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Abstract 

The global decline of natural ecosystems is a consequence of a number of phenomena, 

including climate change, habitat loss and fragmentation, and the introduction of invasive 

alien species. As a result, the ecosystem services provided, including carbon sequestration, 

nutrient cycling through the trophic pyramid, and pollination and seed dispersal, are at risk. 

Mitigation strategies to halt and reverse these trends can be devised but must be informed 

by spatially and temporally accurate information on the location and causes of ecosystem 

change. This type of scalable ecological modelling directly supports global biodiversity 

frameworks, such as the Kunming-Montreal Global Biodiversity Framework (GBF), which call 

for spatially explicit monitoring of ecosystem condition and change. 

 

While field surveys can provide accurate information to inform mitigation strategies for target 

ecosystems, they are often costly in terms of time and resources. Consequently, the 

frequency and spatial and temporal extent at which field surveys can be conducted is limited. 

In contrast, Earth observation (EO) satellites provide freely available, repeated, wall-to-wall 

information of the Earth’s surface. The combination of EO data with environmental data has 

been successfully employed to describe land classes, and quantify changes within them, such 

as levels of deforestation. Although the description of land classes enables some inference of 

expected ecosystem structure, ecosystems do not always transition categorically, although 

abrupt land use change can result in clear shifts. More often, ecosystems vary gradually across 

landscapes, much like the reflectance values recorded by EO satellites. It is hypothesised that 

the composition of the studied communities will vary in accordance with the structure of the 

habitat, and that elements of this structure will be described by EO. 

 

The objective of this thesis was to investigate the potential of combining EO data with field 

survey data in multi-species distribution and occupancy models to predict community 

composition across landscapes. This approach enables the investigation of the influence of 

environmental factors on biodiversity and the inference of ecosystem condition. The study 

used four distinct groups of field data: plant communities in the Succulent Karoo of South 

Africa, insect communities in the vicinity of the Gola Rainforest in Sierra Leone, and bird 
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communities identified in the Peruvian and north Brazilian Amazon. These data sets 

comprised between 120 and 235 species, which were included in analysis.  

 

The study found that for all data sets, models fitted with EO data yielded predictions of 

community composition that were as or more accurate than those made by models fitted 

with environmental data. In predicting the validation data, the community mean area under 

the curve (AUC) values ranged between 0.58 and 0.66. The models generated AUC’s 

exceeding 0.7 for between 21% and 49% of the individual species modelled. These values 

represent a moderate predictive performance overall, with the accuracy of models influenced 

by the strength and extent of ecological gradients, species detectability, and survey design. 

 

The findings indicate that there are consistent associations between EO variables and a large 

number of species from diverse taxonomic groups and geographical locations. It can be 

reasonably assumed that a significantly higher proportion of taxa could be predicted using 

similar methodologies provided that sufficient field surveys are conducted to calibrate similar 

models. This highlights the importance of obtaining high-quality ecological data through field 

surveys in order to calibrate our interpretation of ecological changes observed through 

remote sensing. The ability to apply EO data retrospectively and prospectively also offers a 

valuable opportunity for long-term biodiversity monitoring across changing landscapes. 
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1. General Introduction 

1.1 Biodiversity declines and the need for scalable monitoring 

In the face of an alarming decline in global taxonomic and functional biodiversity, 

environmental issues have become a pressing concern of the 21st century (Jenkins and Joppa, 

2009; Laurance et al., 2012; Pimm et al., 2014). As a well-studied group, the extinction risks 

and rates faced by many vertebrate species are well documented. Over the past two 

centuries, the extinction rate of bird species has been estimated to be up to 100 times higher 

than background levels (Pimm et al., 2006). While tens of mammal species have gone extinct 

in recent decades, nearly 200 (4%) of the world’s mammal species have lost more than 50% 

of their range since the 19th century (Ceballos and Ehrlich, 2002). The decline of mammal 

populations may be a more informative indicator of environmental condition than species 

extinctions alone.  Insects outnumber vertebrates by orders of magnitude, and while only 

tens of insect species have been officially recorded as becoming extinct in modern times, the 

actual number is likely to be in the thousands (Dunn, 2005). Over the past century, plant 

extinctions have occurred at nearly 2.5 species per year, more than twice the rate observed 

before 1900 (Humphreys et al., 2019). Certain ecosystems play a disproportionate role in 

sustaining global biodiversity. Tropical forests and the Greater Cape Floristic Region of South 

Africa, for example, support over half of the world’s biodiversity, yet cover less than 10% of 

the Earth’s surface, making them key conservation priorities (Bradshaw et al., 2009; Gibson 

et al., 2011; Slingsby et al., 2017). These losses are largely driven by climate change, invasive 

species, and habitat loss, all of which are exacerbated by human activities. 

 

Conservation actions play a crucial role  in reducing biodiversity loss (Langhammer et al., 

2024). Without intervention, bird and mammal extinctions in recent decades could have been 

three times higher (Bolam et al., 2021). To effectively mitigate anthropogenic impacts on 

biodiversity, conservation strategies must be guided by current evidence, adaptable to local 

conditions, and be informed by the successes and failures of past actions (Pettorelli et al., 

2014b). Effective biodiversity monitoring, in terms of measuring species richness and 

composition, is essential for assessing ecosystem health and guiding conservation strategies 

(GEO BON, 2018; Pereira et al., 2013). Environmental condition can be described structurally 
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in terms of type (e.g. forest, agriculture), quantity (e.g. percentage of each) and distribution 

of elements within it (Pettorelli and Schulte to Bühne, 2022). Alternatively, environmental 

condition can be inferred from the richness and diversity of faunal indicator taxa. For 

example, bird community richness is used to evaluate the effectiveness of different 

reforestation techniques (Barros et al., 2022); while insect diversity serves as a bioindicator 

of terrestrial, airborne, and aquatic pollution levels (Parikh, Rawtani and Khatri, 2021). 

 

Traditional field surveys, while essential for biodiversity monitoring, are constrained by 

financial limitations, accessibility issues and scalability challenges (Rocchini et al., 2016; 

Skidmore et al., 2015). Satellite remote sensing has emerged as a pivotal tool, offering a cost-

effective way of monitoring land cover and habitat change over large geographic areas. The 

Landsat programme started in 1972 and provides medium-resolution multi-spectral imagery 

suitable for long-term vegetation monitoring (Wulder et al., 2019). The Sentinel-2 satellites, 

part of the European Space Agency’s Copernicus Programme, deliver higher-resolution optical 

data with 10-60m pixel sizes, with a 5-day revisit time between them, compared to an 8-day 

revisit from combined Landsat satellites (Drusch et al., 2012; Wulder et al., 2019). MODIS 

(Moderate Resolution Imaging Spectroradiometer) has offered near-daily global coverage 

since 1999 and is particularly useful for tracking vegetation changes at a coarser 500-1000m 

resolution (Justice et al., 2002). The Sentinel-1 mission is a sister programme to Sentinel-2 

and provides radar data which is unaffected by clouds and independent of daylight, enabling 

surface structure and moisture analysis (Torres et al., 2012). NASA’s GEDI (Global Ecosystem 

Dynamics Investigation) is a spaceborne LiDAR instrument that captured vertical forest 

structure in pulses with 30m footprints between 2019-2022 (Dubayah et al., 2020). While 

most datasets from these missions are freely available, PlanetScope is a commercial satellite 

constellation offering daily imagery at ~4m resolution, which has provided data to academic 

researchers through research partnerships.  

 

Variations in plant community structure and underlying substrates affect spectral reflectance 

that can be detected by satellite sensors (Frye et al., 2021; McDowell et al., 2015). Vegetation 

structure influences faunal communities and the functional biodiversity of an area (Stein et 

al., 2014),  making changes in reflectance observed by satellites useful indicators of ecosystem 

dynamics.  Satellite imagery can categorise broad landscape types, and infer finer variations 
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associated with species richness, distribution, abundance, and community composition 

(Skidmore et al., 2021). While Earth observation is valuable for capturing ecosystem dynamics 

(Regos et al., 2022; Wulder et al., 2016), it cannot  directly measure biodiversity in its entirety 

(Bush et al., 2017). Thus, there is a trade-off between the detail of what can be measured in 

situ and what is observable from satellite imagery. Despite this limitation, Earth observation 

data have been successfully used in classifying land cover and tracking areas and times of 

deforestation (Hansen et al., 2013) or land class (Brown et al., 2022). Earth observation has 

also been used to map dominant invasive plants in grasslands (Xing et al., 2021), and assess 

the distribution and richness of large, observable species such as oak (Quercus spp.) trees 

(Pinto-Ledezma and Cavender-Bares, 2021). To examine how biodiversity monitoring 

challenges vary across ecosystems and taxa, this study considers variation in species 

detectability, the effectiveness of remote sensing techniques and ecological responses to 

environmental variables. It applies these methods in diverse environments, including tropical 

forests and semi-arid regions, and focuses on a range of taxa such as birds, insects and plants. 

 

1.2 Gaps in remote sensing for biodiversity monitoring 

While remote sensing provides a valuable tool for large-scale biodiversity assessment, 

challenges remain in how ecological communities are represented and analysed using 

satellite data. Describing a landscape by land class has utility, and community structure can 

be influenced by a single dominant species. However, describing the community as a whole 

is sometimes a more important biodiversity metric (Skidmore et al., 2021). The definition and 

selection of classes with which to analyse a landscape can be prone to researcher bias and 

require prior knowledge. But continuous descriptors of the land’s surface, such as those 

provided by satellite imagery, can classify landscapes at a finer resolution than is traditionally 

achievable by field ecologists (Nguyen Trong et al., 2020; Pettorelli et al., 2014b). More 

recently, studies suggest that the heterogeneity of pixel values in satellite imagery can be 

used to infer ecological niches on the ground, and surface reflectance has been shown to 

better describe community composition and richness compared to categorical variables 

(Perrone et al., 2023; Purdon et al., 2022). 
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The growing emphasis on understanding biodiversity patterns at the community level, rather 

than focusing on individual species, has led to a growing trend towards using joint species 

modelling, particularly in the context of ecological monitoring and conservation planning  

(Ferrarini et al., 2021). Traditional distribution models infer correlations between the 

presence or absence of a species and environmental covariates. These correlations are then 

used to map species distributions across a landscape based on known covariate values. To 

predict communities, stacked distribution models overlay the outputs of multiple 

independently predicted species. However, these models do not account for interactions 

between species and traditionally overestimate species richness (Kissling et al., 2012). Joint 

species distribution models simultaneously model multiple species while accounting for 

residual correlations that remain after environmental covariates have been fitted (Wilkinson 

et al., 2021). Occupancy models take distribution models a step further by using results from 

multiple surveys and allowing for imperfect detection when inferring relationships between 

a species’ distribution and environmental covariates. Multi-species occupancy models are 

extensions of joint species distribution models, but while they account for imperfect 

detection, until recently they have rarely accounted for residual autocorrelation between 

species (Doser et al., 2023). Continual advances in statistical modelling are being made, with 

many recent models now incorporating spatial autocorrelation, and some allowing for the 

inclusion of species traits or phylogenies (Ovaskainen et al., 2017). These models can be used 

to link satellite remote sensing data with biodiversity survey data to estimate entire 

communities continuously across a landscape (Csillik et al., 2019). Despite the increasing 

number of studies linking remote sensing to ecological patterns, understanding how well 

these metrics actually represent ecological communities remains a key challenge. Without a 

clearer understanding of these relationships, remote sensing is at risk of being a tool for 

classification rather than for true biodiversity assessment (Regos et al., 2022). 

 

1.3 Research aims questions and hypotheses 

There are ongoing challenges in linking remote sensing data with ecological survey results, 

particularly in capturing community structure, and spatial patterns using satellite-derived 

variables. This study addresses these challenges by testing whether environmental metrics 

derived from Earth observation can effectively describe biodiversity patterns across a range 
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of taxa and ecosystems. In addition to recording the presence or absence of target taxa, each 

biodiversity survey recorded environmental variables at the survey site that were of 

ecological interest to the study. Variables differed between studies, but included successional 

stage, proportion of deforestation, evidence of logging or burning, elevation, mean annual 

temperature, and precipitation. 

 

Question 1: How do in situ environmental variables influence the community 

composition of target taxa? We predict that variables such as habitat structure, climate 

and disturbance history, will significantly explain variations in community composition 

and richness across sites. 

 

Question 2: To what extent can environmental metrics derived from Earth 

observation predict the results of biodiversity surveys? We predict that models 

incorporating remote sensing variables, such as vegetation indices and land cover 

structure, will outperform models based solely on in situ variables by capturing landscape-

scale variation not measured during field surveys.  

 

Question 3: How does satellite platform choice and spatial scale of measurement 

influence model performance in predicting biodiversity patterns? We predict that finer-

scale Earth observation data (for example higher resolution imagery with more frequent 

revisits) will yield stronger predictions than coarser scale data. However, the optimal scale 

may vary between ecosystems and taxonomic groups. 

  

Question 4: Can Earth observation data be used to generate reliable biodiversity 

maps, and how remote sensing might be used to improve the efficiency of ecological 

surveys? We predict that biodiversity maps generated using satellite-derived variables will 

align closely with field data and provide a cost-effective way of extrapolating biodiversity 

patterns across unsampled areas. We further predict that these maps will offer a more 

nuanced representation of community composition, and of how and where biodiversity 

changes across the landscape, than traditional land class, biome, or ecosystem type 

classifications. 
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1.4 Thesis structure 

This thesis is divided into six (6) chapters. The current chapter ( Chapter 1) provides a general  

context for the study. The objectives of the research are identified, and their practical value 

is presented. 

 

Chapter 2 examines plant communities in the Greater Cape Floristic Region of South Africa. 

Plant communities are predicted to directly influence surface reflectance values, and I  assess 

the extent to which optical satellite data, in combination with elevation, temperature, and 

slope aspect can describe plant community composition and abundance. Communities are 

mapped based on their similarity in composition, and areas of directional change are 

identified. This chapter primarily addresses Questions 1, 2 and 4. 

 

Chapter 3 examines insect communities in the community forest surrounding the Gola 

Rainforest National Park, a REDD+ site in Sierra Leone. Insect communities were assessed 

using DNA metabarcoding of trapped samples, with communities modelled against satellite 

data and in situ descriptors of forest structure. The study aims to identify areas where cocoa 

farming practices could be intensified while minimising biodiversity loss.  I also investigate 

how different satellite platforms and spatial scales affect model performance. This chapter 

contributes to all four questions.  

 

Chapter 4 examines bird communities in the tropical forests of the Madre de Dios region of 

south-eastern Peru. Multiple surveys were conducted, and occupancy models were used to 

account for imperfect detection in analysing species distributions. The predictive 

performance of models using satellite data is compared with those based on landscape type 

and levels of deforestation. Additionally, I assess how survey design influences the ability to 

detect changes in these communities and suggest strategies for improving survey efficiency. 

This chapter primarily addresses Questions 1 and 2. 

 

Chapter 5 examines bird communities identified through passive acoustic monitoring in the 

tropical forests of Pará in the eastern Brazilian Amazon. Multi-day continuous acoustic 

recordings were used to create multiple replicate surveys at each site. Surveys were 
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conducted in primary and secondary forests, some of which had been logged and/or burned. 

Occupancy models were used to explore how habitat conditions influence bird communities. 

Model predictions using EO data are compared with those  based on field-based habitat data. 

This chapter contributes to Questions 1, 2, and 3. 

 

Chapter 6 provides a synopsis of the thesis, highlighting key findings and suggesting how 

they may be applied in practice and developed in future research.
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2. Advancing monitoring of a biodiversity hotspot: 

predicting change in the Succulent Karoo using 

satellite remote sensing 

2.1 Abstract  

Reliable landscape-scale monitoring is key to informing policy and guiding strategic 

intervention to halt and reverse global biodiversity loss. Time and resources constrain the 

scale of field surveys, but Earth observation (EO) satellites provide routine wall-to-wall 

coverage of the Earth. If changes in vegetation composition or abundance are captured in 

pixel reflectance values, we can combine restricted field monitoring with EO data to improve 

our inferences at the landscape scale. 

 

We investigated whether EO data improved our capacity to predict the spatial distribution 

and temporal dynamics of vegetation in the Greater Cape Floristic Region (GCFR) of South 

Africa. Our analysis was based on the 211 most frequently observed plant species recorded 

in 1440 surveys. The value of EO was assessed based on the improvement to joint species 

distribution models (JSDMs) that were fitted with standard static environmental data. 

Topography and temperature were the most influential environmental drivers in both 

distribution and abundance models. The addition of EO resulted in a marginal increase in the 

explanatory power of distribution models (i.e., presence/absence) by 3%, while a more 

substantial enhancement was observed in species abundance models, with an increase of up 

to 30%. Nevertheless, the proportion of variance explained by EO was much greater, 

representing between 34% and 64% of the total. The inclusion of measurable EO variables 

replaced much of the residual variance that was otherwise explained by estimated spatial 

latent variables, allowing for more accurate predictions of composition across the landscape. 

 

We demonstrate that when diverse field data on abundance is available to train models, EO 

could substantially improve our capacity to identify spatial variation in abundance and 

temporal changes in the composition of highly diverse communities, such as those found in 

the GCFR. 
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2.2 Introduction 

The current rate of extinction among plants is unprecedented (Humphreys et al., 2019), and 

there is evidence that biodiversity and associated environmental services will continue to 

decline throughout the 21st century (Pimm et al., 2014). The Global Biodiversity Framework 

(United Nations, 2021) set goals to reduce, halt, and ultimately reverse these trends. That the 

preceding Aichi Biodiversity Targets (CBD, 2010) were largely missed highlights the 

fundamental importance of implementing a continuous process of monitoring, measurement, 

and analysis to assess the efficacy of these targets and our progress towards their fulfilment 

(Pettorelli et al., 2014b). However, the lack of consistent global measures of progress has been 

compounded by the diversity of methods in use and by limited cross-party cooperation 

(Skidmore et al., 2015). The concept of Essential Biodiversity Variables (EBV) was proposed as 

a means of coordinating global action, and to provide common criteria for monitoring change 

(GEO BON, 2018; Pereira et al., 2013). They include variables such as species distribution, 

abundance and community composition. 

 

To ascertain whether policies can reduce, or even reverse, the current decline in biodiversity, 

it is necessary to be able to detect changes in the occurrence or abundance of many species 

at large scales (Ferrarini et al., 2021). An appreciation of the significance of community 

structure has prompted a shift in modelling approaches, with an increasing focus on the 

influence of environmental conditions on entire plant communities rather than individual 

species (Ferrarini et al., 2021). Joint species distribution models provide a generalised 

understanding of how entire communities vary in response to abiotic and biotic 

environmental factors. Furthermore, many models now incorporate a spatial component, 

given that the distance between points, despite similarities in the abiotic environment, may 

influence the structure of the communities in question (Leibold et al., 2022). Selecting 

relevant environmental variables and accounting for their natural variation when modelling 

species’ distributions is an important step (Dormann, 2007; Mod et al., 2016) in detecting the 

impact of anthropogenic effects, or variations in range brought about by climate change (Xu 

et al., 2019). Furthermore, species distributions are not only influenced by the abiotic 

environment, but also by biotic interactions between them. By analysing entire communities, 

studies can gain a more complete picture (Wisz et al., 2013). However, the efficacy of species 



 

10 
  

distribution models is heavily dependent on the quality of the count and environmental data 

available.  

 

Field surveys are constrained by time, money, and site accessibility (Skidmore et al., 2015), 

which in turn can influence survey design, sample size, and the scale of collection (Rocchini et 

al., 2016). It was recognised that the increasing spatial and radiometric resolution of Earth 

observation (EO) satellites, in conjunction with the continuity of long-term missions such as 

Landsat, provide a key opportunity for improving ecological monitoring (Wulder et al., 2016). 

Variation in surface reflectance is attributed to variations in ground substrate and differences 

in the pigmentation, chemistry and structure of individual plants and the communities they 

create (Frye et al., 2021; McDowell et al., 2015). The utilisation of EO data is becoming 

increasingly prevalent (He et al., 2015), and platforms such as Google Earth Engine facilitate 

accessibility to and analysis of EO imagery (Gorelick et al., 2017). However, the amount and 

types of data available are growing at a much faster rate than their utilisation (Regos et al., 

2022), creating a gap between remote sensing and environmental modelling. Given that EO 

platforms are effectively observing ecosystems directly, it can be expected that reflectance 

values will be associated with field-level observations of ecosystem change. The use of open-

access global satellite imagery offers the potential to identify more subtle variations in the 

landscape than may be identified by standard categorical or coarse scale environmental 

variables. This could assist in improving the identification of transitions between vegetation 

communities. The processing of remotely sensed products should then permit the inference 

of EBVs, including species richness, distribution, abundance and community composition (Jetz 

et al., 2019; Pereira et al., 2013; Skidmore et al., 2021). 

 

While few species are observable directly or individually by Earth observation satellites (Bush 

et al., 2017), the benefit of EO in predicting species distribution has been demonstrated in 

cases where a single species is particularly dominant, making it distinct spectrally (Xing et al., 

2021). Unfortunately, in the majority of cases, pixel values of surface reflectance represent a 

mixture of many plants, which consequently results in the dilution of the chemical or physical 

changes resulting from individuals (Lausch et al., 2016). The signal-to-noise ratio may be 

further confounded by collective vegetation responses to seasonal phenology, as well as 

within-season responses to environmental conditions such as changes in soil moisture (Regos 
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et al., 2022). Finally, while monitoring should encompass the full spectrum of biodiversity, a 

significant proportion of species are rare, meaning that they contribute little or no 

information to the spectral profile of a satellite pixel. Nevertheless, the combination of the 

extensive coverage offered by EO imagery, with the detailed observations achieved by in situ 

field surveys, could enhance our calculations and provide a calibrated view of biodiversity 

trends. 

 

This study uses historic vegetation monitoring data from the Greater Cape Floristic Region 

(GCFR) of South Africa, one of the most florally diverse areas on the planet. Some studies have 

been conducted in this region which combined topographic, climatic and limited spectral data 

to classify the GCFR into zones of homogeneous vegetation groups or to measure land 

degradation by calculating proportional vegetation cover (Bell et al., 2023; Van der Merwe et 

al., 2008a, 2008b). It is our contention that surface reflectance at the point and time of field 

surveys will more closely represent the status of the environment and the plant community 

than do static environmental variables derived from digital elevation and long-term climatic 

models. It is therefore anticipated that the inclusion of spectral reflectance will enhance the 

explanatory power of ecological models of the GCFR, which are otherwise based solely on 

static topographic and climatic variables (Chauvier et al., 2021). Furthermore, given the long-

term and repetitive nature of satellite imagery, we expect that its inclusion will support the 

detection spatial delineation of changes to plant communities over time. To assist in 

monitoring progress towards international goals and to inform conservation action, we first 

test the hypothesis that the inclusion of EO data improves predictions of species distribution 

and abundance, relative to models based solely on static environmental variables. We then 

use EO to improve on the static and broad categorical delineation of plant communities 

(Dayaram et al., 2019; Vlok et al., 2005), by modelling and mapping plant communities at the 

species level across a conservation area, examining how they vary spatially and identifying 

where compositional change occurs over time. 
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2.3 Materials and methods 

2.3.1 Study Area 

The Greater Cape Floristic Region is of significant ecological importance, and includes two of 

only 36 global biodiversity hotspots, the Fynbos and Succulent Karroo biomes (Conservation 

International, 2023; Myers et al., 2000). The combined flora of the region comprises over 

9,000 species, some 6,200 of these being endemic. The region has been heavily fragmented 

and degraded by invasive species, land clearance, climate change, and stock farming 

(UNESCO, 2021), with over 1,700 plant species now being listed as threatened, and 3,000 of 

conservation concern (Slingsby et al., 2017; UNESCO, 2021). This project combined data from 

five studies that were undertaken across the area between 2000 and 2019 (Figure 2-1, Table 

2-1). The studies were conducted primarily within the Succulent Karoo, with sections of 

Fynbos interspersed, and some minor overlap with Nama Karoo to the north-east. In this 

project, the term survey refers to a single count of a single plot or transect. The majority of 

studies only surveyed plots on a single occasion, but at Sanbona, a private nature reserve, 

between 20 and 48 plots have been surveyed annually between 2004 and 2019, resulting in 

a total of 614 surveys being conducted. 
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Figure 2-1: Location and range of the study areas in South Africa (details in Table 2-1). 
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Table 2-1: Details of vegetation studies used in this analysis. 

 

 

2.3.2 Species data 

In order to combine data from each study, and retain information about species relative 

abundance, the Braun-Blanquet categories (one, a few and cover of <5%, 5-25%, 25-50%, 50-

75%, >75%), which were used in some studies, were converted to counts based on the median 

value of their class, and re-scaled to match the 500 point counts as used by other studies to 

combine data from different survey methods (Podani, 2006; van der Maarel, 2007).  Only 

observations of species that were unambiguously identified were included in this study. 

