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Abstract 

Traditional mean-variance portfolio optimization is based on the premise that investors only care 

about risk and return. However, some investors also have non-financial objectives such as 

sustainability goals. We show how the traditional approach can readily be extended to mean-

variance-sustainability optimization and explain why this 3D investing approach is ex-ante 

Pareto-optimal. We illustrate its efficacy empirically in several studies, including carbon footprint 

and SDG objectives. Importantly, we highlight conditions under which a 3D optimization 

approach is superior to a naïve 2D approach augmented with sustainability constraints. 
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1. Introduction 

The standard risk and return portfolio framework has been challenged by numerous approaches 

that all focus on making investment decisions based on objectives which are not strictly risk or 

return-based, such as impact investing, socially responsible investing (SRI), or environmental, 

social, and corporate governance (ESG) investing. The proliferation of these sustainable investing 

(SI) philosophies highlights how the standard mean-variance framework of  Markowitz (1952) is 

no longer sufficient. Accordingly, investment practice has evolved to incorporate sustainability 

objectives into the investment problem, with salient examples being carbon footprint, ESG, and 

sustainability development goals (SDG) related metrics. In this paper, we bring together the 

multi-objective portfolio optimization framework with the real-world implementation of 

alternative investment objectives. Specifically, we contrast the common practice of incorporating 

sustainability objectives into a portfolio using constraints with the use of objective function 

targets and discuss when one may be preferable to the other.  

Sandberg et al. (2009) highlight the heterogeneity of SRI, where there is no one-size-fits-all 

approach to developing sustainability-oriented investment portfolios. Many approaches have 

been proposed in the literature which strive to incorporate sustainability objectives into a 

portfolio. These include excluding undesirable stocks from the investment universe (Diltz, 1995; 

Kinder and Domini, 1997; Naber, 2001), constraining the portfolio’s exposure to such objectives 

(Boudt, Cornelissen, and Croux, 2013), and incorporating sustainable targets into the 

return/alpha component of the objective function (Bilbao-Terol, Arenas-Parra, and Cañal-

Fernández, 2012; Hirschberger, Steuer, Utz, Wimmer, and Qi, 2013; Utz, Wimmer, Hirschberger, 

and Steuer, 2014; Chen and Mussalli, 2020). However, a core question around the optimal way 

for incorporating sustainability objectives into investment portfolios is underserved. 

Investors often target a portfolio carbon footprint lower than some benchmark or achieving a 

higher sustainability score than the benchmark.1 These objectives are naturally suited towards a 

constraint-based framework, as benchmark-relative constraints can readily cater these 

investment desires. At low constraint levels, such as simply being better than the benchmark, this 

approach may work well. However, under more ambitious targets, constraint-based approaches 

face several challenges. Blitz and Hoogteijling (2022) highlight how a constraint on carbon 

footprint can be interpreted as an implicit carbon tax (on expected return). When the constraint 

is non-binding (i.e., redundant) then the tax is effectively zero. However, when the constraint is 

binding this implies a non-zero tax on lowering carbon footprint. As the constraint becomes more 

binding, this implies that high carbon footprint stocks are highly attractive from an expected 

return perspective, and thus the constraint must apply a large implicit carbon tax on these stocks 

to prevent the optimization algorithm from purchasing them. The empirical question we aim to 

 
1 The reduction of the carbon footprint of a portfolio (as given by CO2 emissions scaled by some measure 

of a company’s size) is one of the most common sustainability objectives. For examples, see Andersson, 

Bolton, and Samama (2016); Hao, Soe, and Tang 2018; Görgen, Jacob, and Nerlinger, 2020; Roncalli et al., 

2020; Bender et al., 2020; Benz et al., 2020; Bolton and Kacperczyk, 2021; Bolton, Kacperczyk, and Samama 

(2022); Kolle et al., 2022.  
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answer is whether better ex-post portfolio return, and sustainability characteristics, are achieved 

when adding the sustainability metric in the objective function (using a multi-objective 

optimization framework) or when applying an implicit penalty using portfolio-level constraints. 

In other words, is 3D investing targeting a sustainability objective alongside risk and return 

objectives superior to traditional 2D investing augmented by sustainability constraints? 

We answer this question based on two relevant practical examples of integrating sustainability 

objectives into a portfolio. Figure 1 shows how the break-even transaction cost2 of realistic 

enhanced indexing portfolios varies when aiming to reduce carbon footprint or improve SDG 

scores relative to the MSCI World benchmark index. We find that for both carbon footprint 

reduction and SDG score improvement, the 3D investing approach is the superior solution, 

especially at more ambitious sustainability targets. Taken together, our results show that for 

portfolios which seek to track the benchmark closely whilst outperforming the benchmark, 

ambitious sustainability goals are better implemented using a direct objective function term, 

rather than a portfolio-level constraint. The objective function term allows for a rewarded time-

varying trade-off of a stock’s expected return and the stock’s contribution towards the 

sustainability objective. It is this flexibility to decide at portfolio construction’s run time when it 

might be better to go for expected return vis-à-vis sustainability that gives the superior result of 

the objective function approach.  

INSERT FIGURE 1 HERE 

Such an outcome is not surprising, as the 3D investing optimization framework that we use is ex-

ante Pareto optimal (Zadeh, 1963). That is, for a given level of expected return, sustainability 

performance, and risk level, our approach achieves maximum expected sustainability 

performance or expected return, respectively. Improving one characteristic (expected return, 

sustainability, or risk) requires accepting a worse result in one or more of the other characteristics. 

Pareto optimality adds to the theoretical appeal of our approach and helps rationalize its 

empirical value-add.  

Notwithstanding, one may argue that sustainability is simply a risk that can be measured and 

incorporated into the risk-dimension of the standard mean-variance optimization framework. 

