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ABSTRACT
A subalgebra B of a Leibniz algebra L is called a weak c-ideal of L if there is a
subideal C of L such that L = B + C and B ∩ C ⊆ BL where BL is the largest
ideal of L contained in B. This is analogous to the concept of a weakly c-normal
subgroup, which has been studied by a number of authors. We obtain some
properties of weak c-ideals and use them to give some characterizations of
solvable and supersolvable Leibniz algebras generalizing previous results for
Lie algebras. We note that one-dimensional weak c-ideals are c-ideals, and
show that a result of Turner classifying Leibniz algebras in which every one-
dimensional subalgebra is a c-ideal is false for general Leibniz algebras, but
holds for symmetric ones.
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1. Introduction

An algebra L over a field F is called a Leibniz algebra if, for every x, y, z ∈ L, we have
[x, [y, z]] = [[x, y], z] − [[x, z], y].

In other words the right multiplication operator Rx : L → L : y �→ [y, x] is a derivation of L. As a
result such algebras are sometimes called right Leibniz algebras, and there is a corresponding notion of
left Leibniz algebras, which satisfy

[x, [y, z]] = [[x, y], z] + [y, [x, z]].
Clearly the opposite of a right (left) Leibniz algebra is a left (right) Leibniz algebra, so, in most situations,
it does not matter which definition we use. A symmetric Leibniz algebra L is one which is both a right
and left Leibniz algebra and in which [[x, y], [x, y]] = 0 for all x, y ∈ L. This last identity is only needed
in characteristic two, as it follows from the right and left Leibniz identities otherwise (see [6, Lemma
1]). Symmetric Leibniz algebras L are flexible, power associative and have x3 = 0 for all x ∈ L (see [5,
Proposition 2.37]), and so, in a sense, are not far removed from Lie algebras.

Every Lie algebra is a Leibniz algebra and every Leibniz algebra satisfying [x, x] = 0 for every
element is a Lie algebra. They were introduced in 1965 by Bloh [3] who called them D-algebras, though
they attracted more widespread interest, and acquired their current name, through work by Loday and
Pirashvili [7, 8]. They have natural connections to a variety of areas, including algebraic K-theory,
classical algebraic topology, differential geometry, homological algebra, loop spaces, noncommutative
geometry and physics. A number of structural results have been obtained as analogues of corresponding
results in Lie algebras.

The Leibniz kernel is the set I = span{x2 : x ∈ L}. Then I is the smallest ideal of L such that L/I is a
Lie algebra. Also [L, I] = 0.
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We define the following series:

L1 = L, Lk+1 = [Lk, L](k ≥ 1) and L(0) = L, L(k+1) = [L(k), L(k)](k ≥ 0).

Then L is nilpotent of class n (resp. solvable of derived length n) if Ln+1 = 0 but Ln �= 0 (resp. L(n) = 0 but
L(n−1) �= 0) for some n ∈ N. It is straightforward to check that L is nilpotent of class n precisely when
every product of n + 1 elements of L is zero, but some product of n elements is non-zero.The nilradical,
N(L), (resp. radical, R(L)) is the largest nilpotent (resp. solvable) ideal of L.

The subalgebra lattice of a Lie algebra has been extensively studied over many decades. More recently,
the properties of the subalgebra lattice of a Leibniz algebra have been investigated in [11], and similar
results for restricted Lie algebras have been carried out in [10]. In [14] we introduced the concept of
a weak c-ideal, which is analogous to the concept of a weakly c-normal subgroup as introduced by
Zhu, Guo and Shum in [16] and which has since been further studied by a number of authors. It is a
generalization of the concept of a c-ideal, as introduced in [13]. Here we investigate the extent to which
the results in [14] can be extended to Leibniz algebras.

