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Abstract 23 

Organophosphate esters (OPEs) raise growing environmental and human health 24 

concern globally. However, numerous novel OPEs lack data on physicochemical 25 

properties, which are essential for assessing environmental fate, exposure and risks. 26 

This study predicted water solubility (Sw), vapor pressure (Vp), octanol-water partition 27 

coefficient (Kow) and octanol-air partition coefficient (Koa) at 25 ℃ for 46 novel OPEs 28 

by identifying optimal in silico tools and establishing prediction strategies based on 29 

molecular weights (MWs). Prediction discrepancies between in silico tools increased 30 

with MWs and structural complexity. Method evaluations for compounds with 31 

MWs >450 g/mol suggest that COSMOtherm is advantageous in predicting Sw and Vp 32 

for alkyl-OPEs, while SPARC is better for predicting Vp for aryl- and halogenated-33 

OPEs. For compounds with MWs >500 g/mol, COSMOtherm and SPARC are 34 

recommended for Kow and Koa
 prediction, respectively. For smaller OPEs, average 35 

values from the top three of COSMOtherm, SPARC, EPI Suite and OPERA, ranked by 36 

validation on traditional flame retardants, are recommended. Using improper software 37 

could cause deviations in multimedia distribution and overall persistence in 38 

environment by up to 83% and 350%, respectively. The present data and prediction 39 

strategy are useful to enhance reliability of environmental fate, exposure and risk 40 

assessments of various OPEs and emerging contaminants. 41 



 42 

Synopsis: Key physicochemical parameters are predicted for 46 novel 43 

organophosphate esters lacking experimental data, and a prediction strategy is 44 

established. 45 

Keywords: novel organophosphate esters, physicochemical properties, water 46 

solubility (Sw), octanol-water partition coefficient (Kow), vapor pressure (Vp), octanol-47 

air partition coefficient (Koa), environmental multimedia distribution, overall 48 

persistence. 49 



Introduction 50 

Organophosphate esters (OPEs) are synthetic organic chemicals widely used as 51 

flame retardants (FRs) and plasticizers etc. in a wide variety of sectors such as 52 

construction, textiles, and electronics manufacturing.1, 2 Global production had grown 53 

to one million tonnes by 20183, as they were initially marketed as “environmentally 54 

friendly” replacements of polybrominated diphenyl ethers (PBDEs) flame retardants. 55 

PBDEs have been listed under the Stockholm Convention in 2009 and 2017.3-6 However, 56 

increasing evidence indicates that OPEs also have persistent, bioaccumulative and toxic 57 

(PBT) properties, raising concerns about their status as a “regrettable replacement”.7 58 

Furthermore, recent studies highlight additional risks from OPE environmental 59 

transformation products, which may exhibit higher toxicity than the parent compounds, 60 

as well as novel OPEs (NOPEs) derived from organophosphite antioxidants (OPAs).8-61 

10 Despite this, research on the physicochemical properties of these NOPEs remains 62 

scarce. OPEs are typical semi-volatile organic compounds (SVOCs) with diverse 63 

physicochemical properties.11 Compound physicochemical properties, such as water 64 

solubility (Sw), vapor pressure (Vp) and octanol-water partition coefficient (Kow), are 65 

essential for understanding OPE multimedia distribution and their primary exposure 66 

routes to humans and environmental organisms. 67 

In silico simulation tools have become essential for predicting physicochemical 68 

properties of substances for which experimental data and laboratory measurements are 69 

lacking. COSMOtherm,12 EPI Suite,13, 14 SPARC,14 and OPERA15 etc. are examples of 70 

software tools that have been extensively used for compounds including 71 



polychlorinated biphenyls (PCBs), PBDEs, per- and polyfluoroalkyl substances (PFAS), 72 

and certain OPEs well-studied as FRs (often referred to as “traditional” chemicals).16-73 

22 Each tool exhibits varying performance across different chemicals and properties. 74 

For instance, COSMOtherm has demonstrated superior accuracy in predicting Sw, Vp 75 

for PBDEs and PFAS, and Kow, octanol-air partition coefficient (Koa), air-water 76 

partition coefficient (Kaw) for PCBs and PFAS.16-21 Meanwhile, SPARC has performed 77 

well for Kow and Kaw predictions for brominated flame retardants (BFRs), while 78 

OPERA has exceled at Sw, Kow, and Koa predictions for traditional OPEs.21, 23 EPI Suite 79 

could provide parameter estimates that allow for more accurate calculation of Kaw for 80 

traditional OPEs.17 In a screening study conducted by Zhang et al. (2010) using four 81 

software applications, consistent predictions for bioaccumulation and long-range 82 

transport potential across the four tools were obtained for only 70% of 529 substances 83 

analyzed, highlighting significant variability among the software applications.24 84 

This study aims to identify the optimal in silico tools for predicting Vp, Sw, Kow, 85 

Koa for 46 NOPEs. Uncertainties of chemical multimedia distribution and overall 86 

persistence induced by variability of physicochemical parameters are illustrated by a 87 

well-developed and validated multimedia environmental fate model developed for 88 