Identified species were subsequently cross-referenced with the World Flora Online taxonomic 

reference list in order to consolidate all scientific names. This process was conducted using 

the R package “WorldFlora” (Kindt, 2020). The majority of the resulting 667 identified species 

were rare, and we elected to restrict analysis to species observed in ~1% of surveys of the 

dataset being analysed (15 surveys for the full set and 5 for the Sanbona subset), which falls 

within the range of the minimum number of recorded observations required for modelling as 

Study Name 
Year/s of 

Survey 

Number of 

Plots/Surveys 

Sampling 

Method 
Plot Size 

Number of 

Species 

Identified 

Publication 

Sanbona 

2004-19 

(repeated 

annually) 
 

51/614 
500 Point Line 

Intersection 
500m² 208 Un-published 

Elsenburg 

2010-12 

(counted 

once) 
 

156/156 
500 Point Line 

Intersection 

500m 

transect 
153 (Saayman et al., 2016) 

Hantam-

Roggeveld 
2004 390/390 Braun-Blanquet 10-20m² 292 

(Van der Merwe et al., 

2008a, 2008b) 

Akkerendam 2013 100/100 Braun-Blanquet 10-20m² 303 

(van der Merwe and 

Hoffman, 2019) 

 

Square Kilometre 

Array 
2015 180/180 Braun-Blanquet 10-20m² 99 (van der Merwe, 2020) 
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set out  by J van Proosdij et al., (2016). Consequently, 211 species, were included in the 

regional analysis and 126 (of 208) in the Sanbona analysis. 

 

2.3.3 Environmental data 

In this study, we differentiate between standard “static” geographic data, which describe 

long-term mean climatic conditions and topographic characteristics, and “dynamic” EO 

imagery, which are continually updated. Five static predictor variables of each survey site 

were included in analysis; elevation, slope and aspect  were obtained from the Shuttle Radar 

Topography Mission dataset (Farr et al., 2007), and mean annual rainfall and mean annual 

temperature were obtained from Worldclim (Hijmans et al., 2005).  

 

There are numerous ways in which changes to vegetation composition and cover may alter 

their spectral reflectance, and the magnitude of these differences may vary both annually and 

seasonally (Blackburn and Milton, 1995; Inoue et al., 2008; Lausch et al., 2013). The selection 

of reflectance metrics used was not based on a specific a priori hypothesis regarding targeted 

taxa. Instead, the aim was to describe all axes of spectral variation within the study region. 

Few EO platforms have captured imagery consistently since 2004 and this study focused on 

six surface reflectance bands from blue to short-wave infrared that are available from Landsat 

5, 7 and 8 (Wulder et al., 2019). Seven spectral indices which were considered to reflect 

important ecological and environmental changes in surface conditions were also calculated. 

Click or tap here to enter text.Click or tap here to enter text.Click or tap here to enter text.The 

data for the static and dynamic layers were downloaded from Google Earth Engine and their 

details, along with the derived indices, are presented in Table 2-2. 

 

Landsat 7 imagery has known scan errors, where approximately 22% of each image lacks data. 

However, the land surface affected is not constant due to changes in the satellite’s orbit in 

each pass, and errors are spread in strips a few pixels wide per image. The integration of 

multiple images can reduce the impact of these gaps, and the use of Landsat 5 or Landsat 8 

images in conjunction with Landsat 7 for all but one year (2012) was considered sufficient and 

makes the use of the same process simple to follow in future studies (Claverie et al., 2018). 
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Table 2-2: Environmental and reflective variables used, including the vegetation indices calculated for 

use in analysis of Karoo plant data. 

Category Name Description 

Climate Mean Annual Temperature Degrees C 
 

Mean Annual Precipitation Millimetres 

Topography Elevation Metres above mean sea level 
 

Slope Degrees from horizontal 
 

Aspect (4 Categories) 45° either side of North, East, South, West 

Landsat Blue 0.45 - 0.52 µm 
 

Green 0.52 - 0.60 µm 
 

Red 0.63 - 0.69 µm 
 

Near Infra-Red (NIR) 0.77 - 0.90 µm 
 

Short wave Infra-Red (SIR) 1.55 - 1.75 µm 
 

Medium wave Infra-Red (MIR) 2.08 - 2.35 µm 

Indices NDVI (Normalised Difference 

Vegetation Index) 

(NIR-Red) / (NIR+Red) (Rouse et al., 1973) 

 
SATVI (Soil Adjusted Total 

Vegetation Index) 

(SIR-Red) / (SIR+Red) * (1.5) - 

(MIR/2) 

(Marsett et al., 2006) 

 
MSAVI2 (Modified Soil Adjusted 

Vegetation Index 2) 

((2NIR+1) - √((2NIR+1)2 - 

8*(NIR-Red)))*0.5 

(Qi et al., 1994) 

 
MCARI2 (Modified Chlorophyll 

Absorption in Reflectance Index 2) 

(1.5 * (2.5 * (NIR-Red) - 1.3 * 

(NIR-Green))) / √((2NIR+1)2 - 

(6NIR-5 * √(Red)) - 0.5) 

(Haboudane et al., 2004) 

 
NDWI (Normalised Difference 

Water Index) 

(Green-NIR) / (Green+NIR) (Mcfeeters, 1999) 

 
NDII5 (Normalised Difference Infra-

Red Index 5) 

(NIR-SIR) / (NIR+SIR) (Hardisky, Klemas and 

Smart, 1983b) 
 

NDII7 (Normalised Difference Infra-

Red Index 7) 

(NIR-MIR) / (NIR+MIR) (Chuvieco et al., 2002b) 

 

To provide spectral metrics that are specific to the period of the vegetation surveys (hence 

dynamic), we summarised values from all EO images captured in the 12 months prior to a 

survey. For each survey point, the yearly maximum, minimum, mean and standard deviation, 

and the quarterly means, of all 13 reflectance values (six bands, seven indices) were 
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calculated for pixels within 30 metres of the plot coordinate. A total of 104 spectral variables 

were thus calculated for each individual plot survey, comprising 52 annual variables (4 

summary statistics x 13 spectral metrics) and 52 seasonal variables (1 statistic x 13 spectral 

metrics x 4 seasons). This high-dimensional description of the local land surface contains too 

many predictors to include in statistical analysis and will contain correlated redundant 

information.  To retain information about the spectral differences among sites within fewer 

covariates, the EO variable stack was reduced  to a smaller set of sparse canonical 

components using the sgdm package (Leitão et al., 2016), as detailed in Leitão, Schwieder and 

Senf (2017). This method is primarily used with zero-inflated data and differs from principal 

component analysis (PCA) by maximising the correlation between components and response 

variables, rather than the amount of variation explained in the data. Canonical components 

always condense data, with the number of components chosen varying between one and one 

fewer than the number of variables to be condensed. Fewer components retain less variation 

from the original data, unlike PCA, which always produces as many components as variables 

and retains 100% of the data’s variation. For each dataset, preliminary analysis involved 

creating three, five and 30 canonical components, with WAIC values showing no significant 

differences between models fitted with these groups (14.1, 14.0 and 14.0 respectively). 

 

In all datasets, collinearity was observed between some canonical components (Figure 2-2), 

though the colinear components differed between datasets,, and the dominant reflectance 

bands represented in each  component varied. While collinearity between variables can 

reduce the interpretability of individual effects, it does not affect mean responses or 

predictions to new observations (Kutner, 2005).  As the primary goal was to predict 

community composition rather than interpret the influence of individual canonical 

components, and to preserve maximum variation in the predictor data without overfitting the 

model, the observed collinearity was not considered to be detrimental. All subsequent 

analyses using EO data were conducted with models incorporating  10 variables: five static 

and five dynamic EO variables. 
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2.3.4 Statistical analysis  

Vegetation composition was modelled using joint species distribution models (JSDM) in the R 

package Hmsc (Tikhonov et al., 2021), a particularly powerful example of the JSDM modelling 

framework (Norberg et al., 2019). Modelling rare species frequently yields unsatisfactory 

results due to the paucity of available data but Hmsc addresses this limitation by using spatial 

autocorrelation, and interspecific relatedness to improve inferences of rare species by their 

associations with more prevalent species. As the distribution of all species were highly zero-

inflated, we adopt a hurdle-model approach, that fits a logistic model to presence-absence 

(P/A) data and subsequently models the changes to species abundances (log transformed) 

conditional on species presence (Ovaskainen and Abrego, 2020). The JSDMs were fitted with 

four chains of 10,000 iterations (the first 2,500 iterations were subsequently discarded as 

burn-in) and thinned to every 15th iteration so that the final posterior included 2,000 samples. 

The conditions under which dynamic EO information might offer the greatest benefit to static 

variables were identified by comparison of eight models that contrasted i) training data that 

were structured spatially (all data points) vs. temporally (Sanbona data points), ii) whether 

responses were fitted to presence-absence or abundance information, iii) whether models 

were fitted with only static covariates or also included dynamic EO variables. Spatial models 

were fitted using plots from a single survey of all sites. To avoid including the temporal 

structure of the Sanbona dataset within the spatial models, the average of 16 models, each 

using only one year of Sanbona data, were used to evaluate the spatial models. 
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Figure 2-2: Pair plots of all predictor variables used in; a spatial data and b temporal data 

models. Canonical components were created independently for each set and the range of 

values of environmental data were different in both. 
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Explanatory power was evaluated by the mean R2 across all species for abundance models, 

and the mean coefficient of discrimination (Tjurs R2) for occurrence models.  The proportion 

of variance attributable to individual explanatory variables in each model was identified using 

variance partitioning. Performance of the final temporal models was further quantified by 

conducting 6-fold cross-validation. Predictive power was tested  by fitting new models to the 

Sanbona dataset, but excluding 2010/11 data, the same two years the adjacent Elsenburg 

study was conducted. The newly developed model was employed to predict the composition 

of sites in the Elsenburg study as well as the Sanbona sites for the two years that had been 

excluded. This enabled an assessment of the predictive capability of species composition at 

times and locations outside the training dataset. Only predictions for species that were shared 

between the training and test datasets could be assessed, which included 98 dominant 

species within Sanbona and 80 species in the Elsenburg sites. Prediction accuracy was 

evaluated per species using the coefficient of discrimination (Tjurs R2), and for the entire 

community using Sorensen and Bray-Curtis dissimilarity indices for occurrence or abundance 

respectively. 

 

To illustrate the potential for using EO data to scale up outputs from such models to inform 

policy, plant community composition was predicted across the Sanbona nature reserve to 

points centred 100 metres apart. Compositional differences between all points were 

described using a Sorensen similarity matrix, which was then translated into two ordination 

axes, which were further partitioned into red, green and blue channels and mapped using the 

‘recluster’ package (Dapporto et al., 2020).  In addition to spatial variation, composition may 

oscillate among related states or display directional change over time (Maliniemi et al., 2019). 

Community composition was calculated across the area for each year from 2004-2021, and 

year-to-year compositional differences for each point recorded. The potential for observing 

directional shifts in composition by identifying regions that were predicted to have 

experienced greater long-term (2004-2021) change than the standard deviation of year-to-

year variation were illustrated. 
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2.4 Results 

For the spatial data, incorporation of EO variables in species presence/absence models 

resulted in a marginal 1% improvement in the variance explained. Although the increase is 

small, EO variables accounted for 64% of the explained variance in the model, thus reducing 

the relative importance of the static and spatial covariates. In contrast, in species abundance 

models, EO variables increased the variance explained by 30% for the same spatial dataset,  

and represented 60% of the explained variance. 

 

For the temporal dataset, models achieved far higher explanatory powers than for the spatial 

dataset when fitted with either  presence/absence or abundance data. The addition of EO 

increased variance explained in presence/absence models by 3%, whereas the explanatory 

power of abundance models was increased by 7%. In temporal models, as in spatial models, 

the proportion of the variance explained by the EO covariates was greater than that added by 

them, at 17% and 34% for P/A and abundance, respectively. Figure 2-3 illustrates this 

phenomenon, showing that 83% of the variation in JSDMs fitted with temporal data of species 

presence/absence is driven by static covariates and spatial factors. In contrast, in the 

temporal abundance model, the dynamic EO covariates gain importance, primarily by 

absorbing variance that had previously been attributed to residual spatial covariance. The 

explained R2 for each of the eight models as well as the proportion of the explained variance 

attributed to EO  is given in Table 2-3. It is important to note that the Tjur's R² used for 

presence/absence (P/A) models is centred around zero, unlike the traditional R² as used for 

the abundance model, which is centred around 0.5. Consequently, a Tjur's R² value of 0.25 

infers a reasonable ability to differentiate between presence and absence, and could be 

interpreted similarly to a traditional R² of ~0.45. 
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Figure 2-3: Proportion of variance explained for each species determined by spatial, static 

environmental and dynamic EO-based covariates when fitted with temporal data of a) 

presence/absence, and b) abundance information. The static environmental variables include 

elevation, aspect, slope, mean annual temperature and mean annual rainfall; and the dynamic EO 

variables are the five canonical components. 

 

Table 2-3: The explanatory performance of models used in analysis, indicating the dataset and 

variables used, and whether the model was P/A (Presence/ Absence) or Abundance. The Static 

Variables column describes the explanatory power of models fitted with only static variables. The 

right-hand column indicates the proportion of the Total R2 that is accredited to EO by variance 

partitioning, highlighting the disparity between the amount of explained variance  they add and how 

much they represent. 

Data Set Data Type R2 using 

Static 

Variables 

R2 Added 

by EO data 

Total R2 Percent of R2 accredited 

to EO data 

Spatial P/A 0.23 0.01 0.24 64% 

Abundance 0.23 0.30 0.53 60% 

Temporal P/A 0.45 0.03 0.48 17% 

Abundance 0.51 0.07 0.58 34% 
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When using Bray-Curtis dissimilarity values to quantify the accuracy of predicted against 

observed community structure, lower values are better, with zero representing a perfect 

prediction with no dissimilarity, and one representing no overlap in community composition. 

The mean dissimilarity in community composition between predictions made by the temporal 

presence/absence excluding 2010/2011 JSDM and the 80 Sanbona surveys conducted over 

2010/11 was 0.54 (± 0.14 SD). In contrast, the mean dissimilarity between predicted and 

observed communities for the 156 sites at the neighbouring Elsenburg study was 0.72 (± 0.09 

SD). However, when the same analysis was performed using abundance data, the mean 

dissimilarity with Sanbona decreased to 0.20 (± 0.06 SD) and to 0.35 (± 0.12 SD) at Elsenburg 

sites.  

 

The predicted variation in communities across the Sanbona nature reserve is illustrated in 

Figure 2-4, and the vegetation types delineated on the national vegetation map (SANBI, 2019) 

exhibit some degree of correspondence. Our study suggests heterogeneity within the 

vegetation that encompasses both continuous, subtle changes in composition, and the 

presence of distinct vegetation types, which are repeated across the landscape.  It was also 

predicted that plant communities underwent changes in compositional structure over time, 

as illustrated in Figure 2-5. The standard deviation of the year-to-year differences is 

illustrated, with darker areas representing greater variation in community structure during 

this period. This variation is significantly correlated with slope and elevation, with the lower, 

flatter areas experiencing greater variation (R2 = 0.17, p < 0.001). In some areas, the shift in 

composition between the first and last years of predictions showed a difference exceeding 

the mean annual variation, suggesting a possible directional trend in compositional change. 

This trend was subsequently mapped in Figure 2-6. 
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Figure 2-4: Variation in plant community composition across Sanbona. Similar colours indicate 

similarity in community composition. Insets a indicates community similarity by the represented 

colour. A difference of 1 indicates entirely different communities and a difference of 0 indicates 

identical communities. b shows the National Vegetation Map covering Sanbona and represents 

bioregions of communities with similar vegetation and abiotic features (SANBI, 2019). 
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Figure 2-5: Standard deviation of dissimilarity per point over time of predicted vegetation 

communities in Sanbona. Dissimilarity is measured as the variation of an individual point between 

each two consecutive years and darker areas show where vegetation cover is predicted to have 

experienced the greatest year to year variation.  
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Figure 2-6: Dissimilarity in predicted vegetation communities in Sanbona per point over time. How the 

difference in communities between the first and last years of study vary from the standard deviation 

of dissimilarities per point across all 18 years 2004-2021.  Blue points highlight where the difference 

between the first and last years is less than the standard deviation across the years, i.e. the measured 

difference is within a normal range. Red shows where the difference between the first and last years 

is greater than the standard deviation across the years, i.e. the difference measured is outside the 

normal range and may show where there is a directional change in community composition. Colour 

intensity infers the extent of difference between the first and last years and the standard deviation 

across years. Darker, more intense colours represent a greater difference between the two. Intense 

red represents areas where there is a greater difference and thus chance of community shift, and  

darker blue represents minimal change between the first and last years in an area that has a high 

range of change, inferring general stability within the community. Less intense colours indicate a low 

standard deviation, and/or a measured difference closely related to the standard deviation.  

 

 

 



 

27 
  

2.5 Discussion 

Monitoring species distributions, abundance, richness and community composition is 

essential for achieving both local and global environmental targets. This study evaluated 

whether dynamic, satellite Earth observation data could enhance joint species distribution 

models, which relied on static topographical and climatic data to describe those ecological 

variables. Specifically, we aimed to determine whether satellite imagery could be used to 

improve on static vegetation map classifications by mapping plant communities at the species 

level, and where communities vary spatially and temporally across a conservation area. 

Our findings show that the dynamic nature of EO data facilitated the observation of change 

over time in community composition, which would not have been possible by the use of static 

environmental data. However,  EO variables did not substantially increase the explained 

variation in species distribution. However, EO data proved highly valuable for explaining 

variations in species abundance, particularly when assessing abundance  changes across the 

entire spatial dataset. Furthermore, EO data accounted for a much larger proportion of the 

explained variance than they added. This improved predictability over large areas due to the 

measurable nature of EO reducing the contribution of the estimated latent variables used in 

spatial autocorrelation.  

 

2.5.1 The influence of static environmental variables 

Correlating species occurrence with topography and climate describes niches and the 

communities expected to be found in each (Pollock et al., 2014). Towards the edge of 

bioclimatic gradients, more complex topography and extremes of temperature and aridity 

can increase the number of available niches and influence the rate at which community 

composition changes (Ferrarini et al., 2021; Guerin et al., 2019). The Greater Cape Floristic 

Region is characterised by a climate that varies in terms of temperature extremes and 

particularly in the seasonality and amount of rainfall. It also features topographic diversity, 

encompassing plains, mountain ranges, and areas with sharply undulating peaks and valleys. 

In contrast to other studies in Mediterranean to semi-arid environments, we found that mean 

annual rainfall exerted only a moderate influence on species distribution (Caddy-Retalic et al., 

2020; Guerin et al., 2019). Our results are consistent with those of Ferrarini et al. (2021), who 

found rainfall to be less influential than topography and temperature in classifying plant 
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assemblages in the Swiss Alps. We found elevation and temperature to be the second most 

influential factors within our models. The inclusion of slope and aspect as proxies for 

topographic heterogeneity further increased the model’s explanatory power, although they 

were the least significant predictors.  

 

Current topographic-climatic niches do not consider historic drivers of community 

composition such as past climates, barriers to dispersal or competitive exclusion (Dan. L. 

Warren et al., 2014). This concept is potentially relevant in our area of study, as despite its 

topographic and climatic variation, Frye et al. (2021) found that plant communities changed 

relatively uniformly across the landscape. It has been suggested that the diversity of 

vegetation found in the Succulent Karoo may be a result of localised speciation driven by fine 

scale variations in soil and localised seed dispersal techniques, with the plant’s sensitivity to 

environmental conditions and limited dispersal being further enhanced by their generally 

small size (Boucher et al., 2017; Ellis et al., 2006; Musker et al., 2021; Parolin, 2006). Our 

findings further support this, with spatial autocorrelation playing a greater role than 

topography and climate in explaining species distributions. 

 

It is anticipated that the abiotic environment will exert a different influence on abundance 

than on occurrence (Mitchell et al., 2017). For a species to occur, it is presumed that local 

conditions allow for its survival, but once established its abundance is governed by how 

closely local conditions meet its ideal requirements. Our findings support this theory as 

abundance is most strongly associated with elevation and temperature rather than the 

distance between points found by occurrence. It is expected that temperature and elevation 

will be correlated (Runke et al., 2022), but the climatic data used in this study were recorded 

at a resolution of 930m2, which is far coarser than the 30m2 resolution of the elevation data. 

Consequently, elevation across the spatial data may more closely correlate with localised 

temperature and rainfall compared to the broader mean values supplied. 

 

The higher explanatory power of models using temporal rather than spatial data when only 

fitted with static variables may be partly explained by the temporal data containing one-third 

fewer species than the spatial dataset. Furthermore, the temporal data were measured 

repeatedly, which, through repetition, may strengthen correlations between species and 
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their environment (Ross et al., 2023), and increase the probability of encountering rarer 

species, thereby more fully describing the true community composition and improving 

inferences of interspecific correlations in a given physical environment (Pinto et al., 2022; 

Zhang et al., 2014). The benefit of multiple surveys was thus emphasised when only using 

fixed environmental variables. 

 

2.5.2 The influence of adding EO data 

Although EO added minimally to distribution models, their inclusion in models fitted to spatial 

data greatly reduced the influence of all static covariates and spatial autocorrelation, implying 

a high level of redundancy between the static and dynamic sets of covariates. The rainfall 

experienced in the year of a survey influences the water content and reflective properties of 

soil and plants. Dynamic EO captures this variation at a 30 m2 resolution within the season of 

change, better representing the temporal and spatial nature of rainfall than long-term climate  

data (Zhang et al., 2011; Zhong et al., 2024). Similarly, while slope and aspect do not change 

over time, the north and south slopes of a hill, which have the same and unvarying static 

characteristics, may reflect differently within and between years, due to seasonal variations 

in sun intensity and rainfall patterns, and the influence that these have on soil and vegetation 

(Kumari et al., 2020). In terms of spatial autocorrelation, our models reduce the residual 

variance found after accounting for the influence of environmental variables by creating 

latent factors that vary with distance.  These factors are likely correlated with unmeasured 

environmental variables, but unless new sites are very close to existing survey sites, these 

latent variables are unreliable contributors to predictions beyond the training data 

(Ovaskainen and Abrego, 2020). Thus, the addition of EO data reduces the residual variance 

in our model, which would otherwise be explained by spatial autocorrelation. Furthermore, 

as EO variables are quantifiable across the landscape, they enhance our ability to predict 

communities across a broader landscape (Chalmandrier et al., 2022; de la Fuente et al., 2021). 

In contrast, our study showed that incorporating EO data significantly enhanced the 

explanatory power of the spatial abundance model. Remote sensing studies have successfully 

described and mapped the distribution of large or dominant plant species, in part because 

their particular chemistry, phenology or flowers dominate the local signal (Nawrocki et al., 
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2020; Pinto-Ledezma and Cavender-Bares, 2021), more than do the occurrence of many rare 

individual species. 

 

In both temporal data models, the proportion of variation attributed to EO data was again 

greater than they added, but the increase was less than observed in spatial models. Although 

the influence of all static variables decreased marginally and evenly, we found that, unlike in 

spatial data models, spatial autocorrelation remained unchanged. This suggests there is little 

redundancy between EO and spatial autocorrelation when describing species distribution and 

abundance in our temporal data. In addition, despite multiple surveys being conducted, and 

the smaller area over which the surveys were conducted, fewer species were identified in the 

temporal data set in comparison to the full data set. This aligns with the previously discussed 

concept of localised speciation (Boucher et al., 2017; Musker et al., 2021), which  over large 

areas should give rise to more species than the smaller area covered by temporal surveys. 

Thus, over a smaller area, distance is likely to play a lesser role in describing community 

turnover than do the environmental variables that influence niches. 

 

Furthermore, EO provided insight into community change over time, a feat unachievable 

using static environmental descriptors. The correlation between areas that had experienced 

the greatest inter-annual variation (Figure 2-5) with low lying and low sloped land could 

indicate an association with drainage flood plains, aligning with historical land use in the 

region, which frequently farmed crops or overgrazed those areas, leaving them with little 

vegetation cover (Van der Merwe et al., 2008b). These areas will vary in reflectance due to 

erratic seasonal rainfall and the proliferation of plants when rains come, more so than will 

areas covered with perennial vegetation (Bell et al., 2023). 

 

2.5.3 Limitations and Opportunities 

Surveys can struggle  with scale relevance when determining species distribution and may not 

accurately represent true presence/absence (Gelfand, 2020). The Braun-Blanquet system 

used quadrats that were markedly smaller than Landsat pixels and the other survey methods. 

While this increases the likelihood that every species within a quadrat will be identified, the 

estimation of their cover area is less reliable for determining abundance. It is also likely that 
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species present in the area but beyond the quadrat will be missed, thereby underestimating 

the true community composition. At Sanbona, survey plots were very similar in size to Landsat 

pixels. However, due to the method used, it is possible that smaller and less abundant species 

were missed (Perret et al., 2023), although the abundances of species were numerically 

recorded. Elsenburg surveys were comparable in count accuracy to those at Sanbona, though 

the linear structure of transects reduced their correlation with satellite pixels. While we 

considered each survey as a complete representation of the plant community at a site, given 

the species-rich ecosystem we acknowledge the limitations in fully capturing spatial and 

temporal patterns of biodiversity. Future studies will therefore benefit from surveying plots 

that are commensurate with satellite pixels and adopting a uniform count method relevant 

to the study at hand. 

