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Highlights

IDEAL: Interpretable-by-Design ALgorithms for learning from foun-

dation feature spaces

Plamen Angelov∗, Dmitry Kangin∗, Ziyang Zhang

• we define the framework called IDEAL, which transforms a given non-

interpretable latent space into an interpretable one based on proto-

types, derived from the training set without finetuning, and quantify

the performance gap between such model, its finetuned counterpart

and standard DL architectures.

• we demonstrate the benefits of the proposed framework on transfer and

lifelong learning scenarios. Namely, in a fraction of training time and

without finetuning of latent features the proposed models achieve

performance, competitive with standard DL techniques.

• we demonstrate the model’s interpretability on classification and life-

long learning tasks, and show that without finetuning, the resulting

models achieves better performance on confounded CUB data com-

paring to finetuned counterparts (Wah et al. (2011); Bontempelli et al.

(2022))
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Abstract

The advance of foundation models (FM) makes it possible to avoid paramet-

ric tuning for transfer learning, taking advantage of pretrained feature spaces.

In this study, we define a framework called IDEAL (Interpretable-by-design

DEep learning ALgorithms) which tackles the problem of interpretable trans-

fer learning by recasting the standard supervised classification problem into

a function of similarity to a set of prototypes derived from the training data.

This framework generalises previously-known prototypical approaches, such

as ProtoPNet, xDNN and DNC, and decomposes the overall problem into

two inherently connected stages: A) feature extraction (FE), which maps the

raw features of real-world data into a latent space, and B) identification of

representative prototypes and decision making based on similarity and as-

sociation between the query and the prototypes. This addresses the issue

of interpretability (stage B) while retaining the benefits of pretrained deep

learning (DL) models.

On a range of datasets (CIFAR-10, CIFAR-100, CalTech101, STL-10,

Oxford-IIIT Pet, EuroSAT), we demonstrate, through an extensive set of
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experiments, how the choice of the latent space, prototype selection, and

finetuning of the latent space affect accuracy and generalisation of the models

on transfer learning scenarios for different backbones. Building upon this

knowledge, we demonstrate that the proposed framework helps achieve an

advantage over state-of-the-art baselines in class-incremental learning.

The key findings can be summarized as follows: (1) the setting allows in-

terpretability through prototypes, (2) lack of finetuning helps circumvent the

issue of catastrophic forgetting, allowing efficient class-incremental transfer

learning, while mitigating the issue of confounding bias, and (3) ViT architec-

tures narrow the gap between finetuned and non-finetuned models allowing

for transfer learning in a fraction of time without finetuning of the feature

space on a target dataset with iterative supervised methods.

Keywords: foundation models, explainable AI, transfer learning

2000 MSC: 68T10

1. Background

Deep-learning (DL) models can be formulated as deeply embedded func-

tions of functions (Angelov and Gu (2019), Rosenblatt et al. (1962)), opti-

mised through backpropagation (Rumelhart et al. (1986)):

ŷ(x) = fn(. . . (f1(x;θ1) . . .);θn), (1)

where fn(. . . (f1(x;θ1) . . .);θn) is a layered function of the input x, which

has a generic enough, fixed parameterisation θ· to predict desirable outputs

ŷ.

However, this problem statement has the following limitations:
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Figure 1: Difference between (a) a standard deep-learning model, and (b) the proposed

prototype-based approach, IDEAL. Dataset credit: CIFAR-10 (Krizhevsky and Hinton

(2009))

(1) transfer learning typically requires finetuning (Kornblith et al. (2019))

using error back-propagation (EBP) on the target problem and data of in-

terest

(2) such formulation does not depend upon training data, so the contri-

bution of these samples towards the output ŷ is unclear, which hinders in-

terpretability. For the interpretable architectures, such as ProtoPNet (Chen

et al. (2019)), finetuning leads to confounding interpretations (Bontempelli

et al. (2022))

(3) finally, for lifelong learning problems, such finetuning creates obstacles

such as catastrophic forgetting (Parisi et al. (2019))

Emergence of foundation models, aimed at better generalisation and fa-

cilitating transfer learning, allows for mitigating point (1). Studies such as

DINOv2 (Oquab et al. (2023)) demonstrate competitive results for ViT-based

(Dosovitskiy et al. (2020)) architectures on transfer learning tasks on a range

of datasets with linear finetuning. However, these works do not address nei-
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ther interpretability nor lifelong learning. In this work, to jointly address

all three above-mentioned limitations, we propose a generic framework for

prototypical transfer learning called IDEAL (Interpretable-by-design DEep

learning ALgorithms). Through this framework, we extensively study the

benefits and trade-offs of prototypical transfer learning without finetuning

across different architectures and tasks.

Our solution for transfer learning, which generalises xDNN (Angelov and

Soares (2020)) and ProtoPNet (Chen et al. (2019)), can be summarised in

the following form:

ŷ = g(x;θ,P), (2)

where P is a set of prototypes. We consider a more restricted version of

function g(·):

ŷ = g(x;θ{d,h},P) = h(d(x,p;θd)|p∈P;θh), (3)

where d is some form of (dis)similarity function (which can include DL feature

extractors), θd and θh are parameterisations of functions d and h, respec-

tively.

The methods from this research draw from cognitive science and the way

humans learn, namely using examples of previous observations and experi-

ences (Zeithamova et al. (2008)). Prototype-based models have long been

used in different learning systems: k nearest neighbours (Radovanovic et al.

(2010)); decision trees (Nauta et al. (2021)); rule-based systems (Angelov

and Zhou (2008)); case-based reasoning (Kim et al. (2014)); sparse kernel

machines (Tipping (1999)). The advantages of prototype-based models have

been advocated, for example, in Bien and Tibshirani (2011). The first pro-

totypical architecture, learning both distances and prototypes, was proposed
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in Snell et al. (2017) and more recently developed in Chen et al. (2019);

Angelov and Soares (2020) and Wang et al. (2023).

In this paper, we demonstrate the efficiency of the proposed framework: it

is compact, easy to interpret by humans, fast to train and adapt in a lifelong

learning setting and benefits from a latent data space learnt from a generic

dataset transferred to a different, more specific domain.

Specifically, we make the following contributions:

• we define the framework called IDEAL, which transforms a given non-

interpretable latent space into an interpretable one based on proto-

types, derived from the training set without finetuning, and quantify

the performance gap between such model, its finetuned counterpart

and standard DL architectures.

• we demonstrate the benefits of the proposed framework on transfer and

lifelong learning scenarios. Namely, in a fraction of training time and

without finetuning of latent features the proposed models achieve

performance, competitive with standard DL techniques.

• we demonstrate the model’s interpretability on classification and life-

long learning tasks, and show that without finetuning, the resulting

models achieves better performance on confounded CUB data com-

paring to finetuned counterparts (Wah et al. (2011); Bontempelli et al.

(2022))

We apply this generic IDEAL framework to a set of standard DL archi-

tectures such as ViT (Dosovitskiy et al. (2020); Singh et al. (2022)), VGG

(Simonyan and Zisserman (2014)), ResNet (He et al. (2016)) and xDNN
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(Angelov and Soares (2020)) and evaluate the methodology on a range of

well-known datasets such as CIFAR-10, CIFAR-100, CalTech101, EuroSAT,

Oxford-IIIT Pet, and STL-10.

2. Related work

Explainability and interpretability. The ever more complicated DL models

(Krizhevsky et al. (2012); Dosovitskiy et al. (2020)) do not keep pace with

the demands for human understandable interpretability (Rudin (2019)). In-

terpretability of deep neural networks is especially important in a number of

applications: automotive (Kim and Canny (2017)), medical (Ahmad et al.

(2018)), Earth observation (Zhang et al. (2022)) alongside others. Demand

in such models is necessitated by the pursuit of safety (Wei et al. (2022)), as

well as ethical concerns (Peters (2022)). Some of the pioneering approaches

to explaining deep neural networks involve post hoc methods; these include

saliency models such as saliency map visualisation method (Simonyan et al.

