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We have investigated the dynamics of a phase-modulated driven gyroscope, including vibrational
resonance (VR) phenomena and the stability of the system, both with and without the phase
modulation. For appropriate choices of parameters, three distinct equilibrium states can be attained.
We use the method of direct separation of the fast and slow motions to show that, in the presence of
an additive external driving force, time-periodic phase-modulation promotes resonance suppression.
Both giant VR and anti-resonance induction in the quiescent state arise within certain parameter
ranges. The implications of the giant and suppressed resonances for gyroscope applications and
beyond are discussed.
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I. INTRODUCTION

For over a century, the gyroscope has played a signif-
icant role in advancing modern technology. It has at-
tracted research interest in physics and engineering, es-
pecially in aerodynamics. Gyroscopes are spinning de-
vices that are fixed to a frame, with the ability to detect
an angular velocity as the frame rotates [1]. They are
widely used in navigation systems [2], aerospace engi-
neering [1], robotics [3], and in many other fields where
stability and precise measurement of angular motion are
essential. The main feature of a gyroscope device is to
maintain the axis of a spinning rotor. Gyroscopes are
unique in their characteristic effects [4], for which there
is a well-developed mathematical formulation based on
the conservation of kinetic energy and angular momen-
tum [5]. Depending on the underlying physical princi-
ples and the technology involved, there are several differ-
ent types of gyroscope, including: conventional mechan-
ical gyroscopes; optical gyroscopes, which include both
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fiber optic gyroscopes (FOGs) and ring laser gyroscopes
(RLGs) [1]; MEMs (micro-electro-mechanical systems)
gyroscopes; and MOEMs (micro-opto-electro-mechanical
systems) gyroscopes [6]. Understanding the dynamics
of a gyroscope requires an examination of its rotational
motion, its equilibrium conditions, and its response to
external forces. It is this latter question that provides
the main focus of the present paper.

A system’s response to external forces has been one of
the key research foci of nonlinear dynamics. When there
are two external periodic forces of sufficiently different
frequency the response, whether enhancement or sup-
pression, is known as vibrational resonance (VR) [7–10].
VR is closely related to stochastic resonance (SR) where
a weak periodic force in a nonlinear system can be en-
hanced/suppressed by the input zero-mean noise [11, 12],
the main difference being that, in VR, the role of noise
is replaced by that of a high-frequency (HF) force.

Studies of both SR and VR have grown tremendously
in recent years, and potential applications abound. These
include bulk material processing [9], signal processing
[13, 14], optical communication systems [15, 16], image
processing [17, 18], logic gate operations [19, 20], energy
harvesting [21, 22], bearing defect detection in machin-
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ery [23–25], molecular vibrations [26, 27] and inertial nav-
igational aid in gyroscope systems [28, 29]. Comprehen-
sive reviews have been presented on different varieties of
VR and their applications [9, 10, 30].

Following the original observation of VR [7], several in-
teresting works have been completed on this topic, and on
related multi-frequency induced dynamics, thereby en-
riching our knowledge of a broad range of multi-frequency
driven nonlinear systems [9, 10, 28, 30–37]. Among these
studies, modulation of the system parameters, including
the amplitude and frequency of the external driving force,
has been receiving attention because they constitute the
building blocks of communication systems, as well as sig-
nal amplification, sensing and filtering [38–40]. In this
direction, Oyeleke et al. [28] recently reported VR in a
parametrically-excited gyroscope, where the amplitude of
the potential function was modulated by a time-periodic
force. More recently, Nashrin et al. [41] analysed VR in
a variety of double-well quintic oscillators by modulating
the natural frequency of the oscillator. In another devel-
opment, Adéyémi et al. [37] investigated the impact of co-
operation between time-periodic parametric dissipation
and an amplitude-modulated signal on the occurrence of
torus-doubling bifurcations, and on VR in an asymmet-
ric mixed Rayleigh-Liénard driven oscillator. Similarly,
Kolebaje et al. [42] studied VR in a charged bubble oscil-
lator driven by a modulated acoustic field, where it was
shown that VR occurred at relatively low values of the
acoustic driving pressure.

For nonlinear systems characterized by phase variables,
such as the Kuramoto-Sakaguchi and Stuart-Landau
oscillators [43], molecular rotors and enzymatic sub-
strates [44], superconducting Josephson junctions [45–
48], phase-locked loops [49], spin-torque oscillators [50]
and gyroscope models [28, 51, 52], to mention only a
few examples, time-periodic phase modulation offers a
promising approach for controlling the dynamics and re-
sponse of the system. For instance, so-called absolute
negative mobility (ANM) was achieved and reported by
Dandogbessi and Kenfack [53] in a periodic potential
substrate with time-periodic phase modulation. In an-
other development, it was shown that time-periodic mod-
ulation of the potential produced a remarkable impact
on the transmission probability and conductance of an
MoS2-based circuit [54, 55]. Systems with periodic phase
modulation have important applications in communica-
tion, optical tweezers, neurology, and astronomy [56, 57].
Some earlier experimental works have demonstrated the
spectral efficacy of time-periodic phase modulation in the
control of short laser pulses in plasma channels [58, 59],
vibrational modes of trapped ions [60], ultrafast trans-
mission of electrons [61] and ultrashort light pulses [62].

Very recently [48], we reported distinct phase modu-
lation effects in a Josephson junction model with high-
frequency time-periodic phase modulation [48], namely,
resonant induction and resonant amplification, leading to
the appearance of a double resonance for the driven os-
cillator. Here, we explore use of the time-periodic phase
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FIG. 1. [Color online] Schematic diagram of a phase-
modulated gyroscope. For definitions of the variables, see
text.

modulation technique to investigate VR in a gyroscope
model driven by a time-periodic force. We provide both
theoretical and numerical evidence that multiple, signif-
icantly enhanced and weakly attenuated resonances can
be achieved within appropriate phase parameter regimes
when the gyroscope’s phase is modulated. The ability
of gyroscopes to detect small angular velocity changes
makes them especially valuable for applications where
high precision is required, such as those that arise in
aerospace and defense. Thus, our novel VR approach has
the potential to chart a new course for the application of
time-periodic phase-modulation in navigation, robotics,
and space exploration.
The paper is organized as follows: The model and its

stability are presented in Section II. The main results
are developed and discussed in Section III, while Sec. IV
concludes the paper.