 

Surveys can also be subject to bias in site selection. The Elsenburg study sites were chosen to 

assess the impact of stock farms on vegetation, whereas the Sanbona sites were selected to 

represent a broad cross-section of landscapes, including but not limited to old, impacted 

farmlands. Although it seemed reasonable to compare community composition across studies 

given their proximity, the differing objectives behind each study may limit our ability to 

compare them. Furthermore, the SKA study was conducted in the Nama Karoo biome, which 

experiences different seasonal climatic patterns than the Succulent Karoo and Fynbos biomes. 

The smaller species list identified there results from the different climate, and results in a 

smaller overlap of species with other sites. Future studies would benefit from surveying sites 

that contain biomes or environmental impacts of interest, with sufficient overlap across the 

region of study to improve analysis and predictive interpolation. 

 

The description of the GCFR was proposed as it encompasses two biomes (Fynbos and 

Succulent Karoo). The transitional nature of the area elicited debate about which biome 

certain areas should be classified (Born et al., 2007). Efforts have been made to delineate 

vegetation into groups and classes across the area, which have been mapped at various scales 

from national to regional. Despite the time and resources required to run computer analysis, 

our study shows that EO permits a more nuanced view of turnover amongst vegetation 

communities across the region. In doing so, a general mosaic structure of varying community 

compositions across the area becomes evident, and pockets of communities that differ from 
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the dominant surrounding areas are highlighted. More importantly, EO can be used to identify 

areas that display extreme variation or directional change in community composition, and 

given training data that covers broad environmental gradients, can highlight the existence of 

eco-tones. These can serve as tools to guide conservation efforts, from local land 

management to regional and national initiatives, such as those outlined by (CapeNature, 

2025; CEPF, 2009; SANBI, 2025). 

 

2.5.4 Conclusion 

The integrity of an ecosystem is derived partly from the interactions among communities at 

the landscape scale (Le Provost et al., 2022). Planning and assessing the conservation of 

hundreds of plant species requires a framework that can be efficiently scaled to inform 

priority locations and actionable interventions (Ferrarini et al., 2021). By integrating 

environmental and EO data with field survey data in joint species distribution models, it is 

possible to expand predictions of species richness, individual probabilities of occurrence, and 

community composition across a landscape, thereby enabling the prioritisation of resources 

for conservation. The results of this study demonstrate that EO greatly enhances our ability 

to explain the variation in species abundances at a landscape scale. Furthermore, EO can be 

used to predict and map communities across a large area and provide an understanding of 

how and where communities change, both spatially and temporally, which standard 

vegetation class maps do not reveal (Regos et al., 2022). With new satellite images available 

almost daily, this source of information could support near real-time mapping of vegetation 

communities across hyper-diverse, semi-arid environments, such as the GCFR, as well as other 

biomes where sufficient field data are available for calibration. 

 

Code and data used in the analysis of this chapter are available at 

https://github.com/AndrewCSlater/HMSC_analysis 

https://github.com/AndrewCSlater/HMSC_analysis
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3. Predicting ecological variation in a global biodiversity 

hotspot: linking metabarcoding to Earth observation 

3.1 Abstract 

To halt the decline in biodiversity and ameliorate climate change, it is vital that remaining 

tropical forests are conserved or managed sustainably, yet half of the world’s forest reserves 

are experiencing a loss of functional and taxonomic diversity. Earth observation (EO) from 

satellite remote sensing provides free, consistent, and repeatable data at global scales, which 

can be used to infer variation in forest canopy composition across space and time. However, 

field data are required to understand how that variation relates to biodiversity status and 

trends. This study combined field surveys of insect biodiversity, processed using DNA 

metabarcoding, to test whether continuous data from EO could act as an effective indicator 

of ecological condition. 

 

Gola Rainforest National Park (GRNP) in Sierra Leone is part of a global biodiversity hotspot 

and is subject to a Reducing Emissions from Deforestation and Degradation (REDD+) 

programme. The park is surrounded by a 4 km-wide, community-owned buffer zone in which 

REDD+ payments are intended to improve local livelihoods on the condition that the 

landscape is sustainably managed and biodiversity value maintained. Robust monitoring of 

ecological integrity and verifying compliance through field surveys is not considered viable 

across this area, and we therefore sought to investigate the potential for remotely sensed 

data sources to indicate effective buffer zone management. 

  

Modelling of the 284 most frequently detected insect taxa demonstrated that the satellite-

derived covariates explained community variation as effectively as field-measured vegetation 

data. When predicting to new locations, 55 taxa achieved area under the curve (AUC) values 

greater than 0.7 using EO data, while 49 taxa reached this threshold using field data. However, 

the taxa predicted well by each method only partially overlapped. Field data highlighted taxa 

responded to particular vegetation types, whereas EO data identified taxa associated with 

structural gradients linked to fragmentation. 
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The findings of this pilot study underscore the importance of high-quality ecological data 

obtained through field surveys, not only to assess biodiversity directly, but to train and 

validate models that link biodiversity to spectral reflectance. These models allow biodiversity 

to be predicted across larger areas, but the ecological meaning of these predictions in terms 

of habitat condition and management practices can only be reliably interpreted through 

ongoing field surveys that capture key structural and ecological attributes across the 

landscape. The rapid and efficient capture of such complex ecosystems is facilitated by the 

use of new technologies. The models developed here may serve to guide further field surveys 

and, in the future, support the strategic delivery of payments for sustainable management.  

 

3.2 Introduction 

Tropical forests are home to more than half of the world's biodiversity, making them some of 

the most biologically diverse areas on Earth (Bradshaw et al., 2009; Gibson et al., 2011), and 

more than a billion people depend directly on them for food, materials, and services (Lewis 

et al., 2015). Furthermore, tropical forests account for approximately half of the global 

terrestrial carbon uptake and up to two-thirds of the carbon sink of all forests (Hubau et al., 

2020; Pan et al., 2011). Despite the expanding area of tropical forest falling under protection, 

half of the world's tropical forest reserves continue to experience a loss of taxonomic and 

functional biodiversity (Jenkins and Joppa, 2009; Laurance et al., 2012). The anthropogenic 

pressures surrounding forest reserves are often reflected within them (Laurance et al., 2012). 

Logging and agriculture are the most significant drivers of forest habitat change and loss. The 

practice of clear-cutting and commercial agriculture has the potential to completely destroy 

forest areas. However, in tropical Africa, selective logging is more common than clear-cutting 

and can lead to changes in the density and composition of understorey vegetation, which in 

turn can facilitate the cultivation of understorey crops such as cocoa (Potapov et al., 2017). 

These shifts in forest structure, whether linked to logging, subsistence farming or commercial 

crops, contribute to forest degradation, further species loss and significantly expand the area 

of human impact (Gibson et al., 2011; G. D. Lennox et al., 2018). Efforts to prevent further 

destruction and degradation of tropical forests must be adaptive and guided by up-to-date 

information. In order to learn from the successes and failures of the strategies employed, it is 
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necessary to continuously measure environmental conditions across space and repeatedly 

over time (Pettorelli et al., 2014b). 

 

The implementation of field surveys of vegetation is constrained by financial, spatial, and 

temporal limitations. Consequently, the use of EO is considered an important approach to 

improving vegetation monitoring, if not also for associated biodiversity   (Skidmore et al., 

2015). The calculation of categorical landcover and deforested areas from EO imagery enables 

temporal monitoring (Azzari and Lobell, 2017), but requires a priori assumptions about the 

importance of the defined classes and ignores the continuous nature of land cover. The 

continuous measurement of satellite-derived elevation and  climate data has been used to 

infer the capacity for an area to grow forests (Fiandino et al., 2020), and to broadly describe 

elements of environmental condition or niches (Guisan and Zimmermann, 2000). More 

recently, LiDAR has proven to be a powerful tool for describing the three-dimensional 

structure of forests. However, its application at landscape scales remains limited, primarily 

due to high costs and the impracticality of multi-temporal surveys (Asner, 2007; Dubayah et 

al., 2020). An alternative approach is to apply the continuous variation of processed satellite 

pixel values over large areas, which can also be projected back in time using Landsat. The 

heterogeneity within a landscape, such as variations in soil, topography and disturbance, and 

the resulting vegetation communities found, combine to cause variation in spectral 

reflectance (S. D. Warren et al., 2014). The spectral variation hypothesis suggests that 

heterogeneity observed within images is related to the number of ecological niches present 

on the ground (Purdon et al., 2022), and that surface reflectance values can be used in models 

to predict community and structural variations (Csillik et al., 2019). 

 

The number of available niches is positively correlated with species and functional 

biodiversity (Stein et al., 2014). The measurement of structural elements such as patch size, 

or canopy height, can provide useful indicators of forest condition and habitat fragmentation 

(Clark et al., 2021). However, while these measures can reflect aspects of ecological integrity, 

they do not directly describe diversity or community composition.  A variety of taxa, including 

birds and insects, have been studied to determine how forest structure and disturbance 

influence their communities (Bregman et al., 2015; Parikh et al., 2021). Biodiversity responses 

to habitat changes are widely used as indicators of ecosystem health, and by monitoring 
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changes in ecological communities, it is possible to assess whether conservation and 

management efforts are maintaining habitat quality (Niemi and McDonald, 2004). The 

richness and composition of insect communities have been demonstrated to respond to and 

reflect forest age, structure and composition, and plant diversity (Basset et al., 2012; 

Schowalter, 2017; Traylor et al., 2022; Zhang et al., 2016). Insect communities are vast and 

sensitive to habitat change, making them valuable biological proxies for assessing 

environmental condition. Advances in high-throughput molecular tools such as DNA 

metabarcoding now allow efficient identification of entire insect assemblages, facilitating 

their use in large-scale monitoring (Buchner et al., 2023).  By linking insect diversity patterns 

to forest structural variation, it becomes possible to infer biodiversity responses across broad 

areas. Remote sensing-derived proxies of forest structure therefore offer a potential 

approach to monitoring habitat condition at landscape scales, but there remains limited 

understanding of how effectively these proxies reflect biodiversity itself. Addressing this gap 

is essential for developing effective monitoring and conservation strategies. 

 

Our study focused on the 4 km wide REDD+ leakage belt, or buffer zone, surrounding the Gola 

Rainforest National Park (GRNP) in Sierra Leone. The REDD+ framework requires the 

development of sustainable livelihoods for the 122 communities situated within the leakage 

belt, in conjunction with the implementation of measures to limit deforestation (to avoid 

leakage and loss of stored carbon), and the maintenance of biodiversity value. Combining 

these disparate objectives within a single landscape requires the integration of outputs from 

carbon, biomass, land cover class and biodiversity studies. Such a system relies on the 

development of dependable and empirically founded methods for monitoring across  

landscape scales. By improving biodiversity monitoring at scale, this approach could 

ultimately support conservation planning and guide sustainable land-use decisions, including 

agricultural intensification strategies that minimise biodiversity loss. 

This study uses aerial insect communities to describe biodiversity and explores how well 

aspects of forest structure, measured through both field surveys and EO proxies explain 

variation in these communities across the buffer zone of the GRNP. Specifically, we ask:  

Does forest structure, as determined by field surveys, explain and predict spatial variation in 

insect communities across the buffer zone? 
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To what extent can proxies of forest structure derived from satellite remote sensing predict 

biodiversity patterns of insect communities across the same area?  

To address these questions, we tested the hypotheses that variation in forest structure, as 

determined by field surveys, is associated with differences in insect communities, and that EO 

derived proxies of forest structure provide stronger predictive power for insect community 

variation than direct field measurements. The outputs of this analysis are used to create maps 

of insect community similarity and richness. 

 

3.3 Materials and Methods 

3.3.1 Study Area 

The GRNP forms a large part of the remaining Guinean Forests of West Africa, a global 

biodiversity hotspot (Conservation International, 2023; Myers et al., 2000). Our study was 

conducted across a 40km stretch of the buffer zone surrounding the central block of the 

GRNP. The buffer zone is 4km wide and comprises a mixture of primary and secondary forest 

and areas that have been clear cut. Both forest types may experience selective logging, and a 

patchwork of land uses (patch type), including agroforestry cocoa, low-intensity oil palm and 

subsistence agriculture may be found in the forest under canopy as well as in the clearcut 

areas. A diverse array of beetles and low-flying insect species were collected using Malaise 

traps (Uhler et al., 2022) at 105 sites within the buffer zone, and 11 sites from within the GRNP 

Figure 3-1, during the months of November and December 2021. Trap sites were selected in 

situ to cover a broad range of forest and land use, and within a general survey area each sites 

were separated by at least 150m. A link to the raw data is provided at the end of this chapter.  

Each trap was left for a period of five days, and samples were collected and stored in 100% 

ethanol. To describe the environment within a 30m radius of each trap, the maximum canopy 

height, percentage cover of bare ground, grass, cocoa, lianas, and forest were estimated. 

Additionally, evidence of burning, the presence of oil palms, or tree stumps greater than 10cm 

or 30cm were recorded. 
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Figure 3-1: Area of study: The Northern and Central blocks of the GRNP and their buffer zones, with the location 

of traps and villages indicated. Inset: Location of the buffer zones around the combined northern and central 

blocks and the southern block of the GRNP within Sierra Leone.  

 

3.3.2 Sample Processing 

Malaise trap samples were processed using DNA metabarcoding (Piper et al., 2019) in order 

to identify operational taxonomic units (OTUs) based on similar DNA clusters identified. Each 

OTU was then compared to the Barcode of Life database to assign it to the lowest taxonomic 

level possible. A description of the sequencing process can be found in the appendices. Of the 

3,869 OTUs recorded, 1,268 were identified to a taxonomic kingdom, with 1,152 of those 

being identified as insects. Our study analysed the 284 insect OTUs that were found in at least 

three sites, which was the suggested minimum for these models  (Pichler and Hartig, 2021). 
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3.3.3 Remotely sensed data 

A wide range of Earth Observation (EO) platforms have been employed to approximate forest 

properties in the past. As previously described, spectral properties are expected to respond 

to variations in vegetation types.  To compare satellite arrays against each other, a single 

cloud-free surface-reflectance image, taken within one month of the field surveys, was 

obtained for Landsat-8 and Sentinel-2, and a cloud-free composite image for March 2022 

from Planet. For each image, and dependant on the available reflectance bands, up to nine 

vegetation indices were calculated that highlight ecological properties of the reflected 

surface. The normalised difference vegetation index (NDVI), although prone to saturation 

over dense forests (Huete et al., 1997), is still able to determine between other vegetation 

gradients (Irteza et al., 2021) and is included as deforested areas are included and as a 

standard index for vegetation productivity. The perpendicular vegetation index (PVI) and 

modified soil adjusted vegetation index-2 (MSAVI2) highlight early regrowth from bare soil; 

the enhanced vegetation index (EVI), normalised difference red edge (NDRE), and green 

normalised difference vegetation index (GNDVI) highlight changes in dense canopy cover; 

normalised difference infrared indices five and seven (NDII5 and NDII7) react to variation in 

leaf moisture; and finally, the normalised burn ratio (NBR) and visible atmospherically 

resistant index (VARI) measure disturbance caused by recent burning and clear cutting, which 

also coincide with the field survey descriptors of evidence of recent burning or logging. It is 

recognised that frequent burning and the time since the last burn are also potential 

influencers of forest structure (Burivalova et al., 2015; Rappaport et al., 2022, 2018), but these 

variables were beyond the scope of this study and not included in analysis.  

In addition to the spectral properties of individual pixels, spatial patterns in pixel values are 

also expected to convey information about forest structure (Rocchini et al., 2004). Grey Level 

Co-occurrence Matrices (GLCM) describe the pattern of co-occurring neighbouring pixel 

values of a single raster layer (Zhou et al., 2017). These matrices were calculated for each 

spectral band and vegetation index. GLCMs describe the pattern of co-occurring neighbouring 

pixel values of a single raster layer (Figure 3-2) within a moving window. A window size of 

approximately 90m was used for all satellite platforms (Landsat:3 x 30m pixels, Sentinel:9 x 

10m pixels, Planet:17 x 5m pixels), which from visual inspection of satellite images, appeared 

to be an appropriate size for effectively covering a uniform patch type with minimal influence 
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by neighbouring patch types on the window (Hall-Beyer, 2017). To describe the variation 

within GLCMs, the contrast, entropy, and mean values were calculated (Hall-Beyer, 2017; 

Haralick et al., 1973). GLCM calculations were performed in R using the “glcm” package 

(Zvoleff, 2020). The values for each spectral band, vegetation index, and GLCM layer were 

summarised as the mean pixel value and standard deviation of pixel values within a 30m 

radius of each trap location. The number of reflectance bands, and subsequently, the number 

of indices differ between satellite platforms. Consequently, the number of EO descriptors for 

each platform varies. Landsat-8, Sentinel-2, and Planet had 120, 150 and 80 EO descriptors 

respectively. A summary of the metrics for each satellite is shown in Table 3-1.  

 

 

Figure 3-2: Examples of three theoretical forest patch types. All three have the same number of dark (valued 

3)and light (value 1) green pixels, thus mean statistics would describe each block of 16 as medium green (value 

= 2)  with equal standard deviation to colour. However, GLCMs value each pixel not by its colour but by the 

patterns of neighbouring values and would provide different values for each pixel and thus patch. 

 

In addition to optical EO platforms, imagery captured by synthetic-aperture radar satellites 

such as Sentinel-1 is also used. These satellites emit polarised energy, which is influenced by 

the geometric structure and water content of the area being observed. The strength and 

polarity of the returned signal are measured, thereby providing insights into the surface 

structure. Studies have demonstrated the utility of radar imagery in the measurement of 

biomass and the differentiation of different forest types and areas of similar colour 

reflectance that have differing structural properties (Numbisi et al., 2019; Solberg et al., 

2014). An ortho-corrected and processed image from Sentinel-1, , captured in January 2022, 

containing single and dual-polarised (Vertical-Vertical and Vertical-Horizontal) bands, was 

used. Similarly to the optical platforms, each band was represented by the mean and standard 

deviation of pixel values around the trap. 
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Finally, a contemporary snapshot may mask longer-term impacts, particularly in the GRNP 

buffer zone, which contains fragments of both original and recovering forest. We therefore 

also included the time since deforestation, calculated from historic Landsat data in the Global 

Forest Change Database (Hansen et al., 2013). Likewise, EO variables may fail to identify more 

subtle drivers of disturbance that relate to accessibility. Consequently, the distance to the 

GRNP boundary for each trap point was also included, with traps outside the GRNP being 

given a positive distance, and those inside, a negative distance. 

 

Table 3-1: The colour bands available and indices created for each satellite platform. 

Bands Landsat 8 Sentinel 2 Planet 

Blue x x x 

Green x x x 

Red x x x 

Red-Edge 1  x  

Red-Edge 2  x  

Red-Edge 3  x  

Near Infra-Red x x x 

Short-wave Infra-Red x x  

Medium-wave Infra-Red x x  

INDICES    

EVI x x x 

GNDVI x x x 

MSAVI2 x x x 

NBR x x  

NDII5 x x  

NDII7 x x  

NDRE  x  

NDVI x x x 

PVI x x x 

VARI x x x 

 

 

 

Insect distribution is influenced by the climate of an area, and seasonal changes may influence 

the communities found, but variations in community composition between forest vegetation 

types have been shown to remain constant throughout the year (Zhang et al., 2016). While 
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global climate change can also influence insect communities, these changes can be difficult 

to generalise and gauge from a single survey (Pureswaran et al., 2018; Subedi et al., 2023). 

Insect distribution has also been shown to have some correlation with elevation, although 

studies vary in their findings and it is thought that much of the correlation found can be 

ascribed to variations in sampling timescale, human disturbance and climates found at 

different elevations (Hodkinson, 2005; McCoy, 1990; Wolda, 1987). As we were specifically 

testing the ability of satellite observation to predict the distribution of insect communities, 

we felt the inclusion of climate and elevation could have detracted from this analysis, and 

they were excluded from our models.   

 

3.3.4 Statistical Analysis  

Insect communities were modelled using joint species distribution models (JSDM). JSDMs 

model all species concurrently, considering the effects of environmental gradients on species 

distributions, as well as spatial autocorrelation and correlations in pairwise-species 

cooccurrence (Leibold et al., 2022). To accommodate the large matrices generated by DNA 

metabarcoding, which are characterised by a high proportion of absences, we used the 

sparse-JSDM package “sjSDM” (Pichler and Hartig, 2021), utilising the recommended  elastic-

net and regularisation parameters (M. Pichler, personal communication, 20th June 2023). 

To investigate the impact of forest habitats on insect communities, an sjSDM was fitted to the 

entire dataset using the 10 habitat descriptors that were measured in situ. Subsequently, the 

data were randomly divided into five groups and five sJSDMs were created, each withholding 

one of the five groups and being fitted to the remaining four. Each model was subsequently 

used to predict to the hold out group. AUCs were then calculated to enable a  comparison of 

predictive performance with EO models. 

The wide variety of methods used to process satellite imagery are indicative of a range of 

ways in which EO data may recover elements of forest composition or structure (Lausch et 

al., 2016). EO variables were designated one of four groups: raw reflectance bands, 

vegetation indices, GLCM of bands (GLCM-B) and GLCM of indices (GLCM-I). To address the 

high dimensionality of the EO data sets, which  ranged from eight (8) to 155 per group, 

dimension reduction was applied to prevent overfitting in subsequent analysis. Sparse 

canonical components (SCC) were used to maximise the correlations between EO and 
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ecological (survey) data, while condensing the EO data to a fixed number of variables. This 

approach ensured consistent dimensionality across models, allowing for direct comparison 

of their performances.  The smallest group (raw spectral bands of the Planet satellite array) 

contained eight variables, which limited the number of SCCs to seven to ensure some 

degree of data compression while preserving statistical stability. Consequently, in 

preliminary analysis, all combinations of EO reflectance variables were reduced to seven 

SCCs to maintain uniformity in the number of predictor variables used in each model. The 

four Sentinel-1 radar values were independently reduced to one SCC. All SCCs were created 

using the sgdm package (Leitão, Schwieder and Senf, 2016). To exhaustively test the 

performance of EO variables, for each optical satellite platform, 120 JSDMs were fitted, 

covering all possible combinations of EO groups, combined with all possible combinations of 

the additional variables of radar, year of deforestation and distance to the GRNP ( 

Table 3-2). Model performances were measured by McFadden’s pseudo-R2, an option built 

into the sjSDM package, which was used to ascertain which satellite array and group of 

variables would be used for ongoing analysis. Subsequently, to find the most appropriate 

number of SCCs to use, models were fitted with between one and 20 SCCs, created using data 

from the best performing variable group and satellite platform. It was found that 10 SCCs 

most effectively fit to our survey data, and this number was used in all further analysis. 

To test the sensitivity of model performance to the scale of measurement, ten optical SCCs 

were then created by processing reflectance values measured at different radii around each 

trap (30, 60, 90, 120, 150, 250 and 500m). In addition, one radar SCC was generated for each 

radius. The data sets for each radius were combined with the fixed values of the year of 

deforestation and distance to the GRNP, and then modelled independently. For each radius, 

the complete data set was randomly divided into five groups, and five models were fitted. 

Each model was fit to four groups, which was then used to predict to the fifth held out group. 

The AUC for each model was then calculated on a per species basis. The mean predictive AUC 

across all five models for each radius was then calculated, and the model with the highest 

predictive performance selected. The distribution of variables used in the final model are 

plotted in Figure 3-3. Correlation was found between the first two canonical components, but 

this was considered acceptable given that the goal was prediction rather than causal 

inference (Dormann et al., 2013; Doser et al., 2023).  To minimise the potential impact of 
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group selection, the AUCs for the final model were calculated four times, with a different 

random split of the data set used each time. The OTUs for which predictive performance was 

considered good (AUC>0.7) (Mandrekar, 2010), hereafter referred to as high-AUC OTUs, were 

identified and were subsequently used in further predictive analysis. 

Finally, in order to better understand  how much the EO variables related to the structure of 

the forest canopy, the same variables from the most effective EO model were employed to 

predict the ~30m point-level estimates of maximum canopy height, percent canopy cover, 

and foliage height diversity derived from the GEDI lidar platform (Dubayah et al., 2022). A 

random-forest model was constructed using the “randomForest” package with default 

settings (Liaw and Wiener, 2002) to analyse 2,448 GEDI points within the study area. The 

models were evaluated by the percentage of variance explained and the root mean square of 

residuals on out-of-bag samples. The most influential variables were noted. Simple linear 

regressions were employed to investigate the relationship between the probability of 

occurrence of each of the high-AUC OTUs and the maximum canopy height, percent canopy 

cover, and foliage height diversity estimated by GEDI. The direction of the significant 

relationships between OTUs and each of the descriptors was noted. 