(2014)) as well as Grad-CAM (Selvaraju et al. (2017)). However, saliency-

based explanations may be misleading and not represent the causal rela-

tionship between the inputs and outputs (Atrey et al. (2019)), representing

instead the biases of the model (Adebayo et al. (2018)). An alternative line of

research include game-theoretic analysis of feature importance, for instance

through the use of Shapley values (Shapley (1953); Lundberg (2017)). How-

ever, such an approach has limited scalability and requires use of simpler

surrogate models or Shapley values’ approximations to make it tractable for

the large-scale analysis (Covert et al. (2023)).

An arguably better approach is to construct interpretable-by-design (ante
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hoc) models (Rudin (2019)). These models could use different principles such

as (1) interpretable-by-design architectures (Böhle et al. (2022)), which are

designed to provide interpretations at every step of the architecture, as well

as (2) prototype-based models, which perform decision making as a function

of (dis)similarity to existing prototypes (Angelov and Soares (2020)). One

of the limitations of the prototype based methods is that they are often still

based on non-interpretable similarity metrics. This can be considered an

orthogonal open problem which can be addressed by providing interpretable-

by-design DL architectures (Böhle et al. (2022)).

Symbolic and sparse learning machines. The idea of prototype-based ma-

chine learning is closely related to the symbolic methods (Newell et al.

(1959)), and draws upon the case based reasoning (Kim et al. (2014)) and

sparse learning machines (Poggio and Girosi (1998)), which are designed to

learn a linear (with respect to parameters) model, which is (in general, non-

linearly) dependent on a subset of training data samples. At the centre of

many such methods is the kernel trick (Schölkopf et al. (2001)), which in-

volves mapping of training and inference data into a space with different inner

product within a reproducing Hilbert space (Aronszajn (1950)). Such mod-

els include support vector machines (SVMs) for classification (Boser et al.

(1992)) and support vector regression (SVR) models (Smola and Schölkopf

(2004)) for regression, as well as relevance vector machines (RVMs), which

have demonstrated improvements in sparsity (Tipping (2001)).

Prototype-based models. (Snell et al. (2017)) proposed to use a single pro-

totype per class in a few-shot supervised learning scenario. Another study
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by Li et al. (2018) suggested prototype-based learning for interpretable case-

based reasoning. Building upon it, (Chen et al. (2019)) developed ProtoP-

Net model which classifies an image through dissecting it into a number

of patches, which are then compared to prototypes for decision making us-

ing end-to-end supervised training. A more recent model xDNN (Angelov

and Soares (2020)) selects one or multiple prototypes per class through a

non-iterative online procedure which uses data density. In contrast to the

proposed setting, it uses finetuning on a downstream dataset and only uses

weak backbone models such as VGG-16.

Versions of xDNN also define prototypes at the level of segments (Soares

et al. (2021)) and image pixels (Zhang et al. (2022)). The concept of xDNN

was used in the end-to-end prototype-based learning method DNC (Wang

et al. (2023)). In contrast to xDNN and DNC, we consider the lifelong

learning scenario and investigate the properties of models, trained on generic

and not finetuned datasets.

The closest works to this study are prototype-based models ProtoPNet

(Rudin (2019)), DNC (Wang et al. (2023)) and xDNN (Angelov and Soares

(2020)). In fact, the proposed framework generalises these methods as shown

in Section 3.3. These works, however, are focused on end-to-end training and

are not motivated by the challenge of transfer learning.

Large deep-learning classifiers. In contrast to DNC (Wang et al. (2023)) and

ProtoPNet (Chen et al. (2019)), the proposed framework goes beyond the

end-to-end learning concept. Instead, it takes advantage of the feature space

of large classifiers such as ResNet (He et al. (2016)), VGG (Simonyan and

Zisserman (2014)), SWAG-ViT (Singh et al. (2022)), and shows that with
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carefully selected prototypes one can achieve, on a number of datasets, a

performance comparable to end-to-end trained models, in offline and online

(lifelong) learning scenarios with or even without finetuning and end-to-

end learning, thus very fast and computationally efficient, yet interpretable.

Continual learning. Continual learning models solve a number of related

problems (van de Ven et al. (2022)). Task-incremental learning addresses

the problem of incrementally learning known tasks, with the intended task

explicitly input into the algorithm (Ruvolo and Eaton (2013); Li and Hoiem

(2017); Kirkpatrick et al. (2017)). Domain-incremental learning (Wang et al.

(2022a); Lamers et al. (2023)) addresses the problem of learning when the

domain is changing and the algorithm is not informed about these changes.

This includes such issues as concept drift when the input data distribution

is non-stationary (Widmer and Kubat (1996)). Class-incremental learning

(Yan et al. (2021); Wang et al. (2022b)) is a problem of ever expanding num-

ber of classes of data. In this paper, we only focus on this last problem.

However, one can see how the prototype-based approaches could help solve

the other two problems by circumventing catastrophic forgetting (French

(1999)) through incremental update of the prototypes (Baruah and Angelov

(2012)).

Clustering. Critically important for enabling continual learning is to break

the iterative nature of the end-to-end learning and within the proposed con-

cept which offers to employ clustering to determine prototypes. Therefore,

we are using both online (ELM (Baruah and Angelov (2012)), which is an

online version of mean-shift (Comaniciu and Meer (2002))), and offline k-

means (MacQueen et al. (1967)) methods. Although there are a number
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of online clustering methods, e.g. the stochastic Chinese restaurant process

Bayesian non-parametric approach (Aldous et al. (1983)), they usually re-

quire significant amount of time to run and therefore we did not consider

those.

3. Methodology

3.1. Problem statement

Two different definitions of the problem statement are considered: offline

and online (lifelong) learning.

Offline learning. Consider the following optimisation problem:

arg min
P=P(X),
θ{d,h}

∑
(x,y)∈(X,Y)

l(h(d(x,p;θd)|p∈P;θh), y), (4)

where (X,Y) are a tuple of inputs and labels, respectively, and P is a set

of prototypes derived from data X (e.g., by selecting a set of representative

examples or by clustering).

Brute force optimisation for the problem of selecting a set of representa-

tive examples is equivalent to finding a solution of the best-subset selection

problem, which is an NP-hard problem (Natarajan (1995)). While there are

methods for solving such subset selection problems in limited cases such as

sparse linear regression (Bertsimas et al. (2016)), it still remains computa-

tionally inefficient in a general case (polynomial complexity is claimed in Zhu

et al. (2020)) and/or solving it only in a limited (i.e. linear) setting.

The common approach to dealing with such selection problem is to replace

the original optimisation problem (equation (4)) with a surrogate one, where
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the prototypes P are provided by a data distribution (Angelov and Soares

(2020)) or a geometric, e.g. clustering (Wang et al. (2023)) technique. Then,

once the prototypes are selected, the optimisation problem becomes:

arg min
θ{d,h}

∑
(x,y)∈(X,Y)

l(h(d(x,p;θd)|p∈P;θh), y), (5)

where d is a (learnable) (dis)similarity function and h is an aggregation func-

tion, parameterised with θd and θh respectively. As we detail below, the

example of function d could be a Eulidean distance, and h could be a winner-

takes-all or k-nearest-neighbours (kNN) operator.

Online (lifelong) learning. Instead of solving a single objective for a fixed

dataset, the problem is transformed into a series of optimisation problems

for progressively growing set X:

{arg min
θ{d,h}

∑
(x,y)∈(Xn,Yn)

l(h(d(x,p; θd)|p∈Pn ;θh), y)}Nn=1,Xn = Xn−1+{xn},X1 = {x1}.

