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Abstract 
 

Molecular electronics is a useful method for exploring nanoscale and discovering new organic 

materials that are both low-cost and environmentally friendly. This thesis presents the theoretical 

methods employed to support this process, starting in chapters 2 and 3, accordingly. I have 

discussed the fundamental equations and methods that underpin my work, such as the 

Schrodinger equation, density functional theory (DFT), and the SIESTA program, which is 

responsible for implementing DFT and solving the equations that are underlying it. In addition, I 

present an explanation of the single particle transport theory, which is based on the Hamiltonian 

and Green's functions, as well as some examples of how it might be used. 

 

Chapter 4. This chapter mainly discusses the influence of heteroatom including which position 

will alleviate destructive quantum interference (DQI), and which position will not. In addition, if 

we change linkers, the influence of heteroatom will change.  These results are supported by my 

calculations. 

 

Chapter 5. This chapter discusses the transport properties of stable organic radicals for electronic 

devices due to their half-filled orbitals near the Fermi energy. Also, see the systematic changes 

when we remove the hydrogen from the OH groups to produce the radicals, and how that affects 

the electrical conductance.   
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Chapter 1  

Molecular Electronics 

 

1.1 Introduction 

As shown in Figure 1, electronic components, such as semiconductors, have become smaller and smaller 

at an exponential rate, according to a historical tendency that Gordon Moore predicted in 1965. A great 

number of investigations have been carried out to discover ways that can continue this historical 

trend, and these investigations are now approaching the nano- or molecular scale [1]. At the 

nanoscale, a range of device concepts have been proposed, and used to demonstrate fundamental 

phenomena associated with electron transport, including nanoscale superconducting devices [2-

4], devices based on carbon nanotubes [5-7], and sensors based on nanopores in graphene [8-12] 

or silicene [13]. Many of these concepts carry over to molecular-scale structures. 

 

Figure 1.1: This chart shows that the size of a transistor on a silicon chip has decreased steadily, 

indeed exponentially with time according to Moore's law[1].  
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Molecular electronics (ME) is the field of science that analyses the electrical and thermal 

transport properties of circuits constructed with individual molecules (or groups of them) as their 

fundamental components. In 1974, Aviram and Ratner provided the initial concept for the 

molecular current rectifier [14]. Since that time, a range of single-molecule electrical devices 

have been proposed as transistors [15], rectifiers [16,17] and switches [18, 19] and a variety of 

methods for controlling electron transport through molecules have been proposed, including 

controlling their molecular conformation [20], controlling their orientation within a junction [21] 

and controlling their frontier-orbital energy levels relative to the Fermi energy of electrodes [22]. 

The right of Figure 1.2 shows the anatomy of a single-molecule junction and helps to 

conceptualise how electron transport can be controlled, by varying the anchor groups, varying 

the molecular core, attaching pendant groups to the core and varying the linkages to anchor 

groups. In contrast with the 1974 work of Aviram and Ratner [14], which assumed that electron 

transport through single molecules takes place in an incoherent manner, one of the great 

discoveries during the past decade or so is that electron transport through single molecules can 

remain phase coherent, even at room temperature. This phase coherence means that a range of 

quantum interference effects are possible and that these can be used to control the electrical and 

thermal transport properties of molecular junctions. Manifestations of such interference effects 

include conductance oscillations in atomic wires [23] and Seebeck oscillations in π-stacked 

molecular junctions [24]. In addition, since molecules can be attached to electrodes via anchor 

groups, and the anchor groups can be connected to a molecular core with atomic accuracy, a 

range of connectivity-dependent quantum interference (QI) effects can be observed [25-27]. This 

ability to control connectivity to electrodes is illustrated on the left of Figure 1.2, where the triple 
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bonds are anchored to gold electrodes and connect to the pyrene molecular core at specific 

atomic sites. 

 

Figure 1.2: This figure illustrates a molecular junction on the left side. It consists of a molecule 

that is attached by two electrodes. On the right side, it illustrates the physicist's concept of a 

molecular junction.  

In the molecule on the left in Figure 1.2, the molecule is anchored to the electrodes via direct 

carbon-gold bonds. Many other anchor groups have been tested in the literature and correlations 

between the binding energy of the anchor to the electrodes and the magnitude of the electrical 

conductance have been demonstrated [28,29]. Gold is the most commonly used electrode 

material, but since it is not complementary metal-oxide semiconductor CMOS compatible other 

electrodes materials such as graphene [30-32] have also been explored.   

Remarkably, many of the quantum interference effects discovered in single-molecule junctions 

have been shown to persist in materials formed from self-assembled molecular layers [33,34]. 

This is important, because if organic molecules are to be utilised in scalable devices, such as 
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cross-bar architectures, the finite cross-section electrodes will inevitably make contact to a film 

of many molecules in parallel.  

To close this introduction, it is also worth noting that the above interference effects derive from 

the wave nature of electrons passing through a molecule from one electrode to another. Since 

heat is mediated by vibrational waves and minimisation of thermal conductance is highly 

desirable for thermoelectric applications, it is of interest to determine f phonon interference 

effects can be used to control thermal conductance. This question has been explored by adapting 

techniques originally developed to model lattice dynamics is nanostructures [35] to model 

phonon transport through single-molecule junctions [36,37]. 

1.2 Thesis Outline 

The aim of this thesis is to explore some of the above concepts using the equilibrium Green's 

function formalism of transportation theory, which is implemented by combining the Gollum 

quantum transport code [22], with the density functional theory (DFT), code SIESTA code [23].  

