
Reaching Meaningful Diversity with Speciation-Novelty
in Genetic Improvement for Software

Zsolt Németh
School of Computing and
Communications, Lancaster

University
UK

z.nemeth@lancaster.ac.uk

Penn Faulkner Rainford
Department of Computer Science,

University of York
UK

penn.rainford@york.ac.uk

Barry Porter
School of Computing and
Communications, Lancaster

University
UK

b.f.porter@lancaster.ac.uk

Abstract
Genetic Improvement (GI) for software has been used in automated
bug fixing and in automated performance improvement. Automated
improvement has been targeted at multi-context problems, where
one implementation variant might be best at one context, and an-
other might be best at a different context. However, this application
of GI generally requires a fresh improvement process for each new
context, which can be computationally expensive. We propose a
novel application of GI for multi-context problems, in which we
aim for a diverse set of individuals in an initial training run for
one context. We use a phenotypic speciation metric as a diversity
indicator, allowing us to plot a diversity geometry through pro-
gram search space. When a different context is introduced, as a new
optimisation target for GI, we are able to select from one of these
diverse individuals as a close starting point for fine-tuning. With a
hash table implementation as an example to genetically improve,
we show that we can exercise a high degree of control over popula-
tion diversity, and that this diversity can be a useful starting point
for finding individuals in successive alternative contexts.

Keywords
Genetic programming, Genetic improvement, Genetic diversity,
Speciation, Novelty search, Fitness landscape

1 Introduction
Genetic Improvement (GI) for software has been used extensively
in automated bug fixing [22, 23], and more recently in automated
performance improvement [26]. Automated improvement itself
has recently been targeted at multi-context problems, where one
implementation variant might be best at one context, and another
might be best at a different context [27]. However, this application
of GI currently requires a fresh improvement process for each new
context, which can be computationally expensive.

We propose a novel application of GI for multi-context problems,
in which we deliberately aim for a diverse set of individuals in an
initial training run for one context. When a different context is
introduced, as a new optimisation target for GI, we are then able
to select from among these diverse individuals as a close starting
point for fine-tuning. We employ the recently-proposed phenotypic
speciation theory [1] as our diversity indicator, and target our GI
process at a hash table implementation which receives different
collections of keys to store, representing different contexts.

Our approach has similarities with novelty search [6], in which
a search process attempts to avoid local minima by quantifying
the value of individuals by their novelty; in contrast to this, we

use a numerical phenotypic species classifier as a proxy for overall
search space geometry, allowing us to seek particular diversity
distributions across this geometry as our diversity target.

Our specific research questions are:
• To what extent can we control the diversity level of indi-

viduals that a GI process yields?
• How different is a population of individuals that have been

deliberately sought for diversity, to a population of highly-
optimised but different individuals?

• What is the utility of diverse individuals in subsequent GI
processes for new contexts?

Our results demonstrate firstly that we are able to exercise a
surprisingly high degree of control over diversity, allowing us to
change the population’s collective genetic diversity in specific ways
while remaining within the envelope of correct solutions to a given
problem. Second, we show that a species-oriented diversity ap-
proach is able to find more meaningfully diverse individuals than a
mixed starting population of highly-tuned individuals. And third,
we show that in new contexts we are able to specialise from a di-
verse set of individuals more quickly than a fresh execution is able
to, demonstrating the value of deliberately forming populations of
meaningful diversity. In future work we aim to apply these methods
to additional problem domains.

In the remainder of this paper we discuss closely related work
in Sec. 2, then present our approach to species-driven diversity
search in Sec. 3. We present our empirical evaluation in Sec. 4 and
conclude in Sec. 5.

2 Related Work
Our research touches on the topics of fitness landscape navigation;
speciation in GI; and alternative approaches to GI operating specif-
ically on hash functions. We present closely related work across
each of these areas.

The fitness landscape. The concept of fitness landscapewas coined
by Wright [33] as a terrain map with peaks, valleys, and plains.
Wright’s idea is widespread in evolutionary computation scenarios,
e.g. [21, 34]. Petke et al. [22] review case studies of GI fitness land-
scapes in particular and establishes some of their properties. To a
large extent, the shape of the program search space landscapes are
still unknown; furthermore, due to the nature of the case studies
(where each work tends to focus on specific features), these works
reveal facets of the landscape but not a coherent and general view.

In GI, navigating neutral drift and understanding epistasis have
become of prime interest in better covering large search spaces.



Final version appears at GECCO 2025 Author accepted draft version, March 2025

Bruce et al. [4] investigate the frequency of meaningful mutations in
the search space, but since their fitness function is energy consump-
tion, this again yields a generally continuous landscape composed
of plains and gradients. The work by Langdon et al. [17] focusses
on the robustness of code to mutation, and the effects of single
mutation steps, which corresponds to local analysis of a singular
point and its neighbours and provides indirect information about
the full extent of the search space. Haraldsson et al. [13] operate
on a dual landscape, considering both functional (number of test
cases passed), and non-functional (execution time). The landscape
is investigated by random walks of 10 steps and first-order mu-
tants of a limited set of operations, with similar conclusions to [17].
Van Laar [30] presents a systematic analysis of the search space
by random walks and tries to explore the extent of the plateaus.
The experiment is in a code improvement for correctness scenario,
hence changes in fitness are very rare, and both random walks and
search for the edge of a plateau are possible for an extreme number
of steps in a neutral space.

In the context of the above work, this paper demonstrates a novel
way to examine fitness landscapes, though the lens of speciation
diversity, and its effect on convergence towards particular solutions.

