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Abstract
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While causal networks offer new insights and sometimes outperform correlation-based methods in terms of

risk-adjusted returns, they do not consistently surpass traditional approaches. The causal method though

shows promise in identifying unique market relationships and potential hedging opportunities. However, its

practical implementation presents challenges due to computational complexity and interpretation difficulties.

Our study demonstrates the potential value of causal discovery in factor investing, while also identifying

areas for further research and refinement.
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1. Introduction

Financial markets are complex systems where understanding relationships between assets

is crucial for constructing effective investment strategies. Mantegna (1999) envisioned financial

markets as highly complex networks and demonstrated that representations, other than the

covariance matrix, can be of economic importance. Traditionally, these relationships have

been modeled using correlation-based approaches to measure the similarity of pairs of assets.

In the context of financial markets, and particularly factor investing, the limitations of

correlation-based approaches have become increasingly apparent. Factor investing, which

aims to capture systematic sources of return by targeting specific stock characteristics or

"factors", has traditionally relied heavily on correlation-based methods to identify and exploit

these factors. However, the correlation coefficient does not condition on anything and is

susceptible to spurious association (Simon, 1954). The latter caveat can lead to significant

issues in factor investing, including overfitting and false discoveries around the underlying

drivers of financial markets (López de Prado, 2023a).

The use of correlation-based methods in factor investing faces several key limitations.

These methods often fail to distinguish between genuine causal relationships and mere

statistical associations (López de Prado, 2023b), struggle to determine the direction of

influence between variables, and cannot account for complex, non-linear relationships in

financial markets. Moreover, their static nature fails to capture the dynamic, evolution

of financial markets, potentially leading to outdated or ineffective investment strategies as

market conditions change. These shortcomings highlight a significant gap in the current

approach to factor investing: the need for more sophisticated methodologies that can better

capture the true underlying relationships driving financial markets, account for their dynamic

nature, and provide more robust insights for investment decision-making.

Causal discovery algorithms offer a potential solution to these challenges that arise when

using correlation-based methods. Causal methods aim to uncover causal relationships from

observational data, and to thus provide a more nuanced understanding of financial markets.

By conditioning on all available data, allowing for lead-lag relations, and determining the

directionality of comovement, causal approaches may offer richer insights than traditional
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correlation-based methods. This is particularly pertinent for factor investing applications,

potentially leading to a richer understanding of factor dynamics. We employ DYNOTEARS,

a representative causal discovery algorithm developed by Pamfil et al. (2020), which can

identify both immediate and time-lagged relationships between stock returns, offering insights

into their comovement patterns.

We apply the DYNOTEARS algorithm to create causal network representations of the

S&P 500 investment universe and leverage these representations in three investment-based

experiments. Using constituents of the S&P 500 investment universe over the period of

December 1989 to December 2022, we estimate monthly a causal-based network representation

based on the returns of each stock in the estimation universe. We leverage these representations

in three empirical experiments related to factor investing.

Our study thus makes several contributions to the literature on causal discovery techniques

in factor investing.1 First, we introduce a novel method for peer group identification using

causal networks, enhancing factor neutralization in long–short equity strategies.2 Second,

we develop a "low centrality" factor based on a stock’s position within the causal network,

providing new insights into how network structure relates to returns. Third, we propose a

market timing indicator derived from causal network density, demonstrating the potential of

these techniques for return prediction.

This work extends the growing literature on causal discovery in finance by demonstrating

its practical utility in factor investing. While early research focused on market index returns

due to computational constraints (e.g., Dornau, 1999; Stavroglou et al., 2017), recent studies

have explored causal relationships between individual assets (e.g., Gao and en Ren, 2013;

Diebold and Yılmaz, 2014; Fiedor, 2014; Upadhyay et al., 2020). Durcheva and Tsankov

(2021) and Shirokikh et al. (2022) explore the application of causal techniques to uncover

networks between U.S. firms, observing significant changes in causal networks around major

global events. We build upon this stream of literature by constructing causal network

1There is an extensive literature on the broader application of causal discovery techniqes in finance, e.g.,
Billio et al. (2012); Gnecco et al. (2020); Cornell et al. (2024); Dong et al. (2024); Sadeghi et al. (2024);
Sokolov et al. (2023).

2A peer group neutral long–short strategy is an investment approach that aims to neutralize unwanted
exposure to specific peer groups (e.g., industries or sectors) while maintaining exposure to desired factors.
In this strategy, long and short positions are taken within each peer group, typically going long on stocks
expected to outperform and short on those expected to underperform within their respective groups.
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representations of S&P 500 constituents and showcasing their investment applications.

Our approach is most closely related to Pamfil et al. (2020), who proposed the DYNOTEARS

algorithm. While they focused on demonstrating the algorithm’s superiority, we extend their

work by applying DYNOTEARS-derived causal networks to real investment scenarios. In

doing so, we bridge the gap between theoretical causal discovery methods and their practical

implementation in factor investing.

In the context of factor investing, we complement emerging literature that applies

causal techniques to identify influential items for return forecasting (Yang et al., 2014)

and latent return-driving factors (Liu et al., 2023). D’Acunto et al. (2021) apply causal

discovery to existing risk factors (such as the market, value, momentum, and size) and show

certain factors tend to dominate the overall causal process. Our use of causal discovery-based

network representations for clustering peer groups contributes to research on financial network

clustering algorithms (López de Prado, 2016; Konstantinov et al., 2020; Tristan and Ong,

2021; French, 2023). This novel approach to peer group identification may better capture

true stock relationships, potentially leading to more effective factor neutralization strategies.

The remainder of this paper is structured as follows: Section 2 provides the related work

for our experiments and a conceptual framework for causal discovery algorithms in financial

markets. Section 3 presents the detailed methodology for estimating our causal networks,

and Section 4 details the investment experiments we conduct. Section 5 presents the results

of our three experiments. Section 6 concludes with a summary of our findings, limitations,

and suggestions for future research.

2. Related work and conceptual framework

This section presents the related work and conceptual framework behind factor investing,

peer group selection, Bayesian networks, and causal networks. We introduce the concept of

factor investing and detail related work behind the three empirical experiments we conduct.

We present a comprehensive review of peer group selection strategies. Then we provide

the conceptual frameworks behind Bayesian networks, before introducing the conceptual

framework of causal networks.
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2.1. Factor investing and its corresponding strategies

2.1.1. What is factor investing?

Factor investing is a systematic approach to portfolio construction that aims to capture

specific drivers of asset returns. These drivers, known as factors, are characteristics or

attributes of securities that have been shown to explain cross-sectional differences in returns

over time.3 By targeting specific factors, investors aim to achieve better risk-adjusted returns,

increased diversification, and more precise control over portfolio characteristics. Factor

investing offers a rules-based approach that can be implemented at scale while still aiming to

outperform market-cap weighted indices (Blitz and Vidojevic, 2019).

Key factors that have garnered significant attention in the literature include momentum

(Jegadeesh and Titman, 1993), value (Fama and French, 1993), quality/profitability (Asness

et al., 2018; Novy-Marx, 2013), short-term reversal (Jegadeesh, 1990; Lehmann, 1990; Blitz

et al., 2023), and low-volatility (Black, 1972; Blitz and van Vliet, 2007) or low-beta (Frazzini

and Pedersen, 2014). These factors form the basis of widely adopted models such as the

Fama and French (1993) three-factor model and its subsequent extensions (Carhart, 1997;

Fama and French, 2015). As the number of identified factors has proliferated, a secondary

literature has emerged aiming to determine their validity. Cochrane (2011) introduced the

term "factor zoo" to describe this growth, with subsequent research suggesting that the

hundreds of proposed factors can likely be reduced to a more manageable number (Bartram

et al., 2021; Swade et al., 2023; Jensen et al., 2023).

2.1.2. Highlighted strategies and related work

In this section, we introduce three empirical experiments in factor investing that we

will apply the causal discovery algorithms to. These experiments span key areas of factor

investing where causal insights could provide enhancements to existing methodologies. First,

we examine peer group neutralization in long–short equity strategies, a fundamental technique

in factor construction that aims to isolate specific return drivers. Second, we investigate

3There are also macroeconomic drivers of returns, such as interest rates, and oil prices, which can be used to
explain asset returns.
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the use of network centrality measures derived from causal graphs to construct a novel

factor, potentially offering a new perspective on risk and return dynamics. Lastly, we explore

how causal network density can serve as an indicator for market timing. Each of these

applications builds upon established factor investing concepts while introducing novel causal

results, aiming to demonstrate how causal discovery algorithms can complement and enhance

traditional approaches in factor investing.

2.1.2.1 Experiment 1: Peer group neutralization

Our first experiment of financial networks is to explore alternative peer groups for the

neutralization of cross-sectional long–short portfolio strategies. In the analytical framework

of Ehsani et al. (2023), the predictive power of firm characteristics can be split into two

components: an across-industry component and a within-industry component. They show

that long–short portfolios generally benefit from sector neutralization (i.e., removing the

across-industry component). The reason that the across-industry component often does not

carry a premium compared to the within-industry component is well-illustrated by Vyas and

van Baren (2021). They document that some equity factors suffer from unpriced industry

exposure due to industry tilts. That is, the industry composition of the tail distribution, for a

given firm characteristic (e.g., Book-to-Price ratio), can be highly homogeneous. An example

of this homogeneity can be found in Blitz and Hanauer (2020) who show that the value factor

displays major industry bias in favor of the Utilities sector, and thus incurs unnecessary risk.

In addition, they find that the value factor is systematically short in sectors that have a large

amount of intangible assets, e.g., the Information Technology sector. In fact, Asness et al.

(2000), Bender et al. (2019), and Cohen and Polk (1996) all show that most, if not all, value

characteristics suffer from unrewarded industry exposure. In this experiment, we investigate

the potential of alternative peer groups in the context of peer group neutralization, with a

specific focus on causality-based peer groups.