Chapter 2 provides a brief description of density functional theory (DFT), for studying and 

understanding the electrical properties of single-molecule junctions.  The theory of single-

electron quantum transport is described in Chapter 3. This chapter discusses the Landauer 

formula, Green's functions for different types of transport regimes, scattering theory and methods 

for calculating transmission coefficients for different systems using the Hamiltonian and Green's 

functions. Two original theory projects are presented in chapters 4 and 5. In chapter 4, I studied 

charge transport through molecular cores connected to electrodes by linkers with conjugated π 

systems are formed from both πz and πy orbitals. I found that DQI dips in transport though the πz 
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system can be hidden, because the πy orbitals of the linkers can couple to the sigma system of the 

core and create a parallel conductance channel. Although this channel makes only a small 

contribution, it becomes dominate when DQI suppresses transport through the πz system. This 

mechanism was demonstrated by increasing the size of the core from benzene to naphthalene and 

then anthracene, which successively suppresses transport through the sigma system and for the 

largest core allows the DQI transport dips to become visible. This points to an important design 

principle for future molecular electronic devices, since if one plans to use DQI to control 

transport through molecules, it would be wise to avoid links with more than one π system. 

In chapter 5 I explore molecular junctions containing stable organic radicals, which have half-

filled orbitals at the Fermi energy, making them promising candidates for electrical devices. Due 

to the possibility that all-organic conjugated radical species with unpaired electrons would give 

rise to new quantum phenomena, these species have generated a great deal of interest in single-

molecule electronics research. To explore whether organic radicals can improve electrical 

conductivity I investigate the effects of diradicals on the charge transport of different systems 

exhibiting either constructive quantum interference or destructive quantum interference. In both 

cases, I find that the presence of diradical causes and increase in electrical conductance. 
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Chapter 2 

 Density Functional Theory 

This chapter introduces the density functional theory (DFT) and the SIESTA code, which are 

used in this thesis's electronic structure computations. The first step in finding the molecule's 

electron transport properties is to generate a mean-field Hamiltonian using DFT.  

 

2.1 Introduction 

Molecular electronic device behaviour can be explained with the use of a reliable source of 

electronic and structural data. I will provide a brief overview of density functional theory (DFT) 

and the SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) code 

[1] in this chapter. During my PhD studies, I made extensive use of DFT as a theoretical tool to 

investigate the architectures of molecules, charge densities, and band structures in both 

qualitative and quantitative ways. SIESTA is a set of algorithms and a fully functional 

programme designed to expedite DFT computations on many atoms in a few hours, days, or 

weeks. DFT is based on the fundamental idea that the ground state density of a complex system, 

which is made up of several interacting particles, may be used to describe every physical 

property of the system. In 1964, Hohenberg and Kohn [2] provided the first evidence for the 

existence of such a function. On the other hand, the proof gives us no information on the 

functional's shape. But applications for realistic physical systems were possible due to an ansatz, 

presented by Kohn and Sham [3]. Since then, DFT has been a widely used method in molecular 

chemistry and theoretical physics. An introduction to DFT's concepts and all of its numerical 

applications will be provided in this chapter. The literature covers the subject in great detail and 

covers a wide range of topics [4-7]. I will start by summarizing the several different approaches 
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to the many-body problem. I will then show the Hohenberg-Kohn theorems and the Hartree-Fock 

technique. Finally, I will show the Kohn-Sham ansatz. Then, I distil the most popular functional 

forms, which are essential for practical numerical analysis. In this thesis, I also provide special 

attention to localised basis sets, pseudo-atomic orbits that define the number space of the Hilbert 

calculations, Basis Set Superposition Error Correction (BSSE), and Counterpoise Correction 

(CP). 

 

 

 2.2 The Principle of Variation and the Schrödinger Equation 

Any nonrelativistic multi-particle system can be described by the time-independent, non-

relativistic Schrödinger equation: 

H𝜓!(𝑟", 𝑟#, … , 𝑟$ , 𝑅,⃗ ", 𝑅,⃗ #, … , 𝑅,⃗% = 𝐸!𝜓!(𝑟⃗", 𝑟#, … , 𝑟$ , 𝑅,⃗ ", 𝑅,⃗ #, … , 𝑅,⃗%)                      (2.1) 

where 𝐸! is the numerical value of the energy of the state represented by 𝜓!and 𝜓! is the 

wavefunction of the system's 	𝑖&'state. This is the Hamiltonian operator of a system made up of 

M and N nuclei and electrons, which describes how particles interact with one another. For such 

a system, the Hamiltonian operator can be given as the sum of the five terms [2, 3, 8–12]: 
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Where n and ń run over the M-nuclei in the system, while i and j represent the N-electrons; e and 

Ze represent the electron and nuclear charge, respectively; and m; and m< are the masses of the 

electron and nucleus, respectively. r=,,⃗ 	and	R,,⃗ <	, respectively, represent the positions of the 

electrons and nuclei, while ∇# is the Laplacian operator, which has the following definition in 

Cartesian coordinates:  

𝛻!# =
𝜕#

𝜕𝑥!#
+
𝜕#

𝜕𝑦!#
+
𝜕#

𝜕𝑧!#
 

 

The kinetic energy of the system's nuclei is indicated by the term 𝑇+ whereas the kinetic energy of 

the electrons is represented by the term 𝑇( as shown in equation (2.2). The term 𝑈(+denotes the 

attractive electrostatic interaction between nuclei and electrons in the system; the remaining three 

terms additionally define the potential part of the Hamiltonian. Accordingly, the repulsive parts of 

the potential are the electron-electron (𝑈(() and nuclear-nuclear (𝑈++) [1, 3, 4, 9, 11].  

The nucleus of an atom contains around 99.9% of its mass, hence the Born-Oppenheimer 

approximation, often referred to as the clamped nuclei approximation, can be used in the analysis 

since the nuclei in the system can be thought of as fixed about the electrons. This suggests, for 

example, that the mass concentration of a hydrogen atom is indicated by the fact that the nucleus 

weighs approximately 1800 times more than the electron. The resulting kinetic energy accumulates 

to zero if the treated atoms' nuclei are kept stable, suggesting that they are no longer contributing 

to the entire wave function. Due to the previous assumption, the Hamiltonian expression for the 

electron system reduces the Hamiltonian to a different figure; as well, the electronic 

Hamiltonian	H(>(, which in a constant nuclear representation may very well be given by [3, 4, 9, 

11]:  
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Where,  𝑈++	is the system's obtained constant. The following represents the Schrödinger 

equation for ‘clamped nuclei’: 

 

  

Whereas the nuclear component enters only dimensionally and is not clearly visible in	𝜓(>( and   

𝜓(>( 	depends on the electron coordinates for the system. 

