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Abstract

This paper starts by showing that, for algebras in a certain class, the
concepts of weak nilpotency and nilpotency coincide. It goes on to describe
some solvability and nilpotency properties of bicommutative algebras, of as-
sosymmetric algebras and of Novikov algebras and to introduce a Frattini
theory for all of them. A description is also given for semisimple bicommu-
tative algebras over any field.
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1 Introduction

Definition 1 A nonassociative algebra A is called right (respectively,
left) commutative if (ab)c = (ac)b (respectively, a(bc) = b(ac)) for all
a, b, c ∈ A; it is bicommutative if it is both right and left commutative.

One-sided commutative algebras first appeared in a paper of Cayley in
1857 ([6]). The study of bicommutative algebras was initiated by Dzhu-
madil’daev and Tulenbaev in 2003 ([9]), where, in particular, they proved
that the derived algebra of such an algebra is commutative and associa-
tive, and hence that any simple algebra is a field. They were also studied
by Burde, Dekimpe and Deschamps, who called them LR-algebras, in 2009
([5]). They arise in a number of settings, including the study of affine actions
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on nilpotent Lie groups. Low dimensional nilpotent bicommutative algebras
have been classified algebraically and geometrically in [1, 13, 14].

Definition 2 A left-symmetric algebra A is a vector space with a bilinear
product, denoted by juxtaposition, which satisfies

x(yz)− (xy)z = y(xz)− (yx)z.

The associator, (x, y, z) = (xy)z−x(yz) of any three elements x, y, z in an
algebra A can be thought of as measuring the degree of associativity in A.
Then the defining identity of an left symmetric algebra can be written as

(x, y, z) = (y, x, z).

Similarly, A is right symmetric if

(x, y, z) = (x, z, y).

We will say that A is bisymmetric if it is both left and right symmetric.

Left symmetric algebras arise in different areas of mathematics and
physics (see, for example, [3]). A structure theory for such algebras appears
to be elusive. However, when further conditions which also arise naturally
are added, a nice structure theory can be found.

Definition 3 Following Kleinfeld in [15], the algebra A is called assosym-
metric if

(x, y, z) = (σ(x), σ(y), σ(z)) for all x, y, z,∈ A,

where σ is an arbitrary permutation of x, y, z.

Then the following is easy to see, since S3 is generated by (12) and (23)..

Proposition 1.1 The algebra A is assosymmetric if and only it is bisym-
metric.

Assosymmetric algebras are not power associative or flexible, so it was
many years before they were investigated in any detail. However, in 1986,
Kleinfeld published a new paper ([16]) which initiated their study in greater
detail.

Definition 4 A nonassociative algebra A is called a (left) Novikov alge-
bra if it is left symmetric and right commutative. There is also an opposite
(right) version satisfying right symmetry and left commutativity.
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These algebras were introduced independently by Gelfand and Dorfman
in 1979 as an algebraic approach to the Hamiltonian operator in mechanics
([11]) and by Balinskii and Novikov in 1985 in relation to hydrodynamics
([2]). In [2], a question was raised about the simple algebras in this class
and this was answered in the same year by Zelmanov who showed that, over
a field of characteristic zero, the simple Novikov algebras are fields ([21]).
Low-dimensional Novikov algebras were classified in [4, 12].

Both of these classes of algebras have attracted the attention of many
authors and have a rich theory. They are both Lie admissible algebras; that
is, commutator multiplication on them gives a Lie algebra. In certain areas
they have some similarities (such as the simple algebras being commutative
associative algebras), but in others they differ significantly, as we shall see
later. For a fuller bibliography, see [8] for bicommutative algebras and [18]
for Novikov algebras. The purpose of this paper is to study some further
solvability and nilpotency properties and to introduce a Frattini theory for
them.

In section 2 we consider some concepts of nilpotency in general nonasso-
ciative algebras. In particular, we show that, in a class of algebras X which is
factor algebra and subalgebra closed and, for every A ∈ X, IJ is an ideal of
A whenever I, J are ideals of A, a weaker version of nilpotency is equivalent
to nilpotency. Section 3 is devoted to bicommutative algebras. We show
that the Frattini ideal of such an algebra is nilpotent, that minimal ideals
are zero algebras or are simple, and produce a decomposition of semisim-
ple such algebras as a direct sum of fields extended by a zero subalgebra
(one whose square is zero). It is also shown that, unlike Novikov algebras,
the sum of two zero subalgebras need not be solvable; in fact, it can be
semisimple.