(6)

Once the prototypes are found, the problem would only require light-weight

optimisation steps as described in Algorithms 1 and 2.
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Algorithm 1: Training and testing (offline)

Data: Training data X = {x1 . . .xN};

Result: Prototype-based classifier c(x;P,θ)

P← FindPrototypes({x1 . . .xN}); // Prototype selection

function FindPrototypes : X→ P

θ ← SelectParameters(X,Y,θ); // SelectParameters is a

solution of Eq. 5

ŶT ← {h(d(x,p;θd)|p∈P;θh)}x∈XT
;

Algorithm 2: Training and testing (online)

Data: Training data X = {x1 . . .xN};

Result: Prototype-based classifier h(d(x,p;θ1)|p∈P;θ2)

P← {};

for {x, y} ∈ X do

ŷ = h(d(x,p;θd)|p∈P;θh);

P← UpdatePrototypes(P,x)); // Prototype update

function UpdatePrototypes : P× X→ P

θ ← UpdateParameters(X,Y,θ); // UpdateParameters is a

solution of Eq. 6

end

3.2. Choice of functions d and h

While we define the framework in generic terms, we limit our analysis

to a special case of Euclidean distance and winner-takes-all function. This

helps focus on quantifying the trade-offs of accuracy, interpretability and

generalisation between the model without finetuning, on one hand, and state-

of-the-art, fully finetuned, models. Although it may be possible to further
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improve the performance by finding better architectural choices, we decided

to focus on the simple parameterisation of the framework with the Euclidean

distance and a winner-takes-all decision making.

Throughout the experiments, we use the negative Euclidean distance be-

tween the feature vectors:

d(x,p; θd) = −ℓ2(ϕ(x; θd), ϕ(p; θd)), (7)

where ϕ is the feature extractor output. For the scenario without finetuning,

θd is frozen: ϕ(·) = ϕ(·; θd), θd = const. The similarities bounded between

(0, 1] could be obtained by, for example, taking the exponential of the similar-

ity function or normalising it. Except from the experiment in Figure 4, where

h is implemented as k-NN, the function h is a winner-takes-all operator:

h(·) = CLASS(argmin
p∈P

d(·,p; θd)) (8)

Note that the lack of finetuning makes the loss function trivial as the model

does not have any free parameters θ{d,h}.

3.3. Difference from the other prototype-based frameworks

Existing prototype-based models, such as ProtoPNet (Chen et al. (2019)),

DNC (Wang et al. (2023)) and xDNN (Angelov and Soares (2020)), focus on

end-to-end training for the purpose of interpretability by design and not on

transfer learning from the existing pretrained models. All of them can also

be considered as specific cases of the presented framework. Neither of these

models are aiming to address transfer learning, in contrast to this paper’s

attention on the trade-offs between finetuned and non-finetuned models.
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xDNN. (Angelov and Soares (2020)) is a special case of our IDEAL formu-

lation with

d(x,p; θd) = −C(ϕ(x; θd), ϕ(p; θd)), (9)

where C is a Cauchy similarity. It optimises the coefficients θd as a part of

its finetuning procedure prior to the model training, and its decision making

is defined according to the winner-takes-all procedure as per Equation 8.

DNC. (Wang et al. (2023)) selects prototypes at every optimisation step us-

ing an online version of Sinkhorn-Knopp clustering algorithm (Cuturi (2013))

and defines l in equation 6 a softmax cross-entropy loss.

ProtoPNet. (Chen et al. (2019)), in contrast to the former two methods,

operates over patches and not the full images:

d(x,p; θd) = max
x̂∈patches(x)

(log(ℓ2(x̂,p) + 1)− log(ℓ2(x̂,p) + ϵ), (10)

where ϵ is a parameter. ProtoPNet also defines a decision making function

h as follows and optimises jointly the prototypes P and the parameters θd,h

using cross-entropy loss:

h(·) = FC




d(·, p1)

d(·, p2)

. . .

d(·, p|P|)


pi∈P,i∈[1,...,|P|]


, (11)

where FC is a fully-connected layer.

3.4. Prototype selection through clustering

Selection of prototypes through many standard methods of clustering,

such as k-means (Steinhaus et al. (1956)), is used by methods such as (Zhang
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et al. (2022)), DNC (Wang et al. (2023)). However, these methods have

one serious limitation: they utilise the averaging of cluster values, so the

prototypes P do not, in general, belong to the original training dataset X. It

is still possible, however, to attribute the prediction to the set of the cluster

members.

The possible options for such prototype selection are summarised be-

low. Standard black-box classifiers do not offer interpretability through pro-

totypes. Prototypes, selected through k-means, are non-interpretable on

their own account as discussed above; however, it is possible to attribute

such similarity to the members of the clusters. Finally, one can select real

prototypes as cluster centroids. This way it is possible to attribute the deci-

sion to a number of real image prototypes ranked by their similarity to the

query image. Such choice between averaged and real centroids can create,

as we show in the experimental section, a trade-off between interpretability

and performance (see Section 5.1).

4. Experiments

Throughout the experimental scenarios, we contrast three settings (see

Figure 2):

A) Standard DL pipeline involving training on generic datasets as well as

finetuning on target (”downstream”) task or data — both with iterative

error backpropagation

B) IDEAL without finetuning: the proposed prototype-based IDEAL

method involving clustering in the latent feature space with subsequent
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Figure 2: Experimental setup. Top: standard DL model; middle: proposed framework

with no finetuning; bottom: proposed framework with finetuning
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decision making process such as using winner-takes-all analysis or k near-

est neighbours as outlined in Algorithms 1 and 2

C) IDEALwith finetuning: Same as B) with the only difference being that

the clustering is performed in a latent feature space which is formed by

finetuning on target data set (from the ”downstream” task) using itera-

tive error backpropagation. Unlike A), setting C) provides interpretable

prototypes

4.1. Experimental setting

Datasets. CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton (2009)), STL-

10 (Coates et al. (2011)), Oxford-IIIT Pet (Parkhi et al. (2012)), EuroSAT

(Helber et al. (2018, 2019)), CalTech101 (Li et al. (2006)).

Feature extractors. We consider a number of feature extractor networks such

asVGG-16 (Simonyan and Zisserman (2014)),ResNet50 (He et al. (2016)),

ResNet101 (He et al. (2016)), ViT-B/16 (Dosovitskiy et al. (2020), hence-

forth referred to as ViT), ViT-L/16 (Dosovitskiy et al. (2020), henceforth

referred to as ViT-L) with or without finetuning; the pre-trained latent

spaces for ViT models were obtained using SWAG methodology (Singh et al.

(2022)); the computations for feature extractors has been conducted using a

single V100 GPU.

Prototype selection techniques. We include the results for such clustering

techniques as k-means, k-means with a nearest data point (referred to as

k-means (nearest)), and two online clustering methods: xDNN (Angelov and

Soares (2020)) and ELM (Baruah and Angelov (2012)). If not stated other-
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wise, we set the reported number of prototypes to 10% of the sample. In the

Appendix, we present detailed analysis with varying number of prototypes.

Baselines. We explore trade-offs between standard deep neural networks,

different architectural choices (averaged prototypes vs real-world examples)

in Section 5.1, and present expanded analysis in Appendix B.

For reproducibility, the full parameterisation is described in Appendix A.

5. Empirical questions

We group the results of our analysis in accordance with a number of

empirical questions. Questions 1 and 2 confirm that the method delivers

competitive results even without finetuning. Building upon this initial

intuition, we develop the key Questions 3, 4 and 5, analysing the perfor-

mance for lifelong learning scenarios and interpretations proposed by IDEAL,

respectively.

Question 1. How does the performance of the IDEAL framework with-

out finetuning compare with the well-known deep learning frameworks?

Section 5.1 and Appendix B show, with a concise summary in Figures 3

and 5, that the gaps between finetuned and non-finetuned IDEAL framework

are consistently much smaller (tens of percent vs a few percentage points) for

vision transformer backbones comparing to ResNets and VGG. Furthermore,

Figure 6 shows that the training time expenditure is more than an order of

magnitude smaller comparing to the finetuning time.

Question 2. To what extent does finetuning of the feature space for the

target problem lead to overfitting?
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In Section 5.2, Figures 8 and 9, we demonstrate the issue of overfitting

on the target spaces by finetuning on CIFAR-10 and testing on CIFAR-100

in both performance and through visualising the feature space. Interestingly,

we also show in Table B.3 of the Appendix that, while the choice of proto-

types greatly influences the performance of the IDEAL framework without

finetuning of the backbone, it does not make any significant impact for the

finetuned models (i.e., does not improve upon random selection).

Question 3 How does the IDEAL framework without finetuning com-

pare in the class-incremental learning setting?