Species. The seminal paper by Goldberg et al. [11] introduced
niching by fitness sharing, that conceptually corresponds to species.
Their method requires a distance definition (either in the genotype
or phenotype space), and a sharing function; fitness values of each
individual are adjusted so that individuals close to each other share
their fitness values (and the proportion of sharing decreases by dis-
tance). Thus, the population is subdivided and competition between
distant points in the search space is controlled; and as a side effect,
the diversity was also increased. The explicit definition of species
was first introduced by Cioppa et al. [5] which builds on the above
work. Goldberg et al. [12] further refined their initial concept by an
adaptive niching method. Li et al. [19] took this further, with evolv-
ing parallel sub-populations where species are defined by Euclidean
distance in their genotypes capturing the similarity of individuals,
and a constant delimiter to separate species; species in this model
are therefore clusters of individuals around the best individual. This
approach reveals and addresses the otherwise contradicting elitism
(conserve the fittest) and diversity (conserve the different) that is
in focus of our work. [20] presented an advanced, adaptive version
of species conservation. Dong et al. [7] present a variation of [19]
that after a seeding procedure the produced clusters remain static
and all further genetic interactions are intra-species.

Jelasity et al. [15] built on similar assumptions, i.e. Euclidean dis-
tance between individuals, seeds and the species distance threshold
are defined but their species delimiter is a monotonic decreasing
function that controls the ability to escape from a local optima.
Species act within their radius of attraction on disjoint subdomains
allowing to explore different local optima. The model by Raghuwan-
shi et al. [25] divides the population into males and females and
species are determined by niching around the female individuals
based on Euclidean distance. Similarly to [15], interaction is possi-
ble within the species and merging of species is also allowed if they
converge. Wong et al. [32] try to improve species conservation [19]
not only by keeping species alive, but ensuring a sufficient number

of individuals by a species-specific explosion, so that evolution and
convergence are possible in each species.

As far as we are aware, our use of phenotypic speciation to gain
a search space geometry for diversity-focused search is entirely
novel.

Evolutionary hash functions. The creation of a hash function
by genetic programming has been addressed by Berarducci et al.,
Hussain et al. [3, 14]. Several authors tried to improve hashing using
genetic programming, such as Estebanez et al. [8, 9] to improve the
nonlinearity (avalanche effect) of hashing and Safdari et al. [29]
to minimise collisions. The goal set by Saez et al.[28], applying
evolutionary techniques for designing “ad hoc” hash functions
adapted to real-world dynamic environments is close to ours. All
of these works, however, approach the problem from a genetic
programming aspect, i.e., creating hash functions by evolution as
opposed to our genetic improvement at the source code level.

3 Method
Our research addresses the quest for algorithmic diversity by spe-
ciation, transforming the fitness landscape and applying novelty
search. We use speciation as our guide to differentiate between
diversity at a tokenistic or source-code level and diversity that is
meaningful: that which results in a measurably different behaviour.
In this section we first introduce our base implementation of ge-
netic improvement for source code, then present our approach to
defining, quantifying and controlling meaningful diversity.

3.1 Base GI Implementation
Our GI system uses abstract syntax tree representations of source
code, applying successive rounds of both mutation and crossover
to individuals. The multi-context nature of our research stems from
the emergent software systems field [10] in which a system is likely
to be subjected tomultiple discrete operating environments over the
course of its running time, caused for example by changes in request
patterns, changes to network characteristics, or fluctuations in
available energy. The emergent software systems field examines this
effect at a macro-level of software architecture, selecting different
architectural variants (and sub-architectures) which best suit the
current deployment context.

We examine this area at a micro-level of individual software
components, in which we can produce an implementation variant
of a given component which is better tuned to the current deploy-
ment context. The utility of diversity at this level is evidenced by
the wealth of different search, sorting, scheduling, and caching
algorithms available, to name a few.

We assume that a particular sub-component in a running system
is selected as a candidate for improvement, at which point a func-
tion call trace monitor is temporarily injected into the system at
the interface to this component. This monitor logs every function
call into the component of interest, including its parameter values
and return values. This produces a trace of function calls which
represents the local symptoms of the overall operating context of
the wider system. We can then re-play this trace of function calls to
mutated variants of this component during a GI process, to attempt
to yield an improved variant of the component for this operating



Final version appears at GECCO 2025 Author accepted draft version, March 2025

context. We specifically choose a hash table component as our tar-
get for improvement, which aligns our research with other work in
this area (e.g. [26]).

Our GI framework therefore parses the source code of a given
hash table implementation, and is instructed to focus on the hash
function which controls the distribution of keys among buckets.
The interaction between the hash function logic, and the set of keys
it is being presented with, yields the resulting distribution: the ideal
distribution is generally thought to be a uniform one, such that
for 1,000 keys, with 100 available buckets, the hash function will
cause 10 keys to be placed in each bucket, therefore minimising the
average key retrieval speed. Highly disuniform access patterns of
keys may skew this trait, however, such that highly-accessed keys
benefit from being in buckets with fewer items.

Our GI process uses mutations that can insert newly synthesised
lines of code (such as new variable declarations, new assignments,
or new control-flow constructs such as if-statements); can delete
existing lines of code; and can mutate existing lines of code by
changing operators or operands. The set of available mutation
operations for a chosen mutation point is filtered to those that are
most likely to remain semantically valid, reducing the number of
non-compilable individuals.

Crossover is realised as horizontal (or lateral) gene transfer where
genetic material moves between organisms that are not in parent-
offspring relationship. In this case, parts of the source code, rep-
resented by a token of the abstract syntax tree, are inserted into
the code text (genotype) of another individual. The probability of
mutations and crossovers, the target token and the type of the ge-
netic operations are all selected randomly, using weighted roulette
wheel methods and the associated weights. For the purpose of our
research in this paper, all weights are configured as uniformly as
possible (with the caveat that some mutations are inherently more
semantically viable than others in particular code formulations).