2.1.2.2 Experiment 2: Centrality as a cross-sectional long–short equity factor

Our second experiment explores the role of financial network centrality in the cross-section

of equity returns. First, we define what we exactly mean by (node) centrality. Freeman et al.
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(2002) posit that the center of a star network, as seen in Figure 1, is the purest example of a

central node. They understand central nodes as the nodes that have more ties, can reach other

nodes more quickly, and more often lie on the shortest path between other nodes. Classical

centrality measures such as degree, closeness, and betweenness centrality respectively embody

these properties. For instance, degree centrality simply counts the number of the in- and

out-going edges as a measure of centrality.

<Insert Figure 1 about here>

The general sentiment in the literature is that stocks with high centrality are undesirable,

with many authors arguing that incorporating centrality can yield more effective portfolio

diversification in the framework of Markowitz (1952). For instance, Peralta and Zareei (2016)

formally show that, both in minimum-variance and mean-variance portfolios, large eigenvector

centrality scores correspond to low optimal weights. Notably, this result relies on the financial

network being formulated as a correlation network. On the empirical side, Pozzi et al. (2013)

find that peripheral companies offer lower risk and higher returns than central companies.

They contextualize this finding by positing that central companies carry more risk during

market crashes. Their network formulation is a filtered correlation network like in Mantegna

(1999).4

Výrost et al. (2019) argue that highly central stocks offer less diversification than peripheral

stocks. Additionally, they argue that central stocks are riskier because market shocks will

not only affect the highly central asset itself, but also its neighborhood. Konstantinov et al.

(2020) are among the first to comment on the relation between centrality and factors, however

they do not use stock-level data but multi-asset multi-factor data. They do so by including

the factor returns into their network analysis and find that the RMW, HML, and CMA

factors of Fama and French (2015) are highly central nodes in the financial network.

2.1.2.3 Experiment 3: Market timing

Our final experiment investigates the market timing ability of the stock network density.

We hypothesize that network density reflects the systematic risk of a financial network and

4The authors explore two types of filtered correlation networks are explored: Minimum Spanning Trees
(MSTs) and Planar Maximally Filtered Graphs (PMFGs).
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may carry return predictability. This builds on previous work exploring the relationship

between network topology and market behavior.

Kaya (2015) found that network topology becomes denser prior to market crashes, aligning

with Lenzu and Tedeschi’s (2012) observation that denser topologies are problematic from

a systematic risk perspective. To test this hypothesis, we develop a causal network-based

proxy for financial network density, focusing on relative changes rather than absolute levels

of centrality to account for structural breaks in network topology.

Our approach differs from previous studies in two key aspects. Unlike Eng-Uthaiwat

(2018) or Lohre et al. (2014), who used correlation-based methods and graph diameter as a

measure of network topology, we employ causal discovery algorithms and average eigenvector

centrality. This choice addresses limitations of using graph diameter in financial networks,

which typically exhibit small-world properties (Watts and Strogatz, 1998; Gao et al., 2013;

Haldane, 2013; Sun and Chan-Lau, 2017). Eigenvector centrality is particularly suited for

causal networks (Dablander and Hinne, 2019) as it accounts for the varying importance of

network connections.

2.2. Peer selection methods

To motivate our exploration of causal networks, we explore the notion of a stock peer

group. A peer group is supposed to consist of companies that are similar or homogeneous in

some sense. Due to the myriad of ways to measure company similarity, there are numerous

peer group identification schemes. These identification schemes can be broadly divided into

two classes: discretionary classification schemes and systematic classification schemes.

2.2.1. Discretionary classification schemes

Discretionary classification schemes are typically formed from a qualitative perspective

on a company’s business activities, linking it to other companies performing similar activities.

These schemes often rely on expert judgment and manual classification.

Notable examples include the Standard Industrial Classification (SIC), North American

Industry Classification System (NAICS), and the Global Industry Classification Standard

(GICS). GICS, developed in 1999 by S&P and MSCI, has become particularly popular
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among financial practitioners. Its widespread adoption can be attributed to its desirable

properties, as demonstrated by Bhojraj et al. (2003), who showed that GICS outperforms

other classification systems in explaining cross-sectional variations in out-of-sample returns

and firm-level characteristics.

However, discretionary schemes like GICS have limitations. They are often relatively

static in nature (Costa and De Angelis, 2011), with classification changes typically taking

more than a year to materialize. This can lead to investors acting on outdated information.

Additionally, these schemes often focus primarily on end-products to determine company

similarity (Phillips and Ormsby, 2016), potentially neglecting other important factors such

as supply chain relationships. Despite these limitations, discretionary classification schemes

remain widely used due to their intuitive nature and established track record in portfolio

management.

2.2.2. Systematic classification schemes

Systematic classification schemes employ quantitative methods to measure similarity

between companies and group them accordingly. These schemes typically involve three

components: a data input (such as stock returns, financial ratios, or company-related text),

an algorithmic process to measure similarity, and an output of stock peer groups.

These schemes can be broadly categorized into three types:

1. Fundamentally-based methods use financial statement information to group com-

panies. For example, Hoberg and Phillips (2016) use product descriptions from 10-K

filings to create dynamic industry classifications, while Lee et al. (2016) incorporate

various fundamental-based information sources (such as company filings and analyst

coverage).

2. Statistically-based methods typically use return correlations or other statistical

measures. Many of these methods build on the seminal work of Mantegna (1999),

clustering stocks based on return correlation. However, Chan et al. (2007) found

that these correlation-based methods are often outperformed by GICS in capturing

out-of-sample return covariation. There are also efforts using non-correlation-based
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statistical measures such as Vermorken et al. (2010) or Jung and Chang (2016).

3. Graph-based methods leverage graph theory to identify patterns and group stocks.

For instance, Yang and Cogill (2013) apply graph similarity techniques to study

structural differences in financial statements, while Zhang et al. (2022) use graph

representation learning to measure similarity in industry supply-chain networks. Noels

et al. (2023) apply a novel distance measure to studying the similarity of financial

statements.

The main advantage of systematic classification schemes is their ability to quickly respond to

market changes and incorporate a wide range of information beyond just the end-product of

a company. However, they can be computationally intensive and may produce results that

are less intuitive or interpretable compared to discretionary schemes.

In the following sections, we will explore how causal discovery algorithms can be used as

a novel systematic classification scheme.

2.3. Bayesian networks

While systematic classification schemes offer advantages in terms of adaptability and data

incorporation, they often rely on correlation-based or other statistical measures that may

not fully capture the underlying relationships between stocks. To address these limitations

and potentially provide a more nuanced understanding of stock interactions, we turn to the

framework of Bayesian Networks (BNs). BNs offer a powerful approach to modeling complex

relationships and dependencies, conceivably providing a more accurate representation of stock

peer groups and market dynamics. The theoretical framework underlying causal algorithms,

which we will use to construct our peer groups, is quite extensive and rooted in the concept

of BNs. As such, we will first provide a concise explanation of the most crucial elements

of BNs, discuss the limitations behind constraint-based BNs compared to score-based BNs,

before delving into their application in causal discovery algorithms.

Pearl (1985) details that a given Directed Acyclic Graph (DAG), over a set of p random

variables X, constitutes a Bayesian Network if:
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P (X) =

p∏
i=1

P (Xi|Pa(Xi)), (1)

where Pa(Z) denotes the parents of node Z. This equation expresses that each random

variable Xi only depends on its direct parents Pa(Xi) and is independent of other variables.

This condition is also referred to as the local Markov condition. An additional assumption

that can be made is the faithfulness assumption. This assumption states that for a DAG D,

a distribution P is called faithful w.r.t.D IFF all conditional independences are encoded by

D (Spirtes et al., 2000). An equivalent formulation of this assumption can be constructed via

the concept of d-separation. In a DAG G, sets of nodes X and Y are d-separated by the set

Z, if Z is blocking all paths between X and Y .5

In practice, a stronger variant of the faithfulness assumption is applied. The rigorous

definition (Zhang and Spirtes, 2002) of strong faithfulness, in the Gaussian case, is as follows:

for a DAG D = (V,E), a Gaussian distribution P is called λ-strongly faithful w.r.t. D if:

min{| corr(Xi, Xj|XS) |, j not d-separated from i | S, ∀i, j, S} > λ,

where λ ∈ (0, 1), i, j ∈ V and S ⊂ V \ {i, j}. Essentially, this assumption dictates that (sets

of) variables that are d-connected in the underlying DAG should have this association reflected

in the data above a certain threshold. Uhler et al. (2013) argue that this requirement is a

rather restrictive condition for most DAGs. When this assumption does not hold, some causal

algorithms produce inconsistent estimates.6 Thus, algorithms that rely on this assumption

are less credible.

It is precisely this assumption that constitutes a major difference between the two main

classes of causal algorithms: constraint-based and score-based algorithms. Constraint-based

algorithms employ a conditional independence test to form a causal graph, whilst score-based

algorithms iterate over all possible DAGs and select the best-scoring DAG. An example of

a score function is the Bayesian Information Criterion (BIC). Most of the constraint-based

algorithms, such as the PC algorithm, rely on the strong faithfulness assumption for their

5The equivalent formulation reads: a DAG G satisfies the faithfulness assumption if for every X, Y , Z, if X
and Y are conditionally independent given Z then Z d-separates X and Y.

6In this context, consistency means that the estimated graph Ĝn converges to the true graph G as n→∞.
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consistency. In contrast, most score-based algorithms, e.g., Van de Geer and Bühlmann

(2013), do not rely on the (strong) faithfulness assumption.

Regular Bayesian Networks do not take the temporal dimension into account. They

assume that the observations stem from one point in time and thus have no sequential

ordering. The class of BNs that allow for a sequential ordering of the data are referred

to as Dynamic Bayesian Networks (DBNs). In DBNs, not only the variables themselves

are included in the network, but also their lags up to some order k. The edges connecting

variables from different periods are called inter-slice edges, whilst edges connecting variables

in the same period are called intra-slice edges.