In Section 2 we give some basic properties of weak c-ideals; in particular, it is shown that weak c-
ideals inside the Frattini subalgebra of a Leibniz algebra L are necessarily ideals of L. In Section 3 we first
show that all maximal subalgebras of L are weak c-ideals of L if and only if L is solvable, and that L has a
solvable maximal subalgebra that is a weak c-ideal if and only if L is solvable. Unlike the corresponding
results for c-ideals, it is necessary to restrict the underlying field to characteristic zero, as was shown by
an example in [14]. Finally we have that if all maximal nilpotent subalgebras of L are weak c-ideals, or if
all Cartan subalgebras of L are weak c-ideals and F has characteristic zero, then L is solvable.

In Section 4 we show that if L is a solvable symmetric Lie algebra over a general field and every
maximal subalgebra of each maximal nilpotent subalgebra of L is a weak c-ideal of L then L is
supersolvable. If each of the maximal nilpotent subalgebras of L has dimension at least two then the
assumption of solvability can be removed. Similarly if the field has characteristic zero and L is not three-
dimensional simple then this restriction can be removed.

In the final section we see that every one-dimensional subalgebra is a weak c-ideal if and only if it is
a c-ideal, and go on to study the class of Leibniz algebras in which every one-dimensional subalgebra
is a c-ideal. It is shown that the cyclic subalgebras in this class are at most two dimensional. There is
a characterization of all of the algebras in this class given by Turner in [15, Theorem 3.2.9], but an
example is given to show that this result is false. A number of properties of such algebras are given,
but a full classification appears complicated. However, it is shown finally that Turner’s result does hold
for symmetric Leibniz algebras.

Throughout, the term “Leibniz algebra” will refer to a finite-dimensional right Leibniz algebra over
a field F. If A, B are subalgebras of L with A ⊆ B, the centraliser of A in B, CB(A) = {b ∈ B | [b, A] +
[A, b] = 0}. The normaliser of A in B, NB(A) = {b ∈ B | [b, A] + [A, b] ⊆ A}. Algebra direct sums will
be denoted by ⊕, whereas direct sums of the vector space structure alone will be written as +̇. Subsets
will be denoted by “⊆” and proper subsets by “⊂”.

2. Preliminary results

Definition 1. [9] Let L be a Leibniz algebra over a field F and B be a subalgebra of L. We call B a subideal
of L if there is a chain of subalgebras

B = Bt ⊂ Bt−1 ⊂ · · · ⊂ B0 = L

such that Bi is an ideal of Bi−1 for each 1 ≤ i ≤ t.

Definition 2. [9] Let L be a Leibniz algebra and H a subalgebra of L. Then H is called a c-ideal of L if
there is an ideal K of L such that L = H + K and H ∩ K is contained in the core of H (with respect to
L), denoted by HL, where this is the largest ideal of L contained in H.
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Definition 3. A subalgebra B of a Leibniz algebra L is a weak c-ideal of L if there exists a subideal C in
L such that L = B + C and B ∩ C ⊆ BL.

Definition 4. A Leibniz algebra L is called weakly c-simple if L does not contain any weak c-ideals other
than L, the trivial subalgebra 0 and the Leibniz kernel I. It is simple if these same three subalgebras are
the only ideals of L.

Lemma 2.1. Let L be a Leibniz algebra. Then the following statements are valid:

1. Let B be a subalgebra of L. If B is a c-ideal of L then B is a weak c-ideal of L.
2. L is weakly c-simple if and only if L is simple.
3. If B is a weak c-ideal of L and K is a subalgebra with B ⊆ K ⊆ L then B is a weak c-ideal of K.
4. If A is an ideal of L and A ⊆ B then B is a weak c-ideal of L if and only if B/A is a weak c-ideal of L/A.

Proof. 1. This is apparent from the definition.
2. Suppose first that L is simple and let B be a weak c-ideal with B �= L. Then by definition of weak

c-ideal

L = B + C and B ∩ C ⊆ BL

where C is a subideal of L. But since L is simple BL must be 0 or I. If BL = 0 then C = L, since C �= 0
and is a subideal of L, whence B = 0. If BL = I then, similarly, C = L and hence B = I. Hence L is
weakly c-simple.