 

Table 3-2: The variables and groups used as covariates in models. The 15 combinations of reflectance variables 

were multiplied with the 8 possible combinations of other variables, giving 120 combinations to be modelled 

per satellite platform. 

Reflectance Variables Other Variables 

Bands No Additional Variable Used 
Indices Radar 
GLCM from Bands Deforestation Year 
GLCM from Indices Distance to GRNP 
Bands + Indices Radar + Deforestation Year 
Bands + GLCM_B Radar + Distance to GRNP 
Bands + GLCM_I Deforestation Year + Distance to GRNP 
Indices + GLCM_B Radar + Deforestation Year + Distance to GRNP 
Indices + GLCM_I   
GLCM_B + GLCM_I   
Bands + Indices + GLCM_B   
Bands + Indices + GLCM_I   
Bands + GLCM_B + GLCM_I   
Indices + GLCM_B + GLCM_I   
Bands + Indices + GLCM_B + GLCM_I   
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Figure 3-3: The distribution and relationship of the predictor variables used in the final model. These comprise 

ten Landsat canonical components (SCC1-10), Hansen year of deforestation (hans), distance to the boundary of 

the GRNP (distance) and the single Radar SCC (radar). 

 

3.3.5 Prediction 

The final EO model, based on the most effective satellite platform, variable group, buffer 

value and number of SCCs,  was fitted to the full data set to predict the whole community 

across the central GRNP and its buffer zone. This was then used to map the distribution of the 

high-AUC OTUs. When predicting to larger areas outside the range of training data, 

environmental variables were clamped to lie within the range of the training data, with higher 

and lower values converted to training data’s maximum and minimum values (Anderson and 

Raza, 2010; Li et al., 2024). 

To illustrate the variation in communities across the landscape, a community similarity index 

was calculated based on the probability of occurrence of all high-AUC OTUs per point. This 

was achieved using the “Rtsne” package (Krijthe, 2015), which produced two ordination axes. 

These axes were used to create colours for the mapping of community similarity across the 

area using the “recluster” package (Dapporto et al., 2020). 
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To use insect communities to infer biodiversity levels, species richness was calculated as the 

sum of all probabilities of occurrence. Additionally,  to explore whether richness varied with 

forest structure, for each of the three measured structures, the richness of OTUs that 

exhibited significantly positive and negative relationships was calculated.  Summing OTU 

richness in this way, may provide a guideline of where maximum richness exists at both sides 

of the spectrum in terms of forest structure, as described by the proportion of canopy cover 

the maximum canopy height, and the diversity of canopy height. These three metrics are 

indicators of both horizontal and vertical canopy complexity, which would be expected to vary 

along with changes in forest disturbance and succession (Iheaturu et al., 2024). The residual 

richness after subtracting the positive and negative relationship richness from each other may 

provide a useful tool in identifying areas for protection as they are likely to be high quality 

forest, or heavily disturbed forest where agricultural intensification will have the lowest 

impact.  

 

All analyses were conducted using R version 4.1.0 (R Core Team, 2022) in R Studio (R Studio 

Team 2021)(R Core Team, 2022) in R Studio (R Studio Team 2021), and a link to the code and 

data used in our analyses is available at the end of this chapter. 

 

3.4 Results  

A total of 1,152 insect OTUs were identified in the 116 trap sites. Of these, 714 were only 

recorded once. Further analysis was conducted on the 284 OTUs that were recorded in three 

or more sites (Pichler and Hartig, 2021). Given that the mean OTU richness at each site was 

just 26.7 (SD=16.5), it is evident that the mean pairwise dissimilarity between sites was 

extremely high (Sorensen=0.99, Simpson=0.98). The near identical dissimilarity values 

indicate that observed differences in community composition are likely the result of complete 

turnover of OTUs, rather than one community being a nested, less rich subset of the other 

(Baselga, 2010). The number of new OTUs being detected with each new sample indicates 

that this study was not comprehensive in its description of the diversity of aerial insects in the 

GRNP (Figure 3-4). 
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Figure 3-4: The slope of the species accumulation curve indicates that new OTUs were continuing to be found 

with regularity, and that the full composition of the flying insect community was not close to being detected. 

 

Across the first 360 models comparing satellite platforms and EO variable grouping, the 

McFadden’s pseudo R2 of proportion of variation explained ranged between 0.19 and 0.39. 

The ten most effective models were evenly divided among those utilising Landsat-8 (mean 

R2=0.385), Sentinel-2 (mean R2=0.387),  and Planet (mean R2=0.375). The top ten models all 

incorporated GLCM-Bands, with eight also including GLCM-Indices, while none used raw 

bands or indices in SCC construction. Given the lack of evidence that the satellite platform 

used had an effect on results, Landsat-8 was selected as the platform to be used in the 

ongoing analysis, as its coarser resolution minimised the required computer processing 

power, and the availability of historic data may facilitate retrospective analysis. Subsequently, 

using only GLCM-B and GLCM-I to create SCCs, model performance improved when being fit 

with increasing numbers of between 1 and 20 SCCs, but improvements became negligible 

when the number of SCCs exceeded 10. Consequently, all subsequent EO testing used 10 

GLCM-B and GLCM-I derived SCCs. The buffer defining the area over a which a single site was 

described produced the best model performance at 30m, with minimal variation observed up 

to 150m. However, beyond this distance, performances substantially declined (Figure 3-5). 
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Figure 3-5: The range of AUC of 120 models per buffer size used in measuring reflectance values to create 

10SCC’s from Landsat-8 data. Top panel shows explanatory AUC, bottom panel shows predictive AUC.  

 

The final full EO sJSDM, fitted with 10SCCs, the year of deforestation, distance to the GRNP, 

and a radar-derived SCC demonstrated that environmental factors reduced the residual 

deviance of the null model by 19.5%, whereas co-occurrence among OTUs explained 24.4% 

of the variation. Spatial autocorrelation explained just 1.8%. The proportion of variance 

explained is illustrated in Figure 3-6. In predictive models which held out data for validation, 

the mean explanatory AUC was 0.94, while the mean predictive AUC was 0.58. These values 

were achieved across all OTUs, with 55 OTUs exhibiting a predictive AUC of at least 0.7 (high-

AUC OTUs). By comparison, the model fit with only the habitat variables measured in situ 

showed the habitat variables reduced residual deviance of the null model by 18.0%, 

accompanied by an increase in the importance of co-occurrence (31.3%) and spatial 

autocorrelation (9.3%). The predictive sJSDMs fitted to field-data exhibited a mean 

explanatory AUC of 0.85, and a predictive AUC of 0.56. Of the 49 OTUs with an AUC of at least 

0.7, only 12 were common to the high-AUC ETOs described by EO model. 
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Figure 3-6: The proportional influence of environmental variables, spatial autocorrelation, and OTU co-

distribution on site level McFadden’s R2. Each point represents a trap site. 

 

Due to the incomplete nature of community observation, we considered there was a 

possibility that the high-AUC values were merely a random selection from a normal 

distribution. To explore this further, we kept the same count values but randomised their 

locations. For each of four sets of randomisations we re-fitted a model and tested its 

predictive ability. Using this method, we found high predictive abilities for  just 21 OTUs (on 

contrast to 55 using true count locations). A two-sample t-test showed that the mean of all 

AUC using the true count data (0.58) was significantly higher than the mean of all AUC using 

randomised data (0.50) (t(1526) = -8.81, p<0.001). Similarly, as shown in Figure 3-7, a two 

sample Kolmogorov-Smirnov test showed that the two distributions were significantly 

different (D=0.211, p<0.001). These results indicate that our high-AUC OTUs were more than 

just chance predictions. 
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Figure 3-7: Comparison of the density of all predictive AUC values for models run using true and randomised 

locations of count data. 

  

 

The variables used in the final EO sJSDM were also found to be capable of explaining a third 

of the variation in forest structure when modelled with Random Forest (Table 3-3). The three 

most influential variables and the proportion of variance of maximum canopy height, 

percentage canopy cover and canopy height diversity explained respectively were: Distance 

to forest (0.38, 0.26, 0.25); Year of deforestation (0.10, 0.19, 0.17); SCC7 (0.09, 0.11, 0.16). 

When predicting insect communities to locations with GEDI information, binomial tests 

indicated a significant probability that the high-AUC OTUs occurred less frequently with 

increasing values of forest canopy height, cover, and height diversity (Figure 3-8: Predicted  

probability of occurrence (y-axes)  for the 55 high-AUC OTUs as a function of changes in a) 

canopy height, b) canopy cover, and c) diversity of canopy height as measured by the GEDI 

platform. Each line is the line of best fit for an OTU. Red lines show negative associations, and 

blue lines show positive associations.). 
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Table 3-3: The mean and standard deviation of three GEDI measured descriptors of forest structure at 2,448 

points in the GRNP buffer zone, and the percentage of their variance explained by, and the RMSE of out-of-bag 

values predicted by random forest models using variables used in the best performing sJSDM. 

 

 Observed Values Predicted Values 

 

Forest Structure 

Mean 

measured 

value 

Standard 

deviation of 

measured value 

Percent of variation 

explained 

RMSE of modelled 

out-of-bag values 

Maximum canopy height 20.9m 13.0m 31.3% 10.9m 

Percentage canopy cover 57.7% 32.5% 34.4% 26.6% 

Canopy height diversity 2.61 0.62 34.0% 0.51 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: Predicted  probability of occurrence (y-axes)  for the 55 high-AUC OTUs as a function of changes in a) 

canopy height, b) canopy cover, and c) diversity of canopy height as measured by the GEDI platform. Each line 

is the line of best fit for an OTU. Red lines show negative associations, and blue lines show positive associations. 
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The probability of occurrence of the 55 high-AUC OTUs was predicted across a section of the 

northern and central GRNP and its buffer zone, and community similarities were calculated 

and mapped (Figure 3-9). The difference in the predicted richness of OTUs with positive and 

negative correlations with forest structure was calculated and mapped across the central and 

northern GRNP and their buffer zones (Figure 3-11). A greater richness of OTUs with negative 

correlations to each of the three descriptors of forest structure was predicted in the buffer 

zone than inside the GRNP (Table 3-4).  These differential richness levels may be utilised as a 

tool to infer or measure the extent of degradation and environmental health. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9: Community similarity, based on the 55 high-AUC OTUs, across a section of the northern and central 

GRNP and its buffer zone. More similar colours represent more similar communities. A guide to colour 

relatedness is shown in Figure 3-10. Whilst there are observable overlaps of community composition between 

the buffer zone and main park,  orange communities seem more associated with the buffer and purple 

communities with the main park.  
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Figure 3-10: Legend indicating community similarity of Figure 3-9 by the represented colour. A difference of 1 

indicates entirely different communities and a difference of 0 indicates identical communities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11: The difference in predicted richness of OTUs with a positive correlation to Maximum Canopy Height 

subtracted from the predicted richness of OTUs with a negative correlation. Higher total richness indicates a 

greater number of OTUs with a negative compared to positive correlation, and thus potentially indicates where 

areas have a lower canopy height. 
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Table 3-4: The mean and median differences in richness between OTUs with significant positive and negative 

correlations with forest structure, and how they differ between the buffer zone and the GRNP. Higher richness’s 

indicate areas with a greater potential for being degraded as these are areas where OTUs with negative 

correlations are more prevalent than those with positive correlations. 

 
 

Maximum 

Canopy Height 

Proportion 

Canopy Cover 

Canopy Height 

Diversity 

Total 

Richness 

Mean Richness Inside GRNP 0.74 1.02 0.61 4.55 

Median Richness Inside GRNP 0.25 0.20 0.01 3.04 

Mean Richness Outside GRNP 1.11 3.41 2.00 5.88 

Median Richness Outside GRNP 0.40 1.70 0.62 3.83 

 

3.5 Discussion 

Effective tropical forest conservation requires not only protecting tree cover, but also 

conserving biodiversity, including both plant communities and the animal species they 

support. In forests under anthropogenic pressure, changes in structure can influence these 

biodiversity patterns. Our results show that remotely sensed structural variation provides 

meaningful insight into biodiversity across the GRNP buffer zone, supporting the 

development of monitoring approaches suited to conservation planning. By using insects as 

indicators of biodiversity, we demonstrated that satellite imagery can predict insect diversity 

across a tropical forest with a degree of accuracy comparable to, if not slightly superior to, 

habitat descriptors collected in the field. Although neither dataset was able to reliably predict 

more than 20% of the OTUs tested, the JSDM fitted to EO data allowed their turnover to be 

mapped at large scales. Notably, the inverse correlation between many of the well-predicted 

taxa and structural properties such as canopy cover and height suggests that the subset of 

taxa highlighted by this study is likely to be more strongly associated with open and degraded 

habitats than to represent the diversity of insects in closed forests. 

 

3.5.1 Influence of Satellite, Scale and EO variables 

Despite the importance of spectral and spatial resolution of satellite imagery in describing the 

turnover of function and physiology of vegetation communities (Helfenstein et al., 2022), the 
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optical satellite platform from which we extracted spectral data did not influence model 

performance. The performance of our model was not contingent on a specific optical imaging 

platform, as the objective was not to identify or classify an individual pixel. The objective was 

rather to describe how insect species that are invisible to the satellite, are responding to 

variations in general conditions of the visible surface. Similarly, the model’s lack of sensitivity 

to modest changes in the buffer areas used to calculate spectral means, indicates that local 

habitats are delineated across numerous pixels rather than being confined to the specific pixel 

of the trap site. A second and related pattern was the consistent inclusion of GLCM rather 

than the raw values used to create them. This indicates that the changes being captured by 

the current model were not responding to mean spectral variation, but instead were 

responding to changes in spatial patterns that relate to vegetation types (Dorigo et al., 2012). 

 

The presence of cloud cover over tropical forests can make the acquisition of temporally 

relevant, images, with sufficient clarity, a challenging endeavour (Quiñones et al., 2007). The 

utilisation of a greater temporal resolution, through the implementation of more frequent 

satellite passes, can facilitate the generation of a greater number of images from which a 

cloud-free composite can be constructed. However, the cloud-free composites created using 

Landsat-8 or Sentinel-2 were of a noticeably inferior quality to the single (almost) cloud-free 

image obtained for each. Although the pre-processed composite provided by Planet appeared 

to be relatively clear, a slight image-wide haze was discernible, which may have contributed 

to the marginally inferior model results obtained using Planet data. 

 

In contrast to passive reflectance, radar imagery is not affected by cloud cover and has the 

capacity to penetrate the forest canopy to a limited extent, thereby enabling the description 

of the underlying structure. The combination of radar imagery with spectral imagery has 

been shown to improve land classification in diverse and dense forests, particularly when 

textural GLCM measures of radar were included (Mishra et al., 2019; Numbisi et al., 2019). 

Our results were similarly improved by the incorporation of radar data, but despite our use 

of GLCM in describing optical reflectance values, we did not follow the same protocol for 

the Sentinel-1 radar imagery but would do so in future studies.  

Radar imagery does have some limitations, as shorter wavelength radar in particular, can 

have its ability to penetrate vegetation layers impeded by  a high-water content in the forest 
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canopy, which reduces the influence of understory vegetation on the reflectance (Cagnina 

et al., 2023). Thus, variability in water content in or on the leaves due to rain, dew, or 

seasonal change can cause temporal or spatial variation in radar backscatter for areas of 

similar cover. The C-band (medium wavelength) radar of Sentinel-1 used in this study is less 

affected, but is still sensitive to water in vegetation layers, and while it has been shown to 

be adequate in predicting vegetation indices, it is least effective in forested areas (Lasko, 

2022). A new satellite platform, designated NISAR (NASA-ISRO Synthetic Aperture Radar),  is 

scheduled for launch in 2024. It contains a longer wavelength radar which is less affected by 

surface moisture and better able to penetrate forest canopies and describe sub-canopy 

structures. Further investigation of both current and upcoming radar imagery may prove 

beneficial for studies conducted in high cloud areas, particularly when considering 

phenology, or when temporal description is required congruent with biodiversity surveys.  

 

3.5.2 Insect Communities and Forest Structure 

As is common in species rich tropical ecosystems, only a limited portion of the insect 

community was sampled, and community composition showed complete turnover between 

sites. This is an expected outcome when sampling mobile, hyper-diverse taxa across 

heterogeneous landscapes (Feeley and Silman, 2011). Despite this, species co-occurrence 

explained a substantial portion of variation, showing that species did not associate randomly. 

Variance partitioning also indicated that descriptors of forest structure had a similarly strong 

influence on community composition, demonstrating that ecological processes structured 

these communities in predictable ways. The ability to predict significantly more OTUs than 

expected by chance reinforces that the data captured meaningful ecological signal, despite 

being incomplete (Moudrý and Šímová, 2012). This is further supported by the use of DNA 

metabarcoding, which, while unable to capture a fully exhaustive species list, is well-suited to 

efficiently sampling broad taxonomic diversity in tropical ecosystems (Bohmann et al., 2014; 

Yu et al., 2012). These results show that the biodiversity data, while limited, were fit for 

purpose in assessing broad patterns in the response of aerial insect communities to forest 

structure. 

 



 

57 
  

It is unsurprising that the species accumulation curve indicates, in line with previous studies 

(Basset et al., 2012; Erwin, 1982; Stork et al., 2015), that the true diversity of arthropods is 

likely to be much higher than observed. Indeed, Basset et al. (2012) estimated that up to 

44,000 arthropod species could exist in a Panamanian tropical forest, with each hectare of 

that forest containing almost two-thirds of all species that occurred within it. However, the 

Basset study was unusually intensive, requiring such sustained sampling that it is rarely 

replicated. Conversely, our study was designed as a pilot to trial EO and collected a relatively 

limited number of samples. The wealth of insect biodiversity may appear daunting to monitor, 

but it plays an indispensable role in the overall functioning and integrity of forests. Advances 

in technology, particularly DNA metabarcoding, have significantly reduced the barriers to 

studying such diverse taxa, but further work is needed to understand the turnover of the 

wider community (Zhang et al., 2016). 

 

Wherever studies have had the resources to test biodiversity patterns, they have observed a 

strong correlation between the composition of plant and insect communities.  The anticipated 

correlation between EO data and forest structure is corroborated by the fact that the same 

EO variables that are most effective in predicting insect communities could also explain 

approximately one-third of the variation in forest structural properties. The negative 

associations between many well-predicted OTUs and GEDI estimates of forest height, canopy 

cover, and structural heterogeneity suggest a preference for lower and less diverse canopy 

structure, which is indicative of younger, secondary, or degraded primary forest (Clark et al., 

2021). Likewise, a reduction in canopy cover at the local level would indicate a  degree of 

deforestation. Thus, rather than identifying indicators of different forest types, many of the 

well-predicted OTUs were associated with elements of forest degradation. Only 12 high-AUC 

OTUs were shared between the EO- and field-models, indicating that each model may be 

driven by different proxies of degradation. Some  in situ descriptions of canopy cover may be 

identifiable from EO, but other features such as the presence of lianas or shade-cocoa are 

aspects of the understory that may not be captured by parallel changes in the canopy 

reflectance. The greater mean richness of degradation-correlated OTUs in the buffer zone 

also suggests that our model was more adept at predicting the taxa associated with more 

fragmented or edge habitats. It can be reasonably assumed that these taxa would be less 

common in the relatively intact NP.  
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3.5.3 Practical utility for conservation monitoring 

The GRNP buffer zone supports a mosaic of land uses, including logging, subsistence farming, 

agroforestry cocoa, and low-intensity oil palm plantations, all of which influence the 

effectiveness of the protected area (Laurance et al., 2014). Click or tap here to enter text. 

Conservation incentive schemes, such as payments for biodiversity conservation can offset 

this by extending the sphere of influence of protected lands, provided they balance local 

income generation with biodiversity outcomes (McDonald et al., 2018). Click or tap here to 

enter text. However, these schemes rely heavily on the ability to monitor environmental 

condition across the buffer zone, particularly as land use shifts and intensifies.  At the same 

time, demand for large-scale biodiversity monitoring is growing in the private sector, driven 

by the new  Corporate Sustainability Reporting Directive (CSRD), which requires companies 

operating in the EU to report annually on the biodiversity impacts of their supply chains, 

particularly in sensitive areas (European Commission, 2022). With thousands of companies 

affected, the need for scalable biodiversity monitoring tools is set to increase, reinforcing the 

practical relevance of approaches like the one tested here.  

 

This study demonstrates that EO proxies of forest structure can provide a practical, spatially 

explicit indicator of biodiversity patterns, with clear relevance to both conservation and land-

use planning. The ability to generate biodiversity relevant maps across the landscape means 

these methods can be used to emphasise where field surveys are most needed. However, this 

approach is not intended to replace field surveys. Direct biodiversity sampling remains 

essential for species-level identification, and for capturing fine-scale habitat associations and 

ecological processes (Yu et al., 2012). Rather than replacing fieldwork, remote sensing offers 

a spatially scalable complement, identifying where structural change is occurring and 

highlighting areas that deserve closer ecological inspection. Combining remotely sensed 

structure with field surveys for ground truthing offers the most effective strategy for large 

spatial and temporal scale biodiversity monitoring. 

 

The results also highlight some important practical caveats. The extremely high level of 

species turnover between sites, although a recognised feature in tropical forests (Feeley and 

Silman, 2011), limits the strength of any single model, reinforcing the need  for ongoing field-
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based sampling. Additionally, although community similarity and richness both provide useful 

biodiversity proxies, they are not fully independent metrics as similarity is partly shaped by 

richness differences (Baselga, 2010). This means that mapping richness and similarity 

separately could be misleading if interpreted without considering the underlying relationship 

between the two. Nevertheless, used together, these metrics can describe spatial biodiversity 

patterns across complex, multi-use landscapes that characterise buffer zones. 

 

Finally, although remotely sensed structural data are increasingly accessible through global 

platforms, the most readily available products have important limitations when applied to 

biodiversity monitoring at local scales. These off-the-shelf products are often coarse in 

resolution, updated infrequently, and simplified into broad categories, which mask the finer 

structural variation that biodiversity responds to. As this study demonstrates, it is possible to 

generate more ecologically meaningful structural metrics that better reflect the continuous 

variation in habitat condition across the buffer zone. This type of tailored analysis, linking 

spectral heterogeneity directly to biodiversity patterns, offers far greater value for 

conservation management than simply relying on generic global products. If conservation 

planners want spatially explicit biodiversity relevant information, particularly in 

heterogeneous landscapes like tropical buffer zones, investing in customised remote sensing 

workflows like the approach tested here, provides a practical path to more reliable and 

actionable monitoring data (Skidmore et al., 2015). Overall, this study illustrates that, even 

with limited biodiversity data, EO derived forest structure can provide meaningful insights 

into spatial patterns of biodiversity across tropical buffer zones. 

Click or tap here to enter text.  

 

3.5.4 Conclusion 

There is a substantial body of empirical evidence supporting the assumption that insect 

diversity is strongly associated with vegetation structure and diversity. However, the 

mechanisms underpinning this association are not easily resolved. Moreover, studies have 

encountered difficulties in describing the diversity of plant communities within tropical 

environments from satellite imagery due to the extremely high plant diversity and lack of 

change in reflectance across seasons (Rocchini et al., 2016; Torresani et al., 2019). The high 



 

60 
  

plant and insect diversity observed in tropical forests, coupled with the high turnover 

observed among Malaise samples, suggests that local and landscape-scale estimates may be 

substantially underestimated (Basset et al., 2012). Despite these challenges, this study 

demonstrated that EO derived metrics explained variation in insect community composition 

across the buffer zone, with predictive power varying widely between taxa.  While some taxa 

were predicted particularly well, the overall signal across the community was modest but 

clearly non-random, indicating that structural proxies  captured ecologically meaningful 

variation in habitat condition. This is encouraging given the limited sampling conducted, and 

it suggests that with more comprehensive field data to calibrate models, a significantly higher 

proportion of taxa could be predicted using similar approaches.  Furthermore, it is possible 

that relationships identified could become more pronounced if more sophisticated sources of 

remote sensing become available and were included in future work. 
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4. Assessing variations in Peruvian Amazon bird 

communities and the utility of Landsat variables 

for biodiversity monitoring. 