Fitness is evaluated as simple runtime against a function call
trace, such that lower runtime values mean better fitness. Finally, in
the selection phase, the population is divided into those individuals,
that would have offsprings for the next generation, and those that
would be extinct. In the base model, individuals are ranked by their
fitness and then, chosen randomly, weighted by their rank and
performance.

3.2 Quantifying Diversity
GI for software is profoundly different from other GI optimisation
methods. The genotype is the source code itself, whereas its runtime
characteristics, such as what algorithm it realises, how fast it is,
and how much resources it needs form attributes of its phenotype.
Although significantly different source codes (genotypes) can rep-
resent the exact same algorithm (phenotypes), minute changes in
the source code can bring dramatic changes in runtime behaviour.
Specifically, in the realm of GI for software improvement, diver-
sity in genotype does not imply diversity in phenotype (nor does
similarity in genotype imply similarity in phenotype).

To capture meaningful behavioural diversity among source code
candidates, we adopt a recently-proposed phenotypic speciation
classification mechanism, which captures how an implementation
behaves rather than the fine details of how that implementation is

encoded [1]. The grouping of individuals by their ecological niche,
closely corresponds to the concept of speciation, and therefore
our conception of classification somewhat resembles the notion of
ecospecies [31]. Our definition of species divides the phenotype of
an individual into its functional (the algorithm it represents) and
non-functional (how the algorithm is represented) attributes. In-
dividuals are classified according to their functional phenotype in
such a way that the definition is selective (able to detect the smallest
algorithmic changes), characteristic (a fingerprint-like identifica-
tion of individuals of a species), and insensitive to implementation
details while also being easily computable. Thus, individuals are
meaningfully different if they realise different algorithms and not
just variations of the same algorithm.

Particularly, in the case of a hash table of 𝑛 buckets and a hash
function ℎ : S ↦→ {1 . . . 𝑛}, the layout of the table at the end
of the training run, i.e., how many elements each bucket holds,
is characteristic of the hash algorithm. Therefore, the layout is
captured as a vector of relative frequencies of each element

𝑃 (𝑥) = elements in bucket 𝑥
all elements stored in the hash table

. (1)

These vectors are comparable by probability divergence metrics,
and the algorithms are categorised by their distance from the uniform
distribution. (In a strict sense this categorisation cannot identify the
algorithm to the smallest details, such as it is insensitive to different
permutations of the buckets. However, from a behavioural point of
view, these hash functions are identical.) We applied the Kullback-
Leibler [16] divergencemetrics, and the distance of 𝑃 (ℎ(𝑠) = 𝑥) over
{1 . . . 𝑛} from the uniform distribution 𝑄 over {1 . . . 𝑛}, 𝑄 (𝑥) = 1

𝑛
is established as:

𝐷𝐾𝐿 (𝑃 ∥ 𝑄) = log𝑛 +
∑︁

𝑥∈{1...𝑛}
𝑃 (𝑥) log 𝑃 (𝑥) (2)

We define species by one particular functional attribute of the
phenotype: the calculated Kullback-Leibler divergence. Two indi-
viduals are therefore of the same species, and therefore not mean-
ingfully diverse, if their 𝐷𝐾𝐿 values are identical, regardless of their
genotype and other attributes of the phenotype.

3.3 Transforming the fitness landscape
The use of phenotypic species also enables us to redefine the search
space as a geometry of diversity. Conventionally, the fitness land-
scape is imagined in a space spanned by genotype-phenotype coor-
dinates, but considering the lack of correlation between the source
text and the runtime behaviour explained in Section 3.2, the land-
scape would be extremely rugged or even meaningless for the GI of
the source code. The Kullback-Leibler divergence metric determines
the possible range of quantified species within known bounds: from
the uniform distribution 𝐷𝐾𝐿 = 0 to the most uneven distribution,
where all elements of the training set are placed in the same bucket
and leave everything else empty, 𝐷𝐾𝐿 = log𝑛, which is 6.64 for
a hash table of 100 buckets. Since we know the lower and upper
bounds of the numerical range of species, and the fitness values
obviously have these bounds, we can use these ranges as a proxy
to represent the total geometry of the search space.

Figure 1a shows the extent and shape of program search space
when projected using phenotypic speciation, as approximated by



Final version appears at GECCO 2025 Author accepted draft version, March 2025

(a) Geometry of species-fitness space as approximated by individuals. (b) One evolutionary trajectory in the species-fitness landscape.

Figure 1: The species-fitness landscape

2678493 individuals of 965 GI experiments, using a particular trace
of function calls. Here, the species quantifier of individuals is shown
on the x-axis, and the fitness of the individual is plotted on the y-
axis. Vertical lines in this figure represent different versions of the
same algorithm with varying fitness values. Figure 1b depicts the
trajectory of one particular apex individual as it traverses the land-
scape through generations. Meaningful, algorithmic changes, e.g.,
between generations 0 and 5, appear as shifts on the species (x)
axis, whereas oscillations along the fitness (y) axis, e.g. at genera-
tion 25, represent tuning of the same algorithm. This alternative
view of the fitness landscape and its geometry make possible to
conceptualise algorithmic diversity as a measure of the spread of
individuals across the x-axis in the search space, and reason about
evolution in geometric terms.

3.4 Search for Diversity
Selection is a key aspect of all genetic methods: a given strategy is
used to eliminate the least fit individuals, making space for the more
fit ones. This is often combined with a degree of elitism, protecting
the very best 𝑛 individuals from mutation or incoming gene transfer.
Selection generally ranks individuals by their fitness, with the goal
to increase the overall fitness of the population. We refer to this as
a fitness-first strategy.