2.4. Causal networks

Causal networks extend the concept of BNs by explicitly focusing on identifying cause-

and-effect relationships, which is particularly relevant in the context of financial markets

where understanding the drivers of asset returns is crucial. However, it is important to note

that the existing literature on causal algorithms can be ambiguous in its terminology, as

it encompasses both causal discovery and causal inference. For our purposes in modeling

stock relationships, we will focus on causal discovery algorithms, which aim to estimate

a causal network from observational data, rather than causal inference, which focuses on

estimating the causal effect of interventions via do-calculus (Pearl, 2010). This approach

allows us to model a causal network of stocks, potentially offering deeper insights into market

dynamics than traditional correlation-based methods or standard BNs. Before introducing

the DYNOTEARS formulation, we briefly discuss the limitations of constraint-based Bayesian

networks, which necessitate the usage of score-based methods in the financial markets setting.

A well-known example of a constraint-based algorithm is the PC (Peter-Clark) algorithm

(Spirtes et al., 2000). The PC algorithm begins with the so-called skeleton estimation phase,

wherein it prunes a fully connected undirected graph based on a conditional independence

test. The edge between node A and B is removed, if A and B are found to be independent,

conditioning on a set of nodes C. In the orientation phase, the PC algorithm assigns directions

to the edges based on a set of rules.

Unfortunately, the feasibility of the PC algorithm for modeling financial markets is
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severely limited. As with most constraint-based methods, the run time of the PC algorithm is

exponential to the number of nodes, which makes it unsuitable for high-dimensional financial

data. Moreover, the PC algorithm assumes causal sufficiency, meaning that all common

drivers are assumed to be included in the observed data. This assumption is challenging in the

context of financial markets due to its factor structure; yet, in the absence of this assumption,

one cannot guarantee the consistency of the PC algorithm. These limitations illustrate the

immense difficulty the literature has had in effectively adopting (constraint-based) causal

algorithms in the context of financial markets.

Recent advances in score-based methods have enabled practitioners to use them for

high-dimensional financial data. The run time of score-based methods used to be a challenge

given the acyclicity constraint on the optimization problem. This constraint renders the

optimization problem a Combinatorial Optimization Problem (COP), and it is generally

infeasible to exhaustively search the solution space of a COP (Korte et al., 2011). The

seminal work of Zheng et al. (2018) reformulated the acyclicity constraint to be smooth,

continuous, and exact. The authors named this reformulation NOTEARS which stands

for Non-combinatorial Optimization via Trace Exponential and Augmented Lagrangian for

Structure earning. The crucial benefit of NOTEARS is that standard solvers such as L-BFGS-

B (Byrd et al., 1995; Zhu et al., 1997) can be applied, making score-based methods more

tractable.

3. Causal network estimation

In this section we present the methodology we use to construct the causal networks for

our experiments, the method to convert these causal networks into peer groups, and the

empirical details for our three experiments.

3.1. DYNOTEARS model

Several papers have extended the NOTEARS methodology of Zheng et al. (2018), with

notable examples including DYNOTEARS (Pamfil et al., 2020), NTS-NOTEARS (Sun et al.,

2023), and GraphNOTEARS (Fan et al., 2023). The DYNOTEARS method uses NOTEARS
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for estimating a Dynamic Bayesian Network, and this network can be formulated as a

structural vector autoregressive (SVAR) model7:

X = XW + Y1A1 + ...+ ApYp + Z, (2)

where Xis an n× d matrix, p is the autoregressive order, the Yi are time-lagged versions of

X, and Z are the errors. For the resulting DBN to be acyclic, only the intra-slice weights W

need to be acyclic. A computationally efficient way of enforcing the acyclicity constraint on

W was introduced by Zheng et al. (2018), where they show that the matrix W is a DAG if

and only if:

h(W) = trace(eW◦W − d) = 0, (3)

where eW is the matrix exponential of W and d is the number of columns of W. The Ai

are inherently acyclic as they point forward in time and thus cannot create cycles.

3.2. Model implementation

For estimating the causal financial networks, we opt for the DYNOTEARS method. The

benefit of this method is that the underlying NOTEARS technique makes it feasible for

our high-dimensional dataset, unlike many of the other methods available in the literature.

Furthermore, Pamfil et al. (2020) show that DYNOTEARS outperforms other causal discovery

algorithms in retrieving the causal structure of simulated datasets and the DREAM4 (Marbach

et al., 2009) datasets.8

Having detailed the model specification, we now discuss our model implementation choices.

First, we set the number of lags p to zero, and thus estimate the causal effect of stock i on

stock j as the intra-slice weight ŵij .
9 This choice follows from the observation that at almost

all estimation points the inter-slice weights for the off-diagonal elements of Ai are almost

always zero. This is consistent with Pamfil et al. (2020) who make a similar observation for

7We opt for an SVAR model using a rolling window estimation as is common in the financial literature to
balance capturing time-variation with computational feasibility. An alternative approach would be to use a
SVAR model with time-varying parameters, such as the time-varying-parameter SVAR (TVP-SVAR).

8Indeed, in unreported results we find the DYNOTEARS algorithm to outperform simple correlation-based
methods in recovering simulated causal structures. These results are available upon request.

9Notably, the intra-slice weights constitute a DAG G. This graph representation will be essential for our
investment applications.
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the S&P 100, and suggest that the contemporaneous returns are the most relevant. Second,

we apply a log transformation to the stock returns and normalize the resulting log returns to

have a mean of zero, and a variance of one. Without this normalization, the regularization

scheme would cause the method to prefer low-variance stocks over high-variance stocks. Third,

we use a sliding window approach to allow for a time-varying network. We set the window

size to four years and the window increment to one month. This window size is roughly in

line with Pamfil et al. (2020) in their descriptive analysis of the S&P 100. Fourth, due to the

computational burden of this method, it is infeasible to tune the regularization parameter

λW. Therefore, we set λW to 0.1 which is in line with Pamfil et al. (2020), who calibrate

this parameter via a grid search approach. These implementation choices yield the final

optimization problem:

min
W

1

2n
‖X−XW‖F + λW ‖W‖1 s.t. W is acyclic, (4)

where X are the normalized log returns, 1
2n
‖X−XW‖F is the least-squares loss, and λW is

the L1 regularization parameter. DYNOTEARS clusters are obtained by applying node2vec

(Grover and Leskovec, 2016) to the DYNOTEARS estimated causal network.10

4. Experimental setup

In this section we detail the methodology used in each of the three empirical experiments.

Specifically, we define the objective of the experiment, the method used to obtain the results,

and the different performance evaluation approaches.

4.1. Experiment 1: Peer group neutralization

The aim of this experiment is to evaluate the efficacy of different peer group selection

methods in the context of peer group neutralization for long–short equity strategies.

10Further detail on clustering is given in Appendix A.1.
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4.1.1. Factor selection

We select twelve well-known and representative firm characteristics: twelve-minus-one

month momentum, one month reversal, beta (using sixty months of returns), book-to-price,

cash-to-assets, earnings-to-price, EBITDA-to-EV, one-year forward earnings-to-price, gross

profitability-to-assets, residual twelve-minus-one month momentum (Blitz et al., 2011), and

return on equity.11 These characteristics were chosen based on their prevalence in the

literature and their representation of various aspects of firm performance and valuation.

4.1.2. Peer group selection

We compare three peer group selection methods in our study. The first is the Global

Industry Classification Standard (GICS), which serves as our baseline industry classifica-

tion. The second method is DYNOTEARS, implemented as described in Section 3.1. For

DYNOTEARS parameters, we use a window size of 4 years, a window increment of 1 month,

and regularization parameters λW = λA = 0.1. The third method is Statistical Clustering

(SC), which uses hierarchical clustering on PCA-transformed returns, following Avellaneda

and Serur (2020). For SC, we use the number of principal components K to match the

GICS sector count (typically 10 or 11), employ Ward’s method for clustering, and use the

same window size and increment as DYNOTEARS. We chose this simple correlation-based

statistical clustering approach as a representative technique, given the prevalence of using

asset correlations in portfolio construction.12

The choice of hierarchical clustering on PCA-transformed returns as our Statistical

Clustering (SC) method represents a widely used correlation-based approach in financial

literature. This method captures the essence of correlation-based techniques by leveraging

the covariance structure of returns, which is fundamentally what correlation measures aim

to capture. By applying PCA before clustering, we reduce noise and focus on the most

significant patterns in return correlations, making it a robust representation of correlation-

based methods. This approach contrasts with DYNOTEARS in several key aspects. While SC

11For one month reversal and beta, we flip the sign of the characteristic (i.e., low values are associated with
high expected returns). Financial ratios are all estimated using the most recently available data as at the
end of each month.

12This is a common approach in the literature, see Mantegna (1999) and Bonanno et al. (2003, 2004).
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relies on symmetric measures of co-movement (correlations), DYNOTEARS aims to uncover

directed, potentially asymmetric relationships between stocks. Furthermore, SC is based on

contemporaneous relationships, whereas DYNOTEARS can capture both contemporaneous

and lagged relationships, potentially offering a richer representation of stock interactions.

While we acknowledge that there are numerous correlation-based methods available, our

chosen SC approach serves as a representative benchmark against which to compare the causal-

based DYNOTEARS method. This comparison allows us to highlight the possible benefits

of causal discovery in peer group selection, while recognizing that a more comprehensive

evaluation of multiple correlation-based methods could provide additional insights in future

research.