Conversely, suppose L is weakly c-simple. Then, since every ideal of L is a weak c-ideal, L must be
simple.

3. If B is a weak c-ideal of L, then there exists a subideal C of L such that

L = B + C and B ∩ C ⊆ BL.

Now K = K ∩ L = K ∩ (B + C) = B + (K ∩ C) . Since C is a subideal of L there exists a chain of
subalgebras

C = Cn ⊂ Cn−1 ⊂ · · · ⊂ C0 = L

where Cj is an ideal of Cj−1 for each 1 ≤ j ≤ n. If we intersect each term in this chain with K we get

C ∩ K = Cn ∩ K ⊆ Cn−1 ∩ K ⊆ · · · ⊆ C0 ∩ K = L ∩ K = K

and obviously Cj ∩ K is an ideal of Cj−1 ∩ K for each 0 ≤ j ≤ n. Thus C ∩ K is a subideal of K. Also,

B ∩ (C ∩ K) ⊆ BK

and so that B is a weak c-ideal of K.
4. Suppose first that B/A is a weak c-ideal of L/A. Then there exists a subideal C/A of L/A such that

L
A

= B
A

+ C
A

and
B
A

∩ C
A

⊆
(

B
A

)
L/A

= BL
A

.

It follows that L = B + C and B ∩ C ⊆ BL where C is a subideal of L.
Suppose conversely that A is an ideal of L with A ⊆ B and B is a weak c-ideal of L. Then there exists

a C subideal of L such that

L = B + C and B ∩ C ⊆ BL.

Since A is an ideal and A ≤ B the factor algebra

L
A

= B + C
A

= B
A

+ C + A
A



COMMUNICATIONS IN ALGEBRA® 4679

where (C + A)/A is a subideal of L/A and

B
A

∩ C + A
A

= B ∩ (C + A)

A
= A + B ∩ C

A
⊆ BL

A
=

(
B
A

)
L/A

so B/A is a weak c-ideal of L/A.

The Frattini subalgebra F(L) of a Leibniz algebra L is the intersection of all of the maximal subalgebras
of L. The Frattini ideal, F(L)L, of L is denoted by φ(L).

The next result is a generalization of [13, Proposition 2.2] and the same proof works, but we will
include it for completeness.

Proposition 2.2. Let B, C be subalgebras of L with B ⊆ F(C). If B is a weak c-ideal of L, then B is an ideal
of L and B ⊆ ϕ(L).

Proof. Suppose that L = B + K where K is a subideal of L and B ∩ K ⊆ BL. Then

C = C ∩ L = C ∩ (B + K) = B + C ∩ K = C ∩ K

since B ⊆ F(C). Hence, B ⊆ C ⊆ K, giving B = B ∩ K ⊆ BL and B is an ideal of L. It then follows from
[12, Lemma 4.1] that B ⊆ ϕ(L).

An ideal A is complemented in L if there is a subalgebra U of L such that L = A + U and A ∩ U = 0.
We adapt this to define a subideal complement as follows:

Definition 5. Let L be a Leibniz algebra and let B be a subalgebra of L. Then B has a subideal complement
in L if there is a subideal C of L such that L = B + C and B ∩ C = 0.

Then we have the following lemma:

Lemma 2.3. If B is a weak c-ideal of a Leibniz algebra L, then B/BL has a subideal complement in L/BL.
Conversely, if B is a subalgebra of L such that B/BL has a subideal complement in L/BL, then B is a weak
c-ideal of L.