China. This work highlights the impact of selecting inappropriate software on chemical 89 

fate predictions, which has rarely been discussed and demonstrated quantitatively 90 

before. The study provides valuable data and insights for researchers conducting either 91 

experimental or modelling research on environmental fate, exposure, and health risks 92 

of OPEs and other chemicals. 93 



Methods 94 

 95 

Figure 1. Flowchart of the workflow. 96 

Figure 1 demonstrates the workflow and method of this study, with details stated as 97 

follows. 98 

Chemical selection and data gathering. 99 

Two groups of chemicals were included in this study: Group (1) consists of 37 100 

traditional FRs for model evaluation, including 18 BFRs and 19 traditional OPEs (5 101 

aryl-organophosphate triesters (tri-OPEs), 7 alkyl-tri-OPEs, 5 halogenated-tri-OPEs 102 



and 2 alkyl-organophosphate diesters (di-OPEs)); and Group (2) comprises 46 NOPEs 103 

without reported experimental data of above physicochemical parameters, including 31 104 

novel tri-OPEs, 4 polyphosphate esters, 8 environmental transformation products of 105 

OPEs and 3 phosphonate esters. The targeted OPE transformation products, except 106 

MDPP and 2,4DtBP (phenol), are di-OPEs. The pairing of OPEs and their 107 

transformation products is shown in Figure S1 in the Supporting Information (SI).  108 

Information of chemicals in Group (2) is given in SI Text S1 and Tables S1-S2. 109 

Most NOPEs are primarily used as flame retardants and plasticizers (Table S2). Some 110 

of them are commercially used as alternatives to traditional organophosphate FRs. For 111 

example, o-CDPP, m-CDPP, P-CDPP (the isomers of CDPP), RDP, IDDPP, BPDPP and 112 

BPA-BDPP are replacements of TPHP while V6 and RDP are the alternatives to TEP, 113 

TCEP and TCIPP.1, 25 Additionally, four NOPEs, i.e. AO168=O, TNPP, TiDeP, 114 

AO626=O2, are oxidation products of OPAs. While AO168=O is used as a processing 115 

stabilizer for polymers in limited quantities, there is no direct industrial application for 116 

the other NOPEs (Table S2).25, 26 Many of the target OPE transformation products also 117 

have direct production for industrial application (Table S2). The three phosphonate 118 

esters (DEEP, mono-PMMMP and di-PMMMP) have been newly identified in 119 

environmental matrices; and meanwhile, mono-PMMMP and di-PMMMP are 120 

transformation products of widely-used commercial organophosphate esters containing 121 

phosphorus-oxygen or phosphorus-sulfur bonds, probably exhibiting high 122 

environmental abundance.27, 28 Some NOPEs have been detected in various 123 

environmental media and wildlife, with concentrations higher or comparable to those 124 



of traditional OPEs.25, 29-32 A few of them have demonstrated high acute or chronic 125 

toxicity to aquatic organisms, such as BPA-BDPP and CDPP.33, 34  126 

The chemical selection in Group (1) has covered the functional groups contained 127 

in the compounds in Group (2) (Table S3) for better representativeness and reasonable 128 

guidance in identification of the optimal model for novel compounds. The molecular 129 

weights (MWs) range from 140 to 959 g/mol, reflecting a broad variation of chemical 130 

structural complexity. The literature-derived data of physicochemical parameters for 131 

the 37 traditional compounds in Group (1) were compiled and further harmonized to 132 

only include more reliable experimental data for better validation of the in silico tools, 133 

given that laboratory measurements may also have uncertainties.35 The selection of 134 

literature-derived experimental data referred to the suggested rules by previous studies, 135 

such as the standardization of experimental methods and reasonable parameter ranges 136 

obtained by specific experimental methods etc (Table S4).35, 36 Subsequently, to ensure 137 

thermodynamic consistency across the dataset, the literature values not originally 138 

measured at 25°C were converted to this temperature using equation S1, thereby 139 

unifying all values to reflect measurements at 25°C.21, 37 If more than one value was 140 

found for individual parameters of each chemical, the average values were taken for the 141 

validation. The detailed method and selected experimental data are given in the SI Text 142 

S2 and Tables S5-S8. 143 

In silico prediction of physicochemical properties and method evaluation. 144 

For all traditional and novel compounds, Sw, VP, Kow, and Koa at 25 ℃ were 145 

predicted using COSMOtherm (BIOVIA COSMOtherm 2021, version 21.0), EPI Suite 146 



(the U.S. EPA’s Estimation Programs Interface Suite, version 4.11), OPERA (OPEn 147 

structure-activity/property relationship application, version 2.9), and SPARC (SPARC 148 

Performs Automated Reasoning in Chemistry).12-15 The modules used in EPI Suite for 149 

each parameter are specified in the SI Text S3, and WATERNT was adopted to predict 150 

the Sw for its better reliability than WSKOW (Table S9). Only OPERA can directly 151 

predict Koa, using a machine learning algorithm based on the weighted k-nearest 152 

neighbor (KNN) model.15 The EPI Suite KOAWIN model can output Koa; however, this 153 

is not a direct calculation but follows the same principle as the other two software 154 

applications. Koa is calculated based on Kaw and Kow as shown in equations 1-2 (Eqs 1-155 