4.1.3. Portfolio construction and performance evaluation

For each characteristic and classification scheme, we form long–short portfolios within

each peer group or industry. At time t, we generate a ranking of stocks in each cluster based

on the characteristic. We then go long in the top 20% and short in the bottom 20%, employing

a quintile long–short strategy.13 We rebalance these portfolios monthly and construct both

equal-weighted (EW) and value-weighted (VW) versions. We consider both one-month and

twelve-month holding periods, with the latter following the overlapping portfolio approach of

Jegadeesh and Titman (1993). As a benchmark, we include a trading strategy that does not

use peer group neutralization. This benchmark strategy generates a ranking based on a given

characteristic over all stocks and produces a quintile long–short strategy using this ranking.

4.2. Experiment 2: Centrality as a cross-sectional long–short equity factor

The aim of this experiment is to investigate the role of stock-level centrality in the

cross-section of equity returns by constructing and evaluating a low centrality factor.

13Additionally for beta 60M we follow Blitz, van Vliet, and Baltussen (2020) and make the portfolio beta
neutral by ensuring the beta of the long leg and short legs have full-sample market betas of one.
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4.2.1. Centrality measure

For our primary measure of stock-level centrality, we employ eigenvector centrality. For

each month in our sample, we compute the eigenvector centrality for each stock based on

the DYNOTEARS causal network. This choice is motivated by several factors. Eigenvector

centrality accounts for both direct and indirect connections in the network, aligning well with

the intuition that connections to more important nodes contribute more to a node’s own

importance. Moreover, Dablander and Hinne (2019) demonstrate that for causal networks,

eigenvector centrality is a superior choice compared to other node centrality measures.

4.2.2. Factor portfolio construction and performance evaluation

We construct a monthly low centrality factor using the following approach. First, we

calculate eigenvector centrality scores for each stock in the S&P 500 using the causal network

estimated by DYNOTEARS. We then rank stocks based on the inverse of their centrality

scores, assigning higher ranks to more peripheral (less central) stocks. Using these rankings,

we form value-weighted quintile portfolios. The low centrality factor is constructed as a

long position in the top quintile (most peripheral stocks) and a short position in the bottom

quintile (most central stocks). We rebalance this factor portfolio at the end of each month.

To evaluate the performance of the low centrality factor, we use standard performance

measures on the long–short portfolio such as annualized return and standard deviation of

returns. Additionally, we perform spanning time-series regressions against several common

factor models to test the uniqueness of the low centrality factor. Specifically, we report alpha,

which is the intercept from regressions of the form:

rp,t = αt +
K∑
i=1

βifi,t + εt, (5)

where rp,t is the long–short centraliy factor return at time t and fi,t is the return of control

factor i at time t.

For control factors we include the market return in excess of the risk-free rate (MKT-

Rf), and the Fama-French factors: Small-Minus-Big (SMB), High-Minus-Low (HML), Up-

Minus-Down (UMD), Robust-Minus-Weak (RMW), Conservative-Minus-Aggressive (CMA),
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Short-Term Reversal (STR), and Long-Term Reversal (LTR) from the Kenneth French

data library.14 We also include the Betting-Against-Beta (BAB) factor from the AQR data

library15, and the Hou et al. (2021) q5 factors of Investment (AI), Size (ME), Expected growth

(EG), and Return on equity (ROE) from the Global-Q database.16

4.3. Experiment 3: Market timing

The aim of this experiment is to investigate the market timing ability of a causal network

density indicator for predicting U.S. stock market returns.

4.3.1. Network density indicator

We construct our causal network density indicator (dt) as:

dt =
1

|Ut|
∑
i∈Ut

ci,t −
1

|Ut−1|
∑

j∈Ut−1

cj,t−1, (6)

where ci,t is the eigenvector centrality measure of stock i at time t and Ut is the investment

universe at time t. This construction is like the systematic risk index of Kaya (2015) who

computes the density as the average network centrality but uses an eccentricity measure

instead of an eigenvector measure. We use the change in average centrality rather than the

absolute level, as structural breaks in network topology might cause the absolute level to be

uninformative for predictive purposes.

4.3.2. Performance evaluation

To assess the timing efficacy of the network density indicator, we follow established market

timing literature methodologies (Welch and Goyal, 2008; Neely et al., 2014; Hammerschmid

and Lohre, 2018). We measure in-sample return predictability using bivariate predictive

regressions of the form:

rt+1 = α + βxt + εt+1, (7)

14Available here: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
15Available here: https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly.
16Available here: https://global-q.org/index.html.
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where rt is the excess market (S&P 500) return at time t, and xt is the value of the

indicator at time t.

To gauge the efficacy of our timing indicator for future performance, we follow Campbell

and Thompson (2008) to estimate an out-of-sample R-squared, denoted R2
OS. We assess

economic significance by calculating the certainty equivalent return (CER) gain, as per

Neely et al. (2014). The CER gain represents the annual management fee an investor would

be willing to pay to access the network density forecast instead of the historical average

forecast.17

For robustness, we conduct a multivariate regression that includes common macroeconomic

variables and technical indicators as controls. We incorporate eleven macroeconomic indicators

from the Welch and Goyal (2008) dataset and ten technical indicators following Hammerschmid

and Lohre (2018). These technical indicators include lagged values of the excess market return

(accounting for autocorrelation in market returns) and moving-average signals.18 To manage

this large set of control predictors and multicollinearity, we employ the PCA approach of

Neely et al. (2014), reducing the twenty-one control predictors to three orthogonal factors.

We then use these orthogonal factors in a multivariate regression:

rt+1 = α + βCxC,t +
K∑
k=1

βkxk,t + εt+1, (8)

where xC,t is our causal network density indicator at time t, and xk,t is a principal

component factor k at time t.

This comprehensive approach allows us to evaluate the predictive power of our causal

network density indicator while controlling for a wide range of established predictors, providing

a robust assessment of its efficacy in market timing.

5. Experiments

In this section, we present and discuss the results of the causal network investment

applications. First, we compare the performance of several classification schemes for the

17We provide additional details in Appendix B.2.
18The full list of controls can be found in Appendix B.3.
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purpose of peer group neutralization when constructing long–short investment strategies.

Subsequently, we evaluate the economic value of stock centrality by creating a low centrality

factor derived from a causal network representation of stock returns. Lastly, we assess the

return predictability of a causal network density-based market timing indicator.

5.1. Data

In our empirical analysis, we use constituents of the S&P 500 index as a representative

universe to build causal networks over. We source daily and monthly stock and index returns

from Refinitiv Datastream for the period of December 1989 to December 2022. We source

fundamental and company information data from S&P Compustat. Our results run from

January 1993 to December 2022, because the first three years of return data are used to

calibrate models. In our estimation process at the end of each month, we include all stocks in

the S&P 500 as at the end of the month and have a full history of returns over the estimation

window. This can lead to a different number of nodes for each estimation window. Table 1

presents summary statistics of the investment universe that we construct causal networks

over. We have an average of 357 stocks in each network, which is due to our requirement of a

full history of stock returns at each estimation point. We can also see that our sample of

stock returns exhibits common properties, such as large tails (time-series average kurtosis of

7.55) and a wide dispersion of monthly return outcomes.

<Insert Table 1 about here>

5.2. Experiment 1: Peer group neutralization

5.2.1. Results

In Table 2 we present the annualized results for value-weighted trading strategies based

on different classification schemes. We also report the causal alpha, which is the annualized

α derived from a regression of the form:

RCausal
t = α + βMKTRMKT + βRc

t + εt,
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where RCausal
t is the long–short return of the causal neutralization and Rc

t is the long–short

return of GICS/correlation/no-neutralization based strategy. Table 2 presents results for

one-month holding periods.19 First, the strategy without neutralization (labeled None) often

performs worse from a volatility perspective than its neutralized counterparts, suggesting

that these characteristics suffer from unpriced industry exposure. For instance, for the 12-1M

Momentum characteristic, the benchmark volatility is 20.92%, whilst the neutralized strategy

volatility is between 14.64% and 16.42%. The underperformance of the no-neutralization

strategy is often caused by its high volatility, causing its Sharpe ratio to decrease in turn. This

increased volatility likely stems from its lack of diversification. In summary, for these specific

characteristics, we find substantial economic value to peer group neutralization. Figure 2

demonstrates the risk-adjusted return improvements of the causality-based approach over the

GICS and SC approaches, highlighting how the only scenario in which the causal approach

underperforms, from a return perspective, is for the cash-to-assets strategy. However, from

a volatility reduction perspective, we generally find that GICS and SC outperform the

causality-based approach.

<Insert Table 2 about here>

Second, turning our attention to the SC variant, we find that its performance is gen-

erally worse than that of the causal and GICS strategies but, at times, better than the

no-neutralization strategy. For instance, for the Book-to-price characteristic, both the causal

variant and the GICS variant outperform the SC variant. Moreover, for five of the charac-

teristics, the causal variant attains a significant alpha over the SC variant with annualized

alphas up to 3.74%.

<Insert Figure 2 about here>

Third, when comparing the causal variant to GICS, we find that the causal variant

generally outperforms GICS in terms of Sharpe ratio. For instance, for both the FY1 Earnings-

to-price characteristic and the book-to-price characteristic, the causal variant outperforms

GICS. Moreover, in both cases, the causal variant holds significant return predictability over

19In unreported results, we also test a twelve-month holding period and find consistent results.
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the GICS variant. The causal variant has a considerable risk-adjusted return edge over the

GICS variant for (most of) these characteristics. We find that these results hold for both

one-month holding periods, as well as for longer holding periods. This highlights the general

applicability of these causal clustering techniques for peer group neutralization.

In Table 3 we present the results of running Ledoit and Wolf’s (2008) Sharpe ratio test to

compare the significance of the Sharpe ratio of the causal strategies and the other strategies.

In general, we find that the Sharpe ratio difference between the causal strategy and other

strategies is greater than zero but not statistically significant. This reflects the fact that the

Sharpe ratios of the strategies in general are less than 1.0, and thus establishing statistically

significant differences using thirty years of monthly returns is challenging. Nevertheless, our

results show that the causal-neutralized strategies demonstrate some statistically significant

outperformance.