In Section 5.3 we build upon Questions 1 and 2 and demonstrate: the

small gap between pretrained and finetuned ViT models ultimately enables

us to solve class-incremental learning scenarios, improving upon well-known

baseline methods. IDEAL framework without finetuning shows perfor-

mance results on a number of class-incremental learning problems, compara-

ble to task-level finetuning. Notably, in CIFAR-100 benchmark, the proposed

method provides 83.2% and 69.93% on ViT-L and ResNet-101 respectively,

while the state-of-the-art method from (Wang et al. (2022b)) only reports

65.86%.

Question 4 How does the IDEAL framework provide insight and inter-

pretation?

In Section 5.4, we present the analysis of interpretations provided by the

method. In Figures 11, 12 and 13, we demonstrate the qualitative exper-

iments showing the human-readable interpretations provided by the model

for both lifelong learning and offline scenarios.

Question 5. Can models without finetuning bring advantage over the
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finetuned ones in terms of accuracy and help identify misclassifications due

to confounding (i.e., spurious correlations in the input)?

While, admittedly, the model only approaches but does not reach the

same level of accuracy for the same backbone without finetuning in the stan-

dard benchmarks such as CIFAR-10, it delivers a better performance in cases

with confounded data (with spurious correlations in the input). In Section

5.5, Table 1 we demonstrate, building upon the intuition from Question 2,

that finetuning leads to overfitting on confounded data, and leads to con-

founded predictions and interpretations. We also demonstrate that in this

setting, IDEAL without finetuning improves upon F1 score against the

finetuned baseline as well as provides interpretations for wrong predictions

due to the confounding.

5.1. Offline classification

We found that the gap between the finetuned and non-finetuned models

on a range of tasks decreases for the modern, high performance, architectures,

such as ViT (Dosovitskiy et al. (2020)). For CIFAR-10, these findings are

highlighted in Figure 3. While finetuned VGG-16’s accuracy is close to the

one of ViT and other recent models, different prototype selection techniques

without finetuning (the one used in xDNN, k-means clustering, and random

selection) all give accuracy between 60 and 80%. The picture is totally

different for ViT, where k-means prototype selection without finetuning

provides accuracy of 95.59% against finetuned ViT’s own performance of

98.51%.

While the results above report on performance of the k-means clustering

used as a prototype selection technique, the experimental results in Figure 4
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Figure 3: Comparison of the proposed IDEAL framework (without finetuning) on the

CIFAR-10 data set with different prototype selection methods (random, the clustering

used in xDNN (Soares et al. (2021)) and k-means method) vs the baseline DNN
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Figure 5: Results without finetuning for various problems (ViT)
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Figure 6: Comparison of training time expenditure on CIFAR-10 (left) and CIFAR-100

(right) with and without funetuning (ViT)

explore choosing the nearest prototype to k-means cluster centroid for inter-

pretability reasons. Although it is clear (with further evidence presented in

Appendix B) that the performance when selecting the nearest to the k-means

centroids prototypes is lagging slightly behind the direct use of the centroids

(denoted simply as k-means), it is possible to bring this performance closer by

replacing the winner-takes-all decision making approach (Equation (8)) with

the k nearest neighbours method. For this purpose, we utilise the sklearn’s

KNeighborsClassifier function.

The abridged results for classification without finetuning for different

tasks are presented in Figure 5 (one can find a full version for different meth-

ods in Appendix B).

Below, we analyse closer just the results with using ViT as a feature

extractor forming the latent data space. One can see in Figure 7 that: (1)
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Figure 8: tSNE plots for original (top-left) vs finetuned (top-right) features of ViT, k-

means prototypes; original (bottom left) vs finetuned (bottom right), ViT, random proto-

type selection, CIFAR-10
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Figure 9: Comparison between the model performance on CIFAR-100 without finetuning

and finetuning on CIFAR-10 for different prototype selection methods
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without finetuning, on a number of tasks the model shows competitive

performance, and (2) for CIFAR-10 and CIFAR-100, with finetuning of the

backbone, the difference between the standard backbone and the proposed

model is insignificant within the confidence interval. Therefore, for the rest

of the datasets we focus on the experiments without finetuning. In Figure 6,

one can see the comparison of the time expenditure between the finetuned

and non-finetuned model.

We conducted (see Appendix C) a sensitivity analysis experiment by

varying the number of prototypes for CIFAR-10 on ResNet101 backbone by

changing the value k for the k-means method. In Appendix B, we also show

the results with the online clustering method ELM (Baruah and Angelov

(2012)), which does not require the number of clusters to be pre-defined and

instead uses a radius meta-parameter which affects granulation.

5.2. Demonstration of overfitting in the finetuned feature spaces and the pro-

totype selection impact

One clear advantage of transfer learning without finetuning is dramati-

cally lower computational cost reflected in the time expenditure. However,

there is also another advantage. The evidence shows that the finetuned fea-

ture space shows less generalisation. In Figure 8 (with extra comparison in

Appendix D, Figure D.17 for ResNet-101), one can see the comparison of the

tSNE plots between the finetuned and non-finetuned version of the method.

While the finetuned method achieves clear separation on this task, using the

same features to transfer to another task (from CIFAR-10 to CIFAR-100)

leads to sharp decrease in performance (see Figure 9).

While for the finetuned backbone, predictably, the results are not far off
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the standard DL models, they also show no significant difference between

different types of prototype selection, including random (in Figure 7 it has

been demonstrated for CIFAR-10 and CIFAR-100). This can be explained

by the previous discussion of Figures D.17 and 8, which suggests that fine-

tuning gives clear separation of features, so the features of the same class stay

close. For the non-finetuned results, meanwhile, the difference in accuracy

between random and non-random prototype selection is drastic, reaching

around 24% for VGG16. This finding remains consistent for a number of

vision benchmarks. In Figure 5 and Appendix B, one can see that simple

k-means prototype selection in the latent space can significantly improve the

performance; with the increase of the number of prototypes this difference

decreases, but is still present.

5.3. Continual learning

The evidence from the previous sections motivates us to extend the anal-

ysis to continual learning problems. Given a much smaller gap between the

finetuned and non-finetuned ViT models, can the IDEAL framework with-

out finetuning compete with the state-of-the-art class-incremental learning

baselines? It turns out the answer is affirmative. We repeat the setting from

Rebuffi et al. (2017) (Section 4, iCIFAR-100 benchmark) using IDEAL with-

out finetuning the latent space of the ViT-L model. The hyperparameters of

the proposed methods are given in Appendix A. This benchmark gradually

adds the new classes with a class increment of 10, until it reaches 100 classes.

The results, shown in Figure 10a, highlight excellent performance of the pro-

posed method when the number of prototypes is set to 10% of data. As one

can see in Appendix C, even much lower number of prototypes, below 1000 or
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even just 10 per class on average can still lead to competitive results. While

we observe 64.18±0, 0.16, 69.93±0.23%, 82.20±0.23 for ResNet-50, ResNet-

101, and ViT-L respectively, Wang et al. (2022b) reports in its Table 1 for

the best performing method for class-incremental learning, based on ViT ar-

chitecture and contrastive learning, accuracy of just 65.86± 1.24% (with the

size of the buffer 1000), while the original benchmark model iCarl (Rebuffi

et al. (2017)) reaches, according to Wang et al. (2022b), only 50.49± 0.18%.

To demonstrate the consistent performance, we expanded iCIFAR-100

protocol to other datasets, namely class-incremental versions of Caltech101

and CIFAR-10, which we refer to as iCaltech101 and iCIFAR-10. Figure 10

shows robust performance on iCaltech101 and iCIFAR-10. We use the class

increment value of ten (eleven for the last step) and two for iCaltech101 and

iCIFAR-10, respectively. We see that for iCaltech101, the model performance

changes insignificantly when adding the new classes, and all three datasets

demonstrate performance similar to offline classification (see Section 5.1).

5.4. Study of Interpretability

In Figures 11 and 12, we demonstrate the visual interpretability of the

proposed model, through both most similar and most dissimilar prototypes.

In addition, the results could be interpreted linguistically (see Appendix E).