Proof. Let B be a weak c-ideal of L. Then there exists a subideal C of L such that B+C = L and B∩C ⊆ BL.
If BL = 0 then B ∩ C = 0 and C is a subideal complement of B in L. So, assume that BL �= 0, then we
can construct the factor algebras B/BL and (C + BL)/BL. If we intersect these two factor algebras;

B
BL

∩ C + BL
BL

= B ∩ (C + BL)

BL

= BL + (B ∩ C)

BL

⊆ BL
BL

= 0

Hence, (C + BL)/BL is a subideal complement of B/BL in L/BL. Conversely, if K is a subideal of L such
that K/BL is a subideal complement of B/BL in L/BL then we have that

L
BL

= B
BL

+ K
BL

and
B
BL

∩ K
BL

= 0

Then L = B + K and B ∩ K = 0 ⊆ BL, whence B is a weak c-ideal of L.
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3. Some characterizations of solvable algebras

Theorem 3.1. Let L be a Leibniz algebra over a field F of characteristic zero and let B be an ideal of L.
Then B is solvable if and only if every maximal subalgebra of L not containing B is a weak c-ideal of L.

Proof. Suppose first that B is solvable and let M be a maximal subalgebra of L not containing B. Then
there exists k ∈ N such that B(k+1) ⊆ M, but B(k) �⊆ M. Clearly L = M + B(k) and B(k) ∩ M is an ideal
of L, so B(k) ∩ M ⊆ ML. It follows that M is a c-ideal and hence a weak c-ideal of L.

Conversely, suppose that every maximal subalgebra of L not containing B is a weak c-ideal of L. Let
M/I be a maximal subalgebra of L/I not containing (B + I)/I. Then M is a maximal subalgebra of L not
containing B, and so is a weak c-ideal of L. Hence M/I is a weak c-ideal of L/I, by Lemma 2.1. Since L/I
is a Lie algebra, it follows from [14, Theorem 3.2] that (B + I)/I is solvable. It follows that B + I, and
hence B, is solvable.

Corollary 3.2. Let L be a Leibniz algebra over a field F of characteristic zero. Then L is solvable if and only
if every maximal subalgebra of L is a weak c-ideal of L.

Lemma 3.3. Let L = U + C be a Leibniz algebra, where U is a solvable subalgebra of L and C is a subideal
of L. Then there exists n0 ∈ N such that L(n0) ⊆ C.

Proof. This is the same as for [14, Lemma 3.5].

Theorem 3.4. Let L be a Leibniz algebra over a field F of characteristic zero. Then L has a solvable maximal
subalgebra that is a weak c-ideal of L if and only if L is solvable.

Proof. Suppose first that L has a solvable maximal subalgebra M that is a weak c-ideal of L. We show that
L is solvable. Let L be a minimal counter-example. Then there is a subideal K of L such that L = M + K
and M ∩ K ⊆ ML. If ML �= 0 then L/ML is solvable, by the minimality assumption, and ML is solvable,
whence L is solvable, a contradiction. It follows that ML = 0 and L = M+̇K. If R is the solvable radical
of L then R ⊆ ML = 0, so L is a semisimple Lie algebra, by [2, Theorem 1]. But now, for all n ≥ 1,
L = L(n) ⊆ K �= L, by Lemma 3.3, a contradiction. The result follows.

The converse follows from Corollary 3.2.

Theorem 3.5. Let L be a Leibniz algebra over a field of characteristic zero such that all maximal nilpotent
subalgebras are weak c-ideals of L. Then L is solvable.

Proof. Suppose that L is not solvable but that all maximal nilpotent subalgebras of L are weak c-ideals of
L. Let L = R+̇S be the Levi decomposition of L, where S �= 0 is a semisimple Lie algebra ([2, Theorem 1]).
Let B be a maximal nilpotent subalgebra of S and U be a maximal nilpotent subalgebra of L containing
it. Then there is a subideal C of L such that L = U + C and U ∩ C ⊆ UL. It follows from Lemma 3.3 that
S = S(n0) ⊆ L(n0) ⊆ C, and so B ⊆ U ∩ C ⊆ UL, whence S ∩ UL �= 0. But S ∩ UL is an ideal of S and so
is semisimple. Since U is nilpotent, this is a contradiction.