II. MODEL AND STABILITY ANALYSIS

The equation of motion governing the gyroscope de-
picted schematically in Fig. 1 was derived in Refs.[28, 51].
It can be written in dimensionless form as:

ϕ̈+ b1ϕ̇+ b2ϕ̇
3 +

dV (ϕ, t)

dϕ
= Γf (t), (1)

where the nutation ϕ, precession α, and spin ϑ, are re-
lated to Euler angles. The phase-modulated gyroscope
potential V (ϕ, t), in the absence of the external driving
force, can be written as:

V (ϕ, t) =
β2

(1 + cosϕ)
+A cos(ϕ− Γm(t)). (2)
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The time-periodic phase modulating function, Γm(t) =
g sin(Ωt) is considered as the high-frequency (HF) force
in this case, while Γf (t) = f sin(ωt) is the external low-
frequency (LF) force. The parameters g and f repre-
sent the amplitudes of the HF and LF periodic forces,
respectively; b1ϕ̇ + b2ϕ̇

3 represents the linear and cubic
nonlinear damping terms. The conventional VR scenario
requires that Ω ≫ ω.

To analyze the stability of the system, Eq. (1) can be
reformulated into a system of coupled first-order differ-
ential equations:

ϕ̇ = y,

ẏ = −b1y − b2y
3 − β2(1− cosϕ)2

sin3 ϕ
+A sin(ϕ), (3)

where we have assumed that applied forces are absent.
The equilibrium points (ϕ∗, 0) of equation (3) were de-
termined by solving:

sin(ϕ∗)

(
β2

(1 + cosϕ∗)2
−A

)
= 0. (4)

There are five (5) such possible equilibria (ϕ∗, 0), given
by

(i) ϕ∗
1 = nπ, for n ∈ Z,

(ii) ϕ∗
2,3 = ± arccos

(
β√
A
− 1

)
+ 2nπ, for n ∈ Z, and

(iii) ϕ∗
4,5 = ± arccos

(
− β√

A
− 1

)
+ 2nπ, for n ∈ Z.

By imposing the geometrical restriction −π ≤ ϕ ≤ π, the
feasible equilibria reduce to

ϕ∗
1 = 0, ϕ∗

2,3 = ± arccos

(
β√
A

− 1

)
.

The Jacobian matrix J evaluated at these equilibria
(ϕ∗, 0) is

J =

(
0 1
P −b1

)
. (5)

where

P = A cosϕ∗ − 2β2

1 + cosϕ∗ +
3β2 cosϕ∗

(1 + cosϕ∗)2
.

The characteristic equation of J is λ2 + b1λ − P = 0.
According to the Routh-Hurwitz stability criterion, the
equilibrium (ϕ∗, 0) is stable if b1 > 0 and P < 0. For
the equilibrium point (0, 0), P = A− β2/4. Hence, (0, 0)

is stable for β > 2
√
A and unstable otherwise, provided

b1 is kept positive. The equilibria (ϕ∗
2,3, 0) are stable

when β < 2
√
A and unstable otherwise. Thus, the criti-

cal point β = 2
√
A marks a pitchfork bifurcation, where

two new equilibria, (ϕ∗
2,3, 0), emerge from the single equi-

librium (0, 0) as shown in Figure 2. Consequently, in
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FIG. 2. [Color online] Bifurcation diagram of fixed points
against β for A = 200. A pitchfork bifurcation is observed,
as illustrated. The equilibrium point ϕ = 0 (black line)

is stable for β > 2
√
A (solid black line) and unstable for

β < 2
√
A (dashed black line). For β < 2

√
A, two addi-

tional stable equilibria, ϕ∗
2 = arccos

(
β/

√
A− 1

)
(red line)

and ϕ∗
3 = − arccos

(
β/

√
A− 1

)
(blue line), emerge. The bold

black dot indicates the bifurcation point at β = 2
√
A.

the absence of the phase modulating force, the potential
V (ϕ, t) exhibits either a single or a double-well configura-
tion, depending on the values of A and β. Specifically, for
β < 2

√
A, the potential forms a double-well with sym-

metric minima at ϕ2 and ϕ3. For β > 2
√
A, it forms a

single-well with a minimum at ϕ = 0. Figure 3 shows the
the parameter space for which double-well and single-well
structures can appear. For instance, a single-well struc-
ture was obtained when A = 1, β = 10, Ω = 50 and t = 1
as depicted in Fig. 4(a), while a double-well structure is
shown in Fig. 4(b) when A = 500, β = 4, Ω = 50 and
t = 1. The potential structure can be switched between
single-well and double-well by tuning the parameters β
and A. The single-well’s equilibrium point is located in
the region where oscillations occur along the gyroscope’s
major axis, around ϕ = −1.
Upon introducing a time-periodic phase modulation

force to the potential V (ϕ, t), the trivial equilibrium
ϕ∗
1 = 0 is no longer valid. The new equilibria are de-

termined by the real roots of

(x+ 1)2 cosG− x(x+ 1)2√
1− x2

sinG− β2

A
= 0,

where x = cosϕ and G = g sin(Ωt). Under this scenario,
the potential V (ϕ, t) retains its single-well or double-well
nature but can become asymmetric depending on the val-
ues of A and β as well as on the parameters of the mod-
ulation. The impacts of the amplitude (g) of the phase
modulation on both the double-well and single-well struc-
tures are shown in Fig. 4 for g = 0, 1, 2 and 5. Evidently,
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FIG. 3. Two-parameter bifurcation diagram indicating re-
gions of double-well potential (dark grey) and single-well po-
tential (light gray).
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FIG. 4. [Color online] The potential of the system (1) versus
ϕ. (a) Single-well system (β = 10, A = 1, Ω = 50, t = 1),
showing the impact of phase modulation from g = 0 (zero-
phase) to g = 1 and g = 2. (b) Double-well system (β =
4, A = 500, Ω = 50, t = 1), showing the impact of phase
modulation from g = 0 (zero-phase) to g = 1 and g = 5.