In contrast to this, we introduce a species-first selection strat-
egy to overcome the contradiction between elitism and diversity
[19]. It prioritises individuals of new species (those that realise a
different algorithm), irrespective of their actual fitness. This some-
what corresponds to the concept of novelty search by [18], that
instead of rewarding performance on an objective, rewards diverg-
ing from prior behaviours. Our phenotypic speciation captures
behavioural difference in a measurable and quantitative way, such
that the species-fitness landscape corresponds to the theoretical
behaviour space. Hence, the proposed species-first selection strat-
egy is a conceptual variation of the novelty algorithm, but with an
entirely different implementation both in measurement of differ-
ence and in selection approach. One can consider the species-first
approach as a breadth first approach as it tries to explore many
variants spanning a significant range of the species spectrum, that
is necessarily followed by a fitness-first (depth-first) search where
the search focuses on a significantly narrower range of species and

driven by fitness. In our approach the species-first selection keeps
the 2 best individuals of each newly spawned species, while the
rest of the population undergoes further mutations and crossovers.
In a population of 50 individuals, 25 pairs of different species can
thus be found by the breadth first method.

All breadth first searches produce a large number of individu-
als with poorer fitness, therefore, at some point a switch in selec-
tion strategy is necessary to optimise towards a specific target. To
quickly eliminate the unpromising individuals and go depth-first
selection at the hot spots for optimum, we introduced a more ag-
gressive version of elitism where not only the best individuals are
protected but also the bottom portion of the population is given no
chance to survive.

4 Evaluation
4.1 Experimental setup
Our experiment conditions are designed around multiple different
function call traces, representing different contexts for a hash table.
Our call traces include those that use key values that are English
words, those that use Polish words, those that use numeric values
for keys, and a set of synthetic function call traces designed to
exercise particular edge cases.

Each experiment uses populations consisting of 50 individuals
and evolution runs for 60 generations. The probability of mutation
is 0.8; weights of insert, delete, and modify mutations are 1/3-1/3,
static; the probability of crossover is 0.2. Elite is composed of 2
individuals, selection weights are calculated by a reciprocal method.
The experiments for side-by-side comparison were repeated 480
times and the results are collated. Our GI framework is made avail-
able for replication [2].

Using this setup, we seek to answer the following three research
questions, as outlined in Sec. 1:

(1) To what extent can we control the diversity level of indi-
viduals that a GI process yields?

(2) How different is a population of individuals that have been
deliberately sought for diversity, to a population of highly-
optimised but different individuals?

(3) What is the utility of diverse individuals in subsequent GI
processes for new contexts?



Final version appears at GECCO 2025 Author accepted draft version, March 2025

(a) Fitness-first selection strategy. (b) 25 generations of species-first, then fitness-first selection strategy.

Figure 2: Histogram of species distribution over time, multiplicative hash, English training set.

(a) Fitness-first selection strategy. (b) 25 generations of species-first, then fitness-first selection strategy.

Figure 3: Distribution of the best fitness values over time, multiplicative hash, English training set.

(a) Fitness-first selection strategy. (b) 25 generations of species-first selection strategy, then fitness-first.

Figure 4: Distribution of the generation of Lowest Common Ancestors (LCAs)



Final version appears at GECCO 2025 Author accepted draft version, March 2025

For question (1), we examine the level of meaningful diversity
that we gain from a species-first selection strategy compared to
a fitness-first strategy. For question (2), we examine the resulting
diversity level compared to an experiment which starts from mixed
populations of highly-tuned individuals. For question (3), we ex-
amine the effect of switching between different contexts after an
initial species-first period.

4.2 Results
Question 1. We first conduct a baseline experiment where the

training set for our function call trace is 1,000 English words used
as keys. We first use a fitness-first selection strategy by itself, then
compare this with a species-first selection strategy up to generation
25 followed by a fitness-first selection strategy. To answer research
question (1) we observed the overall species diversity and its effect
on non-functional attributes.

Figure 2 compares the temporal distribution of species for the
two experiments across generations. The graphs are histograms
represented as heat-maps: they present the occurrence counts of
species in a given range, quantised into 220 bins, i.e. each bin spans
0.03 of the entire species range of 0 . . . 6.64. Quantities are mapped
to colours on a logarithmic scale to emphasise the minor differences
at the lower end, thus giving a quick qualitative evaluation.

In Figure 2a we see a starting point of a single individual at
species 𝐷𝐾𝐿 = 3.07. After a brief surge of this species, it becomes
marginalised, while other species in the 0 . . . 1 range dominate, most
typically around ~0.1 . . . 0.2. From one starting point, the mass of
species gradually moves to a range covering a lower fifth of all
possible species. This is in alignment with the landscape geometry
in Figure 1 that suggests that better runtimes for this training set
are to be found at species in the lower region. Abrupt fluctuations
in the mass of species, i.e. thin green/yellow lines among darker
green/blue stripes illustrate the nature of genetic evolution: some
species are more easy to reach by mutation and crossover than
others. We note that the species with 𝐷𝐾𝐿 = 6.64 is one of the most
easily reachable species, as it represents the case where all elements
of the training set are put into the same bucket. This can happen
in many ways, making it a common occurrence: by inserting an
assignment of a constant; by deleting the core of the inner loop;
by altering an operation so that it results in constant values, etc.
While individuals of this species are functionally correct, they are
tremendously inefficient, with little chance to survive.

Figure 2b shows the same experiment where we instead use
our species-first selection strategy for 25 generations to attempt
to maximise meaningful diversity. As can be seen, until g. 25, the
cover of the species dimension improves significantly, giving a good
probability (on average) of having individuals in the ~0 . . . 3.5 range.
For the upper half, the presence of individuals is less prominent, yet
the overall cover of this range is much denser than in the fitness-
first experiment. In detail, over 90% of histogram bins contain at
least 1 element, with 65% containing at least 10, compared with
at most 50% of bins are non-empty and 20% having more than 10
elements in the fitness-first result. After g. 26, when we switch to a
fitness-first selection approach, the mass of the individuals shifts
toward the spot of the optimum in the ~0.1 . . . 0.2 area.