4.1 Abstract 

The extent of deforestation and degradation of the Amazon rainforest is significant, with 

more than a third of the forest lost or altered as a result of various human activities, including 

logging, agricultural expansion, and fires. While the role of Earth observation satellites in 

delivering and reporting on the success of policies to preserve forest cover is widely 

appreciated, the impact of site and landscape degradation on the distribution of biodiversity 

within the remaining forests has proven far harder to assess at large scales. This study 

concentrated on the Tambopata forest in the Madre de Dios region of south-eastern Peru 

which has a long history of monitoring, to explore whether bird communities respond in line 

with changes in habitat type and indicators of forest degradation. A total of 3129 surveys 

were conducted over a 16-year period, and the drivers of community turnover were examined 

along with the power of existing monitoring approaches to detect potential future change.  A 

high-dimensional description of the forest canopy and land surface was created using Landsat 

imagery, being the platform which provided the highest resolution imagery over the period 

of study. We tested the potential of both habitat descriptors and Landsat derived remotely 

sensed (RS) variables to predict the probability of both occurrence and detection of the 135 

species most frequently observed of 358 species identified in total. Models based on Landsat 

reflectance had superior predictive performance for bird species occupancy (mean AUC = 

0.68), compared to models trained on habitat data (mean AUC = 0.58). Furthermore, they 

exhibited high predictive ability (AUC>0.7) for a greater number of individual species (49 

compared to 20 for each data set respectively). Species detection rates were found to be very 

low, meaning the true richness of bird communities was possibly greater, and the variation in 

community composition across the landscape lower than that of the communities observed. 

Consequently, predictions of community composition were found to be less effective than 

those of individual species. 
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Despite the promising potential of remotely sensed data in species distribution models, the 

low detection rates of many species  significantly reduce the ability of models to accurately 

estimate community composition and detect changes in community structure over time. To 

increase detection rates and thus the ability of models to better predict communities, we 

propose survey designs that concentrate on more replicates at fewer sites. Should 

conservation projects set clear trigger points, such as predefined percentage increases or 

decreases in species occupancy, surveys could be designed to  ensure a defined probability to 

detect those changes. Our findings highlight the potential for satellite remote sensing to 

enhance biodiversity monitoring beyond the measurement of deforestation and land use. By 

integrating refined survey design with RS data, the detection of species declines and habitat 

degradation can be improved, thereby strengthening adaptive management strategies for the 

conservation of tropical forests. 

   

4.2 Introduction 

Tropical forests are the most biologically diverse areas on Earth (Bradshaw et al., 2009; Gibson 

et al., 2011), and more than a billion people depend directly on them for food, materials, and 

services (Lewis et al., 2015). Tropical forests also play a key role in the global carbon cycle, 

accounting for approximately half of terrestrial carbon uptake and accounting for up to two-

thirds of the carbon sink in biomass, soil, and deadwood, of all forests worldwide (Hubau et 

al., 2020; Pan et al., 2011). However, clear-cut logging and commercial agriculture are altering 

or completely destroying forest habitats. This is evidenced by the fact that over 17% of the 

Amazon Basin, the world’s largest continuous tropical forest, has been deforested and 38% 

of the remaining area has been degraded (Lapola et al., 2023; Potapov et al., 2017; Vergara 

et al., 2022). 

 

Conservation strategies, such as the Reducing Emissions from Deforestation and Degradation 

(REDD+) initiative, are believed to have had a generally positive, albeit variable, influence in 

reducing deforestation, enhancing carbon stocks, and improving sustainable forest 

management (Guizar-Coutiño et al., 2022; UNFCCC, 2023; Wunder et al., 2024). However, 

despite reductions in deforestation and increases in the amount of tropical forest falling 
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under protection, half of the world’s tropical forest reserves continue to lose taxonomic and 

functional biodiversity due to anthropogenic disturbances other than forest cover loss 

(Barlow et al., 2016; Laurance et al., 2012). The loss of forest cover can be used to estimate 

the level and location of carbon loss and  is routinely mapped in near real-time (Hansen et al., 

2013), but to assess the efficacy of biodiversity conservation strategies, such as REDD+, 

beyond forest cover conservation, it is necessary to ascertain the current condition of 

biodiversity within the ecosystem and where and how it changes in the future (Stork et al., 

1997; Titeux et al., 2016; Willis et al., 2007). 

 

The characteristics of ecosystems can be described structurally by the type, quantity and 

distribution of elements within them (Pettorelli and Schulte to Bühne, 2022). However, 

categorical elements such as whether or not an area is a forest, is intact, has been logged, is 

secondary, is a plantation, can be ambiguous or dependant on viewpoint, and require prior 

knowledge to define them (Chazdon et al., 2016; Savilaakso et al., 2023). Despite any a priori 

assumptions, the selected elements may not be the most effective descriptors of an 

ecosystem’s condition. In this regard, essential biodiversity variables, including species 

distribution, abundance, and community composition, have been proposed as additional 

criteria to monitor (GEO BON, 2018; Pereira et al., 2013). Thus, defining the ecological health 

of forest environments and identifying where and how biodiversity is changing requires 

monitoring and description that goes beyond simply quantifying deforestation levels. Satellite 

remote sensing (RS) cannot directly see essential biodiversity variables, but it allows for the 

measurement of deforestation along with land cover and habitat structure (Hansen et al., 

2013). RS can also provide a broader, scalable environmental descriptors, alternative to field 

surveys, that act as proxies for essential biodiversity variables, for example, ecological 

diversity, phenology and physiology (Asner et al., 2013; Pettorelli et al., 2005; Purdon et al., 

2022; Zhang et al., 2003). Continuous remotely sensed variables have also been shown to be 

better than land class at describing plant species richness and diversity (Perrone et al., 2023). 

RS surface reflectance values can therefore be used to infer vegetation and environmental 

structure as continuous gradients, rather than discrete categories, over a region of interest. 

This approach avoids the need to pre-define  habitat classes that may overlook important 

ecological variation and reduces the mismatch between habitat classification and the scale at 

which they can be measured. While RS variables can infer potential structure and ecological 
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richness, there is little understanding of how they relate to ecological communities within 

forests (Ludwig et al., 2016; Pettorelli et al., 2014b; Turner et al., 2003). 

 

Thus, the measurement of structure or deforestation alone provides only a partial description 

of an environment’s condition, but faunal biodiversity can regulate forest dynamics (Barlow 

et al., 2016) and be used as an indicator of ecosystem state (Dirzo et al., 2014; Gerlach et al., 

2013). Many studies have shown that land use and vegetation structure influence the 

biodiversity of an area. For example, dung beetle community composition and soil 

bioturbation are influenced by the intensity of logging within tropical forests and the spatial 

scale at which it is measured  (França et al., 2017). Similarly, the richness and biological 

function of mammal communities are impacted by proportional levels of deforestation and 

the resulting size of forest patches in Atlantic Amazonian forests (Magioli et al., 2021). 

Furthermore, insect community richness and composition have been shown to respond to 

and reflect forest structure, forest composition, plant diversity and forest age (Basset et al., 

2012; Schowalter, 2017; Traylor et al., 2022; Zhang et al., 2016). Finally, the structure of bird 

communities has been used both to assess the effectiveness of reforestation (Barros et al., 

2022), and to show that they are negatively affected by patch size reduction within the 

Brazilian Amazon (Bregman et al., 2015). 

 

However, the biodiversity surveys required to adequately monitor indicator taxa are time 

consuming and expensive, thus limiting the effective area that can be monitored in space and 

time (Rocchini et al., 2016; Skidmore et al., 2015). Nevertheless, results from biodiversity 

surveys can be linked in statistical models with RS descriptors of the Earth’s surface, to 

estimate community and ecosystem structure across a landscape with limited expense (Csillik 

et al., 2019). We would expect Amazonian bird communities to be broadly influenced by the 

characteristics of the forest in which they occur, and if changes in forest structure led to 

changes in bird communities, we would expect that remotely sensed surface reflectance 

values to correlate with this.  

 

The aim of this study was to test whether RS data can be used to predict changes in the 

diversity of bird communities across the forests of the Tambopata Forest of south-eastern 

Peru. We hypothesise that bird community composition will vary predictably between habitat 
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classes, and that continuous RS derived surface reflectance variables will explain a significant 

proportion of this variation. Furthermore, we expect that the predictive power of continuous 

RS descriptors will exceed that of categorical habitat descriptors.   If successful, predicted bird 

communities could act as an indicator of changes in forest biodiversity and condition. We first 

test whether  broad categorical habitat descriptors, such as landscape type, influence the bird 

species observed, and assess how well these variables predict community composition. We 

then ask whether continuous RS surface reflectance data can predict the same bird 

communities. By using continuous data, we aim to capture gradual changes in vegetation and 

habitat structure, rather than treating habitats as fixed categories, which may overlook 

important ecological variation. This approach could provide a more accurate way  to describe 

environmental conditions across the landscape.  Furthermore, the continually updated nature 

of RS data could allow for this method to be used in ongoing monitoring to detect changes in 

community structure. As such, lastly we explore how the number of survey stations and 

replicate visits affects the power to detect change, helping to guide efficient survey design. 

By bringing these elements together, we aim to provide a practical tool for policy makers and 

ecologists to assess the successes and failures of management strategies, and to support 

decisions about financial incentives.   

 

4.3 Methods 

4.3.1 Study area and surveys 

Survey data were collected by FaunaForever (www.faunaforever.org) to monitor species 

diversity across an array of landscapes in the Madre de Dios region in south-eastern Peru, 

close to the Tambopata River south-west of Puerto Maldonado (Figure 4-1). Conservation 

researchers, assisted by volunteers, performed assorted bird surveys across a total of 637 

stations  between 2004 and 2020. The stations were clustered around 25 centres that were 

located between 1.5km to 170km apart. Within the centres, stations were typically situated 

between 200m and several kilometres apart and were each surveyed between one and 35 

times (median = four), representing a total of 3,129 surveys. Some stations were surveyed in 

more than one calendar year, and because populations and forest structure can change over 

extended periods of time, we treated these as independent stations for each year. This 

http://www.faunaforever.org/
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resulted in a total of 1,135 independent stations, which were surveyed between one and 21 

times, with a mode of 1 survey, a median of 2 surveys and a mean of 2.9 surveys per site (SD 

±2.4). Surveys were conducted as point counts, where all bird species seen or heard by the 

researcher during ten minutes at each point were recorded, or as net counts, where a 36m 

long mist-net was deployed and all species caught were recorded. A total of 358 species were 

identified, but in line with suggestions for minimum observations based on mean prevalence 

(J van Proosdij et al., 2016), only the 138 species that were observed at more than 10 stations 

were used in training models for full analysis. 

 

4.3.2 Environmental variables 

Habitat was classified  using two categories: land class and forest degradation. Land classes 

were floodplain forest, terra firma forest, or agricultural land, and were determined using the 

MapBiomas Peru Project, Collection-1 of the Annual Land Cover and Land Use Series for Peru 

2013; (MapBiomas,  2023). Forest degradation was determined from a primary forest raster 

using the 2000-2019 forest cover loss data set (Hansen et al., 2013). Pixels were classified as 

primary forest if no deforestation year was given, assuming they had remained intact. 

Subsequently, secondary forests were defined as areas that had undergone recorded 

deforestation since 2000. This classification is primary/not primary and does not differentiate 

between successional stages of secondary forest. The proportion of non-primary forest, 

equating to forest assumed to have been deforested or degraded, was calculated within three 

different radii around each station (1km, 2km and 5km). No cross validation was performed 

between the MapBiomas and Hansen datasets, resulting in possible inconsistencies, where 

areas classified as forest in MapBiomas may not necessarily align with the forest loss 

described by Hansen. 
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Figure 4-1: (a) The location of survey stations within the Madre de Dios region. Inset is Peru with Madre de Dios 

highlighted in blue. Panel (b) displays the distribution of survey stations within the grey box highlighted in panel 

(a) along the Tambopata River within regional topography (Farr et al., 2007). 

Of the 1135 surveys, 489 were on terra firma, 603 on floodplain and 43 on agricultural land, 

and 1109 were defined as being inside primary forest, and 26 in secondary forest.  Elevation 

can influence the distribution of tropical forest bird species (Carvalho et al., 2023; Nores, 
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2000). However, all survey points were located within the narrow range between 175m and 

310m above sea level, so it was deemed unlikely that elevation would significantly affect 

model performance; it was therefore not included in the analysis.  

 

4.3.3 Satellite derived variables 

Reflectance signatures at different wavelengths can be employed to assess the greenness and 

moisture content of vegetation, with some correlation observed between these signatures 

and the leaf structure of a plant (Huete, 2012). The combination of reflectance and water 

content descriptors is a valuable tool for describing the physiology of the forest canopy 

(Ollinger, 2011). The spectral diversity within a canopy cannot be measured by a single metric 

(Wang et al., 2018), and as the spectral characteristics and spatial scales that best capture 

variation in the forest canopy are unknown, a variety of indices were created to describe 

variation within the canopy. While many satellite platforms now provide passive optical 

surface reflectance data, as well as active radar reflectance, the Landsat missions were the 

only platforms that covered the entire period of the field surveys (Landsat-5 for 2004-2011, 

Landsat-7 for 2012, and Landsat-8 for 2013-2020). Frequent cloud cover over tropical forests 

can greatly reduce the number of available images that have sufficient clarity for analysis  

(Quiñones et al., 2007). To compensate for the low visibility of ground within individual 

images, a cloud-masked, median pixel value image was generated in Google Earth Engine for 

each year of study. There is a compromise to using annualised composite images, as 

reflectance changes caused by seasonality such as leaf flushing and fruiting cycles, or logging 

and burning, may be masked (Morton et al., 2005; Zhang et al., 2003), although phenological 

variation in tropical forests can be lower than in some other landscapes (Hilker et al., 2014). 

Each image contained six reflectance bands, which were then used to calculate seven 

vegetation indices: the normalised difference vegetation index (NDVI), enhanced vegetation 

index (EVI), normalised burn ratio (NBR), normalised difference water index (NDWI), and the 

trio of tasselled cap wetness, greenness, and brightness (TCW, TCG, TCB). Both NDVI and EVI 

were used to detect vegetation cover and vigour. NDVI was included as one of the most 

commonly used indices, but it is prone to saturation in dense forests such as the Amazon, 

whereas EVI is better able to penetrate beyond the canopy surface and incorporate sub-

layers. We used NBR to highlight freshly opened soil, and NDWI to highlight water content 
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within the canopy. Tasselled cap indices provide an alternative way of describing reflectance 

and structure, and have been shown to correlate with, but show more detail than, NDVI 

(Samarawickrama et al., 2017). 

 

For each survey conducted in each year, the mean and standard deviation of all pixels within 

a 100m radius of the survey station were calculated for the six reflectance bands, and seven 

indices. The 26 variables collectively provide comprehensive and high-dimensional 

description of the reflectance of the local vegetation structure. As many of these variables 

were likely to be redundant we used principal component analysis to reduce the 26 variables 

to five components that explained 96% of the variation in the data. The distribution of the 

five principal components and the proportion of deforestation at three scales are plotted in 

Figure 4-2, and the relationship between the first two principal components with 

environmental descriptors is shown in Figure 4-3. 

 

 

Figure 4-2: The distribution of variables used in EO models, comprising the five EO derived principal components, 

and the proportion of deforestation calculated at the three measured areas. 

 



 

70 
  

 

 

Figure 4-3: The first two principal components, representing 76% of the variation in the RS data, plotted against 

each other and showing their relationship with the measured habitat types. Each point represents an individual 

survey and is coloured based on the combination of habitat (floodplain forest, terra-firma forest, agriculture) 

and forest type (primary or secondary).  Ellipses represent the 95% confidence interval around the mean for 

each categorical group. 

 

4.3.4 Analysis 

To quantify the probability of species detection, and to identify whether the composition of 

bird communities can be predicted as a function of habitat or RS descriptors, we used spatial 

factor multi-species occupancy models. The probability of a species being observed on  a given 

survey is  a combination of its presence (1 = present, 0 = absent; assumed to be fixed over the 

year of surveillance), and the probability of detection. Detection can be influenced by survey 
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method. For example, mist nets set at ground level will tend to under-sample species which 

mainly occupy the canopy, as well as birds which are large or less mobile (Remsen, and Good, 

1996). Furthermore, the species captured can be influenced by the type of net used (e.g. mesh 

size), along with the duration of the netting period. Point counts are good for detecting vocal 

species but may under-sample silent or secretive species, and their effectiveness can be 

influenced by background noise, weather and observer skill (Rosenstock et al., 2002; Simons 

et al., 2007). As a result, perfect detection of every species in a community is essentially 

impossible. The non-detection of a species can bias covariate estimates and predictions of 

community composition in distribution models (Kery, 2008). However, occupancy models 

account for imperfect detection by calculating the probability of occurrence of a species at a 

survey station, and provide probabilities of occupancy at all stations, whether observed or 

not (MacKenzie et al., 2003). Occupancy models also provide detection probabilities for all 

species at all stations and the influence of survey specific covariates on these probabilities 

(Royle and Dorazio, 2009). After the model had been fitted and species detection and 

occurrence probabilities ascertained, the methods of Guillera-Arroita and Lahoz-Monfort 

(2012), were used to calculate the power of the study. The term “power” is defined as the 

probability that a proportional reduction in occupancy of a species will be detected between  

it and another survey conducted at a different time. We then calculated the survey effort 

required to achieve a mean power across all species of 0.7, to detect a 50% reduction in their 

occupancy.  A power of 0.8 is frequently used, but with the very low detection rates we 

experienced, 0.7 was a more feasible target and falls within the test ranges ((Guillera-Arroita 

& Lahoz-Monfort, 2012). Furthermore, we explored how the power to detect various 

reductions in occupancy changed with the number of stations and replicate surveys, which in 

turn could be used to recommend survey regimes for future monitoring. 

 

Four models were compared, one was fitted with habitat variables, one with principal 

components derived from RS reflectance variables, one with no occurrence variables to act 

as an intercept-only baseline for comparison and lastly, to compare and examine the 

influence of spatial factors, the RS model was then re-fitted without spatial factors. All models 

included survey method (point or net) and time of day (a.m. or p.m.) as covariates for the 

probability of detection. Although some stations were surveyed up to 21 times, 99% of all 

stations were surveyed 12 times or less. To improve the efficiency of model fitting and reduce 
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the computational resources required to run them, we fitted the modes using a maximum of 

12 replicates per station. 

 

 Models were fitted using the Bayesian occupancy model package, “spOccupancy” (Doser et 

al., 2022). The “spOccupancy” package enables the modelling of all species simultaneously, 

and accounts for autocorrelation between species. In addition, spatial latent factors, which 

are akin to unmeasured site-specific covariates that decay with distance, can be included to 

account for residual species correlations. The number of spatial factors used should 

adequately explain variation within the community but to maximise efficiency and avoid 

overfitting, particularly where there are relatively few replicate surveys and species are rarely 

detected, it is better to include fewer rather than more.  We chose to include three spatial 

factors, each of which is independent and derived from the residual species correlations that 

remain after correlations with all other variables and previous spatial factors have been 

calculated.   Each spatial factor provides a value (phi) indicating the rate of decay of spatial 

autocorrelation. The distance at which stations are no longer autocorrelated for a given factor 

is calculated as 3/phi. 

 

Models were fitted with 50,000 iterations, of which the first 25,000 were discarded as burn-

in, and the remainder thinned by 50 to produce 500 posterior samples. Each posterior sample 

provides a probability of occurrence (psi) for each species at each station and a latent 

presence/absence (1/0) (z) calculated from this probability. In addition, a probability of 

detection (given presence) (p) is provided per species per station for a single survey. Chain 

convergence is particularly difficult in spatial models, so models were fit using a single chain, 

and mixing assessed visually and using the Geweke diagnostic (Doser, 2023). In fitting the 

models, we assumed no false presences and treated the entire study as a single closed season. 

Goodness-of-fit for each model was measured by performing a posterior predictive check to 

calculate a Bayesian p-value, based on the differences between chi-squared values of 

observed and predicted data per species, grouped across stations. All fitted models had 

Bayesian p-values close to 0.5 (0.467-0.477) indicating a good fit to the data (Hooten and 

Hobbs, 2015; Kéry and Royle, 2016), and models were therefore subsequently compared 

using the widely applicable information criterion (WAIC) (Watanabe, 2010) and metrics of 

predictive performance. Performance was evaluated at the species-level, using area under 
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the receiver operating curve (AUC), and at the station community-level, using species 

accumulation and Bray-Curtis’s dissimilarity of community composition. 

 

Despite the known differences in performance of models on training data and withheld 

datasets, predictive performance on independent data is rarely undertaken with occupancy 

models (Gould et al., 2019). We did so here by withholding a validation dataset which included 

two stations from each field centre, each of which had been surveyed at least three times, 

and in total represented 5% of the dataset. To validate model performance, it was necessary 

to incorporate both occurrence and detection probabilities when comparing predictions with 

observations. When predicting species occupancies, each of the model’s posterior samples 

predicts two occupancy values. First is a probability of occupancy (psi) per species per site, 

from which the second value of latent occupancy (z) of 1 (present) or 0 (absent) is drawn. The 

probability of detection (p) for each species and site in a single survey is predicted, and this 

does not vary between posterior samples. The total probability of detection for each species 

and station is therefore determined by the number of replicate surveys conducted at that 

station and was calculated as 1 – (1 – p)n, where n is the number of replicate surveys 

performed. This overall detection probability was used to create a binomial detection/non-

detection (1 or 0) event per species per station. The latent detection values were then 

multiplied by the predicted probability of occurrence (psi) and latent occupancy (z) of the 

same species and station for each posterior sample. Thus, we used the predicted probability 

that a species was seen rather than occurred when determining model performance against 

validation data.  

 

4.4 Results 

4.4.1 Model fit 

All models had Bayesian p-values between 0.467-0.477, indicating a good fit to the data. The 

model with the lowest WAIC value, thus inferring it was the best performing model, was fitted 

with RS reflectance data and included spatial factors, followed by the covariate free intercept 

model, the RS reflectance model fitted without spatial factors, and the highest WAIC 

indicating the worst performance was from the model fitted with environmental descriptors.  
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The probability of detection (p) was consistent across all models. Surveys conducted in the 

morning, using net counts have median species-level p = 0.022, 95% CI [0.001, 0.179]. When 

conducting surveys in the afternoon, median detection probability significantly lower, at p = 

0.015, 95% CI [0.001, 0.018]. When using point rather than net surveys, the median p 

increased significantly to 0.065 95% CI [0.000, 0.389]. However, point surveys did not 

significantly increase detection for three of the nine Orders represented. Those three were 

Caprimulgiformes (nightjars) and Coraciiformes (kingfishers and hornbills) and Galliformes 

(ground dwelling birds). 

 

The mean probability of occurrence across all species in primary forest and an agricultural 

habitat, was 0.291, 95% CI [0.211, 0.375]. In secondary forest, the mean occupancy was higher 

than in primary forest, rising  to 0.47, 95% CI [0.36, 0.61]. In comparison to agricultural 

landscapes, mean occupancy in floodplain increased  to 0.36, 95% CI [0.30, 0.47], and in terra-

firma mean occupancy increased to 0.37, 95% CI [0.30, 0.47] habitats. Mean occupancy was 

not shown to vary significantly with deforestation within a 1-2 km radius, but increased by 

0.057, 95% CI [0.008, 0.108] with each 10% increase in deforestation within a 5km radius. 

When using RS data, the model suggested that spatial autocorrelation extended to 5km, 95% 

CI [3.3km, 7.5km] for one factor and 7.5km, 95% CI [4.3km, 15km] for each of the other two 

factors. When using habitat data, the model suggested that spatial autocorrelation extended 

to 2km, 95% CI [2km, 2.3km] for one factor, to 30km, 95% CI [3.75km, ∞] for another, and 

the third factor was not significant. These factors represent unmeasured variables that 

influence the occurrence of species, and fade with distance. Although we do not know what 

is driving this spatial structure, it can be influenced by anything from local vegetation cover 

to regional climate or land use. Significant spatial autocorrelation confirm that patterns exist 

beyond those  explained by the known environmental variables. 

 

4.4.2 Model validation 

The predictive performances of models followed the implications made by their WAIC values, 

and the model that produced the best predictive results was also fitted with RS reflectance 

data and included spatial factors. When assessed on training data, this model had a mean 

AUC of 0.88 (SD=0.06) and when predicting to independent validation sites, had a mean AUC 
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of 0.68 (SD=0.18). Species for which predictive performance was considered good (AUC>0.7) 

(Mandrekar, 2010) are hereafter referred to as high-AUC species, and this model had 49 high-

AUC species, the most of any model. The performance of all four models is shown in Table 

4-1. A species taxonomic order was not shown to have any correlation with its AUC.  

 

Table 4-1: The fit and predictive performance of the four models analysed. Low WAIC values and high AUC values 

represent better performances. It can be seen that the best performing model in all categories is fitted with RS 

reflectance data and includes spatial factors. 