<Insert Table 3 about here>

Finally, our previous results are estimated using aggregated returns over a roughly thirty-

year period. In unreported results, we split our sample up into decades and into high, normal,

and low volatility regimes. Within each of these regimes we re-compute the Sharpe ratio

and causal alpha results. The results observed within each regime are generally consistent

with the full sample results. We do not find any obvious patterns across the regimes, but our

results show how the outperformance of the causal strategies is not consistent across the full

sample.

5.2.2. Discussion

Our findings on the efficacy of causal-based peer group neutralization contribute to

the ongoing debate in the factor investing literature about the role of sector neutralization.

Ehsani et al. (2023) analytically and empirically demonstrated that long–short portfolios

generally benefit from sector neutralization, arguing that the across-industry component

often does not carry a premium compared to the within-industry component. Our results

largely support this conclusion, as we find that applying peer group neutralization generally

improves risk-adjusted returns compared to non-neutralized strategies.

23



However, our study extends beyond traditional sector-based neutralization by introducing

a causal discovery approach. While Vyas and van Baren (2021) highlighted the issue of

unpriced industry exposure in equity factors due to industry tilts, our causal-based approach

offers a potential solution by identifying peer groups based on complex interdependencies

rather than predefined sectors. This aligns with the work of Blitz and Hanauer (2020), who

showed that traditional value factors display major industry biases. Our causal approach can

potentially capture more nuanced relationships between stocks, and may thus help mitigate

such biases.

Our study primarily compares one causal approach (DYNOTEARS) with one repre-

sentative correlation-based method (Statistical Clustering, SC) and the industry-standard

GICS. While SC is a widely used method in the literature, it represents only one of many

possible correlation-based approaches, and thus broad-based conclusions around causal versus

correlation-based peer groups cannot be drawn. Nonetheless, it is worth considering why

the SC approach performed poorly compared to DYNOTEARS and GICS. One explanation

can be found in MacMahon and Garlaschelli (2015) who argue that applying community

detection algorithms to correlation matrices leads to inherently poor/biased results.20 A

second explanation for this phenomenon is the “apples and oranges” narrative, that the

diversification power of correlation-based ACS is harmed by its tendency to cluster companies

that should not be clustered. We find support for this hypothesis, as the stock-selection

power of the correlation method is markedly lower than the stock-selection power of the other

variants.

Interestingly, our findings suggest that while causal-based peer groups often lead to

higher Sharpe ratios, this stems primarily from a superior ability to select stocks. Traditional

GICS-based neutralization still offers superior volatility reduction in many cases. This result

suggests that different neutralization approaches may offer distinct benefits, and that a

combination of methods might be optimal in practice. While causality-based peer groups

have a stronger theoretical foundation by attempting to capture direct influence relationships

rather than just statistical associations, the practical benefits appear to be context-dependent.

20Specifically, the authors show that modularity-oriented community detection algorithms, when applied to
correlation matrices, cannot retrieve the community structure even under optimal (simulation) conditions.
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For instance, we observe that causal neutralization tends to perform better for characteristics

that have clear economic transmission mechanisms between firms (like momentum and value

metrics) but shows less advantage for firm-specific attributes (like quality metrics) where

inter-firm relationships may be less relevant. However, it is difficult to identify a universal

pattern across our results which could pinpoint some latent characteristic which indicates

whether the causal model will outperform.

5.3. Experiment 2: Centrality as a cross-sectional long–short equity factor

5.3.1. Results

Figure 3 displays the cumulative return of the low centrality factor over time. The

performance of the low centrality factor seems highly driven by the business cycle, as it is

best before NBER recessions and worst after these recessions. This pattern is consistent

with a growth strategy, as growth stocks display strong performance during bull markets,

whilst this performance tends to evaporate during bear markets. Before characterizing the

low centrality factor in terms of existing factors, we first establish that the low centrality

factor adds value beyond these factors by investigating the alphas of the spanning regressions

in Table 4 relative to several common factor models.

<Insert Figure 3 about here>

The low centrality factor attains an annualized alpha of 2.21% in the CAPM (Panel (a)

column (i)), 2.78% in the FF4 model (Panel (a) column (iii)), 5.56% in the FF6 model (Panel

(a) column (v)), and 5.02% in the q5 model (Panel (b) column (iii)), whilst the annualized

Sharpe Ratio is negative. At first glance, one might expect a higher Sharpe Ratio given the

high alphas, but the factor loadings in Table 4 help rationalize this contradiction. The low

centrality factor loads negatively on the MKT and the HML/IA factors, both of which carry

positive risk premia. Therefore, by negatively loading on these factors, the expected return

and the Sharpe Ratio of the low centrality factor are lowered. Notably, the q5 alpha is higher

than the FF4 alpha, in part because the low centrality factor loads more negatively on the

investment factor than on the value factor.

<Insert Table 4 about here>
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Given that its alphas are significant and sizable, the low centrality factor adds orthogonal

information to factor models such as Fama and French (1993) and Hou et al. (2021). We

visualize the cumulative alpha (or alpha-add) over time in Figure 3. We define the cumulative

alpha of the low centrality factor as the cumulative sum of α̂+ ε:t, where ε:t are the residuals

up to and including time t. Beyond the difference in trend, we observe that the alpha-add

in the FF6 model is similar to the alpha-add in the q5 model. This is to be expected as

the factor loadings on MKT-Rf, SMB/ME, and HML/IA are similar. For both models, the

alpha-add over time is not consistent, as the alpha-add of the low centrality factor seems

roughly related to its performance (as visualized in Figure 3).

Next, we characterize the low centrality factor in terms of existing factors. Indeed, based

on the left partition of Table 4, the conjecture that the low centrality factor resembles a

growth strategy rings true. Namely, the low centrality factor negatively loads on the HML

value factor with a significant coefficient of -0.34 in the FF3 model. This anti-value tilt is

consistent with the growth definition of Fama and French (2007). In their valuation-based

perspective, growth stocks are defined as stocks with an inflated valuation, e.g., as reflected

in a low book-to-price ratio. In this definition, a growth stock is simply the opposite of a

value stock.

However, the definition of a growth stock is somewhat contested in the broader literature.

Rather than a valuation-based perspective, others have taken a profitability-based or an

investment-based perspective on growth. For instance, Novy-Marx (2013) argues that

strategies based on profitability, as measured by the gross profits-to-assets ratio, are growth

strategies. In this perspective, profitability/growth strategies can substantially improve the

performance of value strategies by acting as a hedge. Hou et al. (2021) take an investment-

based perspective on growth and argue that trading on the (estimated) growth rate of

investment-to-assets should be considered a growth strategy. Therefore, based on Panel (b)

of Table 4, the low centrality factor should not be deemed a growth strategy as the coefficient

of the expected growth factor is insignificant.

The spanning regressions offer an insightful characterization of central stocks. Given

that the low centrality factor operates on a reverse sort of centrality (i.e., we buy peripheral

stocks and short central stocks), we can effectively reverse the factor loadings to get a
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better understanding of central stocks. The foremost conclusion is that central stocks are

large, value-heavy companies. This finding is supported by Buraschi and Porchia (2012)

who find that the book-to-price ratio is positively related to their centrality measure, and

thus that central stocks are generally value-heavy. Additionally, Konstantinov et al. (2020)

conclude that the value factor has a central position in the financial network, albeit at the

asset allocation level. Thus, our finding is an important step in clarifying the financial

interpretation of centrality measures.

5.3.2. Discussion

Our findings on the low centrality factor contribute to and extend the growing body of

literature on network-based approaches in asset pricing. The significant alpha generated by

our factor across various model specifications aligns with previous studies that have found

network centrality measures to be informative for asset returns. For instance, Pozzi et al.

(2013) found that peripheral companies in correlation-based networks offer lower risk and

higher returns than central companies, which is consistent with the performance of our low

centrality factor. However, our use of causal networks, as opposed to correlation networks,

provides a novel perspective on this relationship.

Our results also resonate with the work of Výrost et al. (2019), who argued that highly

central stocks offer less diversification than peripheral stocks. While they focused on diversi-

fication benefits, our study extends their insight by demonstrating that this characteristic

translates into a priced factor in the cross-section of returns. Methodologically, our use of

the DYNOTEARS algorithm for causal discovery sets our work apart from most existing

studies in financial networks, which typically rely on correlation-based or Granger causality

approaches (e.g., Billio et al., 2012). This causal approach potentially captures more nuanced

and directional relationships between assets, offering a new perspective on how information

flows and risk propagate through financial markets.

For example, we find that the alpha-add is much larger during stable regimes than that in

(the aftermath of) unstable regimes. This suggests that in stable regimes, the existing factors

fail to incorporate centrality more so than in unstable regimes. In turn, the low centrality

factor can effectively act as a cheap hedge as it does not underperform, but it controls for
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risk in other factors which are known to perform well. However, the performance of the low

centrality factor in the 2020 to 2023 period highlights that this is not a free hedge, as it

significantly underperforms.

Finally, Figure 4 presents a graphical depiction of the causal network at selected months.

We selected months with particularly extreme densities, as a means to demonstrate how

the network density varies. Generally, a dense network means that more of the underlying

stocks are connected to each other, and the coefficient associated with these edges are larger.

Generally, networks tend to become more dense around crisis periods, and early detections of

these shifts in density can assist with market timing. We explore the latter avenue in the

next sub-section.