Next, we check how our controlled diversity can be traced in
other metrics. Figure 3 compares the distribution of fitness for the
fittest individuals in successive generations, the lower and upper
half of the boxes represent Q2 and Q3, and the line between is the
median. The experiment in Figure 3a starts with a single individual
of fitness ~105000𝜇𝑠 . The median fitness of the best individuals
drops shortly to ~30000𝜇𝑠 while the overall range of the best fit-
ness values increases from ~22000𝜇𝑠 to ~50000𝜇𝑠 . Then this range
narrows as evolution improves the running times (note that all
individuals are the best of their generation, hence they cannot
be extinct by selection.) Eventually, the best fitness stabilises at
~25000𝜇𝑠 around g. 20.

In Figure 3b fitness initially drops to ~40000𝜇𝑠 as in Figure 3a but
then the convergence stalls: the selection prioritises new species
instead of better fitness. At generation 25 the selection switches
to the fitness-first strategy and the best fitness is stabilised at the
same level as in the previous experiment. Thus, there is no differ-
ence in the overall improvement in fitness. However note, that the
convergence speed is different, such that the more diverse starting
point yields a somewhat shorter, 10 generation convergence time.

Figure 4 compares the effect of selection strategies on the Lowest
Common Ancestors (LCAs) that characterises specialisation. The
LCA for a group of individuals 𝑔 is another individual 𝐿𝐶𝐴(𝑔)
higher up in the ancestry tree, so that all members of the group 𝑔
are descendants of the LCA and no other common ancestors can be
found among the descendants of LCA. Specialisation in this context
means a common genetic history of a group of individuals from
the root of the ancestry tree to the LCA. LCA is also a measure of
similarity in genotypes; LCAs earlier in the ancestry tree suggest
that individuals in 𝑔 are more dissimilar (their common genetic
history is short), while later LCAs mean that the genetic split in the
phylogenetic history is more recent, and thus the individuals of𝑔 are
more similar (they have more common genetic history). [27] argue
that highly specialised individuals, that have a longer evolutionary
history, are less capable to adapt to changing environments than
those higher up in the ancestry tree.

In Figure 4 we present the statistical distribution of the gen-
eration of LCAs of an entire generation. For example, the box in
Figure 4a, g. 59 shows that the LCA for individuals in the last gen-
eration is in or higher than g. 14 in half of the cases; g. 10 shows
that LCA for this generation is in g. 0 in all cases, there is no spe-
cialisation at all until g. 11; in other words, the population of these
individuals have at least two distinct evolutionary paths spawned
at the root.

It is clearly visible in Figure 4b that the species-first selection
strategy defers the start of specialisation, such that all generations
until g. 30 have their LCAs in g. 0. This validates our expectations,
as the search for novel algorithms suggests substantial differences
in their implementation, hence their genotypes are expected to be
more different indicated by the highest possible LCA (the root). In
other words, at the moment of context change in the environment,
i.e., g. 25, the population was measurably more diverse than in
case of an fitness-first strategy. Also, the median generation of
the LCA for the apex generation (g. 59) is g. 14 (and in half of
the cases the LCA is between g. 6 and g. 24) for the fitness-first
strategy in Figure 4a; and g. 30 (in half of the experiments the LCA
is between g. 20 and g. 39) for the species-first strategy in Figure 4b.



Final version appears at GECCO 2025 Author accepted draft version, March 2025

Figure 5: Distribution of the best fitness values over time
with fitness-first selection strategy, started from a population
composed of 6 different hash algorithms.

This suggests that individuals of the apex generation are better
specialised (have longer common genetic history) in case of the
species-first selection. Increased diversity and better specialisation
suggests a more certain path close to the optimum.

The first round of experiments answer question (1) and con-
firmed that (i) it is possible to control algorithmic diversity by
speciation and species-first strategies (ii) the controlled diversity
results in a better coverage of the species dimension, and (iii) it
has positive effects on the convergence time and on the overall
specialisation.

Question 2. Next, to answer question (2) we compare our results
to an experiment, where six different, well-known hash algorithms
form the initial generation (such as Kernighan-Ritchie, Bernstein,
Fowler-Noll-Vo, etc.). Figure 5 illustrates the distribution of the best
running times of collated experiments for this condition, showing
that running times stay within a tight group despite the apparently
diverse starting set. We compare this with two of our earlier con-
ditions in which we start from a population formed of identical
individuals of a single hash function implementation: one condition
in which we use only a fitness-first configuration, and the other in
which we start from species-first and transition to fitness-first.

In the single-individual fitness-first condition, shown in Fig-
ure 3a, we see a much broader range of fitness values for the first
few generations, followed by a sharp reduction in this range as the
GI process specialises its individuals. In the mixed population case,
albeit there is improvement over time, some of the individuals are
already close to the optimum, whereas in case of our single algo-
rithm fitness-first condition quite a few generations are necessary
to reach this specialised stage.

Our single-individual species-first condition, shown in Figure 3b,
maintains a broad fitness range for the whole of its 25 generations
in the species-first configuration. Following this point, from a set of
diverse individuals, it reaches a specialised population very quickly.

This comparison answers question (2), and confirms that from
a single individual the species-first strategy can create a meaning-
fully diverse population similarly to an inherently mixed starting
population.

Question 3. The same experiments were repeated, this time with
a simulated context switch in order to see the effect of increased
diversity in a changing environment. Experiments were started
with the same training set of 1,000-word English keys used earlier,
subsequently switching to a numeric data set of 1,000 EEG sam-
ples at g. 25. As before, one set of experiments uses a fitness-first
selection strategy from the start, while the other uses species-first
strategy up to g. 25 and then fitness-first.