Figure 12 shows a number of quantitative examples for multiple datasets:

Caltech101, STL-10, Oxford-IIIT Pets, all corresponding to the non-finetuned

feature space scenario according to the experimental setup from Appendix

A. We see that on a range of datasets, without any finetuning, the proposed

IDEAL approach provides semantically meaningful interpretations. Further-

more, as there has been no finetuning, the ℓ2 distances are defined in exact
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Figure 11: Interpreting the predictions of the proposed model (k-means (nearest), CIFAR-

10, ViT)

the same feature space and, hence, can be compared like-for-like between

datasets (see Figures 12a-12f).The experiment in Figure 12 provides an ad-

ditional reason to use our approach without finetuning as it demonstrates

that the incorrectly classified data tend to have larger distance to the closest

prototypes than the correctly classified ones. Finally, Figure 13 outlines the

evolution of predictions for the class-incremental learning scenario. For the

sake of demonstration, we used the same setting as the one for the class-

incremental lifelong learning detailed in Appendix A and Section 5.3, taking

CIFAR-10 for class-incremental learning using ViT model with the increment

batch of two classes. We trace the best and the worst matching and select

middle prototypes (according to the ℓ2 metric) through the stages of class-

incremental learning. For the successful predictions, while the best matching

prototypes tend to be constant, the worst matching ones change over time

when the class changes.

29



5.5. Impact of confounding on interpretations

The phenomenon of confounding takes its origin in causal modelling and

is informally described, as per Greenland et al. (1999), as ’a mixing of ef-

fects of extraneous factors (called confounders) with the effects of interest’.

In many real-world scenarios, images contain confounding features, such as

watermarks or naturally occurring spurious correlations (’seagulls always ap-

pear with the sea on the background’). The challenge for the interpretable

models is therefore multi-fold: (1) these models need to be resistant to such

confounders (2) should these confounders interfere with the performance of

the model, the model should highlight them in the interpretations.

To model confounding, we use the experimental setup from Bontempelli

et al. (2022), which involves inpainting training images of three out of five

selected classes of the CUB dataset with geometric figures (squares) which

correlate with, but not caused by, the original data (e.g., every image of the

Crested Auklet class is marked in the training data with a blue square).

In Table 1, we compare the experimental results between the original (Wah

et al. (2011)) and confounded (Bontempelli et al. (2022)) CUB dataset. We

use the same original pre-trained feature spaces as stated in Appendix A.

The finetuned spaces are obtained through finetuning on confounded CUB

data from Bontempelli et al. (2022) for 15 epochs.

The results in Table 1 demonstrate clear advantage of models without

finetuning on the confounded dataset for both k-means and k-means (near-

est), in the case of ViT. Such gap, however, is much narrower for VGG-16

and ResNet-50. It is consistent with the results in Section 5.1 demonstrating

the larger finetuning performance advantage for these models compared with
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the ViT. Furthermore, k-means (nearest) does not show improvements over

finetuning in a k-means (nearest) scenario for VGG-16 and ResNet-50, in a

stark contrast with the ViT results.

We demonstrate the interpretations for the confounding experiment for

the ViT model in Figure 14. While the model without finetuning suc-

cessfully predicts the correct confounded class, Black-footed Albatross,

the finetuned model fails at this scenario and predicts a similar class Sooty

Albatross, which does not contain the confounder mark. On the other

hand, the finetuned model performs similarly or better on the original (not

confounded) data. These results further build upon the hypothesis from

Question 2 and demonstrate that the use of the proposed framework can

help address the phenomenon of confounding.

Figure 15 gives an intuition behind improvements in performance of

the non-finetuned model in a case of the ViT model. It shows that in

the finetuned scenario, confounded training data stands further away from

the testing data which does not contain the confounder mark. In the sce-

nario without finetuning, this does not happen and the training and test-

ing data are matched closer, even in the presence of a confounder. The

Sinkhorn approximation of Wasserstein-2 distance has been implemented us-

ing SamplesLoss(loss=’sinkhorn’, p=2, blur=1e-5) function from the

geomloss python library.

6. Conclusion

Our work shows that interpretable, prototype-based models over the

latent spaces of ViT models without finetuning, learnt on large generic
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datasets, work surprisingly well in a number of scenarios. In an extensive set

of experiments, we find that:

• Contemporary ViT models drastically narrow the gap between the fine-

tuned and non-finetuned models, making it possible to avoid finetuning

altogether and still have competitive results on a number of bench-

marks. To give an example, for VGG-16 backbone, the accuracy dif-

ference between the best-performing finetuned and non-finetuned sce-

narios on CIFAR-10 is 16.61%. The situation is drastically different for

the ViT backbone, where this difference is just 2.94%.

• The findings in the previous paragraph indicate that without finetun-

ing we can circumvent the problem of catastrophic forgetting in class-

incremental learning. If the models can achieve competitive perfor-

mance even without finetuning, one can use this advantage to solve

a number of problems of lifelong learning without iterative updates

and, hence, catastrophic forgetting. The experimental results show the

strong empirical advantage of such approach, allowing to achieve, us-

ing a ViT-L backbone, a lead of 16.34% on a well-known iCIFAR-100

benchmark.

• The IDEAL framework, proposed in this paper, allows for interpreta-

tions through similarities in the latent feature space, which is not only

comparable within one dataset but also between the datasets. We find

that the closest prototypes in case of misclassification tend to be further

away from the input, and using qualitative analysis, we demonstrate

how the IDEAL framework allows to interpret the decision making pro-
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cess in both offline and class-incremental learning scenarios.

• Finetuning results in consistently inferior performance when compared

to non-finetuned models in face of confounding bias. Our initial findings

quantify the margin of feature space overfitting in a simple experiment,

showing that the ViT model without finetuning has 5.63% advan-

tage on CIFAR-100 over the model finetuned on CIFAR-10. We then

build upon this observation to show, quantitatively and qualitatively,

how the models without finetuning outperform the purpose-finetuned

counterparts on confounded data. Notably, the model with ViT back-

bone without finetuning achieves 14.1% lead over the finetuned model

on confounded CUB dataset with prototypes selected using k-means

clustering.

Broader Impact Statement

The IDEAL framework, proposed in this paper, goes beyond the paradigm

of first training and then finetuning complex models to the new tasks, which is

standard for the field, where both these stages of the approach use expensive

GPU compute to improve the model performance. We show that contempo-

rary architectures, trained with extensive datasets, can deliver performance,

comparable to task-level finetuning, in a class-incremental learning setting.

This can deliver profound impact on democratisation of high-performance

machine learning models and implementation on Edge devices, on board of

autonomous vehicles, as well as address important problems of environmen-

tal sustainability by avoiding using much energy to train and finetune new

latent representations, providing instead a way to re-use existing models.
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Furthermore, the proposed framework can help define a benchmark on how

deep-learning latent representations generalise to new tasks.

This approach also naturally extends to task- and potentially, domain-

incremental learning, enabling learning new concepts. It demonstrates that

with large and complex enough latent spaces, relatively simple strategies of

prototype selection, such as clustering, can deliver results comparable with

the state-of-the-art in a fraction of time and compute efforts. Importantly,

unlike most of the state-of-the-art approaches, as described in the Related

work section of this paper, the proposed framework directly provides inter-

pretability in a linguistic and visual form and provides improved resistance

to spurious correlations (confounding bias) in input features.

However, while this study can help advance transparency and trustwor-

thiness of the machine learning models, one needs to duly take into account

considerations of privacy and security risks pertinent to deep-learning fea-

ture spaces and prototype-based learning. In many cases, such as, notably,

for medical applications, there may be a need in preserving privacy of the

prototypes and the training data, as exposing prototypes to the users may

be unethical or illegal (Lucieri et al. (2023)). Deep-learning models’ latent

spaces themselves, as well as data they are trained upon, may be biased or

unfair (Birhane et al. (2023)). Another risk is a potential for adversarial

attacks (Biggio et al. (2013)), affecting either feature space representation or

the distances between prototypes.