 

Total energy 𝐸&,&?> is defined as the sum of 𝐸(>(ele and the system's constant nuclear repulsion 

term, which is written the following:  
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H(>(𝜓(>( =	𝐸(>(𝜓(>( 								               (2.4) 

𝐸&,&?> = 𝐸(>( + 𝑈++								               (2.5)  
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The wave-function of a system is not measurable; its squared modulus can be expressed as 

following: 

 

 

The probability that electrons 1, 2…, N are found in the volume elements	𝑑𝑟⃗"	𝑑𝑟#… . . 𝑑𝑟$, is 

represented by the above expression. This is because electrons are indistinguishable, and this 

probability remains unchanged even if the coordinates of any two electrons (i and j) are switched 

[15]: 

The value of ψ in any pair of electrons must be anti-symmetric with respect to the interchange of 

the spatial and spin coordinates as well since electrons are fermions with half-spins: 

 

  

The logical result of the wave-functions probability interpretation format is that the integral of 

equation 2.6 over the whole range of all variables provides a value of one. This means that the 

chance of discovering an N-electron at any point in space must be exactly one,  

A normalized wave-function meets the conditions given in equation (2.9). 

																																	|𝜓(𝑟", 𝑟#, … , 𝑟$)|#𝑑𝑟"	𝑑𝑟#…𝑑𝑟$																																					                  	(2.6)          

		                                                

?𝜓(𝑟", 𝑟#, … 𝑟! , 𝑟6 , … , 𝑟$)?
# = ?𝜓(𝑟⃗", 𝑟#, … 𝑟6 , 𝑟! , … , 𝑟$)?

#				              (2.7)  

 

																											𝜓(𝑟", 𝑟#, … 𝑟⃗! , 𝑟6 , … , 𝑟$) = −𝜓(𝑟", 𝑟#, … 𝑟! , 𝑟6 , … , 𝑟$)		                  (2.8) 

U…U|𝜓(𝑟", 𝑟⃗#, … , 𝑟⃗$)|
#
𝑑𝑟⃗"	𝑑𝑟#…𝑑𝑟⃗$ = 1 

              (2.9) 
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Several theories, including Hartree and Hartree-Fock, have been developed to achieve this 

objective as the Schrödinger wave equation needs an exact solution. An important theoretical 

idea known as the variational principle of the wave function served as the foundation for many of 

these theories. It instructs analysts on how to find answers by using suitable trial wave-functions 

𝜓*2! [11]. The previous principle is useful in studying the ground state; however, it is not very 

useful in studying excited states. When a system is in the state	𝜓*2!, the following expression 

represents the energy's expected value:  

                                 〈𝐸*2!〉 =
∫D()%E	D()%	

∗ G2⃗
∫D()%	D()%

∗ 	G2⃗
                                                                    (2.10) 

                               

Equation 2.10, which presents the variational principle, suggests that the energy can be computed 

as the expectation value of the Hamiltonian operator from any 𝜓*2! , which represents an upper 

bound on the true ground-state energy	𝜓HI.  Assume that  ψJKL is normalised using equation 2.9, 

and that  ψJKL then equals to the ground state (ψJKL = ψMN).  This means that entity 	𝐸*2! 		is	equal 

to the exact ground state energy 	𝐸HI, also, we can rewrite equation 2.10 for the ground state as 

the following:    

                               

                                    〈𝐸HI〉 = ∫𝜓HI H	𝜓HI	∗ 𝑑𝑟                                                            (2.11)  

 

We can see from the normalized  𝜓*2! 	that 𝐸*2! > 𝐸HI or	𝐸*2! = 𝐸HI.The best option for 𝐸*2!is 

this means the one in which 𝐸*2!  gets reduced [3].     
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2.3 The Theorems of Hohenberg-Kohn 

The ground state energy and the density, ρ(r), of an interacting electron system are related, as P. 

Hohenberg and W. Kohn showed in 1964 [2]. The Hohenberg-Kohn theorems consist of two 

simple but important statements: 

a) 𝑉(P& the exterior potential, is a functional (r) that is particular to density.  𝑉(P&fixes the   

Hamiltonian (H) of the system, so the full many-body ground state is a unique functional of ρ(r). 

b) A ground state density of ρ(r) is the ground state, given by 𝐸QR.  

 

It is a simple matter of reduction ad absurdum to demonstrate the validity of the first theorem 

provided above. Suppose we have two external potentials with a constant variation,( 𝑉(P&" ) and 

(𝑉(P&# ).   

Suppose that both external potentials have the same ground-state density 𝜌 (r). The Hamiltonians 

of each system are denoted by 𝐻(") and  𝐻(#), and because they change, they will have different 

ground-state wavefunctions, ,  𝜓(") and 𝜓(#).   We have 𝜓(#)	,and because it is not a ground state 

of 𝐻("), so we have:  

 

 

Our ground states are non-degenerate, according to the simplified assumption. The problem has 

been made to include degeneracies in the literature [10, 17]. Equation 2.13 can be rewritten as 

following: 

𝐸(") = 〈𝜓(")|𝐻(")|𝜓(")〉 	< 	 〈𝜓(#)|𝐻(")|𝜓(#)〉              (2.12) 
 

𝐸(#) = 〈𝜓(#)|𝐻(#)|𝜓(#)〉 	< 	 〈𝜓(")|𝐻(")|𝜓(")〉            (2.13) 
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And equation 2.14: 

Combining equations 2.13 and 2.14, and the result in the following contradiction: 

                                              

𝐸(") + 𝐸(#) < 	𝐸(") + 𝐸(#) 

 

Two or more potentials can differ by no more than a constant and create the same ground-state 

density, hence there can't be two of them. 