Figures 6a and 6b compare the effect of selection strategies on
the diversity. As in the previous case, the species-first strategy
gives a significantly better coverage of the species range, over 90%
vs 52% for non-empty bins and 65% vs 22% for bins with at least
10 elements. The convergence times are also improved from ~22
generations of pure numeric training to ~3 generations when the
population was pre-trained with English text and species-first strat-
egy the context switch in g.25 (graph not shown.) The prolonged
stall of specialisation and the eventual stronger specialisation are
also present in the LCA data of the pre-trained population (graph
not shown, qualitatively similar to Figure 4.)

The speciation-based diversity search enables an effective control
of meaningful diversity, and increased diversity plausibly improves
the ability to navigate the fitness landscape even if context switches
occur. The convergence time is improved by pre-training, compared
to a population without pre-training. However, there is no measur-
able effect of selection strategies on the convergence times if the
evolutions of two pre-trained populations are compared. Figure 7
shows the distribution of best runtimes in each generation, and
their convergence to the optimum with fitness-first (Figure 7a) and
species-first (Figure7b) selection, respectively. There is no difference
in the optimum, and the convergence time in case of species-first
selection is slightly worse.

The reason we do not see an improvement in this metric is in the
simplistic nature of a hash function and its fitness landscape: instead
of crisp point of optimum, it has a large area of nearly equally-good
fitness across contexts. Hence, reaching a quasi-optimum (close to
the optimum) point with one training set also results in a quasi-
optimum point for another training set, irrespective of the selection
strategy. For example, in Figure 6b the most frequent species just
before the context switch in g. 25 are ~0.2 . . . 0.3, ~0.6, ~1, ~1.4,
~1.9, ~3.1, ~3.3, whereas the most frequent species at the end of
the numeric training in g. 59 are ~0.25 . . . 0.35, 0.4, 0.6. In case of
fitness-first selection in Figure 6a, the most frequent species at the
end of g. 25 are in 0.2 . . . 0.3: the frequent species found by the
fitness-first strategy are a subset of the results of the species-first
selection. Since the eventual optimum range is close to ~0.2 . . . 03,
and it was found by both fitness-first and species-first selection
there is little difference in convergence times.

The answer to question (3) is therefore mixed. We can clearly
observe the increased diversity, shorter convergence time, and post-
poned specialisation; in this aspect, the answer is positive. However,
we cannot prove that the shorter convergence time is a consequence
of the species-first selection, as similar convergence times were
recorded in experiments with entirely fitness-first selection. In fu-
ture work we will examine more complex application domains to
revisit this question in particular.



Final version appears at GECCO 2025 Author accepted draft version, March 2025

(a) Fitness-first selection strategy all along. (b) Species-first selection until g. 25, then switch to fitness-first.

Figure 6: Histogram of the species. Context switch in g. 25, the English training set replaced to a numeric one.

(a) Fitness-first selection strategy. (b) Species-first selection until g. 25, then switch to fitness-first.

Figure 7: Distribution of the best fitness values over time. Context switch at g. 25, the English training set replaced to a numeric
one.

5 Conclusion
Software systems are often exposed to diverse deployment environ-
ment conditions across their operational lifetime; in these scenarios
it tends to be the case that different sub-component implementa-
tions are better suited to those different conditions [24]. In this
paper we have used GI to derive new implementation variants
which are better optimised for particular conditions.

Diversity is a key metric in such scenarios, either when the start-
ing point is a single code variant (single genotype) and a population
of various capabilities must be built up in a controlled way; or
when distant points of the fitness landscape must be explored si-
multaneously; or in a changing environment, a non-homogeneous
population has better chance to contain individuals that are best
suited to adapt to the new conditions. In particular, we address the
diversity aspect of genetic improvement: whether diversity can be
quantitatively captured and controlled. This challenge is non-trivial
in GI for source code, as meaningful, algorithmic diversity cannot

be established from static code analysis; rather, behaviour analysis
is necessary at runtime.

We established a method constituted of a phenotypic speciation
that captures and characterises algorithmic differences indepen-
dently from the source code; a transformation of the potentially
infinite, extremely rugged search space into a bounded and geo-
metrically conceivable fitness-species landscape; and a species-first
selection strategy that counteracts the effect of elitism and pri-
oritises behavioural difference to optimise to a specific objective.
Empirical evaluation has shown that our approach is able to con-
trol the meaningful (phenotypic, algorithmic) diversity and thus,
control convergence time and specialisation. It was shown that our
method can create diversity comparable to inherently mixed popu-
lations. The effect of increased diversity on the overall evolutionary
process is demonstrated by lower convergence times compared to
a GI run which had started from a single individual; in future we
will further validate our work in other scenarios.



Final version appears at GECCO 2025 Author accepted draft version, March 2025

Acknowledgments
This work was supported by the Leverhulme Trust Research Grant
‘Genetic Improvement for Emergent Software’, RPG-2022-109.

References
[1] Anonymous. 2024. Undisclosed Title (Artificial Life Conference Proceedings,

Vol. ALIFE 2024: Proceedings of the 2024 Artificial Life Conference).
[2] Anonymous. 2025. Addendum to "Reaching Meaningful Diversity with

Speciation-Novelty in Genetic Improvement for Software". https://doi.org/
10.5281/zenodo.14771561

[3] Patrick Berarducci, Demetrius Jordan, David Martin, and Jennifer Seitzer. 2004.
GEVOSH: Using Grammatical Evolution to Generate Hashing Functions. In
GECCO 2004 Workshop Proceedings, R. Poli, S. Cagnoni, M. Keijzer, E. Costa,
F. Pereira, G. Raidl, S. C. Upton, D. Goldberg, H. Lipson, E. de Jong, J. Koza,
H. Suzuki, H. Sawai, I. Parmee, M. Pelikan, K. Sastry, D. Thierens, W. Stolzmann,
P. L. Lanzi, S. W. Wilson, M. O’Neill, C. Ryan, T. Yu, J. F. Miller, I. Garibay,
G. Holifield, A. S.Wu, T. Riopka, M. M. Meysenburg, A.W.Wright, N. Richter, J. H.
Moore, M. D. Ritchie, L. Davis, R. Roy, and M. Jakiela (Eds.). Seattle, Washington,
USA. http://gpbib.cs.ucl.ac.uk/gecco2004/WUGW001.pdf

[4] Bobby R Bruce, Justyna Petke, Mark Harman, and Earl T Barr. 2019. Approximate
oracles and synergy in software energy search spaces. IEEE Transactions on
Software Engineering 45, 11 (2019), 1150–1169.