This is certainly a possibility whereby some element of sustainability could be incorporated into 

a factor-based risk model. However, as sustainability definitions are extremely varied and diverse 

(Berg, Kolbel, and Rigobon, 2022), certain sustainability views do not neatly fit into traditional 

risk or return considerations. Having a flexible framework where such views can easily be 

incorporated and attributed to, apart from risk and return, is valuable. 

Our paper relates to an extensive literature which extends the standard mean-variance 

optimization framework to incorporate alternative investment objectives. Hallerbach, Ning, 

Soppe, and Spronk (2004) introduce a multi-decision investment framework which incorporates 

socially responsible investing (SRI) preferences into the risk-return portfolio construction process. 

Other early efforts focused on the optimization approaches required for integrating non-financial 

objectives into the portfolio optimization process (Bilbao-Terol, Arenas-Parra, and Cañal-

Fernández, 2012; Ballestero et al., 2012; Dorfleitner and Utz, 2012; Utz et al. 2014; Calvo, Ivorra, 

 
2 This is the transaction cost at which the outperformance of the portfolio would be zero.  
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and Liern, 2015 Calvo, Ivorra, and Liern, 2016). In recent years, the focus shifted to the 

construction of ESG-efficient portfolios and how these portfolios relate to the standard mean-

variance efficient frontiers (Chen and Mussalli, 2020; Geczy, Stambaugh, and Levin, 2021; 

Pedersen, Fitzgibbons, and Pomorski, 2021;  Schmidt, 2022; Shushi, 2022; Steuer and Utz, 2023; 

Wu et al., 2022; Xidonas and Essner, 2022; Alessandrini and Jondeau, 2021; Coqueret et al., 2021). 

We contribute to this literature by demonstrating the effectiveness of the practical 

implementation of these methodologies. Specifically, we show how the desired portfolio 

characteristics interact with the different methods of integrating sustainability characteristics into 

the portfolio.  

Ultimately, portfolio constraints are still (and will continue to be) relevant in the portfolio 

construction paradigm. There are scenarios where minimum portfolio exposures or sustainability 

profiles must always be maintained, and this can only be guaranteed by a constraint. However, 

if an investor is targeting long-run average sustainability objectives, and deviations around this 

average are acceptable, our results show that 3D investing can deliver portfolios which satisfy 

this requirement at lower levels of turnover and hence higher after-cost performance. 

Furthermore, the flexibility of our approach enables taking advantage when a given security’s 

expected return is particularly high with respect to sustainability, or vice versa. Thus, when both 

expected return and sustainability characteristics are important to an investor, our multi-objective 

3D investing framework ensures the joint optimality of expected return and sustainability. 

The remainder of this paper is organized as follows. In Section 2, we introduce a multi-objective 

portfolio optimization framework. In Section 3, we next detail the data and methodology used in 

our two empirical case studies. In Section 4, we then study the empirical results of portfolio 

simulations targeting carbon footprint reduction and SDG improvement. In Section 5, we reflect 

on of the implications and outlook of our results for portfolio construction and sustainable 

investing. Finally, Section 6 concludes. 

 

2. Multi-objective optimization framework 

2.1 Standard mean-variance optimization 

The classic mean-variance optimization problem can be written as: 

max
𝑤

 𝜆𝑤′μ −
γ

2
𝑤′Σ𝑤 (1)

𝑠. 𝑡.                 𝑤′𝑒 = 1,
 

where 𝑤 is an 𝑁 × 1 vector of asset weights, 𝜇 is an 𝑁 × 1 vector of expected returns, Σ is the 𝑁 × 𝑁 

variance-covariance matrix, 𝑒 is an 𝑁 × 1 vector of ones, and 𝜆 and 𝛾 are scalar coefficients. 

Portfolios generated under Eq. (1) are mean-variance optimal in that they achieve the maximum 

expected return for a given level of risk. This framework can be extended to include additional 

dimensions, such as constraining the portfolio relative to some benchmark (Jorion, 2003), 

incorporating transaction cost penalties (Taksar, Klass, and Assaf, 1988; Ledoit and Wolf, 2022), 

penalizing turnover (Hautsch and Voigt, 2019), or enforcing positive asset weights (Jagannathan 

and Ma, 2003).  
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2.2 A multi-objective optimization framework 

It is straightforward to extend the mean-variance optimizer from Eq. (1) to construct portfolios 

on an efficient frontier surface in three (or more) dimensions. In the case of additional 

sustainability considerations, Eq. (1) can be extended to three dimensions as follows: 

max
𝑤

 λ𝑤′𝜇 + (1 − 𝜆)𝑤′𝜇𝑆𝐼 −
𝛾

2
𝑤′Σ𝑤 (2) 

𝑠. 𝑡.                  𝑤′𝑒 = 1, 𝑤 ∈ Ω, 

 

where 𝜇𝑆𝐼 is an 𝑁 × 1 vector of any (discrete or continuous) sustainability metric, 𝜆 becomes the 

relative preference between the return and sustainability objectives, and Ω is the set of feasible 

solutions, which includes any portfolio constraints. This formulation is general and can 

accommodate the incorporation of common sustainability characteristics. These include 

commercial ESG metrics from vendors such as MSCI and Sustainalytics, carbon footprint, SDG 

scores, and climate transition scores. The only requirement here is that the sustainability metric 

is ordinal.3 

This multi-objective optimization technique is called the weighted-sum method (Marler and 

Arora, 2010; Stanimirović, Zlatanović, and Petković, 2011), and the resulting solutions can be 

shown to be Pareto-optimal (Zadeh, 1963). This technique allows the construction of portfolios 

on a multi-dimensional efficient frontier surface. Previously, this type of portfolio construction 

has been applied in investment examples such as Ballestero et al. (2012), Dorfleitner and Utz 

(2012), Calvo, Ivorra, and Liern (2015), Chen and Mussalli (2020), and Steuer and Utz (2023). We 

adopt this 3D investing framework in our subsequent empirical analysis, where we focus on the 

incorporation of carbon footprint reduction and SDG score improvements in a benchmark-

relative portfolio optimization setting. Although we zoom in on two specific applications, the 

proposed framework generalizes to any ordinal measure which can be expressed as a series of 

discrete or continuous values. 