Definition 6. A Cartan subalgebra of a Leibniz algebra L is a nilpotent subalgebra C such that C =
NL(C). Over a field of characteristic zero such subalgebras certainly exist (see [1, Section 6]).

The following result is a generalization of a result of Dixmier in [4].

Lemma 3.6. Let L be a Leibniz algebra over a field of characteristic zero with non-zero Levi factor S. If H
is a Cartan subalgebra of S and B is a Cartan subalgebra of its centralizer in the solvable radical of L, then
H + B is a Cartan subalgebra of L.
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Proof. Let R be the solvable radical of L. Then (H + B)r = Hr + Br for all r ≥ 1, so H + B is a nilpotent
subalgebra of L. Let x ∈ NL(H + B) and put x = s + r where s ∈ S and r ∈ R. Then

[x, H] + [H, x] = [s, H] + [H, s] + [r, H] + [H, r] ⊆ H + B,
so [H, s] + [s, H] ⊆ H, whence s ∈ NS(H) = H. Moreover,

[x, B] + [B, x] = [s, B] + [B, s] + [r, B] + [B, r] ⊆ H + B,
so [B, r] + [r, B] ⊆ B, since [s, B] + [B, s] = 0, whence r ∈ NR(B) = B. Thus, NL(H + B) = H + B and
H + B is a Cartan subalgebra of L.

Theorem 3.7. Let L be a Leibniz algebra over a field of characteristic zero in which every Cartan subalgebra
of L is a weak c-ideal of L. Then L is solvable.

Proof. Suppose that every Cartan subalgebra of L is a weak c-ideal of L and that L has a non-zero Levi
factor S. Let H be a Cartan subalgebra of S and let B be a Cartan subalgebra of its centralizer in the
solvable radical of L. Then C = H + B is a Cartan subalgera of L, by Lemma 3.6, and there is a subideal
K of L such that L = C + K and C ∩ K ⊆ CL. Now there is an n0 ≥ 2 such that L(n0) ⊆ K by Lemma 3.3.
But S ⊆ L(n0) ⊆ K and so C ∩ S ⊆ C ∩ K ⊆ CL giving C ∩ S ⊆ CL ∩ S = 0, a contradiction. It follows
that S = 0 and, hence, that L is solvable.

4. Some characterizations of supersolvable algebras

In this section we will restrict attention to symmetric Leibniz algebras. We know of no examples of a
Leibniz algebra which is not symmetric and for which the results are false, but have been unable to
establish them in that more general case. First we need the following lemma which holds in the general
case.

Lemma 4.1. [15, Lemma 5.1.2] Let L be a Leibniz algebra over any field, let A be an ideal of L and U/A
be a maximal nlpotent subalgebra of L/A. Then, U = C + A where C is a maximal nilpotent subalgebra
of L.

Theorem 4.2. Let L be a solvable symmetric Leibniz algebra over any field F in which every maximal
subalgebra of each maximal nilpotent subalgebra of L is a weak c-ideal of L. Then L is supersolvable.

Proof. Let L be a minimal counter-example. If I = 0 the result follows from [14, Theorem 4.5], so
suppose that I �= 0 and let A be a minimal ideal of L contained in I. Since [L, I] = [I, L] = 0, dim A = 1.
Let U/A be a maximal nilpotent subalgebra of L/A and let B/A be a maximal subalgebra of U/A. Then
U = C + A where C is a maximal nilpotent subalgebra of L, by Lemma 4.1. But C + A is nilpotent, so
A ⊆ C = U. Hence, B is a maximal subalgebra of C and there is a subideal K of L such that L = B + K
and B ∩ K ⊆ BL. Now

L
A

= B
A

+ K + A
A

and
K + A

A
is a subideal of

L
A

.

Moreover,
B
A

∩ K + A
A

= A + B ∩ K
A

⊆ A + BL
A

⊆
(

B
A

)
L/A

.