Model Covariates 

Spatial 

Factor 

Included 

WAIC value Delta WAIC 

Mean 

Explanatory 

AUC 

Mean 

Predictive 

AUC 

Number of 

high-AUC 

species 

RS Reflectance yes 66773 0 0.88 0.68 49 

RS Reflectance no 68620 1847 0.87 0.62 31 

Habitat Descriptors yes 69432 2659 0.87 0.58 21 

None yes 66995 222 0.8 0.66 43 

 

The predicted species richness of survey stations (6.86 ± 5.1) was close to the observed 

average richness  (6.00 ± 3.6), but when extended to the entire training dataset the model 

predictions suggested that it would take much longer to detect the total number of species 

included (Figure 4-4(A)). The mean predicted richness of test stations (9.94 ± 3.8) was also 

comparable to the observed mean richness (10.82 ± 5.3) and indicated a similar accumulation 

of species, both across stations (Figure 4-4(B)), and with increasing replication within a station 

(Figure 4-4(C)). The species accumulation curve in Figure 4-4(C) come from one station that 

was surveyed 12 times and illustrates the extent to which observed accumulated richness 

greatly underestimates the total richness expected to be present at each location. A 

consequence of this was that only a fraction of the species that occur at a station were 

observed, and therefore the average Bray-Curtis dissimilarity between the list of birds 

observed and those predicted was 0.8 (± 0.1).  In locations with higher observed richness, the 

surveyed total represented a greater proportion of the true expected total, and the 

dissimilarity between predicted and observed communities was substantially lower (Figure 

4-5). 
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Figure 4-4: Observed (blue) and modelled (black) species accumulation (±2SD) with increasing numbers of 

surveyed stations, (A) within the training data, (B) set aside for validation, and (C) based on an increasing number 

of replicate surveys conducted at a single survey station. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Each point represents a survey station. For each station, modelled dissimilarity is the mean 

dissimilarity between each of the communities produced by the model’s 500 posterior samples, and the 

observed community. 
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4.4.3 Power to detect change 

As a result of low detection probabilities and low mean replicate surveys, it was ascertained 

that there is a mean probability across all species of 0.20 (±0.24SD) of detecting a 50% 

reduction in occupancy in a subsequent survey. There is a 70% or greater probability of 

detecting a 50% reduction in only five of the 135 species modelled. Thus, if the desire is to 

determine where occupancies are changing by surveying the same area in the future, the 

current data cannot provide robust evidence. 

 

Figure 4-6 illustrates how different numbers of survey stations and replicates per station 

affect the median power to observe a reduction in bird occupancy. Each panel represents a 

different proportional change that is sought to be detected, and each y-axis represents the 

probability of detecting that change in at least half the bird species. The x-axis is the total 

number of individual surveys that a study is able to undertake (i.e. one replicate at one station 

is one survey). Each line represents a different number of sites that the total number of 

surveys are divided among.  For every probability of detecting the panel’s proportional change 

(y-axis), the farthest left line represents the fewest total surveys required, and the most 

efficient number of sites to survey. For example, if our aims were to have a 70% confidence 

(0.7 on the y-axis) that we could detect when the occupancy of at least half the bird species 

had declined by 50% (panel C), the chart suggests that the fewest surveys required would be 

~10,000 and spread between 100 to 500 sites. Calculations suggest that the requirements 

would be three replicate surveys at nearly 50,000 stations, or, if all stations were surveyed 27 

times, only 447 stations would be required. 
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Figure 4-6: The influence of survey effort on the probability of detecting a reduction in occupancy in future 

surveys. Survey effort was calculated as the number of stations surveyed * number of replicate surveys per 

station. Each line represents a different number of stations and was calculated as the mean value across all 135 

species modelled. Each chart represents a different proportional reduction in occupancy. 

 

4.5 Discussion 

Using data from over 3,000 individual surveys conducted in south-eastern Peru, our study 

suggests that remotely sensed satellite data could extract relevant information about the 

surrounding habitat to marginally improve on the performance of equivalent landcover 

models in predicting bird community composition. We also quantified the low detectability 

of many bird species, highlighting the challenges conservationists face when trying to monitor 

their rich diversity in rainforests. While the existing survey methodology provided valuable 
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insights into bird communities, its design was not optimised for detecting change over time. 

Our findings can therefore help inform the development of more efficient survey strategies, 

leading to enhanced species detection rates. Higher detection rates would allow for a more 

complete description of each site’s community, improving the power to detect change, and 

strengthening the performance of RS models in predicting bird communities across the 

landscape. 

 

4.5.1 Land class and surface reflectance  

There are mixed and conflicting results on the effects of forest and farmland on the 

comparative richness of bird species found in each (Dvořáková et al., 2023; Tu et al., 2020). 

Our findings, that more bird species were likely to occur in both floodplain and terra firma 

forests than in agricultural land, may be supported by evidence that suggests that species 

richness can increase at forest boundaries, particularly where edges are hard, such as where 

forest and agricultural land meet (Terraube et al., 2016; Willmer et al., 2022). Furthermore, 

the greater vertical stratification and canopy complexity often found in primary forests are 

often found to sustain a greater richness, particularly of specialist, range restricted, and 

endemic bird species compared to secondary forests (Şekercioğlu et al., 2012; Stouffer et al., 

2011; Stratford and Stouffer, 2015). However, our analysis suggested that of the species 

included in the model, secondary forest had a greater species richness than primary forest. 

This is consistent with findings that where secondary forests have connectivity to primary 

forests, generalist and disturbance tolerant bird species as well as species that thrive in more 

open canopy environments are also attracted, thereby increasing species richness (Barlow et 

al., 2006). Despite the greater species richness frequently found in primary forests, individual 

surveys may detect more species in secondary forests. This is as a result of the more open 

habitat found in secondary forests leading to higher bird densities, more vocalisation and 

improved visibility (Barlow et al., 2007; Peh et al., 2006; Sekercioglu, 2012). The low mean 

number of replicates conducted in this study could therefore make secondary forests appear 

richer in species than primary forests, simply because of the improved visibility to observers. 

 

Secondary forests require the initial loss of primary forests, and localised deforestation can 

increase the richness of bird species. When relatively small areas of primary forest are 
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destroyed, the occupants of that area move initially to the adjacent forest, thereby 

temporarily increasing its richness (Rutt et al., 2019). Additionally, as habitat heterogeneity 

increases with slightly higher levels of patchwork deforestation, generalist species, and those 

adapted to living in secondary forests quickly colonise the deforested area (Rutt et al., 2019). 

Our findings are consistent with these observations and suggest that deforestation within a 

5km radius had a positive effect on mean occupancy.  This may be attributed to broader 

habitat heterogeneity, which at spatial scales of several kilometres, influences community 

composition as species dispersal, habitat connectivity, and edge effects become more 

pronounced at this range (Laurance et al., 2011; Thornton et al., 2011). That our analysis did 

not identify significant support for an influence of deforestation at distances under 5 km could 

suggest that not enough habitat heterogeneity is created at that level to significantly impact 

species richness. Furthermore, we have classed deforestation as a lack of primary forest 

rather than lack of any forest. Any deforested area may not be kept clear, but may have 

regrown into secondary forest, and as previously discussed, secondary forest was also shown 

to hold higher species richness. Classification inconsistencies may also exist, particularly 

where deforestation occurred before 2000. As a result, some primary forests included in this 

study may have undergone historical degradation. Further classification inconsistencies may 

also result from the omission of water bodies from analysis. Within floodplain forests, water 

levels can fluctuate seasonally (Hess et al., 2015) and edge effects may also occur at interfaces 

between large water bodies and forests (Laurance et al., 2001). These classification limitations 

should also be considered when interpreting differences in species occupancy across forest 

types. Since surveys were conducted across multiple seasons and years, bird detectability may 

have varied due to seasonal fluctuations or localised extinctions and introductions (Blake and 

Loiselle, 2015; Stouffer et al., 2011). Moreover, seasonal differences are most pronounced in 

forest fragments and secondary forest, habitats that are less buffered from the changing 

seasons (Rutt and Stouffer, 2021). Additionally, surveys were performed by multiple 

observers with varying levels of experience, and observer skill can significantly influence bird 

species detectability (Robinson and Curtis, 2020). Consequently, some of the variation in 

detection probabilities may be attributed to differences in surveyor rather than actual 

ecological differences. 
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Diversity in surface reflectance values has also been used to predict tropical forest diversity 

(Peña-Lara et al., 2022) and bird species richness found within them (Suttidate et al., 2019). 

Our results reflect similar findings, and are in line with studies showing that RS data 

performed as well as, if not better than, land class in predicting bird communities (Regos et 

al., 2020; Sheeren et al., 2014). The season of image measurement and resolution of imagery 

were also found to be important for modelling bird communities in temperate regions (Regos 

et al., 2020; Sheeren et al., 2014). The seasonal and cumulative productivity of tropical forests 

ascertained through satellite imagery were also found to be associated with bird species 

richness (Suttidate et al., 2019). However, in our study area, excessive cloud cover precluded 

the use of seasonality, as images were reduced to annual composites, and mean reflectance 

values are calculated over thousands of square metres, making finer resolution imagery 

unlikely to improve results. 

 

Despite these challenges, our study has shown that RS data have the capacity to improve on 

land class in predicting bird communities in tropical forests. When the first two PCAs were  

plotted against each other, the land classes were not tightly grouped and had much overlap, 

yet two broad groups could be differentiated: secondary forest/agriculture and primary 

forest/terra-firma/floodplain. Within those two groups, secondary forest had a large overlap 

with agricultural land. As secondary forest was defined by its status as land that had been 

deforested since 2000, this could be an indication that, in this area of the Peruvian Amazon, 

deforested land primarily becomes agricultural land, rather than regenerating into secondary 

forest (Cruz et al., 2023; Marcus et al., 2020). In the other group, primary forest had a far 

greater overlap with terra-firma and floodplain than with agricultural land. However, there 

was still a sizeable overlap between all groups. One possible explanation is that there are 

discrepancies brought about by course scale, out of date information or human error in 

habitat classification (Gallardo-Cruz et al., 2024; Morrison, 2016; Ploton et al., 2020). There is 

also the possibility that the classes fail to capture, or oversimplify the finer scale variation 

seen by RS data. In fact, secondary descriptors of structural variation at the local level, such 

as deadwood volume and tree girth, can also influence reflectance values, and when included 

in conjunction with broad habitat type, have been shown to define species richness far better 

than habitat type alone (Basile et al., 2021). This highlights a key advantage of using 

continuous RS data, which can describe gradual changes in vegetation structure better than 
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the rigid structure of predefined classes. The challenge for future research will be in deriving 

RS variables that can act as more ecologically meaningful proxies for environmental variation 

that can more readily differentiate between less obvious variations in surface structure. 

 

4.5.2 Realities and practicalities of observing change 

Whether models use habitat or RS variables to estimate ecological communities over large 

areas, their success is limited by the quality and quantity of the data with which they are 

trained (Aubry et al., 2017; McCord et al., 2021). Our analysis indicates that detection 

probabilities were so low that substantial effort may be required to detect the majority of 

species present, raising concerns that our data were insufficient. However, of the 

approximately 760 bird species thought to occur in the Tambopata area (Lepage, 2024), our 

study recorded nearly half. This, in terms of both number and proportion of species identified, 

aligns with findings from other surveys in tropical forests (Alvarez-Berríos et al., 2016; 

Anderson, 2009; Martin et al., 2017). Due to the low detection rates, individual surveys 

inherently underestimated community composition, and communities across the landscape 

were likely to be more similar than observations from a limited number of surveys would 

suggest. Nevertheless, the species modelled exhibited patterns of grouping based on both 

forest habitat descriptors and RS variables, suggesting that they represented more than just 

random observations. This indicates that, despite describing approximately a half of the full 

community, our results were reliable. 

 

As sampling efficiency or effort increased, a greater portion of the local community was 

observed, and the similarities between predicted and observed communities increased. Thus, 

improving detection rates is essential to increasing the proportion of the community 

observed and improving the predictive output of models. Increasing cumulative detection 

rates to 80% has been shown to negate the importance of detection on model performance 

(Steenweg et al., 2019). Yet we have shown that it would require a huge effort to reliably 

observe changes in occupancy for many species. Thus, efficient and accurate surveys are 

critical to provide high quality data on which to train RS models, especially as ongoing surveys 

are needed to monitor the effects of conservation efforts on habitat change over space or 

time. The type of survey conducted affects the raw detection rate, and we agree with 
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Mulvaney & Cherry, (2020) that point counts increase mean detection over net counts. 

However, these findings are not universal, as it has been shown that within tropical forests, 

the most effective survey method varies with ecosystem, such as whether the study is within 

lowland or cloud forest (Martin et al., 2017). Similarly, transect counts and canopy counts add 

further depth to the proportions of small-bodied species, canopy and mid-storey species that 

are detected (Anderson, 2009; Robinson and Curtis, 2020). Due to the relatively low 

community overlap observed between methods found in our study, and aligning with other 

studies, we would suggest that the use of multiple methods is necessary to improve overall 

diversity assessment (Anderson, 2009; Martin et al., 2017; Robinson and Curtis, 2020). 

Further to the survey methodology lies the challenge of recruiting appropriately trained 

surveyors who are familiar with the bird species of the area, which is a necessity in conducting 

effective surveys in complex and rich ecosystems such as tropical forests  (Robinson and 

Curtis, 2020). Our results suggest that to effectively detect changes in community 

composition, it is necessary to perform far more replicate surveys than were performed 

(Robinson and Curtis, 2020). 

 

4.5.3 Future potential 

Forest degradation in Peru has been shown to increase the amount of carbon released into 

the atmosphere by almost 50% (Asner et al., 2010). Understandably then, protecting forests 

and their carbon sinks to mitigate climate change has been a focus of tropical conservation, 

and government policies and voluntary carbon offset conservation efforts such as REDD+ 

have successfully slowed the rate of deforestation in recent years and have played a role in 

mitigating climate change (Smith et al., 2014). To ensure that the implementation of carbon 

conservation efforts, such as REDD+, also have a positive impact on biodiversity, ecological 

monitoring of forests should be aligned with the conservation objectives of the area (Harrison 

et al., 2012). While REDD+ has had some success in protecting forests globally, the level of 

success in the Amazon may be overstated due to the overestimation of baseline deforestation 

(West et al., 2020), highlighting the need to validate the costs of voluntary carbon offset 

credits. The impacts of degradation are not fixed and can be improved by restoration or 

worsened by repetition and should be measured at a landscape rather than patch scale (Betts 

et al., 2024). Measuring community diversity at landscape scales may require impractical 
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levels of monitoring, but patch scale changes in habitat should in principle be observable by 

Earth observation. Should sufficient, consistent, reliably representative biodiversity data be 

available to calibrate models fitted with RS data, biodiversity responses to changing land use 

can be identified. Policy and management should judge the results of practices at the point 

of implementation rather than judge the practices conceptually as a whole, and by mapping 

species diversity in conjunction with other measures of landscape health,  trends in forest 

degradation and regeneration over time can be identified (Betts et al., 2024). 

 

Despite the challenges posed by generally low detection rates, our study demonstrated that 

the occupancy of a third of the bird species with sufficient detections in the Peruvian Amazon 

can be predicted with reasonable confidence. However, these low detection rates also limit  

the ability of models to detect changes within these communities over time. While RS models 

may not yet  be sufficiently robust for ongoing monitoring, reporting and verification, there 

is no evidence that field-based methods alone will be able to do this at the scale required. 

Survey data can help identify spatial variations in community composition, but detecting 

temporal changes would require detailed count data at a level that may be impractical 

(Stephenson, 2020). Our power analysis revealed that with the current monitoring structure, 

even if a species population were to half, we would fail to detect this four out of five times. 

The suggestion that declines of many species may be substantial before being reliably 

detected has major implications for conservation monitoring using existing survey design. 

Improving detection rates will increase the power of future surveys to detect change. Given 

that resources are limited, future surveys should focus on fewer locations, prioritised across 

an ecological gradient of interest, with a higher number of replicates; results suggest at least 

20 per site. This is particularly critical as even basic inventories of avian diversity across much 

of the tropics are lacking (Robinson and Curtis, 2020). Establishing baseline datasets is 

essential for enabling future repeat surveys, which could provide valuable insights into how 

and where tropical bird communities are changing (Magurran et al., 2010). Building on the 

findings of this study by refining survey design and aligning research with specific 

conservation objectives will be key to improving biodiversity monitoring in the region so that 

decisions are based on detectable trends rather than snapshots of biodiversity (Nichols and 

Williams, 2006). 
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Code and data used in the analysis of this chapter are available at 

https://github.com/AndrewCSlater/Chapter---Peru 

https://github.com/AndrewCSlater/Chapter---Peru
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5. Linking fire, logging and bird communities  with 

Earth observation in the Brazilian Amazon. 

5.1 Abstract 

Almost half of the natural forests within the Amazon basin have been cleared or degraded by 

fire or selective logging. The negative impact of forest disturbance on biodiversity is well 

documented; however, there is a paucity of knowledge about the spatial and temporal 

variation in biodiversity in response to the type and level of disturbance. While Earth 

observation (EO) satellites can be used to infer land use and elements of forest structure with 

consistency and repeatability, their ability to predict associated biodiversity remains 

uncertain. This study used biodiversity data gathered by passive acoustic monitoring, to 

investigate how bird communities vary with forest disturbance, and tested whether EO 

derived metrics could predict bird occupancy and community composition. 

 

Bird communities identified from sound samples were described at 29 sites, across five forest 

gradients within the Sustainable Amazon Network, in the state of Pará in northern Brazil. 

Modelling the 163 most frequently observed species, it was found that species richness was 

significantly lower in secondary forest compared to undisturbed primary forest. Predictive 

models fitted with EO-derived metrics achieved only moderate success, with a mean area 

under the curve (AUC) values between 0.56 and 0.61 for bird occupancy, with the number of 

individual species exhibiting high predictive ability (AUC>0.7) ranging between 23 and 33. The 

Bray-Curtis dissimilarity values for community composition was ~0.45 for all models. 

 

No single model was consistently superior, but the most effective model was fit with 

proportions of forest lost and burnt derived from pre-processed Earth observation data. 

However, the model fit with categorical forest gradient exhibited a near equivalent 

performance. Models using radar derived variables showed potential utility, while models 

fitted with directly observed reflectance variables were slightly less informative, as the data 

were significantly influenced by cloud cover. Acoustic monitoring yielded high detection rates 

and described biodiversity equally well across all sites. However, the findings of this study 
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suggest that while EO data an differentiate communities equivalently to forest disturbance 

categories, its ability to model finer-scale variations in bird communities is currently limited. 

Expanding the number of survey sites could improve model accuracy. With sufficient training 

data, EO models may offer a scalable tool for biodiversity monitoring and conservation 

planning.  

  

5.2 Introduction 

Tropical forests account for approximately half of terrestrial carbon uptake and up to two-

thirds of the carbon sink in biomass, soil, and deadwood of all forests worldwide (Hubau et 

al., 2020; Pan et al., 2011), and are the most biologically diverse areas on Earth (Bradshaw et 

al., 2009; Gibson et al., 2011). Nevertheless, the practices of clear-cut logging and commercial 

agriculture in conjunction with both anthropogenic and natural fires have resulted in the 

alteration or complete destruction of forest habitats. This is evidenced by the fact that over 

17% of the Amazon Basin, which is the world’s largest continuous tropical forest, has been 

deforested, and that 38% of the remaining area has been lost or degraded (Lapola et al., 2023; 

Potapov et al., 2017; van Wees et al., 2021; Vergara et al., 2022). The disturbance and 

deforestation of tropical forests has a negative impact on biodiversity (Barlow et al., 2016). 

The temporality of disturbances, such as repeated fires or more recent logging, can 

exacerbate the negative effect on carbon sequestration and on biodiversity (Burivalova et al., 

2015; Rappaport et al., 2022, 2018). 

 

Although it is well established that forest disturbance influences biodiversity, the extent to 

which species composition and ecosystem function vary spatially and temporally remains 

poorly understood. One of the primary challenges to biodiversity monitoring is the significant 

time and expense required to comprehensively survey large areas (Rocchini et al., 2016; 

Skidmore et al., 2015). However, remote sensing encompasses a growing set of techniques 

that enable automated broad-scale monitoring of environments with limited expense. Earth 

observation (EO) by satellites is considered an important approach to vegetation monitoring  

(Skidmore et al., 2015). While satellites may not be able to directly observe biodiversity, they 

can be used to provide proxies of forest structure and to measure deforestation (Clark et al., 

2021). Similarly, passive acoustic monitoring is becoming increasingly prevalent in monitoring 
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soundscapes and the inference of the biodiversity of vocal faunal communities including 

birds, insects and anurans (Metcalf et al., 2022). The integration of fine-scale biodiversity 

surveys with EO descriptors of the Earth’s surface in statistical models, enables the analysis 

of community composition and turnover of target taxa (Leitão et al., 2015). EO derived forest 

structure metrics such as vegetation indices and canopy cover can then serve as indirect 

indicators of habitat quality and faunal communities (Turner et al., 2003). However, while EO 

can detect some structural aspects of forests, it does not directly measure the faunal 

biodiversity found within them, and its effectiveness of EO in capturing fine scale variations 

in biodiversity varies on habitat complexity and species detectability (Jetz et al., 2016). 

 

Bird communities are closely linked to forest habitat structure and are sensitive to changes 

caused by deforestation and fire, making them effective bioindicators to monitor forest 

degradation change which is detectable by EO (Barlow et al., 2016; Ferraz et al., 2007).  

Importantly, species occupancy and community composition respond to environmental 

changes at different spatial scales, meaning that EO monitoring must consider habitat 

features at local and broader scales (Lausch et al., 2015). If EO information is demonstrated 

to be a reliable predictor of bird communities, it could be employed to enhance the ongoing 

monitoring of ecosystem condition across the region. This is particularly relevant, as El Niño 

events and their associated forest fires are anticipated to increase in frequency (Burton et al., 

2020; Wang et al., 2017).  While deforestation rates rose between 2018 and 2021 (Silva Junior 

et al., 2020), recent data indicate a decline since 2022 (WWF-Brazil, 2024). Despite these 

fluctuations, deforestation remains a key driver of structural change and thus the biodiversity 

of the wider ecosystem (Flores et al., 2024), reinforcing the need for scalable monitoring. 

 

Birds represent one of the most extensively studied taxa within the Amazonian forests 

(Rappaport et al., 2022). They have been employed as indicators to assess the impacts of 

environmental change, including the evaluation of reforestation techniques (Barros et al., 

2022), and the impact of patch size reduction within the Brazilian Amazon (Bregman et al., 

2015). This study employs data on bird communities collected via passive acoustic monitoring 

to investigate whether such communities differ across forest gradients that are determined 

by whether a survey site has been logged and/or burnt. Furthermore, the study assesses the 

capacity of forest gradients to predict the bird communities that inhabit them. Subsequently, 
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the study evaluates whether EO derived forest structure metrics can effectively predict the 

same bird communities. We hypothesise that bird community composition will differ 

significantly between sites that have been logged, burnt and undisturbed, and that EO metrics 

will be significant predictors of those differences. If EO derived metrics can reliably predict 

bird communities, they could provide a scalable tool for biodiversity monitoring, aiding 

conservation planning in tropical forests that are affected by fire and logging. 

 

5.3 Materials and Methods 

5.3.1 Study Area 

The data used in this study were gathered across permanent terra-firma transects of the 

Sustainable Amazon Network (Gardner et al., 2013), situated to the south of the city of 

Santarém in the state of Pará in the eastern Brazilian Amazon (Figure 5-1).  A total of 29 sites 

were distributed across five forest classes. One class was unburnt secondary forest that had 

grown since the clear-cutting of primary forest (n=3). Four classes were identified within 

primary forest: undisturbed (n=5), logged but unburnt (n=4), burnt but not logged (n=5), and 

logged and burnt (n=12). 
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5.3.2 Species Data 

All surveys were conducted over a 64-day period, with varying numbers of days per site, 

ranging from a minimum of six to a maximum of 22 days, with an average of 16 days (standard 

deviation (SD) = 3.37 days).  Sites were monitored by audio recordings 24-hours per day. For 

each site, a total of one hour of recording was then sub-sampled by randomly extracting 240, 

non-overlapping, 15-second clips from a 2.5-hour window that began 30 minutes before 

dawn. The audio clips were analysed by a specialist to identify bird species heard. The timing 

aligns with peak avian vocal activity and can be considered an automated replication of 

traditional point counts. Consequently, species that are less vocal or active outside of the 

sampled window may be underrepresented (Martin et al., 2017).  Although all sites were 

subsampled by an equal amount of time, some clips were subsequently removed due to the 

presence of rainfall noise which rendered the data unusable. The sites were surveyed for a 

minimum of 2880 seconds, a maximum of 3600 seconds, and a mean of 3423 seconds 

(SD=188) (Metcalf et al., 2022, 2021). All 15-second clips recorded within a calendar day were 

Figure 5-1: (a) The geographical distribution of the survey sites in the state of Pará, represented as black dots within 

a grey box. Major cities are indicated by red spots. The inset shows the state of Pará within Brazil. (b) The distribution 

and forest gradient of the survey sites as illustrated in the grey box in panel (a).  
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treated as a single replicate survey.  It was anticipated that the variation in the effort per 

replicate (number of seconds sampled per day) would influence the number of species 

recorded. Consequently,  survey time was included in the analysis as a detection variable. 

 

A total of 224 species were identified. The mean number of sites in which species were found 

was 8.7 (SD=7.7). The minimum number of species recorded at a site was 34, with a maximum 

of 91 and a mean of 67.3 (SD=14.8). A total of 61 species were recorded at fewer than three 

sites and were therefore excluded from further investigation, which left 163 species for 

analysis. 