In section 4, Novikov algebras A are introduced. It is shown that, if
the field has characteristic p, where p = 0 or p > dimA + 1, then φ(A)
is right nilpotent. Also, that if R is the solvable radical, then AR is a
nilpotent ideal of A. In the final section, algebras with trivial Frattini ideal
are considered. It is shown that, if A is a bicommutative algebra over any
field or a Novikov algebra over a field of characteristic p, where p = 0 or
p > dimA+1, then A is φ-free if and only if it splits over the sum of its zero
ideals. Decomposition results are found for both classes of algebras, over a
general field for bicommutative algebras, and over a field of characteristic
zero for Novikove algebras with nilpotent radical. A consequence of the
latter result is that, over a field of characteristic zero, the Frattini ideal of a
Novikov agebra is nilpotent. The section finishes with two results concerning
maximal subalgebras.
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Throughout, A will denote a finite-dimensional nonassociative algebra
over a field F . Algebra direct sume will be denoted by ⊕, whereas direct
sume of the vector space structure alone will be denoted by +̇. We will use
⊆ to indicate inclusion, and ⊂ for strict inclusion.

2 Some General Results

Definition 5 If B is a subalgebra of an algebra A, the idealiser of B in
A is IA(B) = {a ∈ A | aB + Ba ⊆ B}. The annihilator of I in A is
AnnA(I) = {a ∈ A | aI = Ia = 0}. We will write Ann(A) for AnnA(A).

Definition 6 For any algebra A, the derived series of subalgebras A(0) ⊇
A(1) ⊇ A(2) ⊇ . . . of A is obtained by defining A(0) = A, A(i+1) = (A(i))2

for all i ≥ 0. A is called solvable if A(n) = 0 for some n. Every algebra
A has a unique solvable ideal which we will call the solvable radical of A
and denote by R(A). We will call A semisimple if R(A) = 0. (Note that
this is different from the definition used by some authors.)

Definition 7 Put A1 = 1A = A[1] = A, An+1 = AnA, n+1A = A(nA),
A[n+1] =

∑
i+j=n+1A

[i]A[j]. We call A right nilpotent if An = 0, left
nilpotent if nA = 0, weakly nilpotent if it is both right and left nilpotent,
and nilpotent if A[n] = 0 for some n ≥ 1.

Clearly, an algebra is nilpotent if and only if there is an n such that
every product of n elements is zero. It follows that A[n] is an ideal of A for
every n ≥ 1

Proposition 2.1 Let A be a nilpotent algebra and let B be a subalgebra of
A. Then B ⊂ IA(B); in particular, all maximal subalgebras of A are ideals
of A.

Proof. Since A is nilpotent, there is a k such that A[k] 6⊆ B, but A[k+1] ⊆ B.
Then B ⊂ A[k] +B ⊆ IA(B). �

Definition 8 The Frattini subalgebra, F (A), of A is the intersection of
the maximal subalgebras of A; the Frattini ideal, φ(A), is the largest ideal
of A contained in F (A).

Corollary 2.2 ([19, Theorem 6]) If A is a nilpotent algebra, then φ(A) =
F (A) = A2.
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We also have the following characterisation of nilpotent algebras.

Lemma 2.3 For an algebra A, the following are equivalent:

(i) A is nilpotent;

(ii) there is a chain of ideals of A

0 = A(0) ⊂ A(1) ⊂ . . . ⊂ A(n) = A,

where dimA(i) = i and AA(i) +A(i)A ⊆ A(i−1).

Proof. This is part of [19, Theorem 3]. �

In general, weakly nilpotent algebras need not be nilpotent, as is shown
in [19]. However, we have the following results.

Lemma 2.4 Let A be an algebra in which IJ is an ideal of A for every pair
of ideals I, J ⊆ A. Let N be a right (respectively, left) nilpotent ideal of A
and let B/C be a chief factor of A. Then BN ⊆ C (respectively NB ⊆ C).

Proof. Then BN + C is an ideal of A and C ⊆ BN + C ⊆ B. Hence
BN ⊆ C or BN + C = B. Suppose the latter holds. Then

B = BN + C ⊆ (BN)N + C ⊆ ((BN)N)N + C = . . . = C,

since N is right nilpotent. Hence BN ⊆ C. Similarly, if N is left nilpotent
then NB ⊆ C. �

Theorem 2.5 Let A be a weakly nilpotent algebra in which IJ is an ideal
of A for every pair of ideals I, J ⊆ A. Then A is nilpotent.

Proof. Let B/C be a chief factor of A. Then BA + AB ⊆ C, by Lemma
2.4. It follows that dimB/C = 1.

Now let
0 = A(0) ⊂ A(1) ⊂ . . . ⊂ A(n) = A,

be a chief series for A. Then A is nilpotent by Lemma 2.3. �

Definition 9 We will call a class of algebras X natural if it is factor alge-
bra and subalgebra closed and, for every A ∈ X, IJ is an ideal of A whenever
I, J are ideals of A.