the potential structure can be switched from double-well
to single-well by tuning the amplitude, g. Moreover, the
depth of the potential well decreases with increase in g.
Notably, the asymmetric double-well potential exhibits a
local maximum and minima for g = 0 at ϕ = 1.5 and
ϕ = −1.7 (a more stable equilibrium point), and ϕ = 2.7
respectively. As the g value increases from 0 to 5, one
of the two local minima in the double-well potential lo-
cated at ϕ = −1.7 is continuously shifted rightward with
a corresponding reduction in the depth of the other local
minimum, which is located at ϕ ≈ 2.7.

III. ANALYSIS OF VIBRATIONAL
RESONANCE (VR)

A. Case 1: Γm(t) = g sin(Ωt), Γf (t) = f sin(ωt)

First, we analyse the motion of the gyroscope by sepa-
rating the variables into those describing rapid and slow
motions, respectively. This results in two differential
equations. Based on the condition that Ω ≫ ω, we seek
the solution of the nutation angle ϕ(t) of the gyroscope
system (1), assuming it to be the superposition of two
solutions, namely: ϵ(t) of the slow motion propagation
with frequency ω, period 2π/ω; and µ(t,Ωt), period 2π
of the fast oscillations with frequency Ω, in the fast time
τ = Ωt. Thus

ϕ(t) = ϵ(t) + µ(t,Ωt). (6)

To facilitate this analysis, the function sin[ϕ− g sin(Ωt)]
can be re-expressed as:

sin[ϕ− g sin(Ωt)] = sin(ϕ) cos(g sin(Ωt))

− sin(g sin(Ωt)) cos(ϕ).
(7)

This reduces Eq. (1) to:

ϵ̈+ µ̈+ b1ϵ̇+ b1µ̇+ b2(ϵ̇+ µ̇)3

+
β2[1− cos(ϵ) cos(µ) + sin(ϵ) sin(µ)]2

[sin(ϵ) cos(µ) + sin(µ) cos(ϵ)]3

−A[(sin(ϵ) cos(µ) + sin(µ) cos(ϵ)) cos(g sin(Ωt))

−(cos(ϵ) cos(µ)− sin(ϵ) sin(µ)) sin(g sin(Ωt))]

= f sin(ωt).

(8)

The mean values for the fast oscillation are given as:

⟨µ⟩ = 1

2π

∫ 2π

0

µdτ = 0,

⟨cos(g sin(Ωt))⟩ = J0(g),

⟨sin(g sin(Ωt))⟩ = 0, (9)

⟨sinµ⟩ = 1

2π

∫ 2π

0

sinµdτ = 0,

⟨cosµ⟩ = 1

2π

∫ 2π

0

cosµdτ = J0(µ0),

where J0(µ0) and J0(g) represent zeroth order Bessel
functions of the first kind. We apply the expression in
Eq. (9) to average both sides of Eq. (8) over the period
2π and interval [0, 2π

Ω ], so that:
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ϵ̈+ b1ϵ̇+ b2ϵ̇
3

+
β2[1− cos(ϵ)⟨cos(µ)⟩+ sin(ϵ)⟨sin(µ)⟩]2

[sin(ϵ)⟨cos(µ)⟩+ ⟨sin(µ)⟩ cos(ϵ)]3

−A[(sin(ϵ)⟨cos(µ)⟩
+ ⟨sin(µ)⟩ cos(ϵ))⟨cos(g sin(Ωt)⟩)
− (cos(ϵ)⟨cos(µ)⟩ − sin(ϵ)⟨sin(µ)⟩)⟨sin(g sin(Ωt))⟩]
= f sin(ωt).

(10)

In order to obtain the equation of fast motion, we sub-
tract Eq. (10) from Eq. (8) and, by using the inertial
approximation i.e. µ̈ ≫ µ̇ ≫ µ, we then have:

µ̈+ b1µ̇+ b2µ̇
3 + 3b2µ̇)

2ϵ̇+ 3b2ϵ̇)
2µ̇)

+
β2[1− cos(ϵ)(r1) + sin(ϵ)(r2)]

2

[sin(ϵ)(r3) + cos(ϵ)(r4)]3

−A[(sin(ϵ) cos(µ) + sin(µ) cos(ϵ)) cos(g sin(Ωt))

− (sin(ϵ)⟨cos(µ)⟩+ ⟨sin(µ)⟩ cos(ϵ))⟨cos(g sin(Ωt))⟩
− (cos(ϵ) cos(µ)− sin(µ) sin(ϵ)) sin(g sin(Ωt))

− (cos(ϵ)⟨cos(µ)⟩ − sin(ϵ)⟨sin(µ)⟩) sin(g sin(Ωt))] = 0,

(11)

where r1 = cos(µ) − ⟨cos(µ)⟩, r2 = sin(µ) − ⟨sin(µ)⟩,
r3 = cos(µ)− ⟨cos(µ)⟩, and r4 = sin(µ)− ⟨sin(µ)⟩.
Simplifying Eq. (11) by using the expressions for the

respective averages in Eq. (9), this yields:

µ̈+ b1µ̇+ b2µ̇
3 + 3b2µ̇)

2ϵ̇+ 3b2ϵ̇)
2µ̇)

+
β2[1− cos(ϵ)(cos(µ)− Jo(µo)) + sin(ϵ) sin(µ)]2

[sin(ϵ)(cos(µ)− Jo(µo)) + cos(ϵ) sin(µ)]3

−A[sin(ϵ)(cos(µ) cos(g sin(Ωt))− Jo(µo)Jo(g))

+ (sin(µ) cos(ϵ)) cos(g sin(Ωt))

+ (sin(ϵ) sin(µ)− cos(ϵ) cos(µ)) sin(g sin(Ωt))] = 0.