The second theorem is just as simple to demonstrate as the first. Consider the following equation 

for the total energy E of the system: 

T, the kinetic term, and 𝐸!+&, the internal interaction of electrons, are, by definition, universal.  

Assume that the system with a ground-state density of 	𝜌, , an external potential of   𝑉(P&  , and a 

wavefunction of  𝜓U . Based on the first theorem, the Hamiltonian is determined by  𝜌,so, for 

any density and wavefunction 𝜓, other than the ground state, we get:   

 

𝐸, =	 〈𝜓U|𝐻|𝜓U〉 	< 	 〈𝜓|𝐻|𝜓〉 = 𝐸                                                                 (2.17) 

〈𝜓(#)?𝐻(")?𝜓(#)〉 = 〈𝜓?𝐻(#)?𝜓(#)〉〈𝜓(#)?𝐻(") − 𝐻(#)?𝜓(#)〉 

																										= 𝐸(#) + ∫ 𝑑𝑟 c𝑉(P&
(")(𝑟) − 𝑉(P&

(#)(𝑟)d ρo (r) 
           (2.14)  

 

〈𝜓(#)?𝐻(")?𝜓(#)〉 = 𝐸(#) + ∫ 𝑑𝑟 c𝑉(P&
(")(𝑟) − 𝑉(P&

(#)(𝑟)d 𝜌𝑜	(𝑟)  

       

           (2.15) 

 
 

 

𝐸(𝜌) = 𝑇(𝜌) + 𝐸!+&(𝜌) + ∫ 𝑑𝑟𝑉(P&(𝜌)(𝑟) 

 

     (2.16) 
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This decreases the functional density of the ground, 𝜌,, in the equation. 

2.17.  As a result, by minimising equation 2.18, we may extract the ground-state of the system 

and compute all ground-state attributes if we know the functional:  𝑇(𝜌) + 𝐸!+&(𝜌) . 

 

2.4 The Theorems of Kohn-Sham 

We have already demonstrated that obtaining the ground-state density allows us to calculate the 

ground-state energy, and it is possible to compute the ground-state energy by obtaining the 

ground-state density.  The actual form of the functional denoted in equation 2.18, however, is 

unknown. The kinetic term and internal energy of interacting particles cannot be expressed as a 

function of density in general. The solution was proposed by Kohn and Sham in 1965 [3].   

According to Kohn and Sham, the original Hamiltonian can be replaced by an effective 

Hamiltonian of non-interacting particles, with a real external potential that has the same ground-

state density as the original system. Because this is not a stated recipe, it is only an ansatz, but a 

non-interacting problem is significantly easier to solve. In contrast to equation 2.17, the 

functional energy of the ansatz Kohn-Sham will be the formula: 

 

𝐸RI(𝜌) = 	𝑇RI(𝜌) + +∫ 𝑑𝑟𝑉(P&(𝑟)𝜌(𝑟) + 𝐸Q(𝜌) +	𝐸PV(𝜌)                                    (2.18) 

                  

 

 

𝑇RI represents the kinetic energy of the non-interacting system.  In equation 2.17, the kinetic 

energy of the interacting system was used.  𝑇 the distinction is referred to as the eexchange-

correlation functional, 𝐸PV 	, in equation 2.20.  
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The Hartree functional, E_H, represents the electron-electron interaction using the Hatree-Fock 

technique, and it takes the following form: 

									𝐸Q(𝜌) = 	
"
# ∫

W(2)W(2')
|242Y|

	𝑑𝑟𝑑𝑟′                                         (2.19) 

 

This is an approximate 𝐸!+& version, as previously defined.  Again, 𝐸PV represents the difference.  

As a result, the eexchange-correlation functional 𝐸PV  , shows the difference between the exact 

and approximate solutions to the kinetic energy and electron-electron interaction terms. Its 

definition is given below: 

𝐸PV(𝜌) = 	 g𝐸!+&(𝜌) − 𝐸Q(𝜌)h + g𝑇(𝜌) − 𝑇RI(𝜌)h                       (2.20)  

 

However, the first three functionals of equation 2.18 are easy and account for the majority of the 

contribution to ground-state energy. In comparison, the exchange-correlation function gives a 

small contribution. Despite decades of research, there is no exact solution. The following section 

describes several great approximations that have been developed. 

 

2.5 The Exchange Correlation Functions 

Several changes to the exchange and correlation energies have been reported in the literature. 

The first successful form was the Local Density Approximation (LDA) [26, 27], which is only 

dependent on density and thus functional locally. The next step was the Generalized Gradient 

Approximation (GGA) [17-20], which contains the density derivative as well as neighbourhood 

information, making it semi-local. LDA and GGA are two of the most common approximations 

used in density functional theory. LDA and GGA cannot be considered the only functional 

possibilities. Some of these functionals correspond to the special needs of the basis sets used in 
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solving the Kohn-Sham equations, equation 2.11, and a big category is the so-called hybrid 

functionals (e.g., B3LYP [3], HSE [30], and Meta hybrid GGA [29, 31]), which combine the 

LDA and GGA forms. One of the most recent and universal characteristics, the Van der Waals 

density functional (vdW-DF) [32], includes non-local terms and has proven to be quite accurate 

in systems where dispersion forces are significant [33, 34]. The next sections will provide an 

overview of the Local Density Approximation and the Generalized Gradient Approximation. 