Corollary 2.6 Let A ∈ X, where X is a natural class of algebras. Then
every weakly nilpotent subalgebra of A is nilpotent.
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Corollary 2.7 Let A ∈ X, where X is a natural class of algebras. Then A
has a maximal right nilpotent/ left nilpotent/nilpotent ideal.

Proof. It suffices to show that, if N1 and N2 are two right nilpotent ideals
of A, then so is N1 + N2. Now, N1 + N2 is certainly a solvable ideal of A.
Let 0 = B0 ⊂ B1 ⊂ . . . ⊂ Bn = N1 + N2 be a chief series for N1 + N2.
Then B2

n = Bn(N1 + N2) = BnN1 + BnN2 ⊆ Bn−1, by Lemma 2.4. A
straightforward induction proof then shows that Bn+1

n = 0. It follows that
N1 + N2 is right nilpotent. Left nilpotency follows similarly. If N1, N2 are
nilpotent, then N1 +N2 is weakly nilpotent, and so nilpotent, by Theorem
2.5. �

Definition 10 We will call the maximal right nilpotent (respectively, left
nilpotent, nilpotent) ideal given in Corollary 2.7, the right nilradical (re-
spectively, left nilradical, nilradical) of A, and denote it by Nr(A) (re-
spectively, N`(A), N(A)). Then N(A) ⊆ Nr(A), N`(A) ⊆ R(A), by [7,
Proposition 3.1].

3 Bicommutative algebras

Proposition 3.1 If A is a bicommutative algebra and I, J are ideals of A,
then IJ is an ideal of A.

Proof. Simply note that A(IJ) ⊆ I(AJ) ⊆ IJ and (IJ)A ⊆ (IA)J ⊆ IJ .
�

Note that it follows from the above Corollary that the class of bicom-
mutative algebras is natural and so has a nilradical.

We will make use of the following result of Dzhumadil’daev and Tulen-
baev which has some useful consequences..

Theorem 3.2 ([9, Theorem 1]) Let A be a bicommutative algebra. Then
A2 is commutative and associative.

Corollary 3.3 If A is a solvable bicommutative algebra, A2 is nilpotent.

Corollary 3.4 If A is a bicommutative algebra which is either right or left
nilpotent, then A2 is nilpotent, and so A is solvable.

Corollary 3.5 Let A be a bicommutative algebra and let R be its solvable
radical. Then RA and AR are nilpotent ideals of A.
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Definition 11 Let A be an algebra and let a ∈ A. Define ρa : A → A :
x 7→ xa. Put Er

A(a) = {x ∈ A | ρna(x) = 0 for some n}. Similarly, define
λa : A→ A : x 7→ ax. Put El

A(a) = {x ∈ A | λna(x) = 0 for some n}.

Lemma 3.6 If A is a right (respectively, left) commutative algebra and a ∈
A, then Er

A(a) (respectively, El
A(a)) is a subalgebra of A..

Proof. Let x, y ∈ Er
A(a). Then there are m,n such that ρma (x) = ρna(y) = 0.

Without loss of generality we can assume that m = n. But now ρna(xy) =
(ρna(x))y = 0, by repeated use of right commutativity, so xy ∈ Er

A(a).
The left version is similar. �

Definition 12 Let a ∈ A. We call a right nil (respectively, left nil) if
ρna(a) = 0 (respectively, λna(a) = 0) for some n ≥ 0. We will say that an
ideal B of A is right nil (respectively, left nil) if every element of B is right
nil (respectively, left nil).

Theorem 3.7 Let B be a left (respectively, right) subideal of a right (re-
spectively, left) commutative algebra A, and let C be an ideal of B with
C ⊆ φ(L). If B/C is right (respectively, left) nil, then so is B.

Proof. Let b ∈ B and B = B0 ⊆ B1 ⊆ . . . ⊆ Br = A be a chain of
subalgebras of A with Bi a left ideal of Bi+1 for 0 ≤ i ≤ r − 1. then
ρrb(A) ⊆ B. Since B/C is right nilpotent, there exists s such that ρsb(B) ⊆ C.
Hence ρr+s

b (A) ⊆ φ(A). But ρr+s
b (A) + Er

A(b) = A, by Fitting’s Lemma, so
Er

A(b) = A and B is right nil.
Again, the left version is similar. �

Corollary 3.8 If A is a right (respectively, left) commutative algebra, then
φ(A) is right (respectively, left) nil.

Corollary 3.9 If A is a bicommutative algebra, then φ(A) is nilpotent.