34



Limitations

One of the limitations of this study is that it focuses on the final latent

representations and does not analyse the intermediate layers of the common

neural network architectures. Future work should consider addressing this

issue to improve our understanding of models’ inference at a granular level.
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similar

Black-footed A’ross

ℓ2: 39.120

Sooty A’ross

ℓ2: 39.138

Black-footed A’ross

ℓ2: 39.164

✓ −→
”Black-footed

Albatross”

ℓ2: 39.837

Groove-billed Ani

ℓ2: 39.888

Groove-billed Ani

ℓ2: 39.925

Groove-billed Ani

dissimilar

(a) Non-finetuned model interpretation (A’ross de-

notes ’Albatross’)

similar

Sooty Albatross

ℓ2: 39.182

Sooty Albatross

ℓ2: 39.346

Sooty Albatross

ℓ2: 39.436

✗ −→
”Black-footed

Albatross”

ℓ2: 39.802

Groove-billed Ani

ℓ2: 39.834

Crested Auklet

ℓ2: 39.890

Groove-billed Ani

dissimilar

(b) Finetuned model interpretation

Figure 14: Comparing the interpretations of the non-finetuned and finetuned model with

confounding on confounded CUB (Bontempelli et al. (2022)) dataset
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(a) tSNE plot: finetuned model. The

clean testing data from confounded

classes are better aligned with similar

clean classes than with confounded ones

(b) tSNE plot: model without finetuning. The models

show better distribution matching, including for similar

classes such as different species of Albatross. In both

tSNE plots, the density estimation is shown for tSNE

embedded points

(c) Wasserstein-2 distance heatmap (Sinkhorn ap-

proximation): finetuned model, training (vertical)

to testing (horizontal) distance. Black-footed

albatross (testing distribution) is closer to a non-

confounded Sooty albatross training distribution

(d) Wasserstein-2 distance heatmap (Sinkhorn ap-

proximation): model without finetuning. In con-

trast to the finetuned model, the similar classes’ dis-

tributions are close yet closely match between train-

ing and testing classes.

Figure 15: Intuitive explanation behind better performance of non-finetuned model
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Feature space Prototype selection VGG16 ResNet-50 ViT

Confounded data (Bontempelli et al. (2022))

Finetuned N/A, backbone network 73.99± 2.91 70.42± 2.68 69.06± 4.40

Non-finetuned k-means 78.52± 1.31 76.68± 1.63 80.70± 2.26

Finetuned k-means 73.19± 1.43 67.16± 2.25 66.58± 5.81

Non-finetuned k-means (nearest) 64.13± 1.37 67.68± 0.90 82.88± 2.17

Finetuned k-means (nearest) 71.00± 2.92 69.03± 1.19 73.99± 5.19

Original data

Finetuned N/A, backbone network 83.66± 1.16 83.49± 1.22 93.92± 1.31

Non-finetuned k-means 80.01± 1.27 80.10± 1.66 90.67± 1.13

Finetuned k-means 81.98± 1.53 79.38± 2.87 92.85± 1.70

Non-finetuned k-means (nearest) 72.11± 1.62 72.64± 1.87 88.57± 0.96

Finetuned k-means (nearest) 78.90± 2.77 80.05± 2.64 92.80± 1.77

Table 1: F1 score comparison for CUB dataset (Wah et al. (2011)), %, confidence interval

calculated over five runs; all k-means runs are for 10% (15) clusters/prototypes; the better

results within its category are highlighted in bold, taking into account the confidence

interval. While for the original data finetuning has strong performance benefits, non-

finetuned model has an edge over the finetuned one for all architectures; for k-means

(nearest) the non-finetuned model still performs clearly better with ViT architecture than

the finetuned counterpart.
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Böhle, M., Fritz, M., Schiele, B., 2022. B-cos networks: alignment is all we

need for interpretability, in: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 10329–10338.

Bontempelli, A., Teso, S., Tentori, K., Giunchiglia, F., Passerini, A.,

2022. Concept-level debugging of part-prototype networks. arXiv preprint

arXiv:2205.15769 .

Boser, B., Guyon, I., Vapnik, V., 1992. A training algorithm for optimal

margin classifiers, in: Proceedings of the fifth annual workshop on Com-

putational learning theory, pp. 144–152.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K., 2019. This looks

like that: deep learning for interpretable image recognition. Advances in

neural information processing systems 32.

Coates, A., Ng, A., Lee, H., 2011. An analysis of single-layer networks in

unsupervised feature learning, in: Proceedings of the fourteenth interna-

tional conference on artificial intelligence and statistics, JMLR Workshop

and Conference Proceedings. pp. 215–223.

42



Comaniciu, D., Meer, P., 2002. Mean shift: A robust approach toward fea-

ture space analysis. IEEE Transactions on pattern analysis and machine

intelligence 24, 603–619.

Covert, I.C., Kim, C., Lee, S.I., 2023. Learning to estimate shapley values

with vision transformers, in: The Eleventh International Conference on

Learning Representations, 2023.

Cuturi, M., 2013. Sinkhorn distances: Lightspeed computation of optimal

transport. Advances in neural information processing systems 26.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-

terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.,

2020. An image is worth 16x16 words: Transformers for image recognition

at scale. arXiv preprint arXiv:2010.11929 .

French, R., 1999. Catastrophic forgetting in connectionist networks. Trends

in cognitive sciences 3, 128–135.

Greenland, S., Pearl, J., Robins, J.M., 1999. Confounding and collapsibility

in causal inference. Statistical science 14, 29–46.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image

recognition, in: Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778.

Helber, P., Bischke, B., Dengel, A., Borth, D., 2018. Introducing eurosat:

A novel dataset and deep learning benchmark for land use and land cover

classification, in: IGARSS 2018-2018 IEEE International Geoscience and

Remote Sensing Symposium, IEEE. pp. 204–207.

43



Helber, P., Bischke, B., Dengel, A., Borth, D., 2019. Eurosat: A novel

dataset and deep learning benchmark for land use and land cover classi-

fication. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing .

Kim, B., Rudin, C., Shah, J.A., 2014. The bayesian case model: A generative

approach for case-based reasoning and prototype classification. Advances

in neural information processing systems 27.

Kim, J., Canny, J., 2017. Interpretable learning for self-driving cars by

visualizing causal attention, in: Proceedings of the IEEE international

conference on computer vision, pp. 2942–2950.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G.,

Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A.,

et al., 2017. Overcoming catastrophic forgetting in neural networks. Pro-

ceedings of the national academy of sciences 114, 3521–3526.

Kornblith, S., Shlens, J., Le, Q.V., 2019. Do better imagenet models transfer

better?, in: Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pp. 2661–2671.

Krizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from

tiny images. Technical Report 0. University of Toronto. Toronto, Ontario.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification

with deep convolutional neural networks. Advances in Neural Information

Processing Systems 25.

44



Lamers, C., Vidal, R., Belbachir, N., van Stein, N., Bäeck, T., Giampouras,
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Appendix A. Experimental setup

In this work, all the experiments were conducted in PyTorch 2.0.0. The

pre-trained models used in these experiments were obtained from TorchVision

1 while the finetuned models have been obtained from three different sources:

1. Models that come from MMPreTrain 2. Specifically, ResNet50 and

ResNet101 finetuned on the CIFAR-10, and ResNet 50 finetuned on

CIFAR-100.

1https://pytorch.org/vision/main/models.html
2https://github.com/open-mmlab/mmpretrain

50



2. finetuned TorchVision models. finetuning was conducted by continu-

ing the EBP across all network layers. Such models include VGG-

16 and Vision Transformer (ViT) finetuned on CIFAR-10, as well as

ResNet101, VGG-16, and ViT finetuned on CIFAR-100. For ResNet101

and VGG-16 models, we ran the training for 200 epochs, while the Vi-

sion Transformer models were trained for 10 epochs. The Stochastic

Gradient Descent (SGD) optimizer was employed for all models, with

a learning rate of 0.0005 and a momentum value of 0.9.

3. Linearly finetuned TorchVision models. In such case, only the linear

classifier was trained and all the remaining layers of the network were

fixed. For these models, we conducted training for 200 epochs for

ResNet50, ResNet101, and VGG16, and 25 epochs for the ViT models.