[5] Antonio Della Cioppa, Claudio De Stefano, and Angelo Marcelli. 2007. Where
Are the Niches? Dynamic Fitness Sharing. IEEE Transactions on Evolutionary
Computation 11, 4 (2007), 453–465. https://doi.org/10.1109/TEVC.2006.882433

[6] Stephane Doncieux, Alban Laflaquière, and Alexandre Coninx. 2019. Novelty
search: a theoretical perspective. In Proceedings of the Genetic and Evolutionary
Computation Conference (Prague, Czech Republic) (GECCO ’19). Association for
Computing Machinery, New York, NY, USA, 99–106.

[7] Na Dong, Chun-Ho Wu, Wai-Hung Ip, Zeng-Qiang Chen, Ching-Yuen Chan,
and Kai-Leung Yung. 2011. An improved species based genetic algorithm and its
application in multiple template matching for embroidered pattern inspection.
Expert Systems with Applications 38, 12 (2011), 15172–15182. https://doi.org/10.
1016/j.eswa.2011.05.085

[8] César Estébanez, Julio César Hernández-Castro, Arturo Ribagorda, and Pedro
Isasi. 2006. Evolving Hash Functions by Means of Genetic Programming. In
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
(Seattle, Washington, USA) (GECCO ’06). Association for Computing Machinery,
New York, NY, USA, 1861–1862. https://doi.org/10.1145/1143997.1144300

[9] César Estébanez, Yago Saez, Gustavo Recio, and Pedro Isasi. 2014.
AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNC-
TIONS USING GENETIC PROGRAMMING. Computational Intel-
ligence 30, 4 (2014), 798–831. https://doi.org/10.1111/coin.12033
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12033

[10] Roberto Rodrigues Filho and Barry Porter. 2017. Defining Emergent Software
Using Continuous Self-Assembly, Perception, and Learning. ACM Trans. Auton.
Adapt. Syst. 12, 3, Article 16 (Sept. 2017), 25 pages. https://doi.org/10.1145/
3092691

[11] David E. Goldberg and Jon T. Richardson. 1987. Genetic Algorithms with Sharing
for Multimodalfunction Optimization. In Proceedings of the 2nd International
Conference on Genetic Algorithms, Cambridge, MA, USA, July 1987, John J. Grefen-
stette (Ed.). Lawrence Erlbaum Associates, 41–49.

[12] D. E. Goldberg and L. Wang. 1997. Adaptive niching via coevolutionary sharing.
(1997), 21–38.

[13] Saemundur O. Haraldsson, John R.Woodward, Alexander E. I. Brownlee, Albert V.
Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and its
fitness landscape in a bioinformatics application. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (Berlin, Germany) (GECCO
’17). Association for Computing Machinery, New York, NY, USA, 1521–1528.
https://doi.org/10.1145/3067695.3082526

[14] Daniar Hussain and Steven Malliaris. 2000. Evolutionary Techniques Applied
to Hashing: An efficient data retrieval method. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2000), Darrell Whitley, David
Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer
(Eds.). Morgan Kaufmann, Las Vegas, Nevada, USA, 760. http://gpbib.cs.ucl.ac.
uk/gecco2000/RW054.pdf

[15] Márk Jelasity and József Dombi. 1998. GAS, a concept on modeling species in
genetic algorithms. Artificial Intelligence 99, 1 (1998), 1–19. https://doi.org/10.
1016/S0004-3702(97)00071-4

[16] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The Annals
of Mathematical Statistics 22, 1 (1951), 79–86. https://doi.org/10.1214/aoms/
1177729694

[17] William B. Langdon and Justyna Petke. 2017. Software is Not Fragile. In First
Complex Systems Digital Campus World E-Conference 2015, Paul Bourgine, Pierre

Collet, and Pierre Parrend (Eds.). Springer International Publishing, Cham, 203–
211.

[18] Joel Lehman and Kenneth O. Stanley. 2008. Exploiting Open-Endedness to
Solve Problems Through the Search for Novelty. In Proceedings of the Eleventh
International Conference on the Synthesis and Simulation of Living Systems, ALIFE
2008, Winchester, United Kingdom, August 5-8, 2008, Seth Bullock, Jason Noble,
Richard A. Watson, and Mark A. Bedau (Eds.). MIT Press, 329–336. http://
mitpress2.mit.edu/books/chapters/0262287196chap43.pdf

[19] Jian-Ping Li, Marton E. Balazs, Geoffrey T. Parks, and P. John Clarkson.
2002. A Species Conserving Genetic Algorithm for Multimodal Function Op-
timization. Evol. Comput. 10, 3 (sep 2002), 207–234. https://doi.org/10.1162/
106365602760234081

[20] Jian-Ping Li and Alastair S. Wood. 2009. An adaptive species conserva-
tion genetic algorithm for multimodal optimization. Internat. J. Numer.
Methods Engrg. 79, 13 (2009), 1633–1661. https://doi.org/10.1002/nme.2621
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2621

[21] H.R. Maier, S. Razavi, Z. Kapelan, L.S. Matott, J. Kasprzyk, and B.A. Tolson.
2019. Introductory overview: Optimization using evolutionary algorithms and
other metaheuristics. Environmental Modelling & Software 114 (2019), 195–213.
https://doi.org/10.1016/j.envsoft.2018.11.018

[22] Justyna Petke, Brad Alexander, Earl T. Barr, Alexander E. I. Brownlee, Markus
Wagner, and David R. White. 2019. A Survey of Genetic Improvement Search
Spaces. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion (Prague, Czech Republic) (GECCO ’19). Association for Computing
Machinery, New York, NY, USA, 1715–1721. https://doi.org/10.1145/3319619.
3326870

[23] Justyna Petke, Saemundur O Haraldsson, Mark Harman, William B Langdon,
David R White, and John R Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Trans. Evol. Comput. 22, 3 (June 2018), 415–432.