(12)

For small values of g, cos(g sin(Ωt)) ≈ 1 and
sin(g sin(Ωt)) ≈ g sin(Ωt). By freezing the slow motion
variable ϵ and assuming the maximum value of the fast
motion µ, we can appropriately write [48],

µ̈ = G sin(Ωt), (13)

where G = −gA. The solution to Eq. (13) is given as:

µ = −µo sin(Ωt), (14)

where µo = G
Ω2 . Hence, Eq. (10) becomes,

ϵ̈+ b1ϵ̇+ b2ϵ̇
3 +

β2[(1− J0(
G
Ω2 ) cos(ϵ))

2]

[J0(
G
Ω2 ) sin(ϵ)]3

−A

[
J0(g)J0

(
G

Ω2

)
sin(ϵ)

]
= f sin(ωt).

(15)
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FIG. 5. [Color online] The effective potential Eq. (16) versus
ϵ. (a) Single-well potential (β = 10, A = 1, Ω = 50, t = 1),
showing the impact of phase-modulation from g = 0 (zero-
phase) to g = 1 and g = 2. (b) Double-well potential (β =
4, A = 500, Ω = 50, t = 1), showing the impact of phase
modulation from g = 0 (zero-phase) to g = 1 and g = 5.

Eq. (15) represents the theoretical equation for the slow
motion of the gyroscope in terms of ϵ, with the parame-
ters of fast motion acting as a modulating function of the
phase of the potential embedded in it. From Eq. (15), we
extract the effective potential V (ϵ) as

V (ϵ) =
β2J0(

G
Ω2 )

(1 + J0(
G
Ω2 ) cos(ϵ))

+AJ0

(
G

Ω2

)
J0(g) cos(ϵ).

(16)

Figure 5 depicts the phase-modulated gyroscope’s effec-
tive potential, plotted against ϵ at three different modula-
tion amplitudes. For β = 10, corresponding to the single-
well case as shown in Fig. 5(a), the phase-modulation
amplitude g increases the depth of the effective poten-
tial. Greater external excitation is required to drive the
system out of equilibrium or into a neutral state. For
β = 4, corresponding to the double-well case, phase mod-
ulation reduces the well depth, thereby driving the sys-
tem into a free state as shown in Fig. 5(b). In addition,
high-amplitude modulation can collapse the double-well
structure into a single-well. These results show that the
phase modulation is capable of either enhancing or sup-
pressing the system’s response depending on the choice
of parameters.

Proceeding further, the slow oscillation equation (15)
may be approximated around the equilibrium points
(ϵ∗, ϵ̇∗), where the slow oscillation occurs, employing the
approximation ϵ+max(min) = 2kπ, where k is an integer.

The system’s motion can be written in terms of the devi-
ation of the slow motion ϵ from the equilibrium positions
ϵ∗, defined as σ = ϵ − ϵ∗. This leads to the following
equation:
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(σ̈ + ϵ̈∗) + b1(σ̇ + ϵ̇∗) + b2(σ̇ + ϵ̇∗)3

+
β2[(1− J0

(
G
Ω2

)
cos(σ + ϵ∗))2]

[J0(
G
Ω2 ) sin(σ + ϵ∗)]3

−A[J0(g)J0

(
G

Ω2

)
sin(σ + ϵ∗)] = f sin(ωt),

(17)

which can be expressed further as:

σ̈ + ϵ̈∗ + b1σ̇ + b1ϵ̇∗ + b2σ̇
3 + 3b2σ̇

2ϵ̇∗ + 3b2σ̇ϵ̇∗
2
+ b2ϵ̇

3

+
β2[(1− J0

(
G
Ω2

)
cos(σ) cos(ϵ∗) + J0(

G
Ω2 ) sin(σ) sin(ϵ

∗))2]

[J0(
G
Ω2 )(sin(σ) cos(ϵ∗) + sin(ϵ∗) cos(σ))]3

−A[J0(g)J0

(
G

Ω2

)
(sin(σ) cos(ϵ∗) + sin(ϵ∗) cos(σ))]

= f sin(ωt).

(18)

Considering only small deviations from the equilib-
rium points, then sin(σ) ≈ σ and cos(σ) ≈ 1. For
J0(

G
Ω2 ) > 0, (< 0), then ϵ∗ = ϵ∗max(min). Therefore,

J0(
G
Ω2 ) cos(ϵ

∗) =
∣∣J0( G

Ω2 )
∣∣ and Eq. (18) reduces to;

σ̈ + (b1 + 3b2ϵ̇∗
2
)σ̇ + b2σ̇

3 + 3b2σ̇
2ϵ̇∗

+
β2

[
(1−

∣∣J0( G
Ω2 )

∣∣)2]
[|J0( G

Ω2 )|σ]3

−A

[
J0(g)

∣∣∣∣J0 ( G

Ω2

)∣∣∣∣σ]
= f sin(ωt).

(19)

Dropping the nonlinear terms in Eq. (19), we obtain

σ̈ + λσ̇ + ω2
rσ = f sin(ωt), (20)

where

ω2
r = AJ0(g)

∣∣∣∣J0(gAΩ2
)

∣∣∣∣ (21)

is the resonant frequency, and λ = (b1 + 3b2ϵ
∗2) is the

damping coefficient. At the trivial equilibrium point
(ϵ∗ = 0), the damping coefficient reduces to b1 .