 

2.5.1 LDA (local density approximation) 

In LDA, the exchange-correlation function depends on the local density. This approximation is 

expected to provide good results for systems where the density doesn't change fast. In some 

ways, the LDA represents the most fundamental aspect of exchange and correlation energy. It is a 

basic yet effective function that is correct for graphene and carbon nanotubes, as well as where 

electron density does not change rapidly. For example, atoms with d and f-type orbits are 

expected to have more inaccuracy. However, LDA has several limitations, including the fact that 

the band gap in semiconductors and insulators is sometimes underestimated with significant 

inaccuracy (up to 10-30%). So, it is best to try to increase your functionality. 

 

2.5.2 Generalized Gradient Approximation (GGA) 

When derivatives are added to the functional form of exchange and correlation energies, the 

GGA is formed. There is no closed form for the functional exchange in this condition, hence the 

corresponding contributions must have been calculated using analytical solutions.  

As with the LDA, there are numerous parameterizations for the exchange and correlation energy 

in GG [17-19, 35]. LDA and GGA are two of the most commonly used methods for 
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approximating exchange-correlation energy in the DFT. In addition to LDA and GGA, several 

functionalities are available. Overall, the validity of these functions is not a plausible theory. 

Tests are performed on a variety of materials to determine functional qualities for a wide range of 

systems, followed by statistical comparisons to establish credible results. 

 

2.6 Pseudopotentials  

I used Kohn Sham formalism and an exchange-correlation function to transform a large interacting 

problem into an effective non-interacting problem. This significantly simplifies the situation in 

terms of physical aspects. When molecules with a large number of atoms are involved, the 

calculation becomes too huge and computationally intensive to use. By using pseudopotentials, 

the number of core electrons in an atom can be decreased. Fermi suggested pseudopotentials in 

1934 [19, 20], and methods have progressed, since then from constructing not-so-realistic 

empirical pseudopotentials [21, 22] to more realistic ab initio pseudopotentials [22-24]. 

Electrons, which are present in the nucleus of an atom, are divided into two types: core and valence. 

Core electrons are present in the nucleus, whereas valence electrons are found in partially filled 

atomic shells. When atoms are brought together and core electrons are limited around the nucleus, 

the only valence electron states overlap. This allows the core electron to be removed and replaced 

with a pseudopotential, allowing the valence electrons to be screened as if the core electrons were 

still there. This significantly reduces the number of electrons in a system, as well as the time and 

stored properties of molecules with a large number of electrons. 
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2.7 Basis Sets 

To determine the wavefunctions, the Hamiltonian must be diagonalized. This method involves 

inverting a large matrix. For effective calculations, the Hamiltonian must be sparse and contain 

several zeros. SIESTA employs a Linear Atomic Orbital Combination (LCAO) basis set 

composed of atom orbitals that decay to zero after a specific cut-off radius. As the overlap 

between basis functions decreases, the former produces the needed sparse form of the 

Hamiltonian, whilst the latter permits even a small basis set to produce similar features to those 

of the studied system. As the overlap between basis functions decreases, the former produces the 

needed sparse form of the Hamiltonian, whilst the latter permits even a small basis set to produce 

similar features to those of the studied system. A single ξ basis is the most basic atomic basis set 

for an atom, with a single basis function 𝜓+>A(2)per electron orbital.  Each basis function is made 

up of a radial wavefunction 𝛷+>"  and a spherical harmonic 𝑌>A : 

𝜓+>A(2) =	𝛷+>" (𝑟)𝑌>A(𝛳, 𝛷)                                                              (2.21) 

  

Sankey [25] provided a method for determining the radial component of the wavefunction, which 

involves solving the Schrodinger equation for an atom inside a spherical box.  It is constrained to 

vanish at a cut-off radius 𝑟V. The constraint creates an energy shift δE in the Schrödinger equation, 

resulting in the eigen function's initial node at 𝑟V: 

 

l− G$

G2$
+	 >(>Z")

#2$
+ 𝑉+>!,+(𝑟)m 𝛷+>" (𝑟) = 	 (𝜀+> + 𝛿𝐸)	𝛷+>" (𝑟))                   (2.22) 

 

For greater accuracy basis sets, each electron orbital might have many radial wavefunctions. A 

split-valence method is used to calculate the additional radial wavefunctions, 	𝛷+>!   for > 1. To 
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define a split valence cut off for each additional wavefunction, 𝑟[!, it is split into two piecewise 

functions: a polynomial below the cut-off and the preceding basis wavefunction above it. 

                                                  

 𝛷+>" (𝑟) = o	
𝑟>(𝑎+> − 𝑏+>𝑟#)																					𝑟 < 	 𝑟[! 				
𝛷+>!4"																															𝑟[! < 	𝑟	 < 	 𝑟[!4"

				}							                                                    (2.23)  

 

  Additional parameters are found at the point when the wavefunction and its derivative are 

expected to be continuous.  

To get accuracy (multiple-ξ polarized), include wavefunctions that have different angular 

momenta that correspond to unoccupied orbitals in the atom.  This can be done by solving Eq. 

2.22 in an electric field such that the orbital is polarized or deformed by the field (see [6] for 

details), getting another radial function.  This has been combined with the appropriate 

angular dependent spherical harmonic, that increasing the size of the basis.  Table 2.1 gives the 

number of basis orbitals for a specific number of atoms for single- ξ, single- ξ polarised, double- 

ξ, and double- ξ polarised. 

 

Table 2.1: is an example of the number of radial basis functions per atom that are used in the 

SIESTA at various degrees of precision. 

Atom Valence 

configuration 

   SZ SZP DZ DZP 

 H 1𝑠 1 4 2 5 

 C (2s2 2P2) 4 9 8 13 

S (3S2 3P4) 4 9 8 13 

Au (6S1 5d10) 6 9 12 15 
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I have used Double- ξ polarized basis set(DZP) and Double-ξ basis set (DZ). Also, I have used 

Generalized Gradient Approximation (GGA) and Local Density Approximation (LDA). 

 

 

2.8 Summary  

In conclusion, I have provided an overview of the DFT technique and the SIESTA DFT method, which are 

used throughout this thesis to compute the electronic structures. The first step in determining a molecule's 

electron transport properties is to obtain a DFT mean-field Hamiltonian that describes the isolated molecule. 