2). H and R represent the Henry’s law constant and the gas constant, respectively. T is 156 

the temperature. 157 

𝐾𝐾𝑎𝑎𝑎𝑎= H
RT

                                     (1) 158 

𝐾𝐾𝑜𝑜𝑜𝑜=𝐾𝐾𝑜𝑜𝑜𝑜 𝐾𝐾𝑎𝑎𝑎𝑎⁄                                 (2) 159 

EPI Suite v4.11 and OPERA are based on the principle of quantitative structure-160 

activity relationship (QSAR) models. QSAR models predict based on mathematical 161 

relationships between chemical structures and their physicochemical properties or 162 

biological activities. These models are trained on existing datasets to develop regression 163 

models that can predict properties of unmeasured compounds. OPERA utilizes a 164 

machine learning model based on weighted k-nearest neighbors (KNN) algorithm, 165 

incorporating molecular descriptors from the Pharmaceutical Data Exploration 166 

Laboratory (PaDEL). Descriptor selection is performed using genetic algorithms, and 167 

OPERA is trained and validated on curated PHYSPROP datasets.15, 38 EPI Suite 168 



primarily relies on fragment and bond contribution methods, which predicts compounds’ 169 

overall properties by summing the properties of chemical fragments.13 COSMOtherm, 170 

on the other hand, is based on the COSMO-RS (conductor-like screening model for real 171 

solvents) theory. This theory simulates surface charge density distribution on molecules 172 

to calculate intermolecular interactions, thereby predicting solubility, stability of 173 

coordination compounds, and other thermodynamic properties. SPARC utilizes 174 

computational algorithms grounded in the fundamental chemical structure theory to 175 

estimate a broad spectrum of physicochemical properties directly from molecular 176 

structure, enabling the prediction across diverse organic compounds and spanning 177 

chemical family boundaries. 178 

The accuracy of each software application is sorted by the root-mean-square error 179 

(RMSE) and mean error (ME) calculated by the experimental values and the predicted 180 

values of physicochemical parameters of the chemicals in Group (1). The calculation 181 

methods of RMSE and ME are described in SI Text S4. Moreover, the applicability 182 

domains (ADs) of the in silico tools were considered to further evaluate the reliability 183 

of predictions, which could provide quantified criteria for identifying the optimal 184 

estimation strategy based on chemical structure and MWs.39, 40 The ADs of the four in 185 

silico tools was introduced in the SI Text S5. Only the two QSAR models in our study 186 

have limited ADs. OPERA provides specific AD values for each substance to evaluate 187 

the prediction reliability, while EPI Suite provides specific training set database with 188 

applicable ranges of chemical MWs, structural fragment limits and measurements of 189 

parameters for individual modules (Tables S25-S27).15, 39, 41-45 Chemicals falling 190 



outside the EPI Suite estimation domain range were marked as “outside AD”, and 191 

considered low reliability (Table S10). Reliability scores were used to unify the 192 

different ADs forms provided by the two software applications (Tables S11-S12, S26-193 

S27).15, 45 COSMOtherm and SPARC have a broader chemical space, especially 194 

COSMOtherm, having an infinite AD.45 It has to be clarified that the evaluation of 195 

predictions by all of RMSE, ME and ADs replies on experimental data, which have 196 

uncertainties due to operation and instrumentation errors, environmental influences or 197 

the systematic error and so on, even if standard laboratory methods are followed. This 198 

affects the prediction validation and probably will introduce uncertainties into our final 199 

estimation strategies. However, best attempts have been made to reduce the uncertainty 200 

in this study, and thus better qualified empirical data is still the best priority for 201 

prediction validation to date. 202 

Uncertainty evaluation. 203 

Precise knowledge of chemical multimedia distribution supports a better 204 

understanding of their environmental exposure routes, while persistence occupies a 205 

principal role in environmental risk assessment frameworks as the first criterion of the 206 

chemical PBT feature under the Stockholm Convention on Persistent Organic 207 

Pollutants.46 Therefore, the SESAMe v3.4 model (Sino Evaluative Simplebox-MAMI 208 

model) was adopted to calculate the chemical multimedia distribution and overall 209 

persistence (POV) of the 46 NOPEs, using different sets of physicochemical parameters 210 

predicted by the four in silico tools. How uncertainties in these parameters affect the 211 

environmental fate of the chemicals was assessed. SESAMe v3.4 is a well-developed 212 



multimedia model having demonstrating good performance on organics with a broad 213 

range of properties, covering air, freshwater and sediment, seawater and sediment, soil 214 

(classified as natural, agricultural, and urban soil), and vegetation (natural and 215 

agricultural vegetation) compartments.10, 47-51 The average values of environmental 216 

variables covering diverse climate zones in China were taken as input to the model for 217 

the simulation. The proportion of land use types included in the model was as follows: 218 

natural soil (80.2%), agricultural soil (17.1%), urban soil (1.7%), and freshwater (1.0%) 219 