Equation (20) is the approximate theoretical equation
from which the amplitude of the response Q, of the sys-
tem to the HF phase modulation of the potential func-
tion, can be obtained. We solved Eq. (20) by assuming
a sinusoidal solution in the form: σ(t) = Am sin(ωt+ θ).
Then, by substituting σ(t), σ̇(t), and σ̈(t) into the equa-
tion, and using the relevant trigonometric identities, the
equation was simplified, and the coefficients of sin(ωt)
and cos(ωt) were equated separately to obtain an expres-
sion for the amplitude. This yielded the steady-state so-
lution corresponding to Eq. (20) as σ(t) = Km sin(ωt+θ),

with θ = tan−1
(
− λω

ω2
r−ω2

)
and Km = f√

S
, where S =

(ω2
r − ω2)2 + λ2ω2 and η = ω2

r − ω2. σ(t) describes the
system’s dynamics in the long time limit t → ∞. The
response amplitude is denoted by the quantity Q. It is
the ratio of the amplitude of σ(t), Km to the LF signal’s
amplitude, f . That is,

Q =
Km

f
=

1√
S
. (22)

In Eq. (22), Q is maximum when S is minimum, i.e., at
resonance ωr = ω or η = 0, provided the frequency ω is
fixed. In the case when ω is varied, a separate condition
can be obtained. By assuming that a system parameter
(say µ) is varied, the parameter value at which resonance
occurs, herein denoted as µvr, can be computed from the
roots of the equation S1

µ = dS
dµ = 0 and S2

µ|µ=µvr
> 0.

Using the expression for S, the frequency value ωvr must
therefore satisfy the condition Sω = 2λ2ω−4ω(ω2

r−ω2) =
0, so that

ω = ωvr =

√
ω2
r −

λ2

2
. (23)

Having established the theoretical conditions for VR in
this case, we now demonstrate the occurrence of VR and
its enhancement and suppression numerically, by varia-
tion of the phase modulation parameter. The response
was computed from the amplitudes Qs and Qc of the
Fourier spectrum of the output signal, where Qs and Qc

are defined by [7]:

Qs =
2

nT

∫ nT

0

ϕ(t) sin(ωt)dt (24)

Qc =
2

nT

∫ nT

0

ϕ(t) cos(ωt)dt.

The system’s amplitude is given by,

A =
√

Q2
s +Q2

c . (25)

The system’s amplitude of response to the LF signal is
thus given as

Q =
A

f
=

√
Q2

s +Q2
c

f
. (26)

The frequency-response curve provides useful informa-
tion about how a system’s output evolves as the fre-
quency of the input varies [63]. It is an efficient tool
for predicting the system’s evolution under different con-
straints, and finds useful applications in a wide range of
disciplines. For instance, there are several practical ap-
plications in relation to coupled oscillators [64], and in
plasma physics [65]. Figure 6 depicts the low frequency-
response curve, i.e. Q against ω, plotted using the analyt-
ically obtained Q from Eq. (22) and comparing with the
numerically calculated Q from Eq. (26) as a function of
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FIG. 6. [Color online] Comparison between the theoretical Q
(Eq. (22)) and the numerically computed Q (Eq. 26). Each is
plotted against ω using the parameters: b1 = 0.5, b2 = 0.05,
Ω = 70, λ = 0.7. (a) Single-well potential with A = 1, β = 3,
f = 1 for g = 0.2. (b) Double-well potential with A = 1,
β = 1, f = 0.05, for g = 0.2.

the low-frequency, ω, setting the simulation parameters
as b1 = 0.5, b2 = 0.05, Ω = 70, and λ = 0.7. Figure 6(a)
represents the single-well case with β = 10, A = 1, and
f = 1, while Fig. 6(b) represents the double-well case
with β = 1, f = 0.05, and A = 1. In both instances the
phase-modulation amplitude, g = 0.2. The results are
in good agreement, and particularly notable when ω > 5
for the single-well and when ω > 1.0 for the double-well.
The disparity at low frequencies of the response curves
could be attributed to approximations employed in the
theoretical analysis. The theoretical solutions rely on
the linear approximations in which higher-order terms in
the nonlinear systems were neglected (as done between
Eqs. (18) and (19)). Thus, at low frequencies, nonlin-
ear effects might dominate, leading to deviation of the-
ory from the numerical solutions, thereby rendering ana-
lytical solutions more difficult in tracking the numerical
results and less accurate. Many perturbation methods
such as direct separation of motions, assume small devi-
ations from equilibrium. The system might explore larger
nonlinear effects at low frequencies, which could invali-
date the assumptions. While our numerical method has
accurately accounted for these deviations, the analytic
approach might not [66].

In addition to the agreement between theory and nu-
merical Q shown in Figure 6, we find that the derived
resonance frequency ωr, given in Eq. (21) predicted the
values of g at which resonance occurs. This is illustrated
in Figure 7 in which we presented the theoretical Q and
ωr both plotted against g, for the single-well and double-
well cases. In the single-well case, Fig. 7(a) shows the Q
peaks at frequency of ω = ωr = 0.5. The first resonance
peak, Qmax 1, occurs at g = 1.95, while two subsequent
peaks, Qmax 2,3 indicated by the vertical dashed lines, ap-
pear at g = 6.45 and g = 7.7, respectively. The g values
for the three peaks shown in Fig. 7(a) are clearly captured
by Fig. 7(b) illustrating the variation of ωr with g. The
vertical dashed lines in Fig. 7(b) have been drawn from
the points where the horizontal dashed line at ω = 0.5
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FIG. 7. [Color online] Plots of theoretical Q versus g for and
ωr (ω2

r = AJ0(g)|J0(
gA
Ω2 )|) versus g. Panels (a) Q vs g and

(b) ωr vs g for the single-well case with ω = 0.5, A = 1,
β = 3, and f = 0.5. The horizontal dashed line represents
ωr = ω = 0.5. Panels (c) Q vs g and (d) ωr vs g are for the
double-well case with ω = 1, A = 1, β = 1, and f = 0.05.
The horizontal dashed line represents ωr = ω = 1. In (a)-
(d), the vertical dashed lines represent the values of ωr and
g at which Q is maximal. Other parameters are: b1 = 0.5,
b2 = 0.05, Ω = 50ω, and λ = 0.7.

intersects the ωr vs g curve, thereby predicting the oc-
currence of peaks in Fig. 7(a) when ωr = ω. Specifically,
two resonance peaks exist for 0 < ω ≤ 0.546, but for
0.546 < ω ≤ 1.0, only a single resonance peak is observed.
Thus, the number of peaks depends on the low-frequency
(ω) range under consideration.