 

3. Data and methodology 

3.1 Data  

Our sample consists of MSCI World constituents at the end of every month from December 1989 

to December 2022.4 We source stock returns and fundamental data from Refinitiv. Following Blitz 

and Hoogteijling (2021) we calculate the carbon footprint of a stock by dividing scope one and 

scope two carbon emissions (sourced from TruCost) by Enterprise Value Including Cash (EVIC).5 

 
3 For practical considerations on the sustainability metric 𝜇𝑆𝐼, see Chen and Mussalli (2020).  
4 Prior to 2001 we use constituents of the FTSE Development Markets index as a proxy for MSCI World 
constituents. 
5 We additionally use the data simulation approach of Blitz and Hoogteijling (2021) to produce a longer 
history of carbon footprint data and SDG data. Note that any potential forward information leakage is of 
little concern as we are comparing two portfolio construction approaches on the same data. We aim to 
illustrate the broad application of our methodology on a representative set of sustainability data. 
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EVIC is calculated as the market value of a firm’s shares plus the book value of its debt. We source 

stock-level ESG scores from MSCI, where our data begins in January 2009. We source SDG scores 

from Robeco (Van Zanten and Huij, 2022); these are a set of seven discrete variables between −3 

and +3 which measure a companies’ contribution to the SDGs.6 For carbon footprint, ESG scores, 

and SDG scores, missing data is filled with the cross-sectional GICS sub-sector (level 2) median. 

In our subsequent empirical analyses, we present results contrasting portfolio construction 

approaches via multi-objective optimization versus constraints, where we target carbon footprint 

reductions and SDG improvements. Note that we deliberately choose to not report results for 

MSCI ESG improvements. This decision is motivated by the skewed distribution and 

concentration of MSCI ESG scores in recent years. Such a changing distribution, whether 

empirically warranted or not, makes it increasingly challenging to incorporate the respective 

sustainability objective into a benchmark relative portfolio optimization framework. A changing 

distribution requires changing parameters for both constraints and objective function terms, thus 

adding further complexity to the optimization problem. We will revisit the investment 

implications of such evolving sustainability data following our presentation of the 3D investing 

outcomes for carbon footprint and SDG scores. 

 

3.2 Portfolio optimization 

We use a portfolio optimization setting that mimics the construction of a real-life investment 

portfolio applying realistic portfolio constraints and settings. We seek to construct portfolios with 

tracking errors in the range of 0.5% to 1.0%, as this represents the challenging multi-objective 

scenario of delivering high expected returns and sustainability goals with a limited risk budget. 

Thus, the used design parameters are reflective of these lower tracking error portfolio targets. 

The portfolio exposure to regions (defined as North America, Europe, and Asia Pacific) and GICS 

level-one sectors are restricted to ±0.5% of the benchmark market-capitalization weighted value. 

Portfolio weights must be non-negative (i.e., long-only). The maximum trade size is limited to 

25% of a stock’s average daily volume over the past 65 trading days (ADV). The maximum stock 

weight relative to the benchmark (i.e., active weight) is ±0.5%. The maximum active share of the 

portfolio is 40%. The gross exposure of the portfolio must be 100% (i.e., fully invested). We 

assume that the funds under management grow with the realized market return, and we design 

the simulations such that the final fund size at the end of 2022 is EUR 4 billion. We incorporate a 

turnover penalty into the objective function, which is the sum of the squared absolute trade sizes. 

As we target specific tracking errors, we transform the weight vector of Eq. (2) from absolute asset 

weights to benchmark relative weights: 

𝑤𝑛𝑒𝑤 = 𝑤𝑝 − 𝑤𝑏𝑚. 

Our portfolio optimization problem for a single time-step is then given by: 

max
𝑤

 λ1𝑤𝑛𝑒𝑤
′ 𝜇 + 𝜆2𝑤𝑛𝑒𝑤

′ 𝜇𝑆𝐼 −
𝛾

2
𝑤𝑛𝑒𝑤

′ Σ𝑤𝑛𝑒𝑤 − 𝜅‖𝑤𝑛𝑒𝑤 − 𝑤𝑜𝑙𝑑‖, (3) 

 
6 Examples can be found at the Robeco SI Open Access page: https://www.robeco.com/en-
int/sustainable-investing/how-do-companies-and-countries-score-on-sustainability. 
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where 𝑤𝑜𝑙𝑑 is the portfolio weights immediately before the rebalance, 𝜅 is a scaling parameter for 

the turnover penalty (we set 𝜅 = 1), and we incorporate the previously described constraints.  We 

use a base set of portfolio construction constraints and settings across our simulations, and then 

we permute the expected return coefficient 𝜆1, risk aversion coefficient 𝛾, and the sustainability 

coefficient 𝜆2 in each different optimization. Lastly, we introduce an additional optional 

constraint on either carbon footprint or SDG scores (e.g., portfolio carbon footprint must be less 

than or equal to the benchmark carbon footprint.) 