(Table S13). The degradation half-lives input to the SESAMe v3.4 model were 220 

estimated by EPI Suite (Table S14). The modules used in EPI Suite for calculating 221 

degradation half-lives are specified in the SI Text S3. Uncertainties in half-life estimate 222 

are present, as (1) some substances are outside the training set of the EPI Suite BIOWIN 223 

and AOPWIN models, mainly used to estimate degradation half-lives in individual 224 

compartments, which reduces the reliability; and (2) the half-lives in soil and sediment 225 

are converted from the estimate for water by 1:2:9 ratio, which is a preliminary 226 

estimation method and also reduces the reliability of the estimation.13 However, this is 227 

among the very few datasets/methods available to us, and will not affect the main 228 

research purpose of the study. 229 

A theoretical emission was applied to all individual target compounds identically 230 

to compare the patterns of their multimedia distribution and POV. The proportion of 231 

emission to air, freshwater, and urban soil (86:11:3) was taken from the study by Chen 232 

et al. (2023), as limited information is available from existing studies.10 The POV is the 233 

average time that a chemical resides in multiple environmental compartments, which 234 



was calculated by the SESAMe v3.4 model based on Eq 3.52, 53  235 

𝑃𝑃𝑂𝑂𝑂𝑂= Mtotal
E

                           (3) 236 

where 𝐸𝐸 and 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represent the emission rate (mol/day) and the total steady-state 237 

amount of a chemical (mol) in the system, respectively.54 238 

Results and discussion 239 

Comprehensive evaluation of software performance. 240 

The collected measured values of traditional FRs range from -1.38 to 3.87 (log 241 

mg/L) for logSw, -6.33 to 2.15 (log Pa) for logVp, -0.65 to 9.97 for logKow, and 6.80 to 242 

14.4 for logKoa. Performance of the four software applications was mainly evaluated by 243 

comparing predictions (Tables S15-S18) with experimental data of the traditional FRs 244 

as stated above (Figures 2 and S2). The RMSE and ME reveal that none of the four 245 

software applications could consistently provide the most accurate estimates for all 246 

physicochemical properties of each substance (Figures 2 and S2). The same conclusion 247 

was also reached by Rodgers et al. (2021).21 Overall, EPI Suite demonstrates better 248 

performance in predicting Vp, with a lower RMSE compared to the other three in silico 249 

tools (Figure 2a, b). COSMOtherm, EPI Suite and OPERA exhibit similar accuracy in 250 

predicting Kow with RMSE values close to 1.13 log units. Additionally, OPERA 251 

provides predictions of Sw and Koa with lower RMSE (0.96, 0.86 log units) and ME 252 

values (-0.10, 0.25 log units) than other in silico tools (Figure 2c, d).  253 

However, the validation of OPERA predictions for Koa of high-MW substances 254 

(e.g., 565 - 959 g/mol) may involve greater uncertainties compared to those for lower-255 

MW substances. The predicted and measured logKoa values of PBDE 209 (MW, 959 256 



g/mol) are 11.7 and 14.4, respectively, indicating a large discrepancy. Meanwhile, for 257 

the other high-MW substance with MWs rapidly increasing from 565 to 723 g/mol, 258 

both precited and measured Koa values fall within an extremely narrow range from 11.7 259 

to 12.0 and from 11.4 to 11.7, respectively (Tables S8 and S18). A similar issue is 260 

observed in predictions for NOPEs. This is unreasonable, indicating failure of accurate 261 

prediction and measurement. High-MW chemicals, with extremely low volatility (log 262 

Koa >12), will have a negligible amount partitioning into the air phase during 263 

equilibrium partitioning experiments, which more likely result in inaccurate 264 

measurement of air concentrations and consequently the Kₒₐ, probably due to proximity 265 

to the instrument’s detection limit. For less volatile chemicals, Kₒₐ is also hardly reliably 266 

measured, as kinetic limitations may inhibit the phase equilibrium being reached.35 For 267 

predictions, only 78% of the high-MW substances are inside the ADs of OPERA for 268 

Koa prediction, which is lower than the percentage of 96% for lower-MW substances 269 

(Table S27). The reliability of predictions decreases for chemicals outside the ADs. 270 

Meanwhile, OPERA gives similar predictions when targeted chemicals have similar 271 

structures. Many high-MW FRs are PBDE congeners with a similar structure, which 272 

may result in the close Kₒₐ predictions. 273 



 274 

Figure 2. Comparison of the in silico estimates and experimental values of the 275 

traditional FRs to evaluate the performance of different in silico tools. The dashed lines 276 

represent the 1:1 agreement; the solid lines show the regressions between the measured 277 

and the simulated data; the shaded areas represent the 95% confidence interval of the 278 

regression. C, E, O and S represent the COSMOtherm, EPI Suite, OPERA and SPARC 279 

model, respectively. RMSE indicates root-mean-square error, ME indicates mean error. 280 

RMSE and ME are in logarithmic units. 281 

More specifically, for individual categories of BFRs, alkyl-OPEs, aryl-OPEs, and 282 

halogenated-OPEs, the four in silico tools show varying uncertainties. COSMOtherm 283 

and OPERA perform significantly better (RMSE, 0.27−2.29 log units) than the other 284 

two software applications (RMSE, 0.36−4.50 log units) in predicting Sw for all 285 

categories (Figure S2a-d). Meanwhile, COSMOtherm also demonstrates the best 286 



performance in predicting Kow of BFRs; and it generally has a strong performance on 287 

Kow for all OPEs. Although it does not rank the top two on most occasions, the 288 

difference from the superior software was minimal. EPI Suite has the best performance 289 

on Vp for all categories, Sw for halogenated-OPEs and Kow for alkyl-OPEs; and it is one 290 

of the top two in silico tools in estimating Sw and Kow of BFRs (inferior to 291 

COSMOtherm) and aryl-OPEs (inferior to OPERA). OPERA exhibits the best accuracy 292 

for predicting Kow for aryl-OPEs and halogenated-OPEs, Koa for alkyl-OPEs and 293 

halogenated-FRs, including BFRs and halogenated-OPEs, and Vp for BFRs. It ranks 294 

second in predicting Kow of alkyl-OPEs (inferior to EPI Suite) and Koa of aryl-OPEs 295 