Proof. This follows from Corollary 4.6 and Theorem 3.2, since φ(A) ⊆ A2.
�

The following result concerning minimal ideals will be useful.

Theorem 3.10 Let B be a minimal ideal in a bicommutative algebra A. If
R is the solvable radical of A, then, either RB = 0 and BR2 = 0, or BR = 0
and R2B = 0.
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Proof. We have that RB is an ideal of A, by Proposition 3.1, so RB = 0
or RB = B. Similarly, BR = 0 or BR = B. Suppose that RB = BR = B.
Then

B = RB = R(BR) ⊆ BR2 and B = BR = (RB)R ⊆ R2B.

Suppose that B ⊆ BR(k) and B ⊆ R(k)B. Then

B ⊆ R(k)B ⊆ R(k)(BR(k)) ⊆ BR(k+1) and

B ⊆ BR(k) ⊆ (R(k)B)R(k) ⊆ R(k+1)B.

Since R is solvable and B 6= 0, either RB = 0 or BR = 0. If RB = 0, then
BR2 ⊆ R(BR) = 0. Similarly, R2B = 0 if BR = 0. �

Proposition 3.11 Let A be a right (respectively, left) nilpotent bicommu-
tative algebra. Then every maximal subalgebra of A is a left (respectively,
right) ideal of A and A3 ⊆ φ(A) (respectively, 3A ⊆ φ(A)).

Proof. Let A be a right nilpotent bicommutative algebra and let M be
a maximal subalgebra of A. Then there exists k such that Ak 6⊆ M but
Ak+1 ⊆M and A = M+Ak. Hence AM = M2+AkM ⊆M and M is a left
ideal of A. Also, A3 = A2A ⊆ A2M +A2Ak ⊆M + (AAk)A ⊆M +Ak+1 ⊆
M .

The resuilt for a left nilpotent bicommutative algebra follows similarly.
�

Proposition 3.12 Let A be a bicommutative algebra and let B be a sub-
algebra of A. Then IA(B) and AnnA(B) are subalgebras of A. If B is an
ideal of A then so is AnnA(B)

Proof. Let B be a subalgebra of A and let a1, a2 ∈ IA(B). Then, for all
b ∈ B, (a1a2)b = (a1b)a2 ∈ B and b(a1a2) = a1(ba2) ∈ B. The argument for
AnnA(B) is similar.

So now suppose that B is an ideal of A and let b ∈ B, k ∈ K = AnnA(B),
a ∈ A. Then (ak)b = (ab)k ∈ BK = 0, (ka)b = (kb)a = 0, b(ak) = a(bk) =
0 and b(ka) = k(ba) ∈ KB = 0, whence AnnA(B) is an ideal of A. �

The following property of minimal ideals of bicommutative algebras is
shared by Novikov algebras.

Theorem 3.13 If B is a minimal ideal of a bicommutative algebra A, then
either B2 = 0 or B is a simple algebra.
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Proof. Assume that B2 6= 0, so B2 = B. Then B 6⊆ AnnA(B), so B ∩
AnnA(B) = 0 by Proposition 3.12. Let C be a proper ideal of B. Then

BC = B2C ⊆ (BC)B ⊆ CB and CB = CB2 ⊆ B(CB) ⊆ BC,

so BC = CB. (Alternatively, simply note that B,C ⊆ A2 which is commu-
tative.) But now

(BC)A ⊆ (BA)C ⊆ BC and A(BC) = A(CB) ⊆ C(AB) ⊆ CB = BC,

so BC is an ideal of A. Since BC ⊆ C 6= B we have that BC = 0. Also
CB = BC = 0, whence C ⊆ B ∩AnnA(B) = 0. �

Definition 13 If B,C are ideals of an algebra A with B ⊂ C, a chief
series of A from B to C is a series B = B0 ⊂ B1 ⊂ . . . ⊂ Br = C,
where the Bi are ideals of A and Bi+1/Bi is a minimal ideal of A/Bi for
0 ≤ i ≤ r − 1.

We can now give the follwing result, which leads to a characterisation of
semisimple bicommutative algebras.

Theorem 3.14 Let S be a semisimple bicommutative algebra over any field
F . Then every ideal of S inside S2 is a direct sum of simple minimal ideals
of S.

Proof. Let B be an ideal of S inside S2. We use induction on the length of
a chief series of S from 0 to B. If B is a minimal ideal of S then it is simple,
by Theorem 3.13. So suppose the result holds when the length of such a
chief series is less than r+ 1, and let the length from 0 to B be r+ 1. Let C
be an ideal of S such that B/C is a chief factor of S, so C = S1 ⊕ . . .⊕ Sr
where Si is a simple minimal ideal of S for 1 ≤ i ≤ r.