We adopted the Stochastic Gradient Descent (SGD) optimizer, with a

learning rate of 0.001 and a momentum parameter set at 0.9.

We utilized k-means clustering and random selection methods, setting

the number of prototypes for each class at 10% of the training data for

the corresponding classes. Besides, we also set it to 12 per class and con-

ducted experiments for ResNet50, ResNet101, and VGG-16 on CIFAR-10

and CIFAR-100 datasets, enabling us to evaluate the impact of varying the

number of prototypes.

For ELM online clustering method, we experimented with varying radius

values for each specific dataset and backbone network. We selected a radius

value that would maintain the number of prototypes within the range of

0-20% of the training data. In the experiments without finetuning on the

CIFAR-10 dataset, we set the radius to 8, 10, 19, and 12 for ResNet50,
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ResNet101, VGG-16, and Vision Transformer (ViT) models respectively. The

radius was adjusted to 8, 11, 19, and 12 for these models when conducting the

same tasks without finetuning on CIFAR-100. For STL10, Oxford-IIIT Pets,

EuroSAT, and CalTech101 datasets, the radius was set to 13 across all ELM

experiments. In contrast, the xDNN model did not require hyper-parameter

settings as it is inherently a parameter-free model.

We performed all experiments for Sections 5.1 and 5.3 of the main paper

5 times and report mean values and standard deviations for our results, with

the exception of the finetuned backbone models where we just performed

finetuning once (or sourced finetuned models as detailed above).

For the class-incremental learning experiments in Section 5.3, we use the

k-means clustering method for prototype selection and set the number of

prototypes to 10% of the training data. Each time we add the incremental

classes, the existing prototypes are unchanged, and the algorithm adds the

prototypes for the new classes to the existing prototypes. All the experiments

were executed 10 times to allow a robust comparison with the benchmark

results.

To ensure a consistent and stable training environment, for every exper-

iment we used a single NVIDIA V100 GPU from a cluster.

Appendix B. Complete experimental results

Tables B.2-B.9 contain extended experimental results for multiple bench-

marks and feature extractors. These results further support the findings of

the main paper.

Table B.2 demonstrates the data behind Figure 3 of the main paper. It
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also highlights the performance of the k-means model on ViT-L latent space,

when the nearest real training data point to the k-means cluster centre is

selected (labelled as k-means (nearest)). One can also see that even with

the small number of selected prototypes, the algorithm delivers competitive

performance without finetuning.

Table B.3 compares different latent spaces and gives the number of free

(optimised) parameters for the scenario of finetuning of the models. With a

small additional number of parameters, which is the number of possible pro-

totypes, one can transform the opaque architectures into ones interpretable

through proximity and similarity to prototypes within the latent space (this

is highlighted in the interpretability column).

Tables B.4-B.9 repeat the same analysis, expanded from Figure 5 of the

main paper for different datasets. The results show remarkable consistency

with the previous conclusions and further back up the claims of generalisation

to different classification tasks.

Appendix C. Sensitivity analysis for the number of prototypes

Figure C.16 further backs up the previous evidence that even with a

small number of prototypes, the accuracy is still high. It shows, however,

that there is a trade-off between the number of prototypes and accuracy. It

also shows, that after a few hundred prototypes per class on CIFAR-10 and

CIFAR-100 tasks, the performance does not increase and may even slightly

decrease, indicating saturation.
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FE method accuracy (%) #prototypes time, s
R
e
sN

e
t
5
0

random 65.55± 1.93 120(0.24%) 85

random 80.40± 0.37 5, 000(10%) 85

ELM 81.17± 0.04 5, 500(11%) 365

xDNN 81.44± 0.33 115(0.23%) 103

k-means 84.12± 0.19 120(0.24%) 201

k-means 86.65± 0.15 5, 000(10%) 1, 138

R
e
sn

e
t
1
0
1

random 78.08± 1.38 120(0.24%) 129

random 87.66± 0.25 5, 000(10%) 129

ELM 88.22± 0.09 7, 154(14.31%) 524

xDNN 88.13± 0.42 118(0.24%) 145

k-means 90.19± 0.15 120(0.24%) 245

k-means 91.50± 0.07 5, 000(10%) 1, 194

V
G
G
-1
6

random 50.13± 2.37 120(0.24%) 95

random 65.06± 0.32 5, 000(10%) 95

ELM 72.31± 0.08 1, 762(3.52%) 215

xDNN 70.03± 0.96 103(0.21%) 132

k-means 74.48± 0.16 120(0.24% 346

k-means 75.94± 0.15 5, 000(10%) 2, 362

V
iT

random 93.23± 0.11 5, 000(10%) 597

ELM 90.61± 0.14 6, 685(13.37%) 889

xDNN 93.59± 0.12 112(0.2%) 606

k-means 95.59± 0.08 5, 000(10%) 925

ViT-L
k-means 96.48± 0.05 5, 000(10%) 4, 375

k-means (nearest) 95.62± 0.07 5, 000(10%) 4, 352

Table B.2: CIFAR-10 classification task comparison for the case of no finetuning of the

feature extractor
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FE method accuracy (%) #parameters #prototypes time, s interp.
R
e
sN

e
t
5
0

ResNet50 95.55 (80.71∗) ∼ 25M (20K) 36, 360 (13, 122∗) ✗

random 94.92± 0.02 ∼ 25M + 50K 120(0.24%) 36, 360 + 24 ✓

random 95.32± 0.09 ∼ 25M + 50K 5, 000(10%) 36, 360 + 24 ✓

xDNN 95.32± 0.12 ∼ 25M + 50K 111(0.22%) 36, 360 + 43 ✓

k-means 94.91± 0.14 ∼ 25M + 50K 120(0.24%) 36, 360 + 208 ✓

k-means 95.50± 0.06 ∼ 25M + 50K 5, 000(10%) 36, 360 + 1, 288 ✓

R
e
sN

e
t
1
0
1

Resnet101 95.58 (84.44∗) ∼ 44M (20K) 36, 360 ✗

random 95.47± 0.06 ∼ 44M + 50K 120(0.24%) 36, 360 + 37 ✓

random 95.51± 0.01 ∼ 44M + 50K 5, 000(10%) 36, 360 + 37 ✓

xDNN 95.50± 0.10 ∼ 44M + 50K 107(0.21%) 36, 360 + 54 ✓

k-means 95.55± 0.03 ∼ 44M + 50K 120(0.24%) 36, 360 + 231 ✓

k-means 95.51± 0.04 ∼ 44M + 50K 5, 000(10%) 36, 360 + 1, 357 ✓

V
G
G
-1
6

VGG-16 92.26 (83.71∗) ∼ 138M (41K) 40, 810 ✗

random 87.48± 0.72 ∼ 138M + 50K 120(0.24%) 40, 810 + 94 ✓

random 90.86± 0.19 ∼ 138M + 50K 5, 000(10%) 40, 810 + 94 ✓

xDNN 91.42± 0.25 ∼ 138M + 50K 102(0.20%) 40, 810 + 123 ✓

k-means 92.24± 0.10 ∼ 138M + 50K 120(0.24%) 40, 810 + 369 ✓

k-means 92.55± 0.16 ∼ 138M + 50K 5, 000(10%) 40, 810 + 2, 408 ✓

V
iT

ViT 98.51 (96.08∗) ∼ 86M (8K) 15, 282 (15, 565∗) ✗

random 98.56± 0.02 ∼ 86M + 50K 5, 000(10%) 15, 282 + 598 ✓

xDNN 98.00± 0.14 ∼ 86M + 50K 117(0.23%) 15, 282 + 607 ✓

k-means 98.53± 0.04 ∼ 86M + 50K 5, 000(10%) 15, 282 + 938 ✓

Table B.3: CIFAR-10 classification task comparison for the case of finetuned models (∗

denotes linear finetuning of the DL model)
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FE method accuracy (%) #prototypes time, s
R
e
sN