(inferior to SPARC), but the difference from the top-ranked software is not significant. 296 

SPARC was the best for predicting Koa of aryl-OPEs (Figure S2) and ranked the second 297 

for predicting Vp of OPEs. The rank of software performance based on RMSE is 298 

provided in Table S19. 299 

However, the uncertainty of predictions increases with growing MWs and 300 

structure complexity for all software applications, although to varying extents. As 301 

shown in Figure S2, the predictions exhibit a greater discrepancy from the measurement 302 

for chemicals with higher MWs across nearly all four parameters, which is illustrated 303 

by the increasing deviation of data points from the 1:1 line for higher-MW chemicals. 304 

As the MW or structural complexity of a substance increases, it typically comprises a 305 

greater number of or more intricate structural fragments. A higher percentage of these 306 

substances are outside the ADs or training set of the two QSAR models, compared to 307 

those with lower MWs. Even if they fall within the ADs, they are generally associated 308 



with “Caution advised” or “unreliable” reliability scores (Tables S26 and S27). By 309 

comparing RMSEs, the QSAR model’s predictions for substances outside the training 310 

set have reduced accuracy compared to the substances within the training set (Tables 311 

S28 and S29). For example, the RMSEs of the logVp for substances inside and outside 312 

the training set of the MPBVP module of the EPI Suite model are 0.75 and 1.77 log 313 

units, respectively. This was also observed by Zhang et al. (2016), who reported larger 314 

discrepancies in model estimates for novel FRs with MWs exceeding 800 g/mol, which 315 

were largely attributed to the models’ reliance on training sets composed of lower MW 316 

compounds.55 Wang et al. (2017) also found similar trends when predicting gas-aqueous 317 

partitioning for volatile organic compounds with different number of functional groups 318 

and MWs.56 319 

Estimated physicochemical properties of NOPEs. 320 

Although each in silico tool shows advantages in predicting at least one variable 321 

for traditional FRs, EPI Suite and OPERA presented limitations on NOPEs owing to 322 

their operational principle based on empirical data. Figure 3 shows that when MWs of 323 

tri-OPEs and polyphosphate esters increased from 453 to 705 g/mol, OPERA generates 324 

very narrow ranges from -6.5 to -5.6 (log Pa) for logVp, from -1.52 to 0.53 (log mg/L) 325 

for logSw, and from 4.8 to 7.14 for log Kow, while the predicted logKoa is even stable at 326 

around 11.7. Similarly, the estimation of logVp by EPI Suite ranges only from -5.6 to -327 

4.9 (log Pa). The same phenomenon was observed in a previous study when estimating 328 

logKaw of PFAS by OPERA.18 This is due to the use of the nearest neighbor algorithm 329 

and the lack of experimental data of chemicals with high MWs in the training set. There 330 



is no measurement data used in the training set due to the challenge of accurately 331 

measuring phase distributions when the chemicals predominantly distribute in one 332 

phase. For instance, if a chemical has a Koa value exceeding 1012, its transfer from the 333 

octanol phase to the air phase would become too small to be measured. As a fragment-334 

based model, the bias of EPI Suite increases with the enlarged chemical structural 335 

complexity, due to the aggregate of small errors induced by growing numbers and 336 

complexity of bond fragments.57 Ebert et al. noticed the same phenomenon for Kaw 337 

prediction using EPI Suite HENRYWIN.57 Consequently, these two in silico tools may 338 

face inherent limitations in providing reliable estimates of the four parameters, 339 

especially for the NOPEs with larger MWs and complex structures that fall outside 340 

existing database of the software. 341 



 342 

Figure 3. Predicted values, mean, standard deviation and recommended values of logVp, 343 

logSw, logKow and logKoa for NOPEs. The values in parentheses represent the molecular 344 

weights of the substances. 345 



In contrast, COSMOtherm and SPARC are based on quantum chemical principles 346 

and fundamental chemical structure theory, respectively. Predictions of chemicals with 347 

high MWs using the two approaches show a more reasonable changing pattern.58-60 As 348 

the complexity of the molecular structure increases, both COSMOtherm and SPARC 349 

can better predict significant changes in physicochemical parameters, more accurately 350 

reflecting the large differences between compounds with higher and lower MWs, as has 351 

been observed in previous studies.55 For example, for tri-OPEs and polyphosphate 352 

esters with MWs ranging from 453 to 705 g/mol, the estimates of logVp, logSw, logKow 353 

and logKoa span from -7 to -19 (log Pa), -1.7 to -14.5 (log mg/L), 7.39 to 18.9, and 13.1 354 

to 24.8, respectively, exhibiting considerably larger variations compared to those 355 

predicted by EPI Suite and OPERA (Figure 3 and Tables S20-S23). Therefore, 356 

significant discrepancies in predictions over 3 log units are observed among the four in 357 

silico tools when MWs exceeded 450 g/mol for Sw and Vp, and 500 g/mol for Kow and 358 

Koa. Zhang et al. also found large discrepancies among model predictions with rising 359 

MWs, which could even reach 12 log units for chemicals having MWs >800 g/mol.55 360 