Now there is a subalgebra U of S such that S = C+U and C∩U ⊆ φ(U),
by [20, Lemma 7.1]. But (Siφ(U))Si ⊆ S2

i φ(U) = Siφ(U) and Si(Siφ(U)) ⊆
Siφ(U), since S2 is associative and φ(U) ⊆ U2 ⊆ S2, by Theorem 3.2.
Hence, Siφ(U) is an ideal of Si and so is Si or 0, by Theorem 3.13. But
a straightforward induction proof shows that if Siφ(U) = Si, then Si =
Si(φ(U))k, whence Si = 0, by Corollary 3.9. It follows that Siφ(U) =
φ(U)Si = 0 for each 1 ≤ i ≤ r. Thus, φ(U) is an ideal of S and so
φ(U) = 0, since S is semisimple and φ(U) is nilpotent, whence S = C+̇U
and B = C+̇B ∩ U .

Now, if R(B) is the radical of B, we have that R(B)Si = SiR(B) = 0,
by the same argument as for φ(U). Hence R(B) ⊆ AnnS(C) ∩ S2, which
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is an ideal of S, by Proposition 3.12. Clearly, AnnS(C) ∩ S2 = 0 or B =
C ⊕AnnS(C) ∩ S2. The former is impossible, since then R(B) = 0, so B is
semisimple, whence B = C ⊕Sr+1 and Sr+1 ⊆ AnnS(C)∩S2. We conclude
that B = C ⊕ AnnS(C) ∩ S2 and Sr+1 = AnnS(C) ∩ S2 is a minimal ideal
of S and so must be simple. �

Corollary 3.15 Let S be a semisimple bicommutative algebra over any
field. Then S = S2+̇U where S2 = S1⊕ . . .⊕Sn, the Si are simple ideals of
S, U2 = 0 and either SiU = 0 or USi = 0 for each 1 ≤ i ≤ n..

Proof. The fact that S2 = S1 ⊕ . . .⊕ Sn follows from Theorem 3.14 above.
There is a subalgebra U of S such that S = S2 + U and U ∩ S2 ⊆ φ(U), by
[20, Lemma 7.1]. But φ(U) = 0 as in the proof of Theorem 3.14. Clearly,
U2 ⊆ U ∩ S2 = 0. Also USi = Si or 0. If USi = Si, then SiU = (USi)U ⊆
U2Si = 0. �

In the above result, S2 is a commutative associative algebra, and so the
Si are extension fields of the base field F , but S need not be equal to S2 as
the following easy example shows.

Example 3.1 Let A be spanned by x, y where x2 = x, xy = x and all other
products are zero. It is easy to check that A is a semisimple bicommutative
algebra that is neither commutative nor associative.

In [18] it is shown that, for Novikov algebras, the sum of two solvable
subalgebras is solvable, and the sum of two zero subalgebras is metabelian.
Neither of these results hold for bicommutative algebras, as the above ex-
ample also shows: note that A = F (x − y) + Fy is its decomposition as a
sum of two zero subalgebras.

4 Assosymmetric algebras

Kleinfeld proved the following in [15].

Theorem 4.1 Let R be an asosymmetric ring of characteristic different
from 2 and 3 which has no ideals I 6= 0 such that I2 = 0, then R is associa-
tive.

Corollary 4.2 Every semisimple assosymmetric algebra over F is associa-
tive.
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Lemma 4.3 Let I, J be ideals of the assosymmetric algebra A over any
field. Then IJ is an ideal of A.

Proof. We have

A(IJ) ⊆(AI)J + I(AJ) + (IA)J ⊆ IJ by left symmetry, and

(IJ)A ⊆I(JA) + (IA)J + I(AJ) ⊆ IJ by right symmetry.

�
Then Lemma 4.3 shows that the class of assosymmetric algebras is nat-

ural. It follows from Corollary 2.7 that every assosymmetric algebra has a
maximal nilpotent ideal N(A). Now, the following is proved in [17].

Theorem 4.4 Let A be a solvable assosymmetric algebra over F . Then A
is nilpotent.

It follows that, for such an algebra A, N(A) = R(A), the maximal
solvable ideal ofA and we have the following result as a Corollary to Theorem
4.1.

Corollary 4.5 If A is an assosymmetric algebra over F , then A/N(A) is
associative.

Proposition 4.6 Let A be an assosymmetric algebra over F . Then φ(A)
is nilpotent.

Proof. We have that (φ(A)+N(A)/N(A) ⊆ φ(A/N(A), by [20, Proposition
4.3]. But φ(A/N(A) = N(A)/N(A), by [20, Corollary 6.3], so φ(A) ⊆ N(A),
whence the result. �

5 Novikov algebras

The following three results were proved in [18, Lemma 2.1, Theorem 3.3 and
Corollary 3.6].