e
t
5
0

random 41.66± 0.74 1, 200(2.4%) 82

random 54.37± 0.43 10, 000(20%) 82

ELM 57.94± 0.11 7, 524(15.05%) 129

xDNN 58.25± 0.64 884(1.77%) 98

k-means 62.67± 0.26 1, 200(2.4%) 124

k-means 64.07± 0.37 10, 000(20%) 258

R
e
sN

e
t
1
0
1

random 50.25± 0.71 1, 200(2.4%) 128

random 61.90± 0.41 10, 000(20%) 128

ELM 64.42± 0.12 4, 685(9.37%) 161

xDNN 64.60± 0.39 878(1.76%) 143

k-means 68.59± 0.40 1, 200(2.4%) 170

k-means 70.04± 0.12 10, 000(20%) 310

V
G
G
1
6

random 26.16± 0.24 1, 200(2.4%) 94

random 37.74± 0.48 10, 000(20%) 94

ELM 48.53± 0.05 2, 878(5.76%) 122

xDNN 47.78± 0.41 871 (1.74%) 119

k-means 51.99± 0.24 1, 200(2.4%) 175

k-means 52.55± 0.27 1, 200(2.4%) 437

V
iT

random 72.39± 0.21 10, 000(20%) 604

ELM 69.94± 0.06 8, 828(17.66%) 642

xDNN 76.24± 0.24 830(1.66%) 613

k-means 79.12± 0.28 10, 000(20%) 673

ViT-L
k-means 82.18± 0.14 10, 000(20%) 3, 905

k-means (nearest) 78.75± 0.29 10, 000(20%) 3, 909

Table B.4: CIFAR-100 classification task comparison for the case of no finetuning of the

feature extractor
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FE method accuracy (%) #parameters #prototypes time, s interp.
R
e
sN

e
t
5
0

ResNet50 79.70 (56.39∗) ∼ 25M (205K) 36, 360(13, 003∗) ✗

random 78.94± 0.17 ∼ 25M + 50K 1, 200(2.4%) 36, 360 + 28 ✓

random 79.52± 0.17 ∼ 25M + 50K 10, 000(20%) 36, 360 + 28 ✓

xDNN 79.75± 0.12 ∼ 25M + 50K 859(1.72%) 36, 360 + 45 ✓

k-means 79.84± 0.07 ∼ 25M + 50K 1, 200(2.4%) 36,360+82 ✓

k-means 79.77± 0.07 ∼ 25M + 50K 10, 000(20%) 36,360+219 ✓

R
e
sN

e
t
1
0
1

ResNet50 84.38 (63.18∗) ∼ 44M (205K) 45, 619(18, 955∗) ✗

random 82.26± 0.15 ∼ 44M + 50K 1, 200(2.4%) 45, 619 + 175 ✓

random 80.75± 0.19 ∼ 44M + 50K 10, 000(20%) 45, 619 + 175 ✓

xDNN 81.13± 0.16 ∼ 44M + 50K 831(1.66%) 45, 619 + 191 ✓

k-means 83.03± 0.06 ∼ 44M + 50K 1, 200(2.4%) 45, 619 + 220 ✓

k-means 83.14± 0.19 ∼ 44M + 50K 10, 000(20%) 45, 619 + 439 ✓

V
G
G
-1
6

VGG-16 75.08 (62.74∗) ∼ 138M (410K) 41, 038(17, 098∗) ✗

random 53.83± 0.91 ∼ 138M + 50K 1, 200(2.4%) 41, 038 + 92 ✓

random 64.17± 0.36 ∼ 138M + 50K 10, 000(20%) 41, 038 + 92 ✓

xDNN 72.63± 0.11 ∼ 138M + 50K 907(1.81%) 41, 038 + 120 ✓

k-means 73.83± 0.16 ∼ 138M + 50K 1, 200(2.4%) 41, 038 + 199 ✓

k-means 73.73± 0.23 ∼ 138M + 50K 10, 000(20%) 41, 038 + 460 ✓

V
iT

ViT 90.29(82.79∗) ∼ 86M (77K) 15, 536(15, 423∗) ✗

random 89.90± 0.10 ∼ 86M + 50K 10, 000(20%) 15, 536 + 621 ✓

xDNN 89.17± 0.18 ∼ 86M + 50K 809(1.61%) 15, 536 + 630 ✓

k-means 90.48± 0.05 ∼ 86M + 50K 10, 000(20%) 15, 536 + 695 ✓

Table B.5: CIFAR-100 classification task comparison for the case of finetuned models (∗

denotes linear finetuning of the DL model)
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FE method accuracy (%) #prototypes time, s

V
iT

random 98.55± 0.09 500(10%) 61

ELM 95.27± 0.03 271(5.42%) 63

xDNN 98.63± 0.12 84(1.68%) 62

k-means 99.32± 0.03 500(10%) 65

ViT-L
k-means 99.71± 0.02 500(10%) 377

k-means(nearest) 99.56± 0.05 500(10%) 377

Table B.6: STL10 classification task comparison for the case of no finetuning (linear

finetuning of the ViT gives 98.97%)

FE method accuracy (%) #prototypes time, s

V
iT

random 90.82± 0.53 365(9.92%) 48

ELM 90.85± 0.03 122(3.32%) 49

xDNN 96.30± 0.23 239(6.49%) 49

k-means 94.07± 0.20 365(9.92%) 50

ViT-L
k-means 95.78± 0.19 365(9.92%) 279

k-means (nearest) 94.76± 0.30 740(9.92%) 279

Table B.7: OxfordIIITPets classification task comparison for the case of no finetuning

(linear finetuning of ViT gives 94.41%)
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FE method accuracy (%) #prototypes time, s

V
iT

random 82.67± 0.54 2, 154(9.97%) 266

ELM 83.69± 0.01 528(2.44%) 277

xDNN 85.24± 1.05 102(0.47%) 269

k-means 91.30± 0.16 2, 154(9.97%) 330

ViT-L
k-means 88.93± 0.22 2, 154(9.97%) 1685

k-means(nearest) 83.97± 0.16 2, 154(9.97%) 1685

Table B.8: EuroSAT classification task comparison for the case of no finetuning (linear

finetuning gives 95.17%)

FE method accuracy (%) #prototypes time, s

V
iT

random 89.42± 0.32 649(9.35%) 96

ELM 91.12± 0.07 516(7.43%) 97

xDNN 94.61± 0.94 579(8.34%) 97

k-means 94.46± 0.44 649(9.35%) 99

ViT-L
k-means 96.08± 0.34 649(9.35%) 515

k-means (nearest) 93.74± 0.42 649(9.35%) 517

Table B.9: CalTech101 classification task comparison (linear finetuning gives 96.26%)
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Figure C.16: Accuracy sensitivity to the number of per-class prototypes (k-means,

ResNet101, no finetuning)

Appendix D. Additional results for the demonstration of overfit-

ting

In Figure D.17, we show that the evidence of overfitting presented in the

main text for the ViT backbone also extends to the other models such as

ResNet-101.

Appendix E. Linguistic interpretability of the proposed frame-

work outputs

To back up interpretability claim, we present two additional interpretabil-

ity scenarios complementing the one in Section 5.4 of the main text.

First, we show the symbolic decision rules in Figure E.18. These sym-

bolic rules are created using ViT-L backbone, with the prototypes selected
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Figure D.17: tSNE plots for original (top-left) vs finetuned (top-right) features of

ResNet101, k-means prototypes; original (bottom left) vs finetuned (bottom right),

ResNet101, random prototype selection, CIFAR-10

using the nearest real image to k-means cluster centroids, in a no-finetuning

scenario for OxfordIIITPets dataset.

Second, in Figure E.19 we show how the overall pipeline of the proposed

method can be summarised in interpretable-through-prototypes fashion. We

show the normalised distance obtained through dividing by the sum of dis-

tances to all prototypes. This is to improve the perception and give relative,

bound between 0 and 1, numbers for the prototype images.
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IF

 Q ∼

 OR

 Q ∼

 OR

 Q ∼

 THEN ’Abyssinian’

IF

 Q ∼

 OR

 Q ∼

 OR

 Q ∼

 THEN ’American Bulldog’

Figure E.18: An example of symbolic decision rules (OxfordIIITPets), Q denotes the query

image
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Figure E.19: Interpreting the model predictions (k-means (nearest), 500 clusters per class,

CIFAR-10, ViT)
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