 

3.3 Expected returns and risk 

As inputs of expected returns 𝜇, we use a simple equal-weighted multi-factor score (denoted 

QMV) consisting of Value, Quality, and Momentum signals. For Value we use an equal-weighted 

combination of book to price and 12-month forward earnings to price, ranked within GICS 

sectors. For Quality we use an equal-weighted combination of return on equity and debt-to-

assets. For Momentum we use the previous twelve-minus-one month return. Each of the four 

underlying signals is first rank standardized between −1 and +1. The signals are then combined 

into a single multi-factor score. We do not aim to construct the best multi-factor score, but rather 

a simplified score which is representative of common choices and implementations of multi-

factor investment strategies. 

Table 1 presents the standalone results from conducting portfolio sorts on the sustainability 

scores, Quality, Momentum, and Value signals, and the multi-factor score. At the end of each 

month, we sort our stock universe into quintile portfolios and present the return spread between 

the top and bottom quintile portfolios earned from holding the portfolios for one month. Panel 

(a) of Table 1 presents standard portfolio statistics and Panel (b) presents the correlation between 

these top-minus-bottom portfolio returns. We can observe that the sustainability scores tend to 

have low top-minus-bottom returns and alphas over the market return, whilst we see that the 

common Quality, Momentum, and Value factors have significant CAPM alphas with high Sharpe 

ratios. From a correlation perspective, we observe consistent and positive correlation amongst 

Quality, Momentum, and Value, whilst the correlation between sustainability scores and QMV is 

close to zero. This highlights the differentiating nature that these selected sustainability measures 

can have in contrast to typical measures of expected returns.  

INSERT TABLE 1 HERE 

As for expected risk, we use a standard variance-covariance (VCV) matrix (Σ) that follows a latent 

factor model approach where we apply PCA with twenty components to the sample variance-

covariance matrix estimated using 60-months of daily returns data. We use five-day overlapping 

returns to account for market asynchronicity (Burns, Engle, and Mezrich, 1998; Martens and 

Poon, 2001).  
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4. Empirical results 

4.1 Mean-variance-sustainability frontier 

Before constructing the fully optimized portfolios across an extended period, we first compute 

an ex-ante view on expected return, risk, and sustainability. Consequently, the traditional 2D 

efficient frontier between risk and return transforms into a 3D efficient surface. Figure 2 presents the 

ex-ante 3D efficient surface between tracking error, expected return, and benchmark relative 

carbon footprint as of December 2022. The surface is colored from green (lower carbon footprint 

than benchmark) to brown (higher carbon footprint than benchmark). We additionally plot the 

simple 2D mean-variance efficient frontier (solid black line). We observe the first important result, 

which is the divergence between the performance of the “green” region (high values of carbon 

footprint reduction) and the “brown” region. In the green region, for a given tracking error, 

higher expected returns require sacrificing carbon footprint reduction (i.e., the surface is coming 

towards the reader). In the brown region, for a given tracking error, we typically observe that the 

carbon footprint reduction remains constant as the expected return increases (i.e., the surface is 

shaped like a canonical mean-variance efficient frontier). This result highlights how the expected 

return-tracking error efficient frontiers change for a given level of carbon footprint reduction.  

INSERT FIGURE 2 HERE 

Whilst Figure 2 depicts a 3D surface, Figure 3 presents the ex-ante risk-return-sustainability 

efficient surfaces as a collection of topographical lines for both carbon footprint and SDG scores. 

Panel (a) shows the standard “risk-return efficient frontiers,” where each additional frontier away 

from the traditional “maximum risk-return efficient frontier” corresponds to a higher 

sustainability target.7 Panel (b) presents the “risk-sustainability efficient frontiers”8 where each 

additional frontier corresponds to a higher expected return target. In general, for both carbon 

footprint reduction and SDG improvement, as the desired sustainability or expected return goals 

increase, the achievable efficient frontiers move further away from the maximal risk-return or 

risk-sustainability efficient frontiers, respectively. There is thus room to reduce the portfolio 

carbon footprint without incurring significant tracking error increases or expected return 

decreases. For example, at a tracking error of 2%, there is effectively no expected return difference 

between 0% reduction and 60% reduction. However, for the SDG score improvement, any 

increase above the benchmark level typically requires sacrificing expected return or increasing 

ex-ante tracking error. 

INSERT FIGURE 3 HERE 

The results in Figure 2 and Figure 3 demonstrate how, at lower tracking errors, one typically 

needs to sacrifice expected return if one wants to meaningfully improve portfolio sustainability. 

 
7 We define the “risk-return efficient frontier” to be the traditional efficient frontier for a constant level of 
portfolio sustainability and the “maximum risk-return efficient frontier” to be the risk-return efficient 
frontier when sustainability considerations are dropped. That is, the maximum risk-return efficient frontier 
is the efficient frontier in the traditional sense.  
8  Similarly, we define the “risk-sustainability efficient frontier” to be the risk versus sustainability efficient 
frontier for a constant level of expected return, and the “maximum risk-sustainability efficient frontier” to 
be the risk-sustainability efficient frontier when expected return considerations are dropped.  
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As the tracking error increases, the upper bound of the risk-return-sustainability efficient surface 

tends to be closer to the maximum risk-return or risk-sustainability efficient frontiers, reflecting 

the larger available opportunity set. Thus, whilst the multi-objective optimization framework we 

propose and implement is generalizable across all portfolios, it is of particular relevance for lower 

tracking error portfolios that wish to achieve ambitious sustainability targets. Hence, our 

empirical use cases will focus on low tracking error portfolios. 