<Insert Figure 4 about here>

5.4. Experiment 3: Market timing

5.4.1. Results

We first review the bivariate predictive regression on network density, which yields an

R2 of 0.75% (as seen in column (i) of Table 5). This suggests that the network density

carries some return predictability, as the R2 exceeds the often-mentioned R2 threshold of

0.5% (Zhou, 2010; Neely et al., 2014). Moreover, the coefficient β̂ possesses the expected sign

and is significant, albeit at a 10% level. Namely, the coefficient is negative, indicating that

an increase in network density is associated with lesser expected returns. 21

<Insert Table 5 about here>

Validating the predictability of the network density indicator out-of-sample, we find

an R2
OS of 0.55%, which is significant at a 10% level. The level of out-of-sample return

predictability is like the return predictability of a number of technical indicators seen in Neely

et al. (2014) and Hammerschmid and Lohre (2018). Particularly, Neely et al. (2014) find

that moving-average and volatility-based technical indicators carry significant (at the 10%

level) predictive value out-of-sample. For these indicators, they find R2
OS ranging from 0.44%

21In unreported results, we find similar results when performing a simple multi-variate regression incorporating
lagged market return values alongside the centrality density measure.
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to 0.88%, some of which are even significant at the 5% level. Likewise, Hammerschmid and

Lohre (2018) also find that moving-average and volatility-based technical indicators carry

significant predictive value out-of-sample. They find R2
OS ranging from 0.59% to 1.03%, none

of which are significant at a 5% level.

We evaluate the economic utility of the network density proxy by computing the CER

gain (∆) which amounts to 1.83% for the bivariate forecast. Similar to the R2
OS, this value

is roughly in line with the value of the technical indicators in Neely et al. (2014) and

Hammerschmid and Lohre (2018). Particularly, for technical indicators that have a significant

R2
OS, Hammerschmid and Lohre (2018) find annualized CER gains ranging from 1.9% to

2.6% whilst Neely et al. (2014) find annualized CER gains ranging from 1.5% to 2.9%. Based

on the value of ∆, we conclude that the network density proxy has economically substantial

predictive power for the (monthly) equity risk premium.

Given that network density carries a similar amount of predictive value, it is interesting to

evaluate how different network density is from these technical indicators. To this end, column

(ii) of Table 5 presents the same results but including a set of three principal component

control factors. We find qualitatively similar results as the bivariate regression in column

(i), whereby we have a negative coefficient on β̂ that is significant at the 10% level. Hence,

the predictability of the causal network-based density indicator is not explained by the

information contained in common control variables related to macroeconomic variables and

technical indicators.

5.4.2. Discussion

Our findings on the predictive power of the causal network density indicator contribute

to the extensive literature on market timing and return predictability. The observed R2 of

0.75% in our bivariate predictive regression exceeds the often-cited threshold of 0.5% for

economic significance (Zhou, 2010; Neely et al., 2014), suggesting that network density carries

meaningful predictive information for market returns. This aligns with the findings of Rapach

et al. (2022), who argued for the importance of considering interconnectedness in financial

markets for return prediction.

A potential explanation for this relatively high predictability is that the network density is
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a good indicator for recessions. Intuitively, one would expect more variance during recessions

than during expansionary periods. Therefore, if a predictor functions well in recessions, it

will likely have a higher R2 than predictors that function equally well in expansionary periods.

This reasoning is empirically supported by Henkel et al. (2011) who show that the return

predictability for many predictors is concentrated in recessionary periods.

Comparing our results to those of traditional predictors, we find that the performance of

our network density indicator is competitive with, and in some cases superior to, established

macroeconomic and technical indicators. For instance, Neely et al. (2014) reported R2
OS

values ranging from 0.44% to 0.88% for various technical indicators, while our indicator

achieves an R2
OS of 0.55%. Similarly, our annualized CER gain of 1.83% is comparable to the

range of 1.5% to 2.9% reported by Neely et al. (2014) for significant technical indicators.

Our findings align with and extend the work of Kaya (2015), who used aggregate network

eccentricity as a proxy for network density. While Kaya focused on network topology becoming

denser prior to market crashes, our approach provides a more continuous measure of market

conditions. Furthermore, our use of causal networks, as opposed to correlation-based networks,

potentially captures more nuanced and directional relationships between assets.

6. Conclusion

In this paper, we explore the potential of a representative causal discovery algorithm

(DYNOTEARS) in factor investing, focusing on its application to financial network modeling.

We applied DYNOTEARS-derived causal networks to three common investment applications,

aiming to complement and extend the prevalent correlation-based framework of Mantegna

(1999).

Our findings suggest that causal discovery algorithms can offer valuable insights in factor

investing. DYNOTEARS provides alternative peer groups that, in many cases, lead to

improved risk-adjusted returns when constructing peer group neutral long–short strategies

compared to traditional methods. However, it is important to note that established methods

like industry classifications remain relevant, particularly for volatility reduction. We also

demonstrate that a causal network-based low centrality factor can serve as a useful hedging
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tool when combined with common factor models such as Fama-French and q5. Additionally,

our causal network-based market timing indicator shows promise in predicting S&P 500

excess returns, performing comparably to existing indicators in the literature. These results

indicate that causal discovery algorithms can be a valuable addition to the factor investing

toolkit, offering novel perspectives and insights to traditional factor investing paradigms.

However, it is crucial to view these techniques as complementary to, rather than superior to,

traditional methods. Each approach has its strengths and may be more suitable in different

contexts.

While our study demonstrates the potential of causal discovery algorithms in factor

investing, several limitations should be acknowledged. Causal discovery algorithms, including

DYNOTEARS, can be computationally intensive, especially when applied to large datasets.

Our study focused on a specific causal discovery algorithm (DYNOTEARS) and a limited set

of investment applications, which does not fully represent the breadth of potential applications

in factor investing. Finally, we do not explicitly horse race causal discovery algorithms against

alternative benchmarks, instead we opt to present a broad range of applications and show

results in line with previous literature.

Future work in this area could address these limitations and further explore the potential of

causal discovery in factor investing. More comprehensive comparisons between different causal

discovery algorithms and traditional methods across a wider range of investment applications

would provide a clearer picture of their relative strengths and weaknesses. Finally, developing

tools and methodologies to improve the interpretability and computational complexity of

causal discovery outputs could increase their adoption among practitioners.
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Table 1: Summary statistics of investment universe
This table reports summary statistics for several properties of the investment universe we study. At the
end of each month in our sample we construct the cross-sectional average market capitalization ($ Billions),
number of stocks, average returns (%), dispersion of returns (%), skewness of returns, and kurtosis of returns.
We then calculate the summary statistics using this time-series of cross-sectional statistics. qy is the value
representing the y-th percentile. Our sample runs from January 1993 to December 2022.

Market Cap. Count Avg. Returns Dispersion Skewness Kurtosis

Mean 29.96 357 1.03 8.11 0.48 7.55

Stdev. 19.59 21 4.55 2.71 1.60 18.61

Min. 5.33 298 -19.6 4.06 -2.77 -0.33

q0.01 5.41 302 -10.84 4.77 -2.26 0.20

q0.25 18.88 345 -1.52 6.43 -0.29 1.87

Median 24.26 360 1.37 7.36 0.25 3.33

q0.75 38.14 374 3.60 8.84 0.86 6.18

q0.99 86.62 386 11.58 17.78 7.49 98.76

Max. 92.14 388 17.99 23.98 14.08 243.26

41



Table 2: Performance of peer group neutralized trading strategies
This table reports the performance statistics associated with various long–short investment strategies, each
using different classification scheme (Causal, GICS, or Correlation) as well as the benchmark strategy with
no-neutralization. For each of the characteristics we apply a long–short value-weighted quintile strategy
within each cluster of the given peer group classification. Our sample runs from January 1993 to December
2022. We report the annualized return, annualized volatility, Sharpe ratio, the annualized CAPM alpha
and beta, the maximum drawdown (DD), and the Causal Alpha (i.e., the alpha when regressing the causal
strategy returns on the non-causal strategy returns.)∗,∗∗ ,∗∗∗ indicate statistical significance at the 10%, 5%,
and 1% level, respectively.