Lemma 5.1 If I, J are ideals of a Novikov algebra A, then so is IJ . In
particular, An, nA, A(n) and A[n] are ideals of A for all n ≥ 1. Moreover,
the annihilator of I in A is also an ideal of A.

It follows from the above Lemma that the class of Novikov algebras is
natural.
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Theorem 5.2 Let A be a Novikov algebra. Then the following are equiva-
lent:

(i) A is right nilpotent;

(ii) A2 is nilpotent; and

(iii) A is solvable.

Corollary 5.3 Every left nilpotent Novikov algebra is nilpotent.

Corollary 5.4 If A is a solvable Novikov algebra, then φ(A) is nilpotent.

Proof. This follows from the fact that φ(A) ⊆ A2. �

Proposition 5.5 Let A be a Novikov algebra over a field of characterictic
p, where p = 0 or p > dimA+ 1. Then φ(A) is right nilpotent.

Proof. This follows from [10, Theorem 1] and Theorem 5.2. �

Proposition 5.6 Let A be a Novikov algebra with solvable radical R. Then
AR is a nilpotent ideal of A.

Proof. We proceed as in Corollary 3.5. We use induction on the maximum
length k of a chief series of A from 0 to R. If R is a minimal ideal of A, then
R2 = 0, so (AR)2 ⊆ R2 = 0 and 2(AR) ⊆ R2 = 0, so the result holds for
k = 1. So, suppose it holds whenever k ≤ n (n ≥ 1), and let A be such that
k = n + 1. Let B be a minmal ideal of A with B ⊆ R. Then R/B is the
solvable radical of A/B and so A

B
R
B is nilpotent. Hence, there is an r such

that r(AR) ⊆ B. But now BR = 0, since R is right nilpotent, and so

r+1(AR) ⊆ (AR)B ⊆ (AB)R ⊆ BR = 0.

Thus, AR is left nilpotent, and so is nilpotent, by Corollary 5.3. The result
follows by induction. �

Proposition 5.7 Let A be a Novikov algebra and let B be a subalgebra of
A. Then IA(B) and AnnA(B) are subalgebras of A. If B is an ideal of A
then so is AnnA(B)

Proof. Let B be a subalgebra of A and let a1, a2 ∈ IA(B). Then, for all
b ∈ B, (a1a2)b = (a1b)a2 ∈ B and b(a1a2) = (ba1)a2+a1(ba2)−(a1b)a2 ∈ B.
The argument for AnnA(B) is similar.

So now suppose that B is an ideal of A. Then AnnA(B) is an ideal of A
is shown in [18, Lemma 2.1]. �

The following was proved by Zelmanov in [21, Proposition 2].
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Proposition 5.8 Let S be a semisimple Novikov algebra over a field of
characteristic zero. Then S is a direct sum of fields.

6 φ-free algebras

Definition 14 An ideal B of an algebra A is called a zero ideal if B2 = 0.
The socle, denoted Soc(A) (respectively, zero socle, denoted Zsoc(A)) of
A is the sum of the minimal ideals (respectively, minimal zero ideals) of A.
We will say that A is φ-free if φ(A) = 0.

Theorem 6.1 Let A be a bicommutative or assosymmetric algebra over any
field, or a Novikov algebra over a field of characteristic p, where p = 0 or
p > dimA+ 1. Then A is φ-free if and only if it splits over its zero socle.

Proof. If A is φ-free, it splits over its zero socle, by [20, Lemma 7.2]. So
suppose that A = Zsoc(A)+̇C, where C is a subalgebra of A and Zsoc(A) =
Z1⊕. . .⊕Zn, where Zi is a minimal zero ideal of A, and that φ(A) 6= 0. Then
there is a minimal ideal Z of A contained in φ(A). If A is bicommutative or
assosymmetric, then φ(A) is nilpotent, by Corollary 3.9 and Proposition 4.6,
and if A is a Novikov algebra, then φ(A) is right nilpotent,by Proposition
5.5. In either case, Z is a zero ideal. Thus φ(A) ∩ Zsoc(A) 6= 0. However,
Mi = (Z1⊕ . . .⊕Ẑi⊕ . . .⊕Zn)+̇C, where Ẑi indicates a term that is missing,
is a maximal subalgebra of A for each 1 ≤ i ≤ n. Hence

φ(A) ⊆ ∩ni=1Mi ⊆ C,

and φ(A) ∩ Zsoc(A) = 0, a contradiction. It follows that φ(A) = 0. �

Theorem 6.2 Let A be a solvable Novikov algebra. Then A is φ-free if and
only if it splits over its zero socle.