 

5.3.3 Remotely sensed data 

The presence of cloud cover over tropical forests can make the acquisition of  clear, 

temporally relevant, images challenging (Quiñones et al., 2007). Planet satellites provide a 

daily repeat and provide a pre-processed monthly base map of surface reflectance, which 

masks cloud and is normalised for analysis. The most suitable image available that coincided 

with the survey period was the monthly image from June 2018, and thus this was utilised. 

However, despite this, the image still exhibited visible signs of atmospheric haze. For the 

purposes of this study, composite or cloud-masked images from Landsat and Sentinel-2 were 

found to be lacking in data or to exhibit significant distortion due to cloud cover, rendering 

them unsuitable for the intended analysis. 

 

In addition to individual pixel values, the spatial patterns in pixel properties are also expected 

to convey information about forest structure (Rocchini et al., 2004). Grey Level Co-occurrence 

Matrices (GLCM) describe the pattern of co-occurring neighbouring pixel values within a 

moving window across a single raster layer (Zhou et al., 2017). Due to the presence of a slight 

haze across the Planet image, we investigated the potential for patterns of pixel values to 

provide a more accurate representation of the forest canopy than raw pixel values. In order 

to achieve this, we calculated GLCMs for each of the four bands of the Planet image. A 9x9 

pixel window (~45m) was used, which upon visual inspection of satellite images, appeared to 

effectively cover a uniform forest type with minimal influence by neighbouring types on the 

window (Hall-Beyer, 2017). A variety of methods exist for describing pixel patterns, and we 
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calculated the contrast, entropy, and mean values (Hall-Beyer, 2017; Haralick et al., 1973). 

The GLCM calculations were performed in R using the “glcm” package (Zvoleff, 2020). 

 

In contrast to optical earth observation, Sentinel-1 are synthetic-aperture radar satellites that 

actively emit polarised pulses and measure the strength and polarity of the returned signals. 

The influence of canopy cover, structure and water content on radar reflectance is well 

documented (Ustin and Jacquemoud, 2020). In contrast to passive reflectance, radar imagery 

has the capacity to marginally penetrate the forest canopy to describe the structure beneath, 

and importantly, is unaffected by cloud cover. Studies have demonstrated the utility of radar 

imagery in differentiating between some forest types with differing structural properties but 

with  similar colour reflectance (Numbisi et al., 2019; Solberg et al., 2014), which in turn 

influence habitat suitability for different bird species. A single, pre-processed mosaic image 

from 2018 that provided vertical-vertical (VV) and vertical-horizontal (VH) bands at a 10m2 

pixel resolution was downloaded from Google Earth Engine. In addition to EO data temporally 

linked to the time of surveys, areas of deforestation calculated from historic Landsat data 

(Hansen et al., 2013), and areas of forest loss due to fire (Tyukavina et al., 2022) were also 

used. To assess the influence of scale of measurement on model performance, the mean and 

standard deviation of all pixels within 30m, 250m, 1,000m and 2,500m of each survey site 

were calculated for all data except for GLCMs, which already summarise the area around the 

survey site. This approach reflects the known importance of spatial scale and landscape 

structure on biodiversity, and the scales align with typical resolutions used in RS studies, 

reflecting local to landscape habitat levels (Lausch et al., 2016; Rocchini et al., 2010). 

5.3.4 Statistical Analysis  

To investigate the potential for forest type to be able to describe and predict bird 

communities, a model was fit using the forest gradient as described by the site survey. To 

explore the ability of RS data in describing and predicting the composition of bird 

communities, and to compare their abilities with those of the forest gradient, a series of 

models were constructed using a range of combinations of optical, radar and proportional 

areas of deforestation at each measurement radius. As some variables within groups were 

likely to be redundant, and to reduce the probability of overfitting models, and to ensure each 

model was populated with the same number of covariates, principal component analysis was 
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used to reduce all combinations of variables to two components. The first to components 

accounted for 92.7% of total variance and fits with the guideline of having at least 10 

observations per predictor variable (Vittinghoff and McCulloch, 2007). Furthermore, a model 

was constructed without occurrence variables to serve as a baseline intercept model for 

comparison. 

 

To quantify the probability of species detection, and to identify whether the composition of 

bird communities can be predicted as a function of habitat or RS descriptors, we used spatial 

factor multi-species occupancy models. The detection of a species in a given survey is 

dependent on two probabilities. The physical incidence of a species (1 = present, 0 = absent) 

is derived from its probability of occupancy at a given location, and then, given occurrence, 

its probability of detection. Occupancy models account for imperfect detection in calculating 

the probability of occupancy of a species at a survey station. They also provide probabilities 

of occupancy at all stations, whether observed or not. Furthermore, occupancy models 

provide detection probabilities for all species at all stations as well as the influence of survey-

specific covariates on these probabilities. 

 

A series of models were constructed using the recently released Bayesian occupancy model 

package, “spOccupancy” (Doser et al., 2022). The “spOccupancy” package allows for the 

simultaneous modelling of all species, while accounting for autocorrelation between species. 

In addition, spatial latent factors, which are akin to unmeasured site-specific covariates that 

decay with distance, can be incorporated to account for residual species correlations. In order 

to achieve the greatest efficiency and to avoid overfitting, particularly in the case of a limited 

number of replicate surveys or sites, it is preferable to include fewer factors rather than more. 

It is not possible to define what spatial factors represent or are driven by, meaning that they 

provide little benefit to explanatory models. However, when predicting across unsampled 

areas, spatial factors help account for unmeasured, spatially correlated environmental 

heterogeneity, thereby enhancing predictive capabilities, and their incorporation when 

prediction is a primary objective is advised (Doser et al., 2023). Each spatial factor provides a 

rate of decay value (phi), and 3/phi  represents the distance at which stations are no longer 

autocorrelated for the given factor. All models included two spatial factors in addition to 

survey time (number of seconds), which was included as a covariate expected to influence 
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detection. Finally, to ascertain the influence of spatial factors on model performance, the 

most effective RS model was refitted without these factors. Models tested are shown in Table 

5-1.  

 

Table 5-1: Models that were tested. All models included survey seconds as a detection covariate. All models, 

apart from one group of EO models, included two random spatial factors as occurrence covariates. Models fitted 

with Earth Observation data had all variables reduced to the first two primary components from PCA analysis. 

Each of the Earth Observation data groups had four models fitted, one each for data measured at 30m, 250m, 

1km and 2.5km around the survey points. 

 

 Intercept Forest 
Gradient 

All EO EO ex 
Planet 

EO ex 
Planet & 
Space 

Prop 
Logged 
Burnt 

No Occurrence Covariates X 
     

SURVEY DATA 
      

Forest Gradient 
 

x 
    

EARTH OBSERVATION DATA 
      

GLCM from Planet Imagery (12 

variables) 

  
x 

   

Sentinel-1 Radar Imagery (4 variables) 
  

x x x 
 

Proportion of Deforestation and Burnt 
area (2 variables) 

  
x x x x 

SPATIAL FACTORS 
      

Two x x x x 
 

x 

DETECTION COVARIATES 
      

Survey Seconds x x x x x x 

 

 

Models were fitted with 12,000 iterations, of which the first 2,000 were discarded as burn-in. 

The remaining iterations were thinned to every tenth one to produce 1,000 posterior 

samples. Chain convergence is particularly difficult in spatial models, so models were fitted 

using a single chain, and mixing was assessed visually and using the Geweke diagnostic (Doser, 

2023). In fitting the models, it was assumed that there were no false presences, and the study 

was treated as a single closed season. Each posterior sample provided a probability of 

occurrence (psi) for each species at each station along with a latent presence/absence (1/0) 

(z) calculated from this probability. In addition, a probability of detection (given presence) (p) 
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was provided for each species at each station for a single survey. The goodness-of-fit for each 

model was evaluated by performing a posterior predictive check to calculate a Bayesian p-

value, based on the differences between chi-squared values of observed and predicted data 

per species, grouped across stations. All fitted models had Bayesian p-values of 0.2 indicating 

an acceptable fit to the data (Hooten and Hobbs, 2015; Kéry and Royle, 2016). Subsequently, 

models were compared using the widely applicable information criterion (WAIC) (Watanabe, 

2010). Despite the well-known differences in performance between explanatory models fit 

on training data and predictive models fit on withheld datasets, predictive performance on 

independent data is rarely undertaken with occupancy models (Gould et al., 2019). Our 

models were validated by predicting communities to sites withheld from training data. To 

ensure all forest gradients were represented in model validation, five sites were randomly 

selected to represent one of each forest gradient type. The validation sites withheld from the 

models represented 17% of all available data. The predictive performance of the models was 

evaluated at the species level using the area under the receiver operating curve (AUC), and at 

the site community level by Bray-Curtis’s dissimilarity of community composition. 

 

Although models provide a probability of occurrence for every species at every location, when 

assessing predictive performance against withheld survey data, imperfect detection within 

those surveys must also be accounted for. For each modelled posterior sample, the 

probability of detection of a species at a station across all surveys was calculated as 1 – (1 – 

p)n, where p is the probability of detection in a single survey, and n is the number of replicate 

surveys performed at the station. This was used to generate a binomial detection/non-

detection (1 or 0) event for each species at each site. The detection event was multiplied by 

the predicted probability of occupancy (psi) and latent occupancy (z) of the same species and 

station. In the event that the latent detection or latent occupancy was equal to zero, it was 

determined that no detection had occurred. Consequently, the community outputs used for 

validation were those predicted to have been observed, rather than those predicted to have 

occurred. 

 

Subsequently, for both observed and modelled communities, a pairwise beta-diversity 

between survey sites was calculated and a Jaccard dissimilarity matrix was created using the 

‘betapart::beta.pair’ function. Principal coordinate analysis (PCoA) was conducted on the 
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dissimilarity matrix using the ‘vegan::betadisper’ function, and the resulting plot was used to 

observe the variances by forest gradient. All analyses were conducted using R version 4.1.0 

(R Core Team, 2022), on R Studio  (R Studio Team 2021). 

 

5.4 Results  

There is no consensus regarding the criteria for defining a significant difference in WAIC 

values, but a difference of two (2), as used with AIC values, is often employed (McElreath, 

2020). The WAIC values for all models fell within the range of 36,640 and 37,370, with lower 

values indicating superior performance. However, the model with the lowest WAIC value (RS 

data measured at 2.5km) was not the most accurate predictive model. The WAIC range 

suggests there was only minor variation in model fit and model selection was further guided 

by predictive accuracy. 

 

As species detectability is not influenced by occurrence covariates or spatial factors, it 

remains consistent across all models. The median intercept detectability for a single survey 

across all species was 9.4% (95% CI [7.7%, 11.3%]). The probability of detection was found to 

be significantly influenced by survey effort, with the mean probability of detection across all 

surveys increasing to 74.7% (SD=20.5%). 

 

In undisturbed primary forest, the median probability of species occupancy was 49.4% (95% 

CI [13.6%, 92.7%]). The median occupancy was found to be significantly lower in secondary 

forest at 22% (95% CI [13.2%, 34.5%]). Additionally, the median probability of occupancy was 

found to be lower within all gradients of disturbed primary forest, although this was not 

statistically significant as the 95% CI encompassed both positive and negative values.  

5.4.1 Model Validation 

Only minor differences were found between all models in their explanatory and predictive 

powers. The mean AUC of all models when assessed on training data was 0.95, while when 

predicting to independent validation sites, the AUC ranged from 0.53 to 0.61. The three most 

effective predictive models were fitted with the following variables: the proportion of forest 

logged and burnt within 250m of survey sites (mean AUC=0.61), survey-defined forest 
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gradients (mean AUC=0.60), and two PCAs derived from radar data and the proportion of 

forest logged and burnt within 250m of survey sites (mean AUC=0.59). It is noteworthy that 

none of the best performing models included data from the optical Planet image. When 

plotted against each other, the two PCAs highlight a division between sites that were logged 

or not, but no separation by sites that experienced burning is evident (Figure 5-2). In the 

context of evaluating the ability to predict individual species, an AUC of >0.7 is considered to 

be an indicator of good predictive performance (Mandrekar, 2010). Species that achieve this 

level are referred to as high-AUC species. The three best performing predictive models 

identified 33, 26 and 30 high-AUC species respectively, out of a total of 154. Despite minimal 

differences in predictive performance across all models, those that excluded spatial latent 

factors exhibited the poorest performance in all aspects of validation. 

 

 

Figure 5-2: Correlation between forest gradient and the PCA variables used in the best RS model. Variables used 

in creating these PCA were measured within a 250m radius of each survey site and included mean and standard-

deviation VV and VH radar bands from Sentinel-1, proportion of forest loss, and proportion of forest burnt. No 

optical reflectance data were included. 

 

In predicting species richness, the performance of the models was once again comparable. 

There was a strong overlap between the modelled and observed species accumulation curves. 

The best RS model demonstrated a minimal degree of under-estimation when applied to 

training dataset, and a slight degree of over-estimation when predicting to independent sites 

(Figure 5-3). The models demonstrated a negligible difference in their ability to describe 

community composition on training data, with a mean Bray-Curtis dissimilarity across sites 
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ranging between 0.158 and 0.167. In the independent validation sites, the mean Bray-Curtis 

dissimilarities across all models were between 0.445 and 0.478. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Observed (black) and modelled (blue) species accumulation (+/-2SD) by increasing numbers of 

stations surveyed, (A) within the training data, (B) set aside for validation. 

 

A 
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5.4.2 Community richness and composition 

A significant disparity between the observed richness of secondary and undisturbed primary 

forest (p=0.025) was noted when using a Pairwise Wilcoxon’s test, although no significant 

difference was identified between any other gradients. Conversely, a significant difference in 

predicted species richness was observed between all forest gradients (p<0.001 for each pair) 

using a Wilcoxon’s test. No significant difference was found between the predicted and 

observed richness’s of either the Primary Untouched or the Primary Logged and Burnt 

gradients (Kruskal-Wallis’s tests p=0.30 and 0.20 respectively). However, there were 

significant differences between the observed and predicted mean richness of the remaining 

three gradients (p<=0.05) (Figure 5-4). 

 

Figure 5-4: Species richness of observed and predicted bird communities split by forest gradient; red dots 

indicate mean values. Observed values are from all 29 surveys, predicted values are from 1,000 posterior 

samples of the best model for each of the five validation sites.  

Principal coordinate analysis of the pairwise Jaccard dissimilarity matrix of community 

composition indicates that there is some variation in community composition between forest 

gradients for both observed and predicted communities (Figure 5-5). A significant difference 
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was identified between the Undisturbed Primary and Logged and the Burnt Primary Forest 

types using Tukey's Honest Significant Difference (HSD) tests (p=0.033). However, similar tests 

on predicted communities indicate that significant differences exist between all gradients 

(p<> 0.019 and 0.000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: The variation in community composition calculated from a PCoA of pairwise Jaccard dissimilarities 

for (A) the 29 observed communities and (B) 5 validation communities predicted 1,000 times each. Both charts 

show the forest gradient of each point, and ellipses show one (1) standard deviation around the medians of each 

forest gradient. 

A 
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5.5 Discussion 

This study analysed bird communities identified by passive acoustic monitoring within forests 

of the North-Brazilian Amazon, as birds serve as bioindicators of habitat change due to their 

sensitivity to deforestation and fragmentation (Barlow et al., 2016; Ferraz et al., 2007). The 

29 survey points were distributed across five distinct forest gradients, defined by the 

occurrence of logging and/or burning. In order to ascertain the influence of forest gradient 

on bird communities, and to evaluate the capacity RS data to predict these communities, joint 

species occupancy models were used. Models fitted with RS data demonstrated satisfactory 

predictive performance, but no single model was overwhelmingly superior as there was 

minimal variation in the predictive capacity across all models. Despite this, inferences 

regarding the correlation between RS data and forest disturbance, and their influence on the 

structure of bird communities were possible. 

5.5.1 Impact of Forest Disturbance 

The loss of primary forests has been demonstrated to result in an increase in carbon gases 

and cause the loss of carbon sequestration and floral biodiversity. While land classes such as 

primary and secondary forest may be used to define and estimate the location, rates and 

levels of deforestation, plantation growth and carbon sequestration (Quiñones et al., 2007), 

they are insufficient for determining the biodiversity of an ecosystem. There are few studies 

that link faunal communities with forest gradient, but our findings indicated that the richness 

of bird species was significantly lower in secondary forest than undisturbed primary forest. 

This challenges the notion that secondary forests serve as a means of mitigating the negative 

effects of deforestation (Elias et al., 2020; Esquivel-Muelbert et al., 2019; G. D. Lennox et al., 

2018; Matos et al., 2020). It may, therefore, be inferred that secondary forests are less 

beneficial at maintaining biodiversity than previously thought (Smith et al., 2020). Similarly, 

when the proportion of forest lost and forest burnt were the only covariates, occupancy was 

also significantly lower in areas that had experienced higher levels of burning, corresponding 

with the generally reduced occupancy found in disturbed forest gradients. These findings are 

consistent with studies that show habitat loss and degradation in tropical forests are primary 

drivers of occupancy change (Barlow et al., 2016). In contrast, and with the exception of the 

smallest 30m measurement, mean occupancy was significantly higher with greater 
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proportional forest loss in lands surrounding the survey site. The forest gradients represent 

point values for the survey sites and, similarly to the 30m forest loss measurement, do not 

significantly influence occupancy, whereas proportional forest loss, measured at greater radii 

around each site does. However, in this instance, the greater predictive performance of 

models incorporating disturbance within 250m rather than at 1km or 2.5km of a survey point 

suggests that occupancy is more sensitive to fine than coarse scale landscape change. These 

findings align with previous research showing that species occupancy and community 

composition respond to environmental changes at different spatial scales (Lausch et al., 

2015). Forest fragmentation at broader spatial scales can lead to edge effect species turnover 

(Pfeifer et al., 2017). Some species exhibit strong site-level associations, while others respond 

to fragmentation and land-use patterns at the landscape scale (McGarigal et al., 2016). 

Undisturbed primary forest sites were situated more than two kilometres from other forest 

gradients, landscape types and forest edges. Conversely, all disturbed sites were situated 

within patchwork landscapes of differing forest types and agricultural lands and were only 

100s of metres from a forest edge. It can be observed that there is a discrepancy between the 

influence of forest gradient and proportional forest loss on occupancy. This appears to be 

influenced by the scale of measurement and possibly by neighbouring land classes. There are 

mixed and conflicting results on the effects of forest type and farmland on the comparative 

richness of bird species found in each (Dvořáková et al., 2023; Tu et al., 2020). Edge effects 

may occur at the interface between secondary and primary forests. Studies have 

demonstrated that species richness can increase at forest boundaries, particularly where 

edges are abrupt, such as the transition from forest to agricultural land (Terraube et al., 2016; 

Willmer et al., 2022). 

 

Suggesting that deforestation is beneficial to biodiversity seems counterintuitive, and 

community composition is a measure of environmental health that goes beyond species 

richness. Habitat heterogeneity and edge effects have been shown to influence species 

composition (Haddad et al., 2015; Laurance et al., 2011). Our findings follow this pattern, as 

although mostly non-significant, variations in community composition between gradients 

seem evident when plotted, inferring there may be some level of influence by logging and or 

burning on bird communities. This is further affirmed by acoustic indices, which have been 

shown to accurately predict the same forest gradients (Metcalf et al., 2021). If acoustic indices 
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are heavily influenced by bird calls, this implies that each forest class must have a discernibly 

different community composition. However, these are only provisional inferences. In order 

to confirm the true impact of the effects of logging and burning on bird communities, it would 

be necessary to monitor whether communities change over time in conjunction with forest 

disturbance (Magurran et al., 2010). 

5.5.2 Correlation between forest gradient and RS data 

Although predicting forest gradient was not the goal of the study, a correlation with RS values 

was anticipated. The results demonstrate that PCA1 is capable of differentiating between 

sites that have been logged and those that have not. In contrast, PCA2 exhibits a graduated 

distribution, with the lowest values observed in unburnt sites. The PCA values of the sites 

within unburnt secondary forest and logged but unburnt primary forest are indistinguishable, 

indicating that the reflectance values used are similar for both gradients. Secondary forest is 

defined as a forest  that has been clear-cut and has recovered to forest status. In contrast, 

logging refers to the harvesting of trees within a primary forest without clear-cutting and 

encompasses a range of proportional tree loss. Differentiating between these forest classes 

using remote sensing has been challenging (Mitchard et al., 2011). The richness and 

community composition of bird species found in these two gradients varies significantly, thus 

underscoring the necessity to identify RS variables that can more effectively differentiate 

between them. In unlogged forests, the PCA2 values for pristine primary forest sites are 

tightly grouped, whereas those for burnt primary forest are broadly spread. Forest that have 

experienced both logging and burning exhibit a considerably broader range of reflectance 

values than the other groups. It may be anticipated that the extent of logging and the resulting 

impact on reflectance may vary between sites. Similarly, the burnt forests did not all 

experience the same type or timescale of fire. Some forests burnt because of El-Nino in 2015 

and some burnt due to other causes prior to 2015. The reflectance values observed across 

the logged and burnt gradient are therefore broad and overlapping (Bourgoin et al., 2018), 

with an equally broad spread of community composition. While radar showed some ability to 

differentiate between forest gradients, its sensitivity to moisture content and canopy density 

may have obscured fine-scale structural differences and contributed to the observed variation 

(van Emmerik et al., 2017). LiDAR, which can provide three-dimensional forest structure data 

has been shown to improve habitat classification (Fayad et al., 2016). However, despite its 
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potential, the physical and financial demands of obtaining timely LiDAR data for continuous 

monitoring of change reduces its viability (Pereira Mendes and Lim, 2024). Given these 

constraints, integrating longer-wavelength radar such as NISAR with existing with passive 

acoustic monitoring may offer a more practical approach to long-term biodiversity 

monitoring. Consequently, defining the communities within this category is challenging, but 

given sufficient training data, RS linear descriptors are expected to differentiate between 

forest gradients more effectively than land class alone. 

5.5.3 Utility of RS models and further study 

While the combination of optical and radar imagery has been shown to be beneficial in 

calculating tropical forest biomass and distinguishing between temporal vegetation types 

(Fayad et al., 2016; Lopes et al., 2020), our findings indicated that models fitted with optical 

reflectance data underperformed. This is likely due to persistent cloud cover reducing image 

quality and thus the ability to capture fine scale changes in habitat (Nazarova et al., 2020). In 

the Northern Brazilian Amazon, for instance, Landsat has been shown to fail to deliver usable 

images for a minimum of 10 months per year (Quiñones et al., 2007). Additionally, forest loss 

has been shown to increase cloud cover in much of the central and northern Amazon  (Xu et 

al., 2022). Despite the potential reduction in cloud-related limitations through the use of 

Planet satellites and their daily imagery, our results did not reflect this advantage, as the best 

performing RS model did not include information from an optical satellite. In contrast, the use 

of radar imagery, which is not affected by cloud cover, has demonstrated potential for 

improving the delineation between Boreal Forest types (Thiel et al., 2006). Radar imagery was 

the only satellite data included in the best-performing RS model. However, while radar is 

unaffected by cloud cover, variations in moisture content, both in and on leaves can influence 

backscatter, making comparisons between similar vegetation communities challenging across 

times or areas with differing water content (van Emmerik et al., 2017). The upcoming launch 

of a longer-wavelength radar satellite, NISAR (NASA-ISRO Synthetic Aperture Radar) may help 

overcome some of these challenges. Its longer wavelengths in comparison to Sentinel-1, 

should be less impacted by water content and better penetrate forest canopies to describe 

sub-canopy structures. This may prove particularly beneficial for studies conducted in high 

cloud areas, especially when considering phenology.  
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The limited range of predictive performance observed between models utilising different 

covariate types precludes the formulation of robust conclusions. However, this study presents 

an investigation into the potential causes and implications of these observed differences. The 

prevalence of cloud cover in tropical forests presents a significant challenge for the use of 

optical remote sensing in monitoring these ecosystems on a regular temporal basis. 

Meanwhile, models that performed the least well did not account for spatial autocorrelation. 

This reinforces the recommendation that, whatever other covariates are used, spatial factor 

models should be employed when prediction is a key goal  (Doser et al., 2023).  

 

While variations in bird communities could be effectively modelled at a categorical level, they 

struggled to capture finer-scale variations in bird community composition. This was likely due 

to the limited number of survey sites, which prevented effective training of models to detect 

gradual rather than broad habitat changes. This suggests that a substantially larger dataset, 

covering a broader range of habitat conditions would be needed for RS data to move beyond  

predicting gradient level variation to predicting fine-scale community shifts within those 

gradients (Wisz et al., 2008). The models indicate that there is a distinction in the diversity 

and likelihood of occurrence of bird species across forest gradients, and that there seems to 

be a correlation between forest gradients and RS data. In the context of our study, the mean 

detection level of numerous species was notably low, which has the potential to result in a 

considerable number of false absences, thereby exerting a detrimental impact on the 

subsequent data analysis. However, the high repeat, short sample acoustic survey technique 

employed, provides good levels of detection of dawn calling species. Improvements in 

detection and a more thorough community description may be attained by sampling acoustic 

recordings at different times of day to capture predominantly dusk and night calling species 

(Wimmer et al., 2013). While passive acoustic surveys provide an efficient non-invasive 

method of assessment, implementing complementary techniques such as mist netting and 

point surveys could improve the identification of low-vocalisation species (Martin et al., 

2017). Furthermore, increasing the number of survey sites may facilitate analysis in two ways. 