The next step is to connect the molecule to semi-infinite leads, which will be discussed in the following 

chapter. 
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Chapter 3  

Phase Coherent Electron Transport 

Chapter 2 covered density functional theory, a method for determining the electrical structure of an 

isolated molecule. The next step involves connecting this isolated molecule to semi-infinite leads and 

calculating the transmission coefficient across the system. This process is carried out using the Green's 

function scattering formalism, which is the focus of this chapter and is utilized throughout the thesis. The 

electrical  properties of nanoscale systems situated between several macroscopic metal electrodes are 

explained using scattering theory and the Green's function techniques. 

3.1 Introduction    

In this chapter, I start with a brief summary of the Landauer formula. Following that, I present 

the most basic form of a retarded Green's function for Scattering Theory in a one-dimensional 

tight-binding chain. After that, I break the lattice's periodicity at one connection and demonstrate 

that Green's function is directly related to the transmission coefficient across the scattering area. 

The methods applied to these simple systems are going to be used to calculate the transmission 

coefficient of mesoscopic conductors with arbitrarily complex geometry. The methods provided 

here assume negligible interaction between carriers, the absence of inelastic processes, and zero 

temperature.  

 

3.2 The Landauer Formula 

The Landauer formula [1, 6] describes electron transport in mesoscopic systems and is also 

appropriate to describe phase-coherent systems in the absence of inelastic scattering. It relates a 

mesoscopic sample's conductance to the transmission qualities of electrons that pass through it. 

The method used for calculating the transmission qualities will be covered later in this chapter.  
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Figure 3.1: A mesoscopic scatterer connected to contacts with ballistic leads. 𝜇^ and 𝜇9 indicate 

the left and right contacts' chemical potentials, respectively.  

 

 
A mesoscopic scattering area that is connected to contacts via ballistic leads. The chemical 

potentials in the contacts are 𝜇^	and  𝜇9. When an incident wave packet reaches the scattering 

region from the left, it is transmitted with probability 𝑇 = 𝑡𝑡∗ and reflected with probability 𝑅 =

𝑟𝑟∗. Charge conservation requires that T + R = 1.  

To begin, consider a mesoscopic scatter linked to two contacts that behave as electron reservoirs 

via two perfect ballistic leads as shown in figure 3.1. All inelastic relaxation processes have 

limitations to the reservoirs [1]. The reservoirs have slightly different chemical potentials 𝜇^ and 

𝜇9 resulting in a tiny  𝜇^ 	− 𝜇9  difference. We are using the notation 

 𝜇^ 	− 𝜇9 	= 	𝛿𝐸	 = 	𝑒𝛿𝑉	 > 	0 to drive electrons from the left to the right reservoir. Initially, I 

will present the solution for a single open channel (where only one electron can flow in a given 

direction). The incident current travelling through the system from the left to the right reservoir 

is:  
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δI	in = e𝑣	 c_<
_`
	d (𝜇^ 	− 𝜇9)                                           (3.1) 

whereas e is the electronic charge, 𝑣 is the group velocity, and  _<
_`

is the density of states per unit 

length in the lead within the energy window determined by the chemical potentials of the 

contacts.  

 
_<
_`
= _<

_a
	_a
_`
= _<

_a
"
bℏ

                                                   (3.2) 

After adding a factor of 2 for spin dependency, _<
_a
= "

#c
  putting this into Equation 3.2, we get 

 _a
_`
= "

bℏ
 . This reduces Equation 3.1 as follows:   

 

𝛿𝐼 = #(
'
(𝜇^ − 𝜇9) =

#($

'
𝛿𝑉                                      (3.3) 

𝛿𝑉 represents the voltage created by the chemical potential mismatch.  Equation 3.3 shows that 

in the absence of a scattering area, the conductance of a quantum wire with one open channel is 

#($

'
, which is about 77.5μS (or resistance of 12.9 kΩ).  This is a common number that appears on 

the circuit boards of daily electrical products. If we assume a scattering region, the current 

collected in the correct contacts will be: 

δI	out = #($

'
	𝑇𝛿𝑉 → de

df
= 𝐺 = #($

'
	𝑇                           (3.4) 

This is the well-known Landauer formula, which relates the conductivity, G, of a mesoscopic 

scatterer to the transmission probability, T, of electrons passing through it. It represents the linear 

response conductance, so it only applies to small bias voltages (δV = 0).  

Buttiker generalised the Landauer formula for the case of several open channels [3]. In this 

situation, the transmission coefficient is replaced by the sum of all transmission amplitudes 
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representing electrons that come from the left contact and arrive at the right contact. For several 

open channels, equation 3.3 of the Landauer formula becomes:  

ghij
f
= 𝐺 = #($

'
∑ |𝑡!,6|#!,6 = #($

'
𝑇𝑟𝑎𝑐𝑒(𝑡𝑡l)                                             (3.5) 

 

The transmission amplitude 𝑡!6 	represents scaJering from the 𝑗&'channel of the leK lead to the 

𝑖&'channel of the right lead. In addi>on to transmission amplitudes, reflec>on amplitudes 

𝑟!6that represent par>cle scaJering from the 𝑗&'channel of the leK lead to the	𝑖&' channel of the 

same lead.    The S matrix, which connects states from the leK to the right lead and vice versa, 

can be defined by combining reflec>on and transmission amplitudes.   

𝑆 = c𝑟 t′
𝑡 r′

d                                                                                               (3.6) 

In this case, r and t indicate electrons r coming from the left, whereas t' and r' represent electrons 

coming from the right. Equation 3.6 indicates that 𝑟, 𝑡, 𝑟́   and t' are matrices for many channels, 

which may be complex in the presence of a magnetic field. However, charge conservation requires 

that the S matrix be unitary: SS+=I. The S matrix is an important part of scattering theory. This 

method is not only helpful in defining transport in the linear response regime, but it is also useful 

in other applications, such as adiabatic pumping.  