[24] Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie. 2016.
REX: A Development Platform and Online Learning Approach for Runtime
Emergent Software Systems. In Symposium on Operating Systems Design and
Implementation. USENIX, 333–348.

[25] M.M. Raghuwanshi and O.G. Kakde. 2006. Genetic Algorithm With Species And
Sexual Selection. In 2006 IEEE Conference on Cybernetics and Intelligent Systems.
1–8. https://doi.org/10.1109/ICCIS.2006.252229

[26] Penny Faulkner Rainford and Barry Porter. 2022. Code and Data Synthesis for
Genetic Improvement in Emergent Software Systems. ACM Trans. Evol. Learn.
Optim. (May 2022).

[27] Penny Faulkner Rainford and Barry Porter. 2022. Lineage Se-
lection in Mixed Populations for Genetic Improvement. In ALIFE
2022: The 2022 Conference on Artificial Life. MIT Press. https:
//doi.org/10.1162/isal_a_00494 arXiv:https://direct.mit.edu/isal/proceedings-
pdf/isal2022/34/16/2035375/isal_a_00494.pdf

[28] Yago Saez, Cesar Estebanez, David Quintana, and Pedro Isasi. 2019. Evolutionary
hash functions for specific domains. Applied Soft Computing 78 (2019), 58–69.
https://doi.org/10.1016/j.asoc.2019.02.014

[29] Mustafa Safdari and Ramprasad Joshi. 2009. Evolving Universal Hash Functions
Using Genetic Algorithms. In 2009 International Conference on Future Computer
and Communication. 84–87. https://doi.org/10.1109/ICFCC.2009.66

[30] Daan van Laar. 2021. Fitness Landscape Analysis applied to functional Genetic
Improvement. Ph. D. Dissertation.

[31] John S Wilkins. 2009. Defining species: a sourcebook from antiquity to today.
Vol. 203. Peter Lang.

[32] Ka-Chun Wong, Kwong-Sak Leung, and Man-Hon Wong. 2009. An Evolutionary
Algorithm with Species-Specific Explosion for Multimodal Optimization. In Pro-
ceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(Montreal, Québec, Canada) (GECCO ’09). Association for Computing Machinery,
New York, NY, USA, 923–930. https://doi.org/10.1145/1569901.1570027

[33] Sewall Wright. 1932. The roles of mutation, inbreeding, crossbreeding, and
selection in evolution. In Proc. 6th Int. Congress Genet., 1 (1932). na, 356–366.

[34] Feng Zou, Debao Chen, Hui Liu, Siyu Cao, Xuying Ji, and Yan Zhang. 2022. A
survey of fitness landscape analysis for optimization. Neurocomputing 503 (2022),
129–139. https://doi.org/10.1016/j.neucom.2022.06.084

https://doi.org/10.5281/zenodo.14771561
https://doi.org/10.5281/zenodo.14771561
http://gpbib.cs.ucl.ac.uk/gecco2004/WUGW001.pdf
https://doi.org/10.1109/TEVC.2006.882433
https://doi.org/10.1016/j.eswa.2011.05.085
https://doi.org/10.1016/j.eswa.2011.05.085
https://doi.org/10.1145/1143997.1144300
https://doi.org/10.1111/coin.12033
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12033
https://doi.org/10.1145/3092691
https://doi.org/10.1145/3092691
https://doi.org/10.1145/3067695.3082526
http://gpbib.cs.ucl.ac.uk/gecco2000/RW054.pdf
http://gpbib.cs.ucl.ac.uk/gecco2000/RW054.pdf
https://doi.org/10.1016/S0004-3702(97)00071-4
https://doi.org/10.1016/S0004-3702(97)00071-4
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
http://mitpress2.mit.edu/books/chapters/0262287196chap43.pdf
http://mitpress2.mit.edu/books/chapters/0262287196chap43.pdf
https://doi.org/10.1162/106365602760234081
https://doi.org/10.1162/106365602760234081
https://doi.org/10.1002/nme.2621
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2621
https://doi.org/10.1016/j.envsoft.2018.11.018
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1109/ICCIS.2006.252229
https://doi.org/10.1162/isal_a_00494
https://doi.org/10.1162/isal_a_00494
https://arxiv.org/abs/https://direct.mit.edu/isal/proceedings-pdf/isal2022/34/16/2035375/isal_a_00494.pdf
https://arxiv.org/abs/https://direct.mit.edu/isal/proceedings-pdf/isal2022/34/16/2035375/isal_a_00494.pdf
https://doi.org/10.1016/j.asoc.2019.02.014
https://doi.org/10.1109/ICFCC.2009.66
https://doi.org/10.1145/1569901.1570027
https://doi.org/10.1016/j.neucom.2022.06.084

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Base GI Implementation
	3.2 Quantifying Diversity
	3.3 Transforming the fitness landscape
	3.4 Search for Diversity

	4 Evaluation
	4.1 Experimental setup
	4.2 Results

	5 Conclusion
	Acknowledgments
	References