Characteristic Neutral. Return Volatility SR CAPM α Beta DD Causal α

1M Reversal Causal 7.97% 11.97% 0.665 6.87% 0.13 -19.8%

GICS 6.63% 11.01% 0.602 5.19% 0.17 -37.0% 2.75%∗∗∗

Correlation 6.48% 10.54% 0.614 4.95% 0.18 -17.3% 3.07%∗∗

None 5.98% 15.46% 0.387 4.17% 0.22 -33.7% 4.15%∗∗

12-1M Momentum Causal 3.55% 16.42% 0.216 4.89% -0.16 -64.8%

GICS 2.41% 14.82% 0.162 3.34% -0.11 -58.6% 1.74%∗

Correlation 2.65% 14.64% 0.181 3.37% -0.09 -58.9% 1.77%

None 3.21% 20.92% 0.153 5.95% -0.33 -62.4% 0.90%

Beta 60M Causal 4.56% 13.06% 0.349 4.57% 0.00 -40.9%

GICS 2.93% 10.38% 0.282 2.93% 0.00 -41.3% 2.08%

Correlation 3.08% 11.69% 0.263 3.09% 0.00 -37.6% 1.84%

None 5.97% 18.33% 0.325 5.99% 0.00 -57.7% 1.13%

Book / Price Causal 1.35% 13.32% 0.101 1.00% 0.04 -57.6%

GICS 1.17% 13.26% 0.088 0.82% 0.04 -53.1% 0.27%

Correlation -0.78% 12.62% -0.062 -1.25% 0.06 -62.8% 2.13%∗

None 0.07% 15.01% 0.004 -0.44% 0.06 -73.0% 1.35%

Cash / Assets Causal 5.69% 9.79% 0.581 5.10% 0.07 -27.5%

GICS 3.53% 9.17% 0.385 3.59% -0.01 -23.0% 0.64%

Correlation 4.72% 10.11% 0.467 4.99% -0.03 -27.7% -0.50%

None 4.98% 13.54% 0.367 1.87% 0.37 -64.9% 2.01%∗

Earnings / Price Causal 1.95% 12.21% 0.159 2.58% -0.08 -49.3%

GICS 1.90% 11.43% 0.166 2.65% -0.09 -49.9% 0.15%

Correlation 0.60% 11.00% 0.055 1.20% -0.07 -65.0% 1.41%

None 0.60% 14.91% 0.040 2.26% -0.20 -63.2% 0.93%

EBITDA / EV Causal 5.01% 13.04% 0.384 5.36% -0.04 -43.5%

GICS 3.70% 13.11% 0.282 4.35% -0.08 -53.4% 1.73%∗

Correlation 2.26% 12.39% 0.183 3.18% -0.11 -57.7% 2.60%∗∗

None 4.28% 14.54% 0.295 5.02% -0.09 -59.6% 1.56%

FY1 Earnings / Price Causal 3.07% 12.35% 0.249 3.98% -0.11 -49.0%

GICS 0.62% 11.83% 0.052 1.14% -0.06 -60.7% 2.92%∗∗∗

Correlation 0.92% 12.03% 0.076 1.56% -0.08 -64.1% 2.64%∗∗

None 2.48% 14.44% 0.172 4.47% -0.24 -68.6% 0.84%

Gross Profitability / Assets Causal 2.93% 10.72% 0.273 3.87% -0.11 -34.4%

GICS 2.29% 10.46% 0.219 3.39% -0.13 -47.9% 1.14%

Correlation 2.89% 10.48% 0.276 3.96% -0.13 -36.3% 0.75%

None 3.10% 11.73% 0.264 3.30% -0.02 -34.5% 1.59%

Res. 12-1M Momentum Causal 2.53% 9.72% 0.260 3.20% -0.08 -37.3%

GICS 2.10% 9.00% 0.234 2.46% -0.04 -20.8% 1.14%

Correlation 2.17% 8.89% 0.244 2.67% -0.06 -28.1% 1.00%

None 1.92% 10.52% 0.182 2.51% -0.07 -35.8% 1.32%

Return on equity Causal 3.07% 9.90% 0.309 3.84% -0.09 -41.7%

GICS 1.78% 10.19% 0.175 2.75% -0.12 -49.9% 1.68%∗

Correlation 1.04% 10.11% 0.103 1.79% -0.09 -54.4% 2.46%∗∗

None 2.36% 11.95% 0.197 3.91% -0.19 -37.4% 1.17%
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Table 3: Sharpe ratio difference tests
This table reports the annualized Sharpe ratio difference for the causal-neutralized long–short quintile
strategies when compared against No-neutralization, GICS-neutralized, and Correlation-neutralized strategies
using the Lediot and Wolf (2008) Sharpe ratio test. We report results for value-weighted strategies. We
also report results using a holding period of one-month or twelve-months following the overlapping portfolio
approach of Jegadeesh and Titman (1993). Our sample runs from January 1993 to December 2022. ∗,∗∗ ,∗∗∗

indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Value-Weighted Equal-Weighted

Strategy Comparison 1M 12M 1M 12M

1M Reversal None 0.278*** 0.189** 0.057 0.092*

Correlation 0.051 0.260** 0.002 0.084

GICS 0.063 0.222** -0.018 0.021

12-1M Momentum None 0.063 0.072 0.054 0.044

Correlation 0.036 -0.057 0.043 -0.024

GICS 0.054 -0.045 0.094* 0.001

Beta 60M None 0.024 -0.002 0.061 0.020

Correlation 0.086 0.098 0.042 0.054

GICS 0.067 0.122 0.058 -0.035

Book / Price None 0.097 0.055 0.073 0.041

Correlation 0.163* 0.136* 0.129* 0.097**

GICS 0.013 -0.007 0.012 -0.044

Cash / Assets None 0.213 0.156 0.089 0.197***

Correlation 0.113 0.117 -0.055 0.060

GICS 0.196 0.162 0.146 0.168

Earnings / Price None 0.119 0.050 0.141* 0.040

Correlation 0.104 0.143 0.110 0.051

GICS -0.007 0.023 -0.084 -0.103

EBITDA / EV None 0.090 -0.035 0.048 0.012

Correlation 0.201* 0.152* 0.119 0.108**

GICS 0.102 -0.050 -0.025 -0.078

FY1 Earnings / Price None 0.077 -0.019 0.111 -0.021

Correlation 0.172 0.111 0.073 0.053

GICS 0.196** 0.100* 0.059 0.055

Gross Profitability / Assets None 0.009 -0.057 0.139 0.031

Correlation -0.003 -0.025 0.218** 0.190**

GICS 0.054 0.032 0.193* 0.155

Res. 12-1M Momentum None 0.078 0.115 0.045 0.132**

Correlation 0.016 0.034 0.002 0.054

GICS 0.026 0.067 0.034 0.005

Return on equity None 0.112 0.004 0.091 0.003

Correlation 0.206* -0.030 0.130* 0.003

GICS 0.134 0.100 0.129* 0.049
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Table 4: Spanning regression results for the low centrality factor
This table presents the results of time-series spanning regressions of the value-weighted top-minus-bottom
quintile portfolio return of the low centrality factor over various factor models. We report the results of
regressing the return of the long–short centrality factor on the returns of the Fama-French factor models
(panel a) and the Hou et al. (2014) q5 model (panel b). The long–short portfolios are rebalanced monthly over
the period January 2003 to December 2022. Newey-West adjusted t-statistics are reported in parentheses.
∗,∗∗ ,∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Panel (a): Fama-French models

(i) (ii) (iii) (iv) (v) (vi)

Alpha (ann.) 2.21% 3.26% 2.78% 6.11% 5.56% 5.29%

(1.09) (1.81) (1.60) (3.43) (3.14) (2.94)

MKT-Rf -0.04 -0.09 -0.07 -0.18 -0.15 -0.14

(-0.69) (-2.12) (-1.64) (-4.47) (-3.69) (-3.56)

SMB 0.16 0.15 0.07 0.06 0.05

(1.7) (1.77) (0.85) (0.79) (0.60)

HML -0.34 -0.33 -0.12 -0.09 -0.11

(-5.12) (-4.42) (-1.90) (-1.33) (-1.72)

UMD 0.05 0.08 0.05

(1..00) (1.74) (0.94)

RMW -0.28 -0.29 -0.33

(-2.93) (-3.23) (-3.91)

CMA -0.39 -0.42 -0.46

(-3.91) (-4.42) (-4.29)

STR -0.05

(-0.99)

LTR 0.03

(0.35)

BAB 0.09

(1.46)

R2 0.0% 18.0% 18.3% 24.5% 25.5% 25.9%

Panel (b): q5model

(i) (ii) (iii)

Alpha (ann.) 2.21% 4.85% 5.02%

(1.09) (2.73) (2.84)

MKT-Rf -0.04 -0.15 -0.17

(-0.69) (-3.69) (-4.21)

ME 0.15 0.13

(1.35) (1.29)

IA -0.66 -0.63

(-6.23) (-6.36)

EG 0.02 0.14

(0.23) (1.26)

ROE -0.19

(-2.26)

R2 0.0% 22.8% 24.3%
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Table 5: Predictive regression on network density
This table presents the estimated coefficients for the predictive regressions in Eq. (7) and Eq. (8). R2

OS is
estimated following Campbell and Thompson (2008). The ∆ statistic is the annualized CER gain for an
investor who opts to use the predictive regression forecast instead of the historical average forecast. Our
sample runs from January, 1993 to December, 2022. Heteroskedasticity robust t-values are reported in
parentheses. ∗,∗∗ ,∗∗∗indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Bivariate Multivariate

α 0.012 0.013

(5.57)∗∗∗ (5.81)∗∗∗

βCentrality -4.06 -4.10

(-1.62) (-1.69)∗

Controls N Y

R2 0.75% 5.98%

R2
OS 0.55%∗ 3.40% ∗∗

∆ 1.83% 8.16%
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Figure 1: Star network illustration
Example of a star network with a central node (A) and five connected nodes (B–F).
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Figure 2: Peer group neutralization alpha and Sharpe ratio comparison
Panel (a) plots the alpha of the causality-based peer group neutralization method over the statistical
correlation, GICS, and no-neutralization approaches. Panel (b) plots the Sharpe Ratio of each approach.
Results are calculated on the S&P 500 universe over the sample of January 1993 to December 2022. Note
that for SR, we plot the absolute Sharpe ratio for ease of comparison.
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Figure 3: Cumulative return and alpha of the low centrality factor
This figure shows the cumulative top-minus-bottom (T-B) centrality factor return and associated cumulative
alphas, in percentage points. The cumulative alpha at time t is calculated as the cumulative sum of α̂+ ε:t,
where ε:t are the residuals up to and including time t. The residuals are derived from a regression of the T-B
centrality factor returns on the market return (CAPM), Fama-French six-factor model (FF6), and the Hou
et al. (2014) q5 model. NBER recessionary periods are highlighted with gray shading. The sample runs from
January 1993 to December 2022.
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Network on 1996-01
HHI Degree: 5.88

Nodes: 420, Edges: 9,217

Network on 2016-02
HHI Degree: 10.87

Nodes: 424, Edges: 12,120

Network on 2009-01
HHI Degree: 51.49

Nodes: 380, Edges: 23,143

Network on 2012-08
HHI Degree: 77.44

Nodes: 406, Edges: 32,029

Figure 4: Selected causal network examples
This figure shows the causal network as at four different months. For each network we plot a spring-layout
representation, where each node represents a stock, and each edge represents a connection between nodes.
The size of each node corresponds to the degree centrality of each node and the edges correspond to the
coefficient estimate from the causal network algorithm. For each plot we present the Herfindahl-Hirschman
Index (HHI), the number of nodes, and the number of edges.
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Appendix

A. Additional technical details for causal network estimation

A.1. Specification of DYNOTEARS clusters

For our first investment applications, we wish to organize causal network graphs into

clusters of similar stocks. When presented with such a graph, we recognize two approaches to

clustering. The first approach is to directly apply some graph clustering algorithm. However,

conventional graph clustering algorithms, such as Strongly Connected Components (SCC)

and the Louvain method, have undesirable properties. For instance, Shirokikh et al. (2022)

show that the SCC algorithm usually returns one super-cluster when applied to financial

networks. This finding is in line with common asset pricing models such as the CAPM, but

is undesirable when it comes to identifying sub-clusters in financial networks.