Meanwhile, based on reliability score, it is also found that 450 g/mol and 500 g/mol are 361 

proper thresholds, as a greater number of NOPEs with MWs higher than the two 362 

thresholds fall outside the ADs for individual parameters than NOPEs with MWs lower 363 

than the thresholds. This indicates reduced reliability of the two QSAR models in 364 

prediction for the high-MWs substances. This reflects that making predictions for high-365 

molecular-weight compounds should be done extremely cautiously. However, some 366 

predictions still need to be made—even though they have high uncertainty—to fulfill 367 



the research objectives on these compounds. 368 

In this case, by comprehensively considering the rank obtained by the software 369 

evaluation on traditional FRs, software performance on NOPEs and operational 370 

principles, this study recommends varying optimal in silico tools to predict the four 371 

physicochemical parameters of novel substances with different MWs, using 450 g/mol 372 

and 500 g/mol as thresholds. Given the small difference between the in silico tools when 373 

MWs are below these thresholds, the average value is taken from the top three in silico 374 

tools for all parameters. The software is ranked based on RMSE derived from validation 375 

on traditional FRs (Table S19). For NOPEs with MWs above the thresholds, the first-376 

ranked non-QSAR software is used for individual parameters, considering the reduced 377 

reliability of QSAR models on these high-MW chemicals as discussed above. For 378 

compounds with MWs greater than 450 g/mol, COSMOtherm and SPARC are preferred 379 

for Sw and Vp respectively for all substance categories. For all compounds with MWs 380 

exceeding 500g/mol, COSMOtherm and SPARC are recommended to predict Kow and 381 

Koa, respectively (Table 1). The recommended values of the four physicochemical 382 

parameters for NOPEs are provided in Table S1. However, limited empirical data may 383 

introduce uncertainties into the verification and thus the recommendation, which 384 

requires more experimental data for confirmation or calibration. But the recommended 385 

values have been the most reasonable and reliable based on current available tools and 386 

methods. 387 

Table 1. Recommended software predictions for OPEs with molecular weights 388 

(MWs) >450/500 g/mol. 389 



Compounds 
Sw 

(>450 g/mol) 
Vp 

(>450 g/mol) 
Kow 

(>500 g/mol) 
Koa 

(>500 g/mol) 

Alkyl-OPEs COSMOtherm SPARC COSMOtherm SPARC 

Aryl-OPEs COSMOtherm SPARC COSMOtherm SPARC 

Halogenated-OPEs COSMOtherm SPARC COSMOtherm SPARC 

For all categories, logSw and logVp generally decrease when the number of carbon 390 

atoms increases, with logSw ranging from -13.5 to 5.1 (log mg/L) and logVp from -18.0 391 

to 1.3 (log Pa). In contrast, logKow and logKoa exhibit an increasing trend with growing 392 

carbon atoms, with logKow ranging from 0.4 to 18.9 and logKoa from 5.3 to 22.9 (Figure 393 

3 and Table S1). This suggests that the hydrophobicity of the compounds increases with 394 

the addition of carbon atoms, while the volatility progressively decreases. For 395 

chemicals with the same number of carbon atoms, different functional groups 396 

effectively influence chemical properties. The alkyl-OPEs, having the same number of 397 

carbon atoms as aryl-OPEs, exhibit lower water solubility and higher log Kow than 398 

corresponding aryl-OPEs, indicating stronger lipophilicity. For example, TiDeP and 399 

TDP, as alkyl-OPEs, have a logSw at -7.4 and -10.9 (log mg/L), respectively, and logKow 400 

at 13.9 and 17.2 (Table S1); while T4tBPP and TBPP, as two aryl-OPEs having the same 401 

number of carbon atoms with the above two alkyl-OPEs, present a higher logSw at -4.2 402 

and -2.4 (log mg/L), and lower logKow values at 8.9 and 7.6, respectively (Table S1). 403 

Moreover, an increase in phosphate groups enhances molecular polarity by facilitating 404 

hydrogen bond formation when the number of carbon atoms remains the same, thereby 405 

increasing the water solubility of the chemicals.61 For instance, both as aryl-OPEs 406 



having an identical carbon atom count, RDP possessing an additional phosphate group 407 

than T4tBPP has a greater logSw (-2.8 versus -4.2, log mg/L) and a lower logKow (7.8 408 

versus 8.9) than T4tBPP. Chlorine substituents also play a critical role in enhancing the 409 

water solubility of chemicals by amplifying polar interactions. For example, V6, which 410 

contains six chlorine atoms, shows higher water solubility with a logSw value of 2.2 411 

(log mg/L). In addition to chlorination, oxidation reactions—particularly the addition 412 

of hydroxyl groups—can greatly increase the hydrophilicity of transformation products 413 

compared to their parent tri-OPEs. This rise in polarity is evidenced by higher logSw 414 

values and lower logKow values (Figure S1). A typical example is BCEP, a 415 

transformation product of TCEP, which forms through photooxidation reactions, as 416 

reported by Liu et al (2021).8 BCEP exhibits a lower logKow of 0.64 compared to 1.57 417 

for TCEP (Figure S1), further highlighting how oxidative processes enhance both 418 

solubility and polarity. 419 

Impact of uncertainty in physicochemical parameters on predicting multimedia 420 

distribution. 421 

All four in silico tools provide physicochemical parameters indicating negligible 422 

distribution in the air for all NOPEs under both equilibrium conditions (Figure S3) and 423 

the steady state (Figure 4a). The difference of the two conditions is described in SI Text 424 

