those of MS.

To spell out the argument, maintain that f has the SCP in (x; t), but suppose there

is just one parameter value, tc ∈ I(t′, t′′), such that f(·, tc) is QSM. Then, for t0, t1 ∈
I(t′, t′′) with t0 ≤ tc ≤ t1, the SCP implies f(·, t0) ≤sc f(·, tc) ≤sc f(·, t1). Since f(·, tc)
is QSM, Theorem 2 implies M(t0) ≤s M(tc) ≤s M(t1); in particular, M(t′) ≤s M(t′′).

More generally, if there is any QSM function, f c : X → R, such that the critical condition

f(·, t′) ≤sc f
c ≤sc f(·, t′′) holds, then Theorem 2 implies that M(t′) ≤s M(t′′).

A Proofs

All the proofs of the results of this paper are provided in this Appendix.

Proof of Lemma 1

Part (i): Suppose g ≤qsm f and let x′ < x′′. Since g ≤qsm f , g(x′ ∧ x′′) ≤ (<)g(x′′) =⇒
f(x′) ≤ (<)f(x′ ∨ x′′), which means g(x′) ≤ (<)g(x′′) =⇒ f(x′) ≤ (<)f(x′′).

Part (ii): Suppose that h ≤qsm g and g ≤qsm f . Let x′, x′′ ∈ X. See that, h(x′∧x′′) ≤
(<)h(x′) =⇒ g(x′ ∧ x′′) ≤ (<)g(x′) =⇒ f(x′′) ≤ (<)f(x′ ∨ x′′). The second inequality

holds since h ≤sc g by part (i); the third holds since g ≤qsm f .

Part (iii). Suppose that g ≤sc f and let x′, x′′ ∈ X. First, suppose g is QSM. Then,

g(x′ ∧ x′′) ≤ (<)g(x′) =⇒ g(x′′) ≤ (<)g(x′ ∨ x′′) =⇒ f(x′′) ≤ (<)f(x′ ∨ x′′). The

second inequality holds since g is QSM; the third since g ≤sc f . Next, suppose f is QSM.

Then, g(x′ ∧ x′′) ≤ (<)g(x′) =⇒ f(x′ ∧ x′′) ≤ (<)f(x′) =⇒ f(x′′) ≤ (<)f(x′ ∨ x′′).

The second inequality holds since g ≤sc f and the third holds since f is QSM.

Part (iv): First suppose that f ∼qsm g. By Part (i), f ∼sc g. We now show f is QSM;

the proof that g is QSM is identical. Let x′, x′′ ∈ X. See that f(x′∧x′′) ≤ (<)f(x′) =⇒
g(x′′) ≤ (<)g(x′ ∨ x′′) =⇒ f(x′′) ≤ (<)f(x′ ∨ x′′). The second inequality holds since

f ≤qsm g; the third since g ≤sc f . This establishes that f is QSM. Next, suppose that

f ∼sc g and f and that g are QSM. By part (iii), f ∼qsm g.
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Proof of Theorem 1

Part (i): Suppose f 0 ≤qsm f 1 and let S0 ≤s S1 be such that (S0, f 0), (S1, f 1) ∈ D .

Let x0 ∈ M(S0, f 0) and x1 ∈ M(S1, f 1). Then S0 ≤s S1 =⇒ x0 ∧ x1 ∈ S0 and

x0 ∨ x1 ∈ S1. By definition of x0, f 0(x0 ∧ x1) ≤ f 0(x0). Since f 0 ≤qsm f 1, this implies,

f 1(x1) ≤ f 1(x0 ∨ x1). But since x0 ∨ x1 ∈ S1, by definition of x1, x0 ∨ x1 ∈ M(S1, f 1).

Similarly, x0 ∨ x1 ∈ S1 =⇒ f 1(x0 ∨ x1) ≤ f 1(x1) =⇒ f 0(x0) ≤ f 0(x0 ∧ x1); so, by

definition of x0, x0 ∧ x1 ∈ M(S0, f 0). Thus, M(S0, f 0) ≤s M(S1, f 1).

Now suppose that M(S0, f 0) ≤s M(S1, f 1) for all S0 ≤s S
1 with (S0, f 0), (S1, f 1) ∈

D . Choose any x′, x′′ ∈ X. Let S0 = {x′, x′ ∧ x′′} and S1 = {x′′, x′ ∨ x′′}. Clearly,

(S0, f 0), (S1, f 1) ∈ D and S0 ≤s S1, hence M(S0, f 0) ≤s M(S1, f 1). If f 0(x′ ∧ x′′) ≤
f 0(x′), then, since M(S0, f 0) ≤s M(S1, f 1), we must have x′ ∨ x′′ ∈ M(S1, f 1) and

therefore, f 1(x′′) ≤ f 1(x′∨x′′). Moreover, if f 1(x′∨x′′) ≤ f 1(x′′), then sinceM(S0, f 0) ≤s

M(S1, f 1), we must have x′ ∧ x′′ ∈ M0(S0, f 0), which means f 0(x′) ≤ f 0(x′ ∧ x′′). This

shows that f 0 ≤qsm f 1 and thus completes the proof of part (i).

We now show part (ii). Let x0 ∈ M(S0, f 0) and x1 ∈ M(S1, f 1). Towards eventual

contradiction, suppose that x0 ≰ x1. Then, S0 ≤s S
1 implies x0 ∧ x1 ∈ S0 and x0 ∨ x1 ∈

S1. Hence, by definition of x0, f 0(x0 ∧ x1) ≤ f 0(x0). Since f 0 <qsm f 1, this implies that

f 1(x1) < f 1(x0 ∨ x1), which contradicts the definition of x1.

Proof of Lemma 2

Let f 0 ≤sc f
c ≤sc f

1 where f c is QSM. It is immediate from Lemma 1(iii) that f 0 ≤qsm f c

and f c ≤qsm f 1; by Lemma 1(ii), f 0 ≤qsm f 1. Next, suppose f 0 <sc f
c or f c <sc f

1; in

particular, suppose f 0 <sc f
c; the proof for the case f c <sc f

1 is similar. Let x′ ≰ x′′ and

see that f 0(x′ ∧ x′′) ≤ f 0(x′) =⇒ f c(x′ ∧ x′′) < f c(x′) =⇒ f c(x′′) < f c(x′ ∨ x′′) =⇒
f 1(x′′) < f 1(x′ ∨ x′′). The second inequality holds since f 0 <sc f

c; the third since f c is

QSM; and the last inequality since f c ≤sc f
1.

We are now ready for the proof of the main result of this note.

Proof of Theorem 2

By definition, D0 ≤D Dc ≤D D1 means S0 ≤s Sc ≤s S1 and f 0 ≤sc f c ≤sc f 1. Since

f c is QSM, Lemma 2 implies that f 0 ≤qsm f c ≤qsm f 1. By Theorem 1(i), M(D0) ≤s

M(Dc) ≤s M(D1). If, in addition, D0 <D Dc or Dc <D D1 then this means that

f 0 <sc f
c or f c <sc f

1; by Lemma 2, f 0 <qsm f 1, and finally by Theorem 1(ii), M(D0) ≤c

M(D1). This concludes the proof of Theorem 2.
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