 

4.2 Reducing carbon footprint 

A common sustainability objective of an investment portfolio is to reduce the carbon footprint 

relative to some benchmark, with the aim of steering the portfolio away from carbon-emitting 

companies. A basic way of achieving this objective is to enforce a portfolio constraint, such that 

the portfolio’s carbon footprint must always be at least y% better than the benchmark. Although 

such an approach will guarantee adherence to this requirement, it can lead to suboptimal 

performance. A constraint-based approach implies a time-varying carbon tax on expected return, 

as when a constraint on carbon footprint becomes more binding the optimization algorithm will 

impose a larger tax on stocks with higher carbon footprints, see Blitz and Hoogteijling (2022). 

Therefore, we propose the usage of security-level carbon footprint in the objective function as an 

alternative mechanism for reducing the portfolio’s overall carbon footprint, while jointly 

considering the risk versus expected return versus sustainability tradeoff. Such an approach 

applies a more stable tax on expected return and provides more scope for the optimization 

algorithm to trade-off expected return and carbon footprint. 

To evaluate the practical implications of both approaches we run a series of simulations where 

we alter selected portfolio construction parameters to explore the impact on a portfolio’s carbon 

footprint via constraint and optimization approaches. We run the following simulations: 

1. Unconstrained simulation (denoted UC) 
2. Constrained simulation with a carbon constraint at y% (denoted Cy) 
3. Unconstrained simulation with a carbon metric in the objective function (denoted P)9 
4. Constrained simulation with a carbon metric in the objective function and a carbon 

constraint at y% (denoted PCy) 
 
Figure 4 depicts the portfolio’s carbon footprint relative to the benchmark under four different 

scenarios. The unconstrained portfolio has a carbon exposure which deviates around 0% versus 

the benchmark, which is expected given the lower tracking error of the portfolio. The portfolio 

with a carbon constraint at 0% (i.e., better than benchmark), produces the same result as the 

unconstrained case except the carbon footprint can only be lower than the benchmark’s footprint. 

This result demonstrates the time-varying nature of the carbon footprint of a portfolio. Such a 

constraint is not always binding, and thus is relatively “cheap” to implement from an expected 

return perspective. This is contrasted directly with the 60% carbon constraint, where the 

portfolio’s carbon exposure has a static exposure of −60% versus the benchmark, and thus is a 

 
9 For the carbon footprint scenario, we use a coefficient of (-0.016 and -0.020) and for the SDG scenario was 
use a coefficient of (2.0 and 1.5) for the 0.5%/1.0% tracking error targets, respectively. 
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case where this constraint is always binding. Finally, the carbon metric in the objective function 

scenario highlights how the portfolio can achieve an average carbon footprint reduction of 60%, 

but in a time-varying nature. Thus, the portfolio optimizer has more flexibility to trade-off carbon 

footprint reduction with risk and return objectives.  

The results in Figure 4 can also be linked to underlying economic phenomena. In recent years, oil 

and gas stocks had strong price momentum whilst still being cheap from a valuation perspective, 

and thus become attractive from a factor perspective. Thus, under the 3D investing approach, the 

optimizer elects to purchase these stocks which thus results in an increase in the carbon footprint 

of the portfolio. This can then be contrasted to earlier periods, such as 2012 to 2020, where such 

stocks are relatively unattractive from a factor perspective and thus the objective term approach 

can produce a larger than average reduction of the portfolio’s carbon footprint. 

INSERT FIGURE 4 HERE 

Table 2 presents the detailed performance statistics over the December 1989 to December 2022 

period. First, we note how in both Panel (a) and Panel (b), applying constraints for carbon 

footprint reduction reduces gross outperformance and hence IR (as tracking error is relatively 

constant). Second, in both scenarios, the 3D-objective function approach (denoted P) outperforms 

the 2D-constraint approach (C60/C75). The 3D-objective function approach delivers an increased 

gross outperformance and a lower one-way turnover, whilst maintaining a similar tracking error 

and carbon footprint reduction. These results are reflected in the spanning alpha regressions we 

run over the underlying factors we use to construct the portfolio (Quality, Value, and 

Momentum) as well as log market capitalization (Size) and a factor constructed from carbon 

footprint scores. Across all cases there are similar exposures to the targeted factors, highlighting 

how the 3D investing incorporates the carbon footprint objective whilst maintaining similar factor 

exposures in a more efficient manner. 

INSERT TABLE 2 HERE 

Finally, we also explore the combination of the objective function approach and the constraint 

approach. We find that such an approach underperforms the isolated approaches, since it 

achieves larger carbon footprint reductions in both cases but often overshoots the targeted 

reduction level. As we are operating at ambitious carbon reduction targets, any increase can 

significantly impact the gross outperformance of the portfolio. Nevertheless, such a combination 

highlights how one can ensure a base level of reduction, whilst also doing better than this target 

if the risk-return-sustainability trade-off is appropriate. 

 

4.3 Improving SDG score 

An alternative application of our proposed framework is improving a portfolio’s exposure to a 

positive measure of sustainability. We use the Robeco SDG scores, which assign a discrete score 

between −3 (poor) and +3 (good) on how a company is contributing to the UN SDG goals. 

Instead of adding a negative coefficient on a stock’s carbon footprint, we can add a reward/tax 

“refund” to the objective function which encourages the optimization algorithm to hold stocks 

with positive SDG scores.  
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Figure 5 presents the portfolio’s SDG score relative to the benchmark under five different 

scenarios, like in Figure 4. We find qualitatively similar results here as for the carbon footprint 

reduction exercise. Importantly for the objective function scenario, we observe a time-variation 

in the portfolio’s SDG score around the constrained average of 100% improvement. This result 

again highlights the dynamic nature of the 3D-objective function approach to targeting 

sustainability objectives, as opposed to the fixed nature of a constraint.  