S6. However, equilibrium partitioning illustrated by Kow and Kaw in Figure S3 shows 425 

that predictions by COSMOtherm and EPI Suite lead to greater variability in chemical 426 

partitioning between water and solid phases (sediment/soil) at equilibrium than those 427 

from the other software applications. The prediction by SPARC also suggests a 428 



relatively variable partitioning but indicates a greater tendency for substances to 429 

distribute in air compared to the other software applications. In contrast, OPERA 430 

generates the most consistent partitioning of the NOPEs at equilibrium, with slightly 431 

higher partitioning in the water phase compared to other phases (Figure S3). 432 

Steady-state distributions predicted by the SESAMe v3.4 model reveal that, with 433 

the input of recommended physicochemical parameters, despite 86% of emissions 434 

entering the atmosphere, novel tri-OPEs and polyphosphate esters are primarily 435 

distributed in sediments (23−64%) and soils (36−75%), together accounting for over 436 

98% of the total mass remaining in the multimedia system (Figure 4a). As MWs 437 

increase, the distribution shifts, showing an increasing proportion in sediment 438 

compared to soil. Furthermore, V6, a halogenated-polyphosphate ester, shows the 439 

highest percentage in the water compartment (25%) among all polyphosphate esters, as 440 

a result of its highest water solubility and long half-life in water (Figure 4a and Table 441 

S14). 442 



 443 

Figure 4. (a) Multimedia environmental distribution of NOPEs under steady state 444 

predicted by the SESAMe v3.4 model with inputs of recommended physicochemical 445 

parameter values; (b) Overall persistence predicted by the SESAMe v3.4 model, with 446 

input of recommended physicochemical parameter values and predictions by individual 447 

in silico tools. The values in parentheses represent the molecular weights of the 448 

substances. 449 

Novel di-OPEs are generally more hydrophilic than their parent compounds, as 450 

indicated by higher Sw and lower Kow values, causing a greater distribution in the water 451 

compartment (Figure 4a). As a special case, the phenolic transformation product of 452 



AO168=O, i.e., 2,4DtBP, is mainly distributed in the sediment (85%)—the highest 453 

distribution in the sediment compartment of all NOPEs. This is because of its moderate 454 

water solubility (logSw at 1.77, log mg/L) and logKow (5.23), which makes 2,4-DtBP 455 

more likely to partition in the soluble phase of the soil pore water than other NOPEs, 456 

and be transported to freshwater systems by surface land runoff. Meanwhile, 2,4-DtBP 457 

is more easily distributed in the sediment than other novel di-OPEs. The three 458 

phosphonate esters, namely DEEP, mono-PMMMP and di-PMMMP, are primarily 459 

distributed in water and soil compartments, with 67%, 67% and 69% in water, and 31%, 460 

31% and 30% in soil, respectively (Figure 4a). DEEP exhibits a slightly higher 461 

distribution in air (1.2%) compared to other phosphonate esters because of its much 462 

higher logVp and lower logKoa (Figure 4a), while other phosphonate esters and even all 463 

other novel tri-OPEs have a logVp <0 and logKoa >5.5. 464 

Uncertainties are shown in the multimedia distribution simulated by taking the 465 

non-recommended values for physicochemical parameters (i.e. Sw, Vp, and Kow) 466 

provided by the different software applications, compared to those using recommended 467 

values. The most pronounced uncertainties concentrate on soil and sediment 468 

distribution for low-molecular-weight (<360 g/mol) and high-molecular-weight OPEs 469 

(>600 g/mol), reaching up to 83%. COSMOtherm and EPI Suite provide a closer 470 

distribution pattern in sediment (0.5−86%), soil (12−92%), and water (0.1−75%) to that 471 

calculated by the recommended values for chemicals with MWs below 450 g/mol 472 

(Figures 4a and S4a, b). However, when using SPARC, the deviation from using 473 

recommended values is the greatest for the low-molecular-weight chemicals (<360 474 



g/mol) (Figures 4a and S4d). Specifically, adopting SPARC tends to result in a deviation 475 

in water distribution by up to 65% (mono-PMMMP), and in sediment and soil 476 

distribution by 83% and 77%, respectively (MDPP). For chemicals with MWs between 477 

400 and 450 g/mol, OPERA would underestimate the distribution in sediments by up 478 

to 22% and overestimate the distribution in soil by up to 37% (Figures 4a and S4c). For 479 

chemicals with MWs >600 g/mol, particularly AO168=O, AO626=O2, and TNPP, the 480 

physicochemical parameters predicted by single software alone cannot obtain 481 

reasonable multimedia distributions, with the sediment and soil distributions differing 482 

from the recommendations by up to 47%. Furthermore, only using the physicochemical 483 

parameters predicted by recommended software like COSMOtherm or SPARC also 484 

result in significant inaccuracies in multimedia distributions, e.g. the sediment and soil 485 

distribution deviation of TiDeP (MW >500 g/mol) is up to 43%. 486 

Impacts of uncertainty in physicochemical parameters on predicting overall 487 

persistence. 488 

High persistence indicates the potential for prolonged environmental and human 489 

exposure to a substance, which is difficult to control or remove. As indicated above, it 490 

has been suggested as a highly concerned chemical inherent feature on its own. By 491 

inputting the recommended values of physicochemical parameters, T4tBPP, AO168=O, 492 