Proof. The only point at which the hypothesis on the field is used in
Theorem 6.1 above is to deduce that, if Z is a minimal ideal contained in
φ(A), then it is a zero ideal. Here that holds because φ(A) is nilpotent, by
Corollary 5.4. �

Theorem 6.3 Let A be a φ-free bicommutative, assosymmetric or Novikov
algebra. Then Zsoc(A) = N(A) = AnnA(Soc(A)).

Proof. Clearly, Zsoc(A) ⊆ N(A). Let B be a minimal ideal of A and let N
be a nilpotent ideal of A. Then B ∩N = 0 or B. If the former holds, then
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BN+NB ⊆ B∩N = 0, so N ⊆ AnnA(B). So suppose that the latter holds.
Then B ⊆ N and so B ⊆ AnnA(N), by Lemma 2.4, whence BN +NB = 0
again. It follows that N(A) ⊆ AnnA(Soc(A)). It now suffices to show that
AnnA(Soc(A)) ⊆ Zsoc(A).

There is a subalgebra C of A such that A = Zsoc(A)+̇C, by [20, Lemma
7.2]. Now, AnnA(Soc(A)) ∩ C is an ideal of A and so must contain a min-
imal ideal D. But D must be a zero ideal, since it annihilates itself, by
assumption. Hence D ⊆ Zsoc(A) ∩ C = 0 and the result is proved. �

In the next results we seek to characterise the φ-free bicommutative,
assosymmetric and Novikov algebras.

Theorem 6.4 Let A be a bicommutative algebra with solvable radical R.
Then A is φ-free if and only if A = Zsoc(A)+̇(D ⊕ E), where D is a zero
subalgebra of A, R = Zsoc(A)+̇D, E = E2+̇U , E2 = S1 ⊕ . . . ⊕ Sn, Si is
a simple commutative associative ideal of E, U2 = 0, either SiU = 0 or
USi = 0 for 1 ≤ i ≤ n, and Zsoc(A) = Z1 ⊕ Z2 where Z1R = 0, RZ2 = 0.

Proof. Suppose first that A is φ-free. We have that A = Zsoc(A)+̇C, by
Theorem 6.1. Now (C ∩ R)C ⊆ RA ∩ C ⊆ N(A) ∩ C = 0 and C(C ∩ R) ⊆
AR ∩ C ⊆ N(A) ∩ C = 0, by Corollary 3.5. Put C ∩R = D. If R(C) is the
solvable radical of C, then Zsoc(A) + R(C) is a solvable ideal of A, and so
R(C) = R ∩ C = D and D2 = 0

Clearly, φ(C) ⊆ R(C) = D, by Corollary 3.9, so Cφ(C) = φ(C)C = 0.
Moreover, for every minimal zero ideal Z,

(Zφ(C))A = (Zφ(C))C ⊆ (ZC)φ(C) ⊆ Zφ(C) and

A(Zφ(C)) = C(Zφ(C)) ⊆ Z(Cφ(C)) ⊆ Zφ(C).

Thus, Zφ(C) is an ideal of C, whence Zφ(C) = 0 or Zφ(C) = Z. Suppose
the latter holds. Then ZR 6= 0, so RZ = 0, by Theorem 3.10. It follows that
φ(C)Z = 0. But φ(C) and Z are in A2, which is commutative, so we have a
contradiction. Hence, Zφ(C) = 0. Similarly, φ(C)Z = 0, and so φ(C) is an
ideal of A. This implies that φ(C) ⊆ φ(A) = 0, by [20, Lemma 1].

Since D is a zero ideal of C, C = D ⊕ E where E is a semisimple
subalgebra of C. Hence E = E2+̇U where E2 = S1 ⊕ . . . ⊕ Sn, the Si are
simple ideals of E, U2 = 0 and either SiU = 0 or USi = 0 for each 1 ≤ i ≤ n,
by Corollary 3.15.

Let Z be a minimal ideal in Zsoc(A). Then ZR = 0 or ZR = Z. Suppose
the latter holds. Then

RZ = R(ZR) ⊆ ZR2 = 0,
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by Corollary 3.3. This completes the proof of necessity.
The converse follows from Theorem 6.1. �

Theorem 6.5 Let A be an assosymmetric algebra over F . Then A is φ-
free if and only if A = N+̇S where N is a zero ideal and S is a semisimple
associative subalgebra of A.