INSERT FIGURE 5 HERE 

Table 3 presents the detailed performance statistics over the December 1989 to December 2022 

period. Following the same notation as in Table 2, we document quantitatively similar results as 

in the carbon footprint scenario. In Panel (a), the objective function scenario (P) outperforms the 

constraint scenario (C70) across most metrics: higher gross outperformance (0.49% versus 0.46%), 

higher gross IR (0.98 versus 0.88), and lower one-way turnover (26.7% versus 31.4%). In Panel (b), 

for the 1.0% tracking error scenario, we find comparable results with the objective function 

scenario outperforming the constraint scenario. 

INSERT TABLE 3 HERE 

 

5. Implications and outlook 

5.1 The impact of evolving sustainability data 

Through these two examples, we have shown how using an SI metric in the objective function is 

generally superior to simply imposing a fixed constraint at the portfolio level. The 3D investing 

framework is generalizable to any sustainability metric that can be expressed as a discrete or 

continuous series (if it is ordinal). The empirical examples correspond to commonly explored 

sustainability measures in investment management, and we observe how there can be 

structurally different outcomes dependent on the measure itself (in conjunction with expected 

return and risk models used). To this end, the broader question remains: what is the best way to 

construct portfolios that satisfy sustainability desires going forward? Figure 6 presents the MSCI 

World value-weighted carbon footprint, ESG, and SDG scores over time. We observe time-

variation in the benchmark sustainability scores, but it is not always trending in one direction. 

Such changes have significant implications for how portfolios that target these measures should 

be constructed. 

INSERT FIGURE 6 HERE 

In particular, targeting relative improvements of MSCI ESG scores over the benchmark becomes 

increasingly challenging as the average benchmark score has increased from 2015 to 2022.10 It is 

not strictly the increasing benchmark score that is problematic, but rather the skewness and 

concentration of scores which have an upper bound of 10.0. For example, suppose that the 

benchmark score is 8.0 and a relative improvement of 20% is desired. This corresponds to a 

portfolio score of 9.6, which would require holding a large number of stocks with an ESG score 

 
10 For more discussions on skewed distribution of MSCI ESG scores, see Chen, von Behren, and Mussalli 
(2021). 
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of 10.0. Thus, the portfolio construction is going to be heavily driven by ESG scores, whilst 

expected return and risk concerns become secondary. By using the objective function approach, 

the impacts of such benchmark changes can be less impactful, and the optimization algorithm 

will be able to better trade-off expected return, risk, and sustainability objectives. However, in 

both scenarios, the metric of choice has considerable influence on the optimization algorithm and 

thus it is important to select measures which have desirable properties when targeting them in a 

portfolio optimization algorithm. 

 

5.2 When to use one approach versus the other 

Portfolio constraints are the most common way to ensure compliance with sustainability 

objectives. Another popular way to ensure portfolio sustainability compliance is via universe 

exclusion, for example excluding names that are considered “sin stocks.” In this paper, 3D 

investing emerges as an effective way to improve portfolio sustainability that offers Pareto 

optimality and more flexibility. This result, however, does not mean that the traditional constraint 

and exclusion-based approaches are without merit and should be discarded. 

A constraint-based approach to portfolio sustainability is suitable when one wants portfolio-level 

sustainability goals to be achieved at all times. Similarly, an exclusion-based approach ensures 

individual-stock-level sustainability goals are achieved at all times.11 This is because constraints 

and exclusions are hard criteria, thereby the portfolio optimizer must satisfy these objectives for 

all proposed portfolios. On the other hand, an optimization-based approach as discussed in this 

paper represents a soft criterion. It is more flexible as it enables the optimizer to trade-off between 

sustainability, risk, and expected return. This trade-off ensures a superior sustainability profile 

versus those portfolios without sustainability in the objective on average, but it does not guarantee 

a specific sustainability profile at any given point in time.  

These hard and soft approaches both have their use cases in portfolio construction. If one wants 

to always ensure a certain level of guaranteed sustainability profile or ensure certain names will 

not be held in the portfolio, constraints and exclusions should be used, respectively. On the other 

hand, if the portfolio manager wants to achieve a better sustainability profile on average but, 

when conditions are right, may go for higher expected returns instead of a better sustainability 

profile, then the multi-objective optimization approach is appropriate. For example, when oil and 

gas companies are so cheap that their expected future return are very high, the optimization-

based approach allows for temporary sacrifice of sustainability for higher expected return.  

 

6. Conclusions 

Investing has historically been a multi-dimensional endeavor, but portfolio construction 

approaches have most often been considered 2D. Sustainable investing is the latest example of 

multi-objective investing in an extensive line of examples. We demonstrate a 3D investing that 

results in the “best possible” solution when jointly considering more than two portfolio 

objectives. Historical simulations highlight the superiority of this approach versus the traditional 

 
11 This approach is not extensively discussed in this paper as it is common and straightforward. 

Electronic copy available at: https://ssrn.com/abstract=4670534



13 
 

constraint-based approach for sustainable investing (in the context of carbon footprint reduction 

and attaining higher SDG scores.) 3D investing achieves, on average, higher sustainability 

characteristics and expected returns when compared to a pure constraint-based approach.  