AO626=O2 and B2,4DtBPP display the highest POV of the tested chemicals, ranging 493 

from ~4−4.6 years, longer than the POV of the other target NOPEs (18 days ~ 1.7 years) 494 

(Figure 4b). This is primarily attributed to their predominant distribution in soil 495 

(60−91%) and sediment (4−40%), accounting for over 95% of the total remaining mass, 496 



and their long half-lives in soil (360 days) and sediment (4.4 years) (Table S14). These 497 

four substances could be classified as “very persistent” (vP) under the EU REACH 498 

criterion, which requires a residence time exceeding 60 days in water, 180 days in soil, 499 

and 540 days in sediment.62  500 

POV of other novel tri-OPEs and polyphosphate esters (from 118 days to 1.7 years) 501 

is less than that of the aforementioned four substances, with MDPP, BEHPP and TDP 502 

exhibiting the lowest POV (<179 days). Under steady state, MDPP is mainly distributed 503 

in soil (91%), with additional 8% in water and 1% in sediment, while both BEHPP and 504 

TDP are predominantly distributed in sediment (64%) and soil (36%). These half-lives 505 

of these three chemicals in the key environmental compartments are the lowest among 506 

all the target compounds (Table S14). It is the reason why they have the lowest POV. 507 

Novel di-OPEs generally have lower POV (61−214 days, except for B2,4DtBPP) than 508 

the selected novel tri-OPEs (Figure 4b). However, most of them (DPHP, MDPP, DEP, 509 

DNBP and BCEP) demonstrate POV 2 to 16 times higher than their precursors (Figure 510 

S5a, c-f). Only B2,4DtBPP and 2,4DtBP are less persistent than their precursor 511 

AO168=O (Figure S5b). The POV of the three phosphonate esters ranges from 18 to 140 512 

days (Figure 4b). 513 

If using only one software tool, COSMOtherm could yield POV estimates closer to 514 

the recommended values for novel tri-OPEs and polyphosphate esters, while SPARC 515 

may overestimate the POV of these substances by up to 3 years (V6) and other two tools 516 

may underestimate the Pov by up to 1.5 years. For novel di-OPEs and phosphonate 517 

esters, the deviations caused by using OPERA and SPARC can exceed 1 year. Overall, 518 



using single software can result in Pov deviations ranging 0−350%, and generates the 519 

highest uncertainty on POV estimates for di-PMMMP, TiDeP, TNPP and V6, with 520 

deviations of 1 to 3 years. The overestimation by SPARC for di-PMMMP is primarily 521 

because it overpredicted the diffusive mass flux from water to sediment and 522 

sedimentation, combined with an underestimation of soil runoff and sediment 523 

resuspension. This increases the mass retained in sediment and soil, consequently, 524 

overall persistence. In contrast, OPERA underestimates TiDeP and TNPP for the 525 

opposite reason. Using single software could result in the largest deviation of retained 526 

mass in soils and sediments at the steady state for V6, compared to other substances, 527 

resulting in the high deviation of POV for V6. 528 

Perspectives. 529 

This research provides the first and most reliable reference values for essential 530 

physicochemical parameters of 46 NOPEs, covering a wide variety of MWs and 531 

structures. These reference values are valuable because the property ranges of the 532 

NOPEs made direct measurement of the physicochemical properties infeasible. The 533 

discussion on impact of uncertainties in physicochemical parameters on predicting 534 

multimedia distribution and POV has revealed potential deviations when using different 535 

software to predict these parameters and highlighted the characteristics of 536 

environmental behavior of these novel compounds. Reliable knowledge of chemical 537 

properties is the premise of accurate understanding of environmental behaviors, 538 

exposure routes and risks of chemicals, as well as efficient management of chemical 539 

use and contamination. This study has filled data gaps and provided solutions regarding 540 



defects of the existing software in predicting physicochemical properties, which could 541 

be further applied to other emerging contaminants. However, it should be noted that the 542 

MW thresholds for prediction were established based on the evaluation of the targeted 543 

FRs and NOPEs in this study. Further evaluation across broader chemical categories 544 

may be needed to validate these thresholds in future work when expanding the strategy 545 

application on other chemicals. 546 

Future research should fully leverage the powerful computational capabilities of 547 

modern computers, particularly machine learning and artificial intelligence 548 

technologies, to further develop methods based on COSMO-RS and fundamental 549 

chemical structure theory.63, 64 By integrating machine learning models with existing 550 

algorithms for molecular surface charge density distribution and molecular structure 551 

deduction, deeper insights can be achieved into the interactions between atoms, 552 

electrons, and functional groups, thereby improving the accuracy of chemical property 553 

predictions. These methods hold even greater potential in cases where prior data is 554 

lacking or for complex structures which are not present in databases. Meanwhile, more 555 

attention should focus on building larger training datasets and developing multi-scale 556 

computational models to more accurately predict the physicochemical properties of 557 

organic compounds with more complex structure under various conditions, thereby 558 

advancing fields such as materials science, chemical engineering, environmental 559 

science and public health etc. As global concerns about chemical safety grow, this study 560 

underscores the critical role of advanced computational tools in filling data gaps and 561 

mitigating the risks associated with emerging contaminants. 562 
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