For the double-well case, Figures 7(c) and (d) show
the theoretical Q and ωr, both plotted against g. With
the low-frequency fixed at ω = ωr = 1.0 in Fig. 7(c),
the first resonance peak, Qmax 1, occurred at g = 2.2,
followed by two additional peaks, Qmax 1,2, at g = 5.85
and g = 8.3, respectively. These resonance g value loca-
tions are marked by vertical dashed lines. It can be seen
that the corresponding ωr vs g plot shown in Figure 7(d)
predicted the g values at which resonance occur. The ver-
tical dashed lines from the intersections of the horizontal
dashed line at ω = 1.0 of the ωr-g curve align exactly with
the Q plot shown in Figure 7(c). Similarly to the single-
well case, the number of peaks depends on the range of
ω. Three peaks can be observed for 0 < ω ≤ 1.73, while
only a single peak exists for ω > 1.73.

Thus, Figures 7 is indicative of resonance induced by
frequency matching (ωr = ω) in both the single-well and
double-well case. The relationship between Q and ωr

is crucial for predicting and optimizing the performance
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and stability of the gyroscope system.

We now proceed to provide clear evidences of resonance
suppression and enhancement by time-periodic phase
modulation. Figure 8 depicts the frequency-response
curve for both the single-well (Figure 8(a)) and the
double-well (Figure 8(b)) parameter settings for increas-
ing values of the phase-modulation amplitude, g. In the
single-well case, there is a single peak over the frequency
range examined herein. The presence of phase modula-
tion weakly suppresses the response Q which implies that
the zero-phase (g ≈ 0) gives the maximum response at
the lowest value of ω ≈ 5 as shown in Fig. 8(a). Sup-
pression occurs for 0 < g < 5. For g > 5, the response is
weakly enhanced. In the double-well case, on the other
hand, multiple peaks can appear over a wider frequency
range. However, the first peak appearing in the weak fre-
quency regime is dominant in magnitude - its magnitude
being 1000 times the magnitudes of the other peaks ob-
served at higher frequency regimes. Here, phase modula-
tion significantly enhances the primary resonance even at
higher ω values where multiple peaks occur as shown in
the inset. The zero-phase case (depicted by grey color)
in Fig. 8(b) evidently shows the least response Q peak
appearing at the resonance frequency of ω ≈ 1.35, 55,
81, 119 and 189. On the other hand, the non-zero-phase
cases depicted by brown, blue and green clearly exhibits
enhanced response for all ω regimes where resonance oc-
curred. In lower frequency regime, typically g < 2, the
resonant frequency decreases correspondingly as the am-
plitude of phase modulation increases. In the double-well
case, resonance peaks occurred over a wider range of val-
ues of ω, providing a more complete picture of a system’s
behaviour [67].

Figures 9(a) and (b) illustrate the response of the sys-
tem as a function of g, the amplitude of the phase-
modulating function for different values of f , the am-
plitude of the low-frequency time-periodic external force
for both the single-well and double-well cases, respec-
tively. In the single-well case, suppressed multiple reso-
nances were observed as f increased from f=0.5,2, 2.5,
3,4, to 5. In the double-well case, anti-resonance, reso-
nance suppression and enhancement are evident as the
amplitude f increased progressively. Specifically in the
weak amplitude (0 ≤ g < 2) of Fig. 9(b), resonance sup-
pression takes place with intermittent anti-resonance at
f = 3 and 5; while for higher amplitudes (2 ≤ g ≤ 20)
resonance enhancement precedes resonance suppression.
Resonance peaks occurred at multiple values of g in
both cases - which is consistent with our theoretical pre-
dictions. For the single-well, three peaks occurred at
g ≈ 7, 13.4 19.6 in addition to the primary resonance
at g = 0; while for the double-well the peaks occurred
at g ≈ 0.8, 3.8, 10.2 and 16.6. The suppression and en-
hancement scenarios implies that time-periodic phase-
modulation can be employed to control the vibrational
modes of a gyroscope, which can potentially be useful in
the gyroscope applications enumerated in Ref. [68].
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FIG. 8. [Color online] Frequency-response curve of the sys-
tem solution given by Eq. (26) when modulated by a high-
frequency time-periodic force for different amplitudes of the
gyroscope’s phase. (a) Single-well case with A = 1, β = 10,
f = 1, for g = 0, 1, 7 and 9. (b) Double-well case with A = 1,
β = 1 , f = 0.05, for g = 0, 1, 3 and 5. The inset in (b) indi-
cates the resonance enhancement at extremely high ω-values.
The other parameter values were b1 = 0.5, b2 = 0.05, Ω = 70.

B. Case 2: Γm(t) = f sin(ωt), Γf (t) = g sin(Ωt)

We now examine the scenario where a low-frequency
force Γm(t) = f sin(ωt) modulates the gyroscope’s phase
and a high-frequency force g sin(Ωt) acts as an additive
external drive. With all variables retaining their defini-
tions, the equation of motion becomes:

ϕ̈+ b1ϕ̇+ b2ϕ̇
3 + β2(

(1− cosϕ)2

sin(ϕ)3
)

−A sin(ϕ− f sin(ωt)) = g sin(Ωt),

(27)

The associated potential for Eq. (27) is given as:

V (ϕ, t) =
β2

(1 + cosϕ)
+A cos(ϕ− f sin(ωt)). (28)

Proceeding as in Case 1 of section IIIA, the slow motion
equation for the dynamics (Eq. (27)) is given as:

ϵ̈+ b1ϵ̇+ b2ϵ̇
3 +

β2[(1− J0
(−g
Ω2

)
cos(ϵ))2][

J0
(−g
Ω2

)
sin(ϵ)

]3
−A[J0

(
−g

Ω2

)
sin(ϵ) cos(f sin(ωt))

+ J0

(
−g

Ω2

)
cos(ϵ) sin(f sin(ωt))] = 0.