Notably, constraints are not without their use in sustainable investing. In practice, a mixed 

approach, with a non-binding sustainability constraint in conjunction with incorporating the 

sustainability criteria into the objective function, may be preferred. Such an approach guarantees 

a basic level of sustainability targeting whilst allowing the optimization algorithm to make 

opportunistic tradeoffs between return, risk, and sustainability. If aggressive sustainability 

objectives are desired, the 3D investing approach where sustainability is explicitly targeted 

alongside alpha and risk is optimal. 
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Figure 1: The cost of implementing an alternative objective 

This figure plots the time-series average break-even transaction cost associated with different levels of benchmark 

relative carbon footprint reduction and SDG score improvement under an objective function term (3D Objective) or 

constraint-based (2D Constraint) portfolio construction approach. The sample runs from December 1989 to December 

2022. 
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Figure 2: Ex-ante mean-variance-carbon footprint reduction efficient surface  

This figure plots the ex-ante expected return-tracking error-sustainability surfaces for carbon footprint reduction. The 

solid black line corresponds to the ex-ante expected return-tracking error efficient frontier. The surface is shaded based 

on the y-axis variable (carbon footprint reduction relative to the benchmark), where green corresponds to a higher 

reduction and brown to a lower reduction. This surface was calculated using data as of December 2022. 
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Figure 3: Ex-ante mean-variance-sustainability efficient frontiers  

This figure plots ex-ante expected return-tracking error-sustainability frontiers for benchmark relative carbon footprint 

reduction (top row) and SDG improvement (bottom row). Panel (a) shows the efficient frontiers when changing the 

sustainability target of the portfolio. Panel (b) plots the sustainability measure on the y-axis for different levels of 

expected return. These plots were calculated using data as of December 2022.  
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Figure 4: Carbon footprint reduction relative to MSCI World under different optimization 

scenarios  

This figure plots the percentage improvement of the portfolio’s carbon footprint over the MSCI World carbon footprint 

using different 2D and 3D portfolio construction approaches. We report results for a portfolio with a tracking error 

target of 0.5%. 
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Figure 5: SDG score improvement over MSCI World under different optimization scenarios 

This figure plots the percentage improvement of the portfolio’s SDG score over the MSCI World SDG score using 

different 2D and 3D portfolio construction approaches. We report results for a portfolio with a tracking error target of 

1.0%. 
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Figure 6: MSCI World value-weighted carbon footprint, ESG, and SDG scores over time  

This figure plots the value-weighted carbon footprint, SDG score, and ESG score, for the MSCI World benchmark. 

The sample for carbon footprint and SDG runs from December 1989 to December 2022. The sample for ESG runs 

from December 2009 to December 2022. 
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Table 1: Standalone performance of single-factors and multi-factor quintile portfolios 

This table presents the univariate top-minus-bottom (T-B) portfolio statistics of the sustainability measures, investment 

factors, and multi-factor portfolio. The sample for ESG is from December 2009 to December 2022. The sample for all 

other results is from December 1989 to December 2022. Stocks are sorted based on each characteristic into quintile 

portfolios which are rebalanced monthly and held for one month. Panel (a) reports the annualized performance 

statistics of the T-B portfolio. Alpha is calculated by regressing the T-B portfolio return on the market return in excess 

of the risk-free rate. Turnover is the annualized one-way portfolio turnover (e.g., a value of 2,400% per year corresponds 

to fully replacing the top and bottom portfolio each month). Panel (b) reports the correlation of the T-B portfolio return 

series. 

Panel (a): Performance statistics 

  
Carbon  

footprint 
ESG SDG Quality Value Momentum QMV 

Mean return (%) -0.03 1.00 0.58 6.29 6.71 7.67 11.35 

Volatility (%) 9.07 4.61 6.27 9.73 12.78 17.87 14.00 

Sharpe ratio 0.00 0.22 0.09 0.65 0.52 0.43 0.81 

Mean CAPM alpha 
(%) 

0.86 1.80 0.15 7.63 5.77 11.22 13.28 

Alpha volatility (%) 8.80 4.50 6.17 9.26 12.58 16.37 13.41 

Alpha ratio 0.10 0.40 0.02 0.82 0.46 0.69 0.99 

Beta -0.13 -0.08 0.07 -0.19 -0.19 -0.46 -0.26 

Turnover (%) 217.5 145.3 99.0 217.2 340.7 643.8 511.9 

Panel (b): T-B return correlations 

SDG -43%       

ESG -11% 20%      

Quality -18% -12% 7%     

Value 3% 9% -8% 2%    

Momentum 12% -13% 3% 55% -27%   

QMV 1% -16% 8% 78% 27% 78%  
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Table 2: Portfolio simulation results with different carbon footprint construction approaches 

This table presents the performance and spanning regression results for fully invested long-only portfolios optimized 

using a multi-factor expected return target, variance-covariance matrix, and either a constraint on benchmark relative 

carbon footprint (2D) or directly in the objective function (3D). Our sample runs from December 1989 to December 

2022 using constituents of the MSCI World universe. Portfolios are rebalanced monthly. Panel (a) targets a 0.5% 

tracking error portfolio. Panel (b) targets a 1.0% tracking error portfolio. The spanning regression regresses the gross 

outperformance of the optimized portfolio on the outperformance of the top-minus-bottom portfolios of the different 

factors (Quality, Value, Momentum, Size, carbon footprint). UC denotes unconstrained. Cx denotes a constraint at x% 

lower than the benchmark carbon footprint. P denotes a term in the objective function. PCy denotes a term in the 

objective function and a constraint at y% lower than the benchmark carbon footprint. R-squared is calculated in a 

regression excluding the SI-regressor. 