 

3.3 The Theory of Scattering in One Dimension: 

Before going over the extended methods, it's helpful to figure out the scattering matrix for a 

simple one-dimensional system. This will give a full explanation of the method used. Before 

moving on to the next step, which is calculating the scattering matrix of a one-dimensional 

scattered section 3.4.2, I will first go over the form of the Green's function for a simple one-
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dimensional discretized lattice section 3.4.1. This is because the Green's functions will be utilised 

in the derivation.  

3.3.1 Perfect One-Dimensional Lattice 

In this part, I will analyse the structure of the Green's function for a simple one-dimensional lattice 

with on-site energies ɛ, and real hopping parameters -γ, as illustrated in Figure 3.2.  

 

 

 

 

 

Figure 3.2: shows the tight-binding approximation of a periodic one-dimensional lattice with one 

site energies 𝜺𝒐 and coupling 𝜸. 

 

 The Hamiltonian's matrix form is simple to write: 

 

 

Using the tight-binding approximation, we may expand the Schrödinger equation (Equation 3.8) 

at a specific lattice site z in terms of the energy and wavefunction 𝜓n (Equation 3.9).   

𝐻 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−∞ . . . . . . . .
. . . . . . . . .
. . 𝜀𝑜 −𝛾 0 0 0 . .
. . −𝛾 𝜀𝑜 −𝛾 0 0 . .
. . 0 −𝛾 𝜀𝑜 −𝛾 0 . .
. . 0 0 −𝛾 𝜀𝑜 −𝛾 . .
. . 0 0 0 −𝛾 𝜀𝑜 . .
. . . . . 0 −𝛾 . .
. . . . . . . . +∞⎠

⎟
⎟
⎟
⎟
⎟
⎞
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The wavefunction for this ideal lattice is described by a propagating Bloch state equation 3.10, 

which is normalised by its group velocity v to ensure that it carries a unit current flux. By 

substituting this into equation 3.9, we obtain the well-known one-dimensional dispersion relation 

equation 3.11.  

(𝐸	 − 	𝐻)𝜓	 = 	0 

 

 (3.8) 

 

 

𝜀,𝜓n 	− 	𝛾𝜓n + 1	 − 	𝛾𝜓n − 1	 = 	𝐸𝜓n 

  

(3.9) 
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𝒛 = 𝒛! 

Z 

  

𝑨Z  
 

𝑨4 
 

𝜓n =
"
√b
𝑒!p7                                                       (3.10) 

𝐸 = 𝜀U − 2γ	cos	(k)                                            (3.11) 

In this section, we presented the quantum number, k, which is also generally known as the 

wavenumber. In fact, the retarded Greens function g (z, ź) is the solution to an equation that is 

very similar to the Schrodinger equation. This gives it a close relationship with the wave 

function. 

 

(𝐸 − 𝐻)	𝑔(𝑧, 𝑧Y) = 𝛿qn,n'r                              (3.12) 

On a physical level, the retarded Green's function, g (z, z'), represents the reaction of a system at 

a point z in response to a source at a point z'.  As shown in Figure 3.3, we would expect this kind 

of excitation to cause two waves to move away from the point of excitation. These waves would 

have amplitudes 𝐴Z and 𝐴4. 
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Figure 3.3: The configuration of an infinite one-dimensional lattice's retarded green's function. 

As a result of the excitation at z = z′, the waves go to the left and right with amplitudes 𝑨Z and 

𝑨4  respectively.  

 
Here is a simplified way to represent these waves: 
 

                            𝑔(𝑧, 𝑧Y) = �𝐴
Z	𝑒!pn ,					𝑧 ≥ 𝑧Y

𝐴4	𝑒4!pn ,			𝑧 ≤ 𝑧Y
                              (3.13) 

 

This solution satisfies equation 3.12 at all points except z = ź. To solve this, 

the Green's function has to be continuous in equation 3.14, therefore, we can 

equate the two at 𝑧	 = 	𝑧 ́

                     𝐴Z	𝑒!pn' =	𝐴4	𝑒4!pń                                                   (3.14)      

                                                               

                                𝐴Z	𝑒#!pn' =	𝐴4	                                              (3.15) 

When equation 3.15 is substituted into equation 3.13 of the Green's 

functions, we get:  

 

        																									𝑔(𝑧, 𝑧Y) = 	𝐴Z𝑒!pn'𝑒!pqn4n'r					𝑧Y > 	𝑧	                                                                                               

																																	𝑔(𝑧, 𝑧Y) 	= 	𝐴Z𝑒!pn'𝑒!pqn'4nt r				𝑧Y < 	𝑧               (3.16)          

Clearly, this may be expressed as: 
 
 
																															𝑔(𝑧, 𝑧Y) = 	𝐴Z𝑒!pn'𝑒!p	|n4n'|	                                  (3.17) 

Whereas 
 

 (3.32) 
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                                     𝐴Z = (,%-.́

!ℏb
                                             (3.18)      (3.36) 

 

 

																																										𝑔(𝑧, 𝑧Y) = (%0	|.,.
'|	

!ℏb
                                (3.19)                                                 (3.37) 

 

 

																														𝑣 = #$(&)
ℏ#&

= )*+,-(&)
ℏ

                                 (3.20) 

A more detailed derivation can be found in the literature [6–8]. 	 