(29)

For small values of f , cos(f sin(ωt)) ≈ 1 and
sin(f sin(ωt)) ≈ sin(ωt). Therefore, Eq. (29) becomes:
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FIG. 9. [Color online] Response amplitude of the system solution Eq. (26) versus g showing evidence of resonance suppression
when modulated by a high-frequency time-periodic force, for different values of the amplitude f of the external drive. (a)
Single-well case with A = 1, β = 10 for f = 0.05, 0.5 and 2. (b) Double-well case with A = 10, β = 4 for f = 0.5, 2 and 2.5.
The other parameters were b1 = 0.6, b2 = 0.004, f = 0.05, ω = 0.5, Ω = 50.

ϵ̈+ b1ϵ̇+ b2ϵ̇
3 +

β2[(1− J0
(−g
Ω2

)
cos(ϵ))2]

[J0
(−g
Ω2

)
sin(ϵ)]3

−A[J0

(
−g

Ω2

)
sin(ϵ)

+ J0

(
−g

Ω2

)
cos(ϵ)f sin(ωt)] = 0.

(30)

The effective potential, Veff (ϵ) can be extracted as:

V (ϵ) =
β2J0(

−g
Ω2 )

(1 + J0(
−g
Ω2 ) cos(ϵ))

+AJ0

(
−g

Ω2

)
[cos(ϵ) + sin(ϵ)f sin(ωt)].

(31)

Proceeding as before, we reduce the equation of motion
to that of linearly damped driven oscillator:

σ̈ + λσ̇ + ω2
rσ = F sin(ωt), (32)

where

ω2
r = A

∣∣∣J0 ( g

Ω2

)∣∣∣ (33)

is the resonant frequency, F = A
∣∣J0( g

Ω2 )
∣∣ f and λ =

(b1 + 3b2ϵ̇
∗2, the damping coefficient. At the zero equi-

librium, ϵ∗2 = 0, λ = b1. The steady-state solution

σ(t) = Km sin(ωt+θ) corresponding to Eq. (32) describes
a system similar to Case 1 and, in the long time limit,
t → ∞ with Km = F√

S
. Here, S = [(ω2

r − ω2)2 + λ2ω2],

and η = ω2
r − ω2. The response amplitude is denoted by

the quantity Q, and defined as:

Q =
Km

F
=

1√
S
. (34)

In Eq. (34), Q is maximum when S is minimum, i.e. at
resonance when ωr = ω or η = 0. Analogous to Case 1,
the condition given by Eq. (23) when ω is varied holds,
with ωr now defined by Eq. (33).

Figure 10 depicts the theoretically calculated Q and the
equivalent ωr given by Eq. (33), both plotted against
g, for this case, where a low-frequency force modulates
the phase of the oscillator driven by high-frequency ex-
ternal excitation for the single-well and double-well con-
figurations. For the single-well parameter setting, Fig-
ure 10(a) shows the resonance peaks in Q when the fre-
quency ω = ωr = 0.5. The first resonance peak, Qmax 1,
occurs at g = 1225, while subsequent peaks, Qmax 2,3,4,5,
appear at g = 1850, g = 2975, g = 4000, and g = 4800,
as marked by the vertical dashed lines. The variation of
ωr with g is displayed in Figure 10(b), with the vertical
dashed lines drawn from the points where the horizontal
dashed line at ω = 0.5 intersects the ωr vs g plot, in-
dicating that resonance peaks occur when ωr = ω, and
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FIG. 10. [Color online] Plots of theoretical Q versus g and ωr

(ω2
r = A|J0(

g
Ω2 )|) versus g of a phase-modulated gyroscope

oscillator. b1 = 0.5, b2 = 0.05, Ω = 50ω, λ = 0.5, f = 0.5.
(a) and (b) Single-well with ω = 0.5, A = 10 ,β = 1. The
horizontal dashed line represents ωr = ω = 0.5 (c) and (d)
Double-well with ω = 1, A = 1, β = 1. Horizontal dashed line
represents ωr = ω = 1. The vertical dashed lines represent
the values of ωr and g at which Q becomes maximum.

showing that, in the single-well case, resonance occurs
due to frequency matching (ωr = ω). In particular,
five resonance peaks exist for 0 < ω ≤ 0.63 but, for
0.63 < ω ≤ 1.0, only a single resonance peak is observed.

For the double-well case, Figures 10(c) and (d) show
the theoretical Q and the corresponding ωr versus g
curves. With ω = ωr = 1.0 in Figure 10(c), the first
resonance peak, Qmax 1, appears at g = 2.2, followed by
two additional peaks, Qmax 1,2, at g = 5600, g = 6600,
g = 13000 and g = 14600. These resonance points are
indicated by the vertical dashed lines. The correspond-
ing ωr vs g curve shown in Figure 10(d) further confirms
that the vertical dashed lines from the intersections of
the horizontal dashed line at ω = 1.0 with the ωr-g curve
align with the peaks in Figure 10(c). Furthermore, the
number of peaks depends on the range of ω: four peaks
are present for 0 < ω ≤ 2.01, while only a single peak
exists for ω > 2.01.