Firstly, the provision of additional data will facilitate the confirmation of any observed 

variation in community richness and composition between forest gradients. Secondly, the 

incorporation of more RS variables in the analysis is possible with the inclusion of more data 

points, thus increasing the amount of variation in reflectance and structure that may be 
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included in a model while avoiding the issue of overfitting. The incorporation of more RS 

variables allows for the inclusion of a greater range of variation in forest reflectance in 

analysis, potentially enhancing the capacity of models to discriminate and predict across 

gradients and landscapes. Should more training data improve the ability to model bird 

communities using RS data, it may be possible to accurately predict species richness and 

community similarities regionally and temporally, with minimal fieldwork. The findings from 

this study could help identify areas where shifts in bird community composition or species 

richness are occurring, aiding long-term biodiversity monitoring. Improving the predictive 

accuracy of RS models, particularly with larger datasets, could provide a scalable tool to track 

ecological changes and assess the effectiveness of management interventions over time. 

 

Code and data used in the analysis of this chapter are available at 

https://github.com/AndrewCSlater/Chapter_Brazil 

https://github.com/AndrewCSlater/Chapter_Brazil
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6. General Discussion 

6.1 Introduction and rationale 

The loss and degradation of natural habitats is occurring at an alarming rate, with the result 

that species richness and diversity are declining across the world (IPBES, 2016; Newbold et 

al., 2016). This, in turn, impairs the capacity  of ecosystems to sustain the services and 

functions they provide (Oliver et al., 2015). Furthermore, the effects of climate change, which 

are being exacerbated by deforestation, are intensifying the impacts of habitat degradation 

(IPCC, 2023; Malhi et al., 2009). It is of the utmost importance to halt and reverse these 

trends. The initial step in addressing this decline, as recognised in global biodiversity 

monitoring frameworks such as GEO BON (2023), is to describe the distribution and status of 

species, and to identify ecologically important environments and areas that are experiencing 

the most significant ecological decline. In order to have a meaningful impact on areas and 

species in decline, it is necessary to understand the ecological and anthropogenic drivers that 

influence change in them. These include processes such as habitat loss and fragmentation, 

climate change, overexploitation, invasive species, and pollution (IPBES, 2016; Maxwell et al., 

2016; Newbold et al., 2016). Similarly, the effectiveness of conservation practices and the 

impact of landscape degradation must be quantified, not only currently but also by continued 

monitoring into the future. The data required to effectively describe a natural environment 

and changes within it often necessitate the use of spatial and temporal scales that exceed the 

practical capabilities of traditional in situ field surveys (Jetz et al., 2019; Schmeller et al., 2017). 

In response to these needs, there has been a growing trend in the use of remotely sensed 

satellite data to classify land use, to monitor its change, and to expand survey findings of a 

few limited species across landscapes. However, the classification process is inherently 

subjective and susceptible to error. The classes defined may not be pertinent to driving 

observed changes and may not reflect the true nature of the observed landscape (Foody, 

2002; Olofsson et al., 2014). Similarly, obtaining information for individual species may aid in 

their protection, but even if they are keystone or flagship species, they are unlikely to fully 

describe the condition of an ecosystem. A more comprehensive picture of an environment 

and a more ecologically informative indicator of its condition or functioning, can be achieved 
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by describing the composition and structure of species found within it. Community-level data 

reflect environmental gradients, species interactions, and disturbance regimes, and are 

widely used to assess ecosystem integrity and resilience (Andersen et al., 2002; Niemi and 

McDonald, 2004; Noss, 1990). This study advances the field by integrating multi-species 

modelling with remotely sensed data to assess whether improvements can be made to 

community predictions made by traditional environmental metrics. While Earth observation 

offers an invaluable tool for large-scale biodiversity assessments, its effectiveness is 

dependent on factors such as resolution, sensor type and environmental conditions (Pettorelli 

et al., 2014a; Turner et al., 2003; Wang and Gamon, 2019). These challenges highlight the 

need to determine where and when EO is most appropriate for predicting community 

composition. 

 

6.2 Key findings across the studies 

In Chapter Two, the hyper-diverse plant communities of the Greater Cape Floristic Region in 

South Africa were modelled. It was hypothesised that plant communities would directly 

influence the reflectance values measured by Earth observation satellites. However, it was 

found that the explanatory powers of distribution models fitted with geological data were 

only marginally enhanced by the incorporation of Earth observation data. Due to the greater 

influence that more abundant plants have on the reflectance values measured by satellites, 

the explanatory power of abundance models was greatly increased by Earth observation. The 

contribution of Earth observation to distribution models was minimal, and static topographic 

and climatic variables remained the strongest predictors. EO replaced a large proportion of 

the variance explained by latent spatial factors, and thereby accounted for a far greater 

proportion of the explained variance than it added. In contrast to latent variables, Earth 

observation is a directly measurable phenomenon, and Earth observation improved the 

ability to predict and map to areas outside of the training data. The resolution of satellite data 

permitted the identification of a greater diversity of community composition across the 

landscape than was apparent from traditional categorical vegetation maps. Furthermore, the 

use of historic satellite imagery permitted the prediction and mapping of areas where a 

directional shift in community composition may have occurred. This ability to detect temporal 

trends suggests that EO could be a valuable tool for long-term biodiversity monitoring, 
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particularly in landscapes experiencing gradual shifts in species composition due to climate 

variability or land-use change. 

 

In Chapter Three, insect communities surveyed in the community forest surrounding the Gola 

Rainforest National Park of Sierra Leone, and identified by DNA metabarcoding, were 

analysed. Models were able to accurately predict (AUC>0.7) the distribution of ~19% of the 

modelled insect OTUs, with Earth observation data accurately predicting slightly more OTUs 

(55) than habitat variables measured in situ could (49). The degree of overlap between the 

two groups of well-predicted insects was minimal, indicating that Earth observation data and 

habitat variables were measuring different elements of forest structure. Despite this, Earth 

observation was shown to explain a third of the variation in canopy structure as measured by 

GEDI, with many of the well-predicted OTUs exhibiting a negative correlation with canopy 

structure. Furthermore, GLCM-based EO variables outperformed raw reflectance values, 

reinforcing the importance of spatial texture in predicting biodiversity patterns and 

demonstrating how spatial heterogeneity in remotely sensed data better reflects forest 

condition. By measuring the richness of OTUs grouped by their positive or negative 

correlations with forest structure, forest condition could be inferred and mapped over the 

area. In addition, communities were mapped by their similarity of composition over the same 

area. These maps could be employed to identify areas where the intensification of farming 

would have the least detrimental impact on forest structure (Phalan et al., 2011). 

Furthermore, they could be employed as a means of measuring biodiversity, thus enabling 

the calculation of the success of REDD+ incentive payments, and the apportionment of such 

payments. 

 

In Chapter Four, the bird communities in the Madre de Dios region of Peru were determined 

through multiple surveys and subsequently modelled. The results demonstrated that, once 

again, models incorporating data from Earth observation satellites performed better when 

predicting community composition than models with environmental variables, with 36% and 

15% of modelled species respectively being accurately predicted (AUC>0.7). The overall 

species detectability was found to be very low, with variation in community composition 

across the landscape predicted to be far lower than observed, and despite the success in 

predicting individual species, communities were predicted poorly. To observe community 
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composition more completely, the importance of greatly increasing the number of replicate 

surveys was emphasised, with recommendations that prioritising more replicate surveys at 

fewer sites could significantly improve detection and enhance model reliability. 

 

In Chapter Five, the bird communities identified by passive acoustic monitoring in the 

northern Brazilian Amazon were modelled. EO models performed comparably to habitat 

variable models, predicting ~18% of species well (AUC>0.7), but their ability to capture fine-

scale habitat differences was limited. Although the Earth observation data models performed 

adequately, the limited number of survey locations meant that fewer covariates could be 

included, requiring the data to be heavily condensed, thereby diluting the correlation 

between EO and survey data. 

 

The four case studies highlight how the effectiveness of EO for biodiversity modelling is 

shaped by taxonomic group, survey design, and the spatial extent of sampling. In the GCFR, 

EO significantly improved plant abundance models, likely due to the direct relationship 

between vegetation structure and spectral reflectance. In contrast, EO struggled to predict 

bird community composition in Brazil and Peru, but for different reasons. In Peru, where 

survey coverage was extensive, the challenge arose because species detection was too low to 

adequately describe community variation across the area. In Brazil however, the primary 

limitation was the small number of sample sites, which restricted the models’ ability to 

differentiate habitat variation. The Gola study provided a more mixed result, where EO 

predictors explained variation for some taxa but not others, reinforcing that even within a 

single ecosystem, species respond differently to remotely sensed habitat features. These 

findings suggest that EO achieves the most accurate predictions of community composition 

when the environmental variables influencing species distributions, such as vegetation 

structure or land cover variability, can be reliably captured through satellite measurement. 

However, this is only part of the picture. 

 

The design, scale, and ecological representativeness of the field data also had an influential 

role in shaping model outcomes. The GCFR was unique in spanning multiple biomes and 

transition zones, introducing the challenge that some vegetation communities may have 

shared similar spectral reflectance, but contained distinct plant assemblages, potentially 
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limiting EO’s ability to distinguish them. In Brazil, the restricted number of sample sites 

constrained model performance, despite the relative completeness of the acoustic dataset. 

These findings emphasise that EO’s predictive power is strongest when applied at appropriate 

spatial scales and combined with well-structured field data that captures sufficient habitat 

variation. 

   

6.3 Methodological challenges and reflections 

A key methodological challenge addressed by this study was how to scale up species and 

community modelling using remotely sensed data across ecologically diverse systems. These 

challenges were particularly evident in the selection and reduction of EO predictors. While 

the method used to derive predictors through canonical or principal components may have 

incorporated more EO variables than necessary, this approach is not uncommon in other 

studies (Guo et al., 2023; Jarocińska et al., 2024; Tsai et al., 2007). However, a more refined 

strategy, selecting fewer but potentially more ecologically relevant indices for reduction, or 

using selected, unreduced spectral indices (Carlson et al., 2007; Rocchini et al., 2010; Xue and 

Su, 2017), might have improved model predictive performance.  These methodological 

decisions were made in response to the need for continuous variables that could describe the 

landscape in a consistent way across diverse environments.  The aim was to reduce 

subjectivity and the risk of incorrect classification, with the objective of  enabling repeatable 

descriptions of community composition  and species occurrence that could be mapped over 

areas of interest. While this approach allowed the study to explore the potential of EO at 

broad scales, it introduced trade-offs between ecological accuracy and model predictive 

strength. 

 

It is important to consider the potential implications of spatial resolution when undertaking 

future studies. Firstly, it is important to consider what resolution is necessary and practically 

achievable. As new satellite platforms become available, image resolutions are becoming 

finer. Although not yet freely available, sub-1m2 resolutions exist. It may be tempting to 

choose the highest resolution available, but this may not be necessary, as demonstrated in 

Chapter 3, where satellite platform, and thus resolution, had no significant influence when 

summarising reflectance over an area. Similarly, Sentinel-2 imagery with a 10m2 resolution 
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has nine pixels for every Landsat pixel, and a 1m2 resolution image contains 100 pixels for 

every Sentinel pixel. While finer resolutions result in crisper images, the data storage required 

increases in proportion to the resolution. When analysing pixel-level data in complex 

statistical models, the additional data size necessitates increased requirements in processing 

power, time, memory and energy use. In the context of large-scale prediction, it is probable 

that the practical limitations of processing power will outweigh the potential benefits of 

smaller pixels. Secondly, the resolution of satellite pixels and field survey data should be as 

closely aligned as possible, particularly when modelling fine-scale ecological variation. 

However, the appropriate resolution may differ depending on the taxa being surveyed. For 

example, plant communities may respond to microhabitat variation at very fine scales, while 

birds often respond to broader habitat variations.  Many field surveys in Chapter 2 were 

conducted on linear transects or in 10m2 plots, yet the analysis used satellite data with a 30m2 

resolution. In these instances, the field data represented only a fraction of a single satellite 

pixel, diluting the relationship between the two. Moreover, the spatial resolution of EO data 

does not always correspond to the ecological scale at which species respond to environmental 

variation. Similarly, texture-based metrics such as GLCM, or Rao’s Q (Rocchini et al., 2018), 

can provide additional information by describing heterogeneity within and between pixels. 

These approaches may capture relevant ecological variation at scales not directly resolved by 

raw EO data. 

 

In predominantly cloud-covered areas, such as tropical regions, the use of optical EO data can 

be severely limited. Rather than concentrate on finer spatial resolution, which may not 

resolve cloud issues, studies in these areas may benefit from improved temporal resolution. 

More frequent image acquisition  increases the likelihood of obtaining a cloud-free image, 

supporting the monitoring of short-term environmental variability. In addition, radar-based 

imagery is capable of penetrating cloud cover, and presents an increasingly viable alternative. 

New radar satellites, such as the upcoming BIOMASS mission, are anticipated to become 

operational in the near future. These platforms will offer the ability to penetrate both cloud 

cover and dense canopy cover and provide a more detailed description than is currently 

achievable (Quegan et al., 2019; Singh et al., 2019).  
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In addition to considerations of spatial and temporal resolution, survey design decisions can 

also influence model outcomes. For example, in passive acoustic monitoring, limiting analysis 

to a single 1-hour time window may introduce bias by over-representing species that vocalise 

frequently (Fairbrass et al., 2017), while under-sampling rarer or less vocal species. Future 

studies should evaluate whether extending the sampling duration improves species 

detectability and reduces biases (Bradfer-Lawrence et al., 2019), while also considering 

whether the potential improvements justify the additional resources required for analysing 

larger datasets (Williams et al., 2018).  

 

6.4 Practical implications and conservation applications 

Despite widespread international commitments to halt biodiversity loss, conservation 

outcomes remain well below targets, in part due to insufficient ecological data and poor 

alignment between monitoring systems and decision-making processes (CBD Secretariat, 

2021; IPBES, 2016). The failure to meet the Aichi Biodiversity Targets has led to renewed calls 

for scalable, reliable biodiversity data to inform conservation planning (GEO BON, 2023; Mace 

et al., 2012). Monitoring frameworks now place growing emphasis on spatially explicit, cost-

effective and repeatable tools for tracking biodiversity trends, particularly in regions with 

sparse field data (Jetz et al., 2012; Pettorelli et al., 2014a). The findings of this study contribute 

directly to these goals by demonstrating how EO data, in combination with ecological 

modelling, can expand the reach of field surveys and support biodiversity assessments over 

large spatial and temporal scales.  

 

The models produced by this study provide a probability of occurrence for each species 

modelled at each point of prediction. In the search for rare or difficult-to-find species, 

conducting field surveys in areas with a higher chance of success can assist ecologists in 

increasing the efficiency of their surveys. The efficiency with which species of interest can be 

located is of particular benefit when identifying areas to focus conservation efforts. Greater 

efficiency should ideally enable more surveys to be conducted, which would in turn improve 

understanding of species distributions and provide better training data for new models. 

Similarly, the results of a limited number of field surveys can be employed in the calculation 

of communities based on their compositional similarities and mapped across areas larger than 
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those surveyed. Such maps may be of benefit to policy makers in identifying areas of 

ecological significance, which can then be assigned a conservation status. Furthermore, these 

maps can be used to identify areas that are under threat, thereby advising where remedial 

action should be taken. However, the effectiveness of EO-based biodiversity models was 

highly dependent on ecosystem characteristics, data quality, and species detectability. While 

EO successfully captured broad-scale habitat gradients in some cases (Brazil, GRNP) and 

improved abundance models where species presence was confirmed (GCFR), it was less 

effective in predicting community composition in regions where detectability was low (Peru) 

(Kissling et al., 2015). Across all study sites, EO provided valuable insights for large-scale 

biodiversity monitoring, but its conservation applications depend on careful integration with 

ground-based surveys (Pettorelli et al., 2014a). The findings reinforce EO’s role as a scalable, 

cost-effective tool for planning, habitat restoration, and tracking long-term ecological change 

(Turner et al., 2015). However, conservation practitioners should interpret model outputs 

with caution and supplement them with direct field validation where possible (Pettorelli et 

al., 2014b). 

 

6.5 Limitations and future research   

This study was based on secondary ecological data, gathered by various researchers for a 

range of independent purposes, and not originally designed with satellite remote sensing or 

this study in mind. As such, there was variability in the survey effort and methodologies 

employed, but we endeavoured to account for this within model structures. Although the 

primary objective of this project was to assess the efficacy of satellite data in describing field-

based ecological surveys, the link between each chapter and ecological processes was 

contingent upon the environmental data gathered by the original survey and may not be the 

most appropriate or best fit. Despite these irregularities, the breadth of data made available 

was far greater than could be gathered by an individual PhD study, and as such were as much 

a benefit as limitation. Finally, they can be employed to promote sustainable development of 

local communities by identifying areas best suited for development with minimal impact on 

the ecology of the local environment. 
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6.6 Conclusion 

In all cases, models fitted with remotely sensed satellite data were found to be as effective, 

or even more so, at predicting species distributions than models fitted with environmental 

data gathered in situ. However, the effectiveness of EO-based models varied across 

ecosystems and taxa, with greater accuracy in predicting species abundance in well surveyed 

environments and broad habitat gradients, but lower predictive success was achieved in 

landscapes with high species turnover and limitations in detectability. This evidence suggests 

that the use of satellite data can be effectively advanced from the prediction of land use or 

large, prevalent, plant species, to the collective description of bird, insect, or small plant 

communities (Pettorelli et al., 2014a). 

 

Our study also enables the inference of community composition in the past using historical 

satellite data, and the continual calculation of this into the future with each new satellite 

image produced. As a result, land managers are able to ascertain the consequences of 

historical practices and observe the impact of degradation and the efficacy of ongoing 

mitigation strategies on the land under their stewardship. 

 

It is necessary to be able to describe both the likely distribution of individual species and the 

composition of ecological communities over space and time. The findings from across all four 

study systems indicate that EO can reliably capture broad-scale biodiversity patterns, but its 

ability to predict finer-scale ecological interactions remains dependant on species 

detectability, survey effort, and ecosystem structure (Turner et al., 2015).  The utilisation of 

satellite data to forecast community composition over extensive geographical areas is a viable 

approach in a variety of environments and for a diverse range of taxa. Furthermore, joint 

species distribution and occupancy models, which use satellite-derived variables, are 

generally able to predict ecological communities with greater accuracy than those fitted with 

environmental variables described in situ (Pollock et al., 2014). Future research should focus 

on refining model calibration methods, improving integration with in situ data, and assessing 

the long-term stability of EO based biodiversity predictions (Pettorelli et al., 2014a). 
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The output of models enables the mapping of species or communities, thereby facilitating 

the inference of ecological condition over extended areas of interest. This should benefit 

ecologists, land managers, policy makers, and human development agencies in achieving 

their goals. By synthesising results across multiple ecosystems , this study demonstrates that 

EO has the potential to complement traditional biodiversity surveys and expand ecological 

monitoring to previously inaccessible areas, reinforcing its role in large-scale conservation 

planning. This provides further evidence that biodiversity surveys can be successfully linked 

with and expanded by Earth observation data, and should facilitate future studies to expand 

into areas, taxa, and ecological variables where ecological surveys are currently limited 

(Kissling et al., 2015). 
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7. Appendices 

7.1 Appendix - Chapter 3 

DNA was extracted from each bulk tissue sample using a proprietary lysis buffer and a DNeasy 

Blood and Tissue Kit (Qiagen). First, ethanol was poured off and samples were left to dry for 

24 hours in an incubator at 30°C. Enough lysis buffer was added to cover each sample (200-

400 ml), then samples were incubated at 56°C for 4 hours. After incubation, 14 ml of lysate 

from each sample was passed through a set of five spin columns (2.8 ml per spin column), 

followed by 500 μl of Buffer AW1, then 500 μl of Buffer AW2. Finally, 50 μl of Buffer AE was 

passed through each spin column and the five extracts per sample were pooled together. 
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An extraction blank was processed with each batch of extractions to assess potential 

contamination in the extraction process. DNA extracts were quantified using a Qubit dsDNA 

HS Assay Kit on a Qubit 3.0 fluorometer (Thermo Scientific). 

For each bulk invertebrate sample, three replicates were performed using COI primers 

(Wangensteen et al., 2018). All PCRs were carried out in a total volume of 25 µL consisting of 

1X DreamTaq Green PCR Master Mix, 0.3 μM of each primer, 0.8 mg/ml of BSA, 0.9 µl of 

template DNA, and PCR grade water. 

Bulk invertebrate PCR conditions consisted of: an initial denaturation at 95°C for 10 min; 35 

cycles at 94°C for 60 s, 45°C for 60 s, and 72°C for 60 s; and a final elongation step at 72°C for 

5 min. PCR positive controls (i.e. a mock community with a known composition of non-native 

species) were included to verify sequence quality and PCR negative controls (i.e. PCR grade 

water) were included to detect potential cross-contamination. Amplification success was 

confirmed via gel electrophoresis. 

Library preparation. All first round PCR replicates per sample per marker were pooled and 

purified using Mag-Bind® TotalPure NGS (Omega Bio-tek) magnetic beads. A sequencing 

library was prepared from the purified amplicons using a combinational dual index approach, 

following Illumina’s 16S Metagenomic Sequencing Library Preparation protocol using the 

Nextera XT indexes (Illumina), but using 1X DreamTaqPCR Master Mix (Thermo Scientific). The 

second round indexed PCR products were again purified using Mag-Bind® TotalPure NGS 

(Omega Bio-tek) magnetic beads. The purified index products were quantified using a Qubit 

dsDNA BR Assay Kit, normalized to 4 nM and pooled at equal volumes. The pooled 4 nM 

purified index PCRs were sized using a TapeStation D1000 ScreenTape System (Agilent). The 

libraries were sequenced on an Illumina MiSeq with a V3 MiSeq Reagent kit, the final library 

was loaded at 10 pM with a 20% PhiX control spike. 

Sequences were demultiplexed with bcl2fastq and subsequently processed to obtain 

Amplicon Sequence Variants (ASV). 

Taxonomic assignments were made via sequence similarity (blastn; (Altschul et al., 1990; 

Camacho et al., 2009) searches of the ASV sequences against the NCBI nucleotide database 

(NCBI nt; downloaded on 28-09-2021) and the BOLD datasets (Ratnasingham and Hebert, 

2007). Hits were required to have a minimum e-score of 1e-20 and cover at least 90% of the 

query sequence. The taxonomy associated with each hit was converted to the GBIF taxonomic 

backbone to allow results from different databases to be comparable for the following step. 
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Public databases are known to contain errors with DNA sequences frequently associated with 

incorrect species names. This poses a problem when assigning species names to 

metabarcoding DNA sequences. NatureMetrics uses proprietary methods to curate and filter 

out such errors through whitelisting, blacklisting, and human curation based on country 

lookups to ensure that there is reasonable support that the sequence has been correctly 

associated in the database. Accessions that are flagged as potentially erroneous are not used 

for taxonomic assignment of metabarcoding sequences. It should be noted that while it is 

possible to use uncurated public databases for taxonomic assignment, resulting outputs 

might differ (slightly), such as in species resolution, from those resulting from curated ones. 

ASVs were then clustered at 97% similarity with USEARCH to obtain OTUs. An OTU-by-sample 

table was generated by mapping all dereplicated reads for each sample to the OTU 

representative sequences with USEARCH at an identity threshold of 97%. 

Finally, low abundance detections were omitted, with filter thresholds set at a percentage of 

the total reads per sample (vertebrate eDNA: 0.02%; invertebrate eDNA: 0.015%; bacteria: 

0.1%; bulk invertebrates: 0.01%). Results are presented for OTUs identified to the target 

taxonomic group only (vertebrate: Chordata excluding human and domestic animals; 

invertebrate: Animalia excluding Tetrapoda; bacterial: Bacteria). 

Sequencing data are available via this link. 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdataview.ncbi.nlm.ni

h.gov%2Fobject%2FPRJNA898889%3Freviewer%3Dl9cfd6aa3g5aluolad91qtcit5&data=05%7

C01%7Cslatera6%40live.lancs.ac.uk%7C3ff7c5cb0c0d43cd572308dba49a1b2a%7C9c9bcd11

977a4e9ca9a0bc734090164a%7C0%7C0%7C638284754010652951%7CUnknown%7CTWFpb

GZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3

000%7C%7C%7C&sdata=iI5BwaBRzup5NEj3kbdzhAKFlrG9xO3bOniUl6S2IBQ%3D&reserved=

0 

 