   (3.38) 

 

 
 
3.3.2 Scattering in One Dimension 
 
I study two single-axis, half-infinite leads that are connected by a coupling 

element -α. Figure 3.4 shows that both leads have the same on-site 

potentials, εo , and hopping elements (-γ). The analytical solutions for 

transmission and reflection coefficients are simple to calculate.  
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𝐻 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⋱ . . . . . . . .
. . . . . . . . .
. . 𝜀𝑜 −𝛾 0 0 0 . .
. . −𝛾 𝜀𝑜 −𝛾 0 0 . .
. . 0 −𝛾 𝜀𝑜 −α 0 . .
. . 0 0 −α 𝜀𝑜 −𝛾 . .
. . 0 0 0 −𝛾 𝜀𝑜 . .
. . . . . 0 −𝛾 . .
. . . . . . . . ⋱⎠

⎟
⎟
⎟
⎟
⎟
⎞

																																												(3.21) 

 

                              

                      𝐸(𝑘) = 𝜀U − 2γ	cos	(k)                                                                       (3.22) 

                                                 𝑣	 = "
ℏ
Gu
Gp

                                                                      (3.23)   

                                                                                                

To get the scattering amplitudes, we have to determine the system's Green's function. The formal 

solution to equation 3.12 may be expressed as:  

 

                                              𝐺 = (𝐸 − 𝐻)4"                                                              (3.24) 

  

Figure 3.4: shows a simple tight-binding model for a one-dimensional 

scatterer attached to one-dimensional leads.  

 
We have to define a Hamiltonian, that is represented by an infinite matrix. 
 

 

Equation 3.11 provided the dispersion relation for real γ that corresponds to the leads mentioned 

before, while equation 3.20 provided the group velocity. 
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                               𝐺±	 =	 limw→U(𝐸 − 𝐻 ± 𝑖𝜂	)
4"                                               (3.25) 

The retarded (advanced) Green's function is represented by 𝐺Z, 𝐺4 , where η is a positive 

number. In this thesis, I will just use retarded Green's functions, therefore I have chosen the + 

sign.  Equation 3.19 defines the retarded Green's function for an infinite, one-dimensional chain 

with equal parameters.   

                                 

                                                𝑔.(𝑗, 𝑙) = 	 /
"#|%&'|

,ℏ0
                                           (3.26) 

 

The labels of the chain's sites are 𝑗	𝑎𝑛𝑑	𝑙. The Green's function of a semi-infinite lead can be 

obtained by introducing the correct boundary conditions. Because the lattice is semi-infinite, the 

chain has to terminate at a given point 𝑖U. Otherwise, all points with  𝑖 ≥ 	 𝑖U	are missing. To 

illustrate this condition mathematically, a wave function is added to the Green's function.   

Here, the wavefunction is as follows:  
 
 

                                      															𝜓1,3
,( =	4/

"#(*"(&'&%)

,ℏ0
                                           (3.27) 

 

 At the boundary 𝑗	 = 	𝑙	 = 	 𝑖U − 1, the Green's function 𝑔(𝑗, 𝑙) 	= 	𝑔6,>y 	+ 	𝜓6,>
!2  will take the 

following simplified form: 

                                                         𝑔	(𝑖U − 1, 𝑖U − 1) = 	−
(%0

z
                                    (3.28) 

Equation 3.24 exhibits singularity when the energy E equals to the eigenvalues of the 

Hamiltonian H. In order to overcome this issue, it is advisable to consider the limit. 
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 If we assume that the leads are decoupled, meaning that α = 0, then the total Green's function of 

the system can be expressed as the decoupled Green's function.                                                           

𝑔	 = 	£
− (%0

z
0

0 − (%0

z

¤ =	¥𝑔^ 0
0 𝑔9

¦                                                                   (3.29) 

                                                                                         

 

We need to apply Dyson's equation to get Green's function of the coupled system G if we turn on 

the interaction presently.  

 

                                                       𝐺 = 	 (𝑔4" − 𝑉)4"                                         (3.30)                                                         

In this case, the operator V characterising the relationship between the two leads will have the 

form: 

                              𝑉 = 	¥
0 𝑉V
𝑉V
l 0

¦ = c 0 𝛼	
𝛼∗	 0 d                                                      (3.31) 

Get the solution to Dyson's equation by substituting equations 3.47 and 3.49 into equation 3.48:  
 

                    𝐺 = 	 "
|{|$4z$(,$%0

¨γ𝑒
4!p 𝛼
𝛼∗ γ𝑒4!p

©                                                       (3.32)                       

Finding the amplitudes of transmission (t) and reflection (r) using the Green's function equation 

3.32 is the only remaining step. This is achieved by applying the Fisher-Lee relation [4, 6], 

which creates a relationship between the scattering amplitudes and the Green's function of the 

scattering problem.  Here, the Fisher-Lee relations take the following form:  

𝑟 = 	𝑖ℏ	𝑣^𝐺UU − 1       (3.33) 
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These amplitudes are corresponding to particles that are coming from the left. When particles 

come from the right, similar formulas can be obtained for the transmission ( 𝑡́	) and reflection (𝑟́) 

amplitudes.   

 

 Now that we have obtained the whole scattering matrix, we are able to use equation 3.4 of the 

Landauer formula to determine the conductance at zero bias.  

 

 3.4 Generalization of the Scattering Formalism  

In this part, I give a generalized approach to transport calculations based on Lambert's derivation, 

as presented in [2].  This is similar to the earlier method. A generalisation of the Fisher-Lee relation 

is used to recover the scattering amplitudes once the surface Green's function of crystalline leads 

is determined.  

 

3.4.1 Green's Function of the Leads and Hamiltonian 

  We study a basic semi-infinite crystalline electrode with any level of complexity. Due to the 

crystalline form of the leads, the structure of the Hamiltonian can be considered as an extension 

of the one-dimensional electrode Hamiltonian. Figure 3.5 illustrates the overall system structure. 

Instead of considering the energies of the sites, we use Hamiltonians to represent each repeated 

layer of the bulk electrode, given as 𝐻U. Additionally, we use a coupling matrix to characterise 

the hopping parameters between these layers 𝐻".  

  

𝑡 = 𝑖ℏª𝑣9𝑣^	𝐺"U       (3.34) 
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 Figure 3.5: illustrates a diagrammatic representation of a semi-infinite generalized lead. The 

states defined by the Hamiltonian 