A prominent example of a graph clustering algorithm that can precisely do this, is Louvain

clustering (Blondel et al., 2008).22 The Louvain method is well-known for its performance

and scalability (De Meo et al., 2011). It is a greedy technique that produces clusters by

iteratively optimizing the modularity of these clusters, i.e., optimizing the density of links

in-cluster relative to the density of links out-of-cluster. The Louvain method does not allow for

choosing the number of clusters ex-ante, which hinders a fair comparison between clustering

methodologies.

The second approach to produce clusters from a graph is what we refer to as graph

representation clustering. Instead of clustering the graph using its natural form, we cluster

the graph using continuous feature representations of the nodes. That is, we learn a mapping

of nodes to an embedding space that preserves the network neighborhoods of the nodes. These

embeddings can then be used by common clustering algorithms, such as K-means, to produce

clusters. There are three major benefits to graph representation clustering. First, one can

use a large variety of common clustering methods. Second, many of these clustering methods

allow choosing the number of clusters ex-ante. Third, these embeddings are well-suited for

22Wang et al. (2017) and Hosseini et al. (2021) investigate the (in)ability of the Louvain method to detect
sub-clusters in financial networks.
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visualization.

To create the DYNOTEARS clusters, we make use of Node2Vec in combination with

K-means. First, we apply Node2Vec to the estimated DAG G to obtain embeddings for

each node. To this end, we need to configure the hyperparameters of Node2Vec (Grover and

Leskovec, 2016): embedding dimensionality, walk length, number of random walks, return

parameter (p), and in-out parameter (q). In essence, the parameters p and q jointly control

the random walk behavior. While p dictates the probability that a just-visited node is visited

once more, q regulates the incentive to explore. Namely, if q is sufficiently large, the random

walk is biased towards nodes close to the source node.23 Second, these embeddings are used by

K-means to generate clusters. Given a predefined number of clusters K, K-means optimizes

the following loss function:

L =
K∑
k=1

∑
i∈Ck

||xi − µk||22, (A. 1)

where Ck contains all stocks in cluster k, xi is the embedding belonging to stock i, µk is the

mean of cluster k, and ||·||2 is the Euclidean norm. The exact optimization methodology

can be found in Lloyd (1982). We restrict the number of clusters K to be either the past

(K = 10) or current number (K = 11) of GICS sectors, to allow for a fair comparison.

A.2. Specification of correlation benchmark

We compare the performance of peer group neutralized trading strategies based on

GICS, DYNOTEARS, and statistical clustering (SC). Therefore, we require a representative

clustering method for the SC strategy. As is common in this literature, we apply hierarchical

clustering to the correlation matrix of the log returns to obtain statistical clusters.24 In

particular, we measure stock return correlations via the Pearson correlation coefficient.

Hierarchical clustering takes a matrix of distances as the sole input and produces a

hierarchical tree (dendrogram) as output. For instance, Mantegna (1999) computes the

pairwise distances as dij = 1− ρ2ij, where ρ is the Pearson correlation measure. Hierarchical

clustering can either be agglomerative or divisive in nature. In agglomerative clustering,

23We refer the reader to Grover and Leskovec (2016) for a technical review of the Node2Vec algorithm.
24See, for example, Mantegna (1999); Bonanno et al. (2003), and Bonanno et al. (2004).
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each observation is assigned its own cluster, and pairs of clusters are merged based on some

linkage function. We opt for Ward’s linkage function (Ward, 1963) to determine which

clusters are merged at each iteration. This linkage function minimizes the total within-

cluster variance at each iteration. The benefit of Ward’s linkage function over other linkage

functions is that it produces relatively compact clusters (Ros and Guillaume, 2019). From

the estimated hierarchical tree, we can extract a number of clusters K by choosing the

appropriate height/distance.

Instead of performing hierarchical clustering on the raw correlation matrix, we first

utilize Principal Component Analysis (PCA) to transform the stock returns into their factor

exposures. In this transformation, we only use the first K principal components, such that

the transformed matrix has dimensions N (number of assets) by K. Then, we can compute

the pairwise distance between stock i and stock j as dij = ‖Ci − Cj‖2, where Ci is the ith

row of the PCA-transformed matrix. Equivalently, we compute the distance between stocks

as the Euclidean distance between their factor exposures. Similarly to the DYNOTEARS

method, we restrict K to be either the past or current number of GICS sectors. Likewise, to

allow for a fair comparison, we use the same sliding window methodology as DYNOTEARS.

The main benefit of this application of PCA is that it reduces the statistical uncertainty

associated with the sample correlation matrix. In the context of financial markets, it is

well-established that there is substantial noise present in the correlation matrix. For instance,

Laloux et al. (1999) analyze the correlation matrix of the S&P 500 and find that the lowest

eigenvalue-eigenvector pairs are dominated by noise. Therefore, the clear benefit of only

keeping the first K components is that some noise is removed. In turn, the stability and

quality of the hierarchical clusters should improve as they are based on less noisy distances.

B. Additional methodology for empirical applications

B.1. Peer group neutralization

To investigate the efficacy of our trading strategies, we employ some well-known perfor-

mance metrics. For each portfolio and its associated returns RP (with length T ), we report

the mean return, the volatility of the returns, and the annualized Sharpe Ratio:
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SR(RP ) =
√
D
µ(RP )

σ(RP )
, (B. 1)

where D is the number of trading periods in a year. We ignore the risk-free rate in the Sharpe

Ratio computation, as long–short trading strategies are self-financing. To test whether the

causal strategy has significant return predictability over the other classification schemes, we

perform spanning regressions of the form:

RCausal
t = α + βRc

t + εt, (B. 2)

where RCausal
t are the portfolio returns for the DYNOTEARS classification scheme and Rc

t

are the portfolio returns based on some other classification scheme.

B.2. Market timing

In-sample return predictability does not guarantee out-of-sample return predictability.

As such, we validate the out-of-sample predictability of the network density proxy using the

R2
OS of Campbell and Thompson (2008) which is defined as:

R2
OS = 1− MSFE1

MSFE0

, (B. 3)

where MSFE1 is the Mean Squared Forecast Error (MSFE) based on the scrutinized timing

indicator25, whilst MSFE0 is the MSFE based on the historical average forecast. To evaluate

whether the R2
OS is significant, we utilize the MSFE-adjusted statistic of Clark and West

(2007), which is defined as the average of:

ft+1 = (rt+1 − r̄t+1)
2 − [(rt+1 − r̂t+1)

2 − (r̄t+1 − r̂t+1)
2], (B. 4)

where r̄t+1 is the historical average forecast, and r̂t+1 is the forecast based on our proxy. With

this test statistic, we test the one-tailed hypothesis H0 : R2
OS ≤ 0 against H1 : R2

OS > 0.

Return predictability alone does not speak to the economic relevance of the proxy.

25We estimate the required forecast errors using an expanding window methodology. To ensure a sufficiently
large in-sample estimation period, we opt for a burn-in period of one-hundred months. For an example, see
Hammerschmid and Lohre (2018).
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Following Campbell and Thompson (2008); Ferreira and Santa-Clara (2011); Neely et al.

(2014), and Hammerschmid and Lohre (2018), we assess its economic utility by computing the

certainty equivalent return (CER) gain. We compute the CER for a mean-variance investor

who allocates across equities and risk-free bills based on some forecast of the excess market

return. Each month t, this investor allocates the following weight to equities (Neely et al.,

2014):

wt =
1

γ

r̂t+1

σ̂2
t+1

, (B. 5)

where γ is the risk aversion coefficient, r̂t+1 is the forecast of the equity risk premium, and

σ̂2
t+1 is a forecast of its variance. Moreover, a weight of 1− wt is allocated to risk-free bills.

Similar to Neely et al. (2014) or Hammerschmid and Lohre (2018), the variance is computed

using a moving-average window of five years, the risk aversion coefficient is set to five, and

the portfolio weights wt are restricted to be between 0 and 1.5. Neely et al. (2014) argue

that this restriction is reflective of realistic portfolio constraints, as it excludes short selling

and taking on more than 50% leverage. Subsequently, the CER can be computed as:

CER = µ̂p −
1

2
γσ̂2

p, (B. 6)

where µ̂p and σ̂2
p are the mean and variance of the portfolio based on the weights in Eq. (B. 5).

The CER gain can now be computed as the difference between the CER of the forecasts using

the network density and the CER of the forecasts using the historical average forecast. We

multiply the difference between these CERs by 1,200 such that it is an annualized percentage.

This difference can be interpreted as the annual management fee the investor would be willing

to pay to have access to the network density forecast instead of the historical average forecast.

B.3. Market timing indicators

We construct ten technical indicators following Neely et al. (2014) and Hammerschmid

and Lohre (2018). Specifically, we create the momentum and moving average signals. To

construct the momentum signals, we use the below rule:
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MOMm =

 1 if Pt ≥ Pt−m

0 if Pt < Pt−m

, (B. 7)

where Pt is the index price at time t, and we evaluate this signal for the values of

m = 1, 3, 6, 9, 12 months.

To construct the moving average signal, we take the simple moving average of the S&P

500 index value as:

MAP
j,t =

1

j

j−1∑
i=0

Pt−i for j = s, l, (B. 8)

where s and l are the lengths of the short and long moving averages. We use values of

s = 1, 2, 3 months and l = 9, 12 months. We then compare these moving averages to produce

six indicators as follows:

MAs,l =

 1 if MAP
s,t ≥MAP

l,t

0 if MAP
s,t < MAP

l,t

. (B. 9)
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