It follows that L/A satisfies the same hypothesis as L, and so L/A is supersolvable, by the minimality of
L. Hence, L is supersolvable.

If L has no one-dimensional maximal nilpotent subalgebras, we can remove the solvability assumption
from the above result provided that F has characteristic zero.
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Corollary 4.3. Let L be a symmetric Leibniz algebra over a field F of characteristic zero in which every
maximal nilpotent subalgebra has dimension at least two. If every maximal subalgebra of each maximal
nilpotent subalgebra of L is a weak c-ideal of L, then L is supersolvable.

Proof. Let N be the nilradical of L, and let x /∈ N. Then x ∈ C for some maximal nilpotent subalgebra C
of L. Since dim C > 1, there is a maximal subalgebra B of C with x ∈ B. Then there is a subideal K of L
such that L = B + K and B ∩ K ⊆ BL ≤ CL ≤ N. Clearly, x /∈ K, since otherwise x ∈ B ∩ K ≤ N.

Now L/I = (B + I)/I + (K + I)/I where (B + I)/I is nilpotent and (K + I)/I is a subideal of L/I. It
follows from [14, Lemma 4.2] that Lr ⊆ K + I for some r ∈ N. Hence Lr+1 ⊆ K. We have shown that if
x /∈ N there is a subideal K of L with x /∈ K and Lr+1 ⊆ K. Suppose that L is not solvable. Then there
is a semisimple Levi factor S of L. Choose x ∈ S. Then x ∈ S = Sr+1 ⊆ K, a contradiction. Thus L is
solvable and the result follows from Theorem 4.2.

If L has a one-dimensional maximal nilpotent subalgebra, then we can also remove the solvability
assumption from Corollary 4.3, provided that the underlying field F has again characteristic zero and L
is not three-dimensional simple.

Corollary 4.4. Let L be a symmetric Leibniz algebra over a field F of characteristic zero. If every maximal
subalgebra of each maximal nilpotent subalgebra of L is a weak c-ideal of L, then L is supersolvable or
three-dimensional simple.

Proof. If every maximal nilpotent subalgebra of L has dimension at least two, then L is supersolvable
by Corollary 4.3. So we need only consider the case where L has a one-dimensional maximal nilpotent
subalgebra say Fx. Suppose first that I = 0. Then L is a Lie algebra and the result follows from [14,
Corollary 4.7].

So now let I �= 0 and let L be a minimal-counter-example. Then L has a minimal ideal A ⊆ I. As
in the proof of Theorem 4.2, L/A satisfies the same hypothesis as L and so is supersolvable or three-
dimensional simple. In the former case, L is solvable and so is supersolvable, by Theorem 4.2. In the
latter case, L = A⊕S where S is three-dimensional simple, by Levi’s Theorem. But now L is a Lie algebra
and the result follows again from [14, Corollary 4.7].

5. Leibniz algebras in which every one-dimensional subalgebra is a weak c-ideal

Proposition 5.1. For a one-dimensional subalgebra Fx of a Leibniz algebra L the following are equivalent:

(i) Fx is a weak c-ideal of L;
(ii) Fx is a c-ideal of L; and
(iii) either Fx is an ideal of L, or there is an ideal B of L such that L = B+̇Fx and x /∈ L2.

Proof. (i) and (ii) are equivalent since a subideal of codimension one in L is an ideal.
If (ii) holds, then there is an ideal B in L such that L = Fx + B, and Fx ∩ B ⊆ (Fx)L = 0 or Fx. The

former implies that L = B+̇Fx and x /∈ L2 ⊆ B; the latter implies that Fx is an ideal of L. Hence (iii)
holds. The converse is clear.

Definition 7. Put J = 〈x ∈ L | x2 = 0〉. Note that I ⊆ J.

Corollary 5.2. Let L be a Leibniz algebra over any field. Then every one-dimensional subalgebra is a c-ideal
if and only if L2 ∩ J ⊆ Asoc(L).