We now show evidence of VR suppression in this case.
The response amplitudes Q against the low-frequency, ω
for different values of the external drive amplitude g are
as shown in Fig. 11 for both the single-well and double-
well settings. Here, f = 0.5 - the amplitude of the time-
periodic phase-modulating low-frequency force is fixed.
For the single-well case shown in Fig. 11(a), the pri-
mary resonance due to time-periodic phase-modulation
(f sin(ωt)) was observed for g = 0 with f = 0.5. For
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FIG. 11. [Color online] Frequency response curve of the sys-
tem solution (34) showing resonance suppression when mod-
ulated by a low-frequency, time-periodic, force for different
values of the amplitude g of the external drive, with param-
eters b1 = 0.5, b2 = 0.05, f = 0.5, Ω = 50ω. (a) and (b)
Single-well case with A = 1, β = 10, for g=0,100, 200, 250
and 400. The inset in (a) shows the frequency suppression
domain; while panel (b) shows the weak frequency suppres-
sion domain. (c) and (d) Double-well case with A = 1, β = 1,
for g=0, 50, 100, 200, 250, and 400. The inset in (c) shows a
zoom of the higher frequency suppression domain; while panel
(d) shows the weak frequency suppression domain.

the other higher external drive amplitudes (g =100, 200,
250), resonance suppression appeared. We have used
even higher values of g, up to 250, to distinguish between
consecutive curves. On the contrary, in Fig. 11(b), a dou-
ble primary resonance peak was found in the double-well
case with zero-phase excitation (g = 0): one within the
frequency range of ω (0.5 ≤ ω ≤ 0.8), while the second
peak occurred in the neighbourhood of ω (1 ≤ ω ≤ 1.7).
By turning on the phase excitation with increased am-
plitude g (i.e. 50 to 250), resonance suppression is acti-
vated. First, at g slightly greater than zero (5 ⩽ g ⩽ 50),
three resonance peaks first appear, with one giant peak
in the low frequency regime. However, there is grad-
ual elimination of the enhanced first peak located in the
frequency bandwidth: 0.5 ≤ ω ≤ 0.8, as g increases pro-
gressively. The appearance of double resonance is consis-
tent with the theoretical prediction of multiple resonance
peaks presented in Fig. 10(d) within this ω range.

The response amplitudes in Fig. 11(c) are far greater
than those observed in the single-well case in Fig. 11(a).
In the single-well case shown in Fig. 11(a), the frequencies
at which resonances occurred are close and narrower than
the distinct frequency bandwidths observed in Fig. 11(b).
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This occurred for a single-well at ω ≈ 5. As the ampli-
tude, g increases from 0 to 250 in each case, there is
a corresponding decrease in the response amplitude, Q.
Figure 11(b) shows a zoom of the system’s response in the
lower frequency domain (0 < ω ⩽ 0.4) of Fig. 11(a). In
this low frequency regime, the oscillator is in its quiescent
state in the absence of the modulating force (g = 0). Ev-
idently, the activation of the time-periodic phase excita-
tion induced-antiresonance as its amplitude, g increased
from 0 to 250 as shown in Fig. 11(a) for the single-well
case. However, in the double-well case illustrated in (d),
giant VR is first induced at ω ≈ 0.1 when the excitation
amplitude is g = 50. This is followed, however, by the oc-
currence of VR suppression at slightly higher resonance
frequencies as g increases further to 250.

Thus it is evident that, by modulating the phase of
an oscillatory mechanical system with a low-frequency
time-periodic force, the system’s response can be either
enhanced or suppressed in different parameter regimes.
In cases where the phase of the oscillator is accessible,
phase modulation would be a useful technique for ef-
fecting vibration control in engineering systems when
high-amplitude vibrations are undesirable. Notably,
in previous studies, negative resistance electromagnetic
shunt dampers were used to reduce vibrations in high-
temperature superconducting maglev systems [69]; while
inertial nonlinear energy sinks (NESs) installed at the
boundaries of an elastic beam were used to suppress its
transverse multi-modal resonances [70, 71], and there are
many other similar examples.

IV. CONCLUDING REMARKS

In examining the response of a driven gyroscope to
time-periodic phase-modulation, we have used a stabil-
ity analysis in the absence of external forces to show that
the system’s equilibrium points are controlled by the am-
plitude, A, of the periodic component of the potential,
and β, the parameter of the aperiodic component. With
β treated as the bifurcation parameter, the system ex-
periences a pitchfork bifurcation at β = 2

√
A at which

it undergoes a transition from a single-well to a double-
well potential state. In the presence of a high-frequency
time-periodic phase-modulating force, the trivial equi-
librium ϕ∗

1 = 0 changes, so that the phase-modulation
parameters cooperate with β and A to induce complex

dynamics. Within the framework of vibrational reso-
nance (VR), where the presence and characteristics of
a high-frequency driving force can be exploited to max-
imize the response of an oscillator to a low-frequency
drive, we investigated the response of the phase-driven
gyroscope oscillator, both theoretically and numerically,
based on two scenarios. In the first case, the gyro-
scope phase was modulated by a high-frequency time-
periodic force f sin(Ωt), while externally driven by a
low-frequency force g sin(ωt). In the second case, the
gyroscope’s phase was modulated by a low-frequency
time-periodic force f sin(ωt), while externally driven by
high-frequency force g sin(Ωt). In the former case, time-
periodic phase-modulation promotes multiple resonance
enhancement over resonance suppression for appropriate
choices of parameters. In the latter case, time-periodic
phase-modulation induces giant VR and anti-resonances,
as well as promotes VR suppression over enhancement,
for appropriate choice of the phase modulation param-
eters. The response enhancement and suppression have
a range of potential applications in different disciplines.
In aerodynamics, for instance, vibrational response sup-
pression in aircraft wings can aid aerodynamic efficiency
and structural safety [68, 72]. It can be utilized to pre-
vent flutter and improve flight stability. In addition, vi-
brational response suppression in gyroscope systems may
find application in space structures for satellite orienta-
tion control [73–75], and could also be beneficial to wind
turbines through the reduction of mechanical stress [76].
On the other hand, regimes of enhanced vibrational re-
sponse in a gyroscope could, in certain circumstances,
signal structural flaws or instabilities that should be
avoided [77]. On the contrary, automotive gyroscopes use
enhanced responses for providing improved stability [78].
Response enhancement is also utilized in earthquake de-
tection for early warning systems and in consumer elec-
tronics to improve interface responsiveness, with electro-
static transduction being a common method due to its
low power requirement and fast response [79]. These ap-
plications highlight the adaptability of driven gyroscopes
for technological advancement, seismology, renewable en-
ergy, and space exploration.
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