Proof. (⇒): this follows from Theorems 6.1, 6.3 and Corollary 4.5.
(⇐): Since N is an S-module, it is completely reducible. Hence N =
Zsoc(A) and the result follows from Theorem 6.1. �

Theorem 6.6 Let A be a φ-free Novikov algebra with solvable radical R.
Then A = Zsoc(A)+̇C, where C is a subalgebra of A and A(C ∩R) = 0.

Proof. We have that A = Zsoc(A)+̇C, by Theorem 6.1. Also C(C ∩R) ⊆
AR∩C ⊆ Zsoc(A)∩C = 0, by Proposition 5.6. Moreover, Zsoc(A)(C∩R) =
Zsoc(A)R = 0, since R is right nilpotent. Hence A(C ∩R) = 0. �

Corollary 6.7 Let A be a Novikov algebra with solvable radical R. Then
(AR)R ⊆ φ(A) ⊆ A2.

Proof. From Theorem 6.6, AR ⊆ Zsoc(A), so (AR)R = 0. �

Theorem 6.8 Let A be a Novikov algebra with solvable radical R over a
field F of characteristic zero. If R is nilpotent, then A is φ-free if and only
if A = R+̇S where R is a zero algebra and S is a semisimple commutative
associative algebra; that is, S = ⊕n

i=1Si, where Si is a field for 1 ≤ i ≤ n.

Proof. Let A be φ-free. Then A = R+̇S, where R is a zero algebra and S is
a semisimple subalgebra of A. Also, S has the claimed form, by Proposition
5.8.

The converse follows from Theorem 6.1, since R is an S-module and so
is completely reducible. �

Corollary 6.9 Let A be a Novikov algebra with solvable radical R over a
field F of characteristic zero. If R is nilpotent, then A is φ-free if and only
if its radical is a zero algebra.

Corollary 6.10 Let A be a Novikov algebra with solvable radical R over a
field F of characteristic zero. Then φ(A) ⊆ R2 and so φ(A) is nilpotent..
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Proof. The radical of A/R2 is a zero algebra, and so φ(A/R2) = 0, by
Corollary 6.9. It follows from [20, Corollary 4.4] that |phi(A) ⊆ R2. Also,
φ(A) is nilpotent, by Theorem 5.2. �

Corollary 6.11 Let A be a Novikov algebra with solvable radical R over a
field F of characteristic zero. If R is nilpotent, then φ(A) = R2.

Proof. We have that φ(A) ⊆ R2 from Corollary 6.10. But R2 = φ(R) ⊆
φ(A), by [19, Theorem 6] and [20, Lemma 4.1]. �

Lemma 6.12 If A be an algebra with A3 = 0, then A is a Novikov algebra
if and only if it is bicommutative.

Proof. Substituting A3 = 0 into left symmetry yields left commutativity.
�

Finally, we have two results concerning maximal subalgebras.

Theorem 6.13 Let A be a Novikov algebra over a field F , and consider the
following statements.

(i) A is right nilpotent;

(ii) A3 ⊆ φ(A); and

(iii) all maximal subalgebras of A are left ideals of A.

Then (i)⇒ (ii), (iii), (ii)⇒ (iii) and, if F has characterictic p, where p = 0
or p > dimA+ 1, (ii)⇒ (i).

Proof. (i)⇒ (ii): This follows from Theorem 5.2 and Corollary 6.7.
(i)⇒ (iii): This follows as in Proposition 3.11.
(ii)⇒ (iii): This follows from Lemma 6.12 and Proposition 3.11.
(ii)⇒ (i): We have that φ(A) is right nil, by Corollary 4.6 and that A/φ(A)
is clearly right nilpotent. Hence A is right nil, by Theorem 3.7. It follows
that A2 is nilpotent, by [10, Theorem 1], and hence that A is right nilpotent,
by Theorem 5.2. �

Theorem 6.14 Let A be a solvable bicommutative algebra. Then the fol-
lowing are equivalent.

(i) A3 ⊆ φ(A); and

(ii) all maximal subalgebras of A are left ideals of A.
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Proof. (i)⇒ (ii): This follows from Lemma 6.12 and Theorem 6.13.
(ii) ⇒ (i): Suppose first that A is φ-free. Then A = ⊕n

i=1Zi+̇C where Zi

is a minimal zero ideal of A and C2 = 0, by Theorem 6.4. Suppose that
ZkC = Zk for some 1 ≤ k ≤ n. Then Mk = Z1 ⊕ . . . ⊕ Ẑk ⊕ . . . ⊕ Zn + C,
where the hat indicates a term that is missing from the sum, is a maximal
subalgebra of A. Since it is a left ideal of A, we have that ZkMk = ZkC ⊆
Zk ∩Mk = 0. Hence A3 = A2A = (⊕n

i=1Zi)A = 0. The result now follows
by considering A/φ(A). �
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