Proof. Clearly, if Fx is a one-dimensional subalgebra of L, then x ∈ J. It follows from Proposition 5.1
that if every one-dimensional subalgebra of L is a c-ideal, then L2 ∩ J ⊆ Asoc(L).
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So suppose that L2 ∩ J ⊆ Asoc(L), and let Fx be a one-dimensional subalgebra of L. If x ∈ L2, then
Fx is an ideal of L. If x /∈ L2, let B be a subspace containing L2 which is complementary to Fx. Then B is
an ideal of L and L = Fx+̇B. Hence, Fx is a c-ideal, by Proposition 5.1 (iii).

Proposition 5.3. Let L = 〈x〉 be a cyclic Leibniz algebra. Then every one-dimensional subalgebra of L is a
c-ideal if and only if dim L ≤ 2.

Proof. Suppose that every one-dimensional subalgebra of L is a c-ideal and that dim L > 1. If Fx2 is not
an ideal of L, there is an ideal B of L such that L = Fx2 + B. But then x + λx2 ∈ B for some λ ∈ F,
whence x2 = [x, x + λx2] ∈ B, a contradiction. Thus Fx2 is an ideal of L, x3 = λx2 for some λ ∈ F and
L = Fx + Fx2.

Suppose conversely that dim L = 2. Then L = Fx + Fx2, where x3 = 0 or x3 = x2. In the former
case, the only one-dimensional subalgebra is Fx2 and that is an ideal of L. In the latter case, the one-
dimensional subalgebras are Fx2, which is an ideal, and F(x − x2), which is complemented by Fx2.

In [15] the following result appears.

Theorem 5.4. Let L be a Leibniz algebra over any field F . Then all one-dimensional subalgebras of L are
c-ideals of L if and only if:

(i) L3 = 0; or
(ii) L = A ⊕ B, where A is an abelian ideal of L and B is an almost abelian ideal of L.

Proof. See [15, Theorem 3.2.9, p. 26].

Turner defines a subalgebra B of a Leibniz algebra L to be almost abelian if B = Fx+̇D where, D
is abelian and [d, x] ⊆ D for all d ∈ D. (She actually has the products the other way around as she is
dealing with left Leibniz algebras, whereas, here we are concerned with right Leibniz algebras.) However,
this definition is problematic as it appears to be assumed in the proof that [d, x] = d for all d ∈ D, and
that does not follow from the definition. Also, nothing is said about [x, d]. Elsewhere in the literature
there have been defined two types of almost abelian Leibniz algebras: B = Fx+̇D is called an almost
abelian Lie algebra if [d, x] = −[x, d] = d for all d ∈ D, and is an almost abelian non-Lie Leibniz algebra
if [d, x] = d for all d ∈ D, all other products being zero in each case.

Moreover, the result is false, as the following example shows.

Example 5.1. Let L be the three-dimensional Leibniz algebra over a field of characteristic different from
2 with basis a, b, x and non-zero products a2 = b, [a, x] = −[x, a] = 1

2 a, [b, x] = b. Then (αa + βb +
γ x)2 = 0 if and only if α2 = −βγ . If α = 0 then, either β − 0, in which case Fx is complemented
by the ideal Fa + Fb, or γ = 0, in which case Fb is an ideal of L. If α �= 0, then F(αa + βb + α2

β
x)

is complemented by the ideal Fa + Fb. It follows that every one-dimensional subalgebra is a c-ideal.
However, L is not of the form given in Theorem 5.4.

In fact, the structure of Leibniz algebras in which all one-dimensional subalgebras are c-ideals can
be more complicated than is claimed by Theorem 5.4. The best that we can achieve currently is the
following.