Panel (a): Ex-post tracking error target 0.5% 

 2D 3D 

  UC C0 C60 P PC60 

Gross outp. (%) 0.70 0.70 0.57 0.61 0.56 
Tracking error (%) 0.53 0.53 0.52 0.53 0.52 
Information ratio 1.32 1.32 1.10 1.15 1.08 
Turnover one-way ann. (%) 30.2 30.2 34.4 32.7 34.0 
Carbon footprint reduction (%) -4.4 -5.7 -59.1 -59.2 -60.9 
Ann. alpha (%)  0.44 0.45 0.42 0.44 0.40 
Alpha t-stat (5.25) (5.28) (5.19) (5.38) (5.03) 
Mkt-RF t-stat (-2.14) (-2.14) (-3.26) (-3.36) (-3.28) 
Quality t-stat (4.65) (4.65) (3.55) (4.29) (3.51) 
Value t-stat (1.49) (1.47) (0.80) (0.95) (0.82) 
Momentum t-stat (5.68) (5.68) (4.77) (4.69) (4.71) 
Size t-stat (0.04) (0.04) (-0.05) (-0.04) (0.04) 
Carbon footprint coeff. -0.20 -0.20 -0.73 -0.66 -0.73 
Carbon footprint t-stat (-1.01) (-0.99) (-2.37) (-2.32) (-2.42) 
R-squared (%) 41.6 41.6 28.1 31.0 27.1 

Panel (b): Ex-post tracking error target 1.0% 

 2D 3D 

  UC C0 C75 P PC75 

Gross outp. (%) 1.30 1.30 1.00 1.06 0.98 
Tracking error (%) 0.97 0.97 0.96 0.98 0.96 
Information ratio 1.34 1.34 1.04 1.08 1.02 
Turnover one-way ann. (%) 47.8 47.9 53.8 51.4 53.7 
Carbon footprint reduction (%) -1.4 -6.6 -74.1 -73.2 -75.0 
Ann. alpha (%)  0.79 0.80 0.61 0.66 0.60 
Alpha t-stat (5.08) (5.16) (4.11) (4.32) (4.05) 
Mkt-RF t-stat (-1.88) (-1.92) (-2.45) (-2.69) (-2.44) 
Quality t-stat (5.55) (5.56) (4.89) (5.45) (4.86) 
Value t-stat (1.08) (1.01) (1.02) (0.78) (0.91) 
Momentum t-stat (5.55) (5.54) (4.57) (4.47) (4.45) 
Size t-stat (2.33) (2.30) (2.55) (2.50) (2.56) 
Carbon footprint coeff. -0.25 -0.25 -1.32 -1.24 -1.34 
Carbon footprint t-stat (-0.71) (-0.72) (-2.34) (-2.36) (-2.36) 
R-squared (%) 40.7 40.7 28.8 31.3 28.1 
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Table 3: Portfolio simulation results with different SDG construction approaches  

This table presents the performance and spanning regression results for fully invested long-only portfolios optimized 

using a multi-factor expected return target, variance-covariance matrix, and either a constraint on benchmark relative 

SDG (2D) or directly in the objective function (3D). Our sample runs from December 1989 to December 2022 using 

constituents of the MSCI World universe. Portfolios are rebalanced monthly. Panel (a) targets a 0.5% tracking error 

portfolio. Panel (b) targets a 1.0% tracking error portfolio. The spanning regression regresses the gross outperformance 

of the optimized portfolio on the outperformance of the top-minus-bottom portfolios of the different factors (Quality, 

Value, Momentum, Size, SDG). UC denotes unconstrained. Cx denotes a constraint at x% higher than the benchmark 

SDG score. P denotes a term in the objective function. PCy denotes a term in the objective function and a constraint at 

y% higher than the benchmark SDG score. R-squared is calculated in a regression excluding the SI-regressor. 

Panel (a): Ex-post tracking error target 0.5% 

 2D 3D 

  UC C0 C70 P PC70 

Gross outp. (%) 0.70 0.70 0.46 0.49 0.42 

Tracking error (%) 0.53 0.53 0.52 0.50 0.51 

Information ratio 1.32 1.32 0.88 0.98 0.82 

Turnover one-way ann. (%) 30.2 30.3 31.4 26.7 30.1 

SDG improvement (%) 0.2 3.1 69.6 70.1 78.6 

Ann. alpha (%)  0.44 0.44 0.30 0.31 0.28 

Alpha t-stat (5.19) (5.18) (3.38) (4.14) (3.15) 

Mkt-RF t-stat (-2.23) (-2.21) (-2.60) (-2.91) (-2.64) 

Quality t-stat (4.67) (4.65) (5.72) (5.35) (5.46) 

Value t-stat (1.48) (1.49) (1.10) (0.84) (1.04) 

Momentum t-stat (5.56) (5.59) (1.22) (3.24) (0.99) 

Size t-stat (-0.01) (0.03) (0.88) (-0.24) (0.82) 

SDG coeff. 0.41 0.43 1.39 1.58 1.56 

SDG t-stat (1.32) (1.40) (4.42) (5.61) (5.10) 

R-squared (%) 41.6 41.5 17.0 25.1 13.9 

Panel (b): Ex-post tracking error target 1.0% 

 2D 3D 

  UC C0 C100 P PC100 

Gross outp. (%) 1.30 1.29 0.94 0.98 0.87 

Tracking error (%) 0.97 0.97 1.02 0.96 1.01 

Information ratio 1.34 1.33 0.92 1.02 0.86 

Turnover one-way ann. (%) 47.8 48.0 51.3 44.3 49.5 

SDG improvement (%) -0.2 3.4 99.5 101.4 111.9 

Ann. alpha (%)  0.78 0.77 0.59 0.59 0.56 

Alpha t-stat (5.03) (4.95) (3.62) (4.12) (3.45) 

Mkt-RF t-stat (-2.02) (-1.98) (-2.66) (-3.22) (-2.78) 

Quality t-stat (5.62) (5.60) (5.83) (5.85) (5.51) 

Value t-stat (1.11) (1.10) (1.01) (0.54) (1.03) 

Momentum t-stat (5.47) (5.50) (1.55) (3.61) (1.36) 

Size t-stat (2.38) (2.41) (2.87) (1.89) (2.72) 

SDG coeff. 0.69 0.73 2.61 2.87 2.89 

SDG t-stat (1.28) (1.35) (3.74) (5.09) (4.25) 

R-squared (%) 40.7 40.9 18.1 27.5 15.8 
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