Lemma 5.5. Let L be a Leibniz algebra in which every one-dimensional subalgebra is a c-ideal. Then

(i) all minimal abelian ideals are one dimensional;
(ii) if Asoc(L) = Fa1 ⊕ · · · ⊕ Far and x ∈ L, then ai ∈ Z(L) or [ai, x] = λxai for some 0 �= λx ∈ F,

1 ≤ i ≤ r.
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(iii) Let Asoc(L) = Z(L) ⊕ D where [a, x] = λxa for all a ∈ D, x ∈ L. Then, either D = 0 or L =
(Z(L) ⊕ D)+̇C+̇Fx where [D, C] = [C, D] = 0, (Z(L) ⊕ D)+̇C is an ideal of L and [a, x] = a for all
a ∈ D.

Proof. (i) Let A be a minimal abelian ideal of L and let a ∈ A. If A �= Fa then there is an ideal K of L
such that L = Fa+̇K. But A ∩ K = 0 so A = Fa, a contradiction.

(ii) Suppose that [ai, x] = λai and [aj, x] = μaj where λ �= μ. Then F(ai + aj) is not an ideal of L and
so there is an ideal M of L such that L = F(ai + aj)+̇M. Clearly, one of ai and aj does not belong to
M. Suppose that ai /∈ M, so L = Fai ⊕ M and ai ∈ Z(L).

(iii) Let � : L → F be given by �(x) = λx. This is a linear transformation. Hence, either Im � = 0, in
which case D = 0, or else L = Ker �+̇Fx and λx = 1. Put L = (Z ⊕ D)+̇C+̇Fx, where C ⊆ Ker �.
Let d ∈ D, c ∈ C with [c, d] = λd. Then

λ2d = λ[c, d] = [c[c, d]] = [c2, d] − [[c, d], c] = 0,

so λ = 0. Hence [D, C] = [C, D] = 0. It is straightforward to check that Ker � is an ideal of L.

However, we can retrieve Theorem 5.4 for symmetric Leibniz algebras.

Theorem 5.6. Let L be a symmetric Leibniz algebra over any field F . Then all one-dimensional subalgebras
of L are c-ideals of L if and only if:

(i) L3 = 0; or
(ii) L = A ⊕ B, where A is an abelian ideal of L and B is an almost abelian Lie ideal of L.

Proof. Suppose that all one-dimensional subalgebras of L are c-ideals of L. First note that, if x, y ∈ L, then
[x, y]2 ∈ L2 ∩ J, so L2 ⊆ Asoc(L), by Corollary 5.2. Also, L must have the structure given in Lemma 5.5
(iii). If D = 0 then L2 ⊆ Z(L) and (i) holds. So suppose that D �= 0.

Let 0 �= a ∈ D. If z ∈ Z, then F(z + a) is not an ideal of L and so z + a �∈ L2. But a = [a, x] ∈ L2,
so z �∈ L2 and Z ∩ L2 = 0. It follows that L2 = D. Now, if c ∈ C, we have that c2 ∈ L2 = D, so c3 = c2.
But c3 = 0, by [5, Proposition 2.17]. If [c, x] = 0, then [x, c] ∈ L2 = D and so [x, c] = [[x, c], x] =
[x, [c, x]] = 0, since L is also a flexible algebra, by [5, Proposition 2.17] again. Hence Fc is an ideal of L.
But then c ∈ L2 ∩ C = D ∩ C = 0.

So suppose that [c, x] �= 0. Then [c − [c, x], x] = 0 and [x, c − [c, x]] = [x, c] − [x, [c, x]] = [x, c] −
[[x, c], x] = 0, using the flexible law again. Also, [c − [c, x], c − [c, x]] = −[c, [c, x]] − [[c, x], c] =
−[c, [c, x]] − [c, [x, c]] = 0, since [c, x] + [x, c] ∈ I. It follows that F(c − [c, x]) is an ideal of L and hence
is inside L2 = D. Thus, c ∈ C ∩ D = 0, so C = 0.

Finally, for all a ∈ D, [a, x] = a. Also, [a, x]+ [x, a] ∈ I, so 0 = [[a, x], x]+ [[x, a], x] = [a, x]+ [x, a]
and [x, a] = −a. Thus, L is as described in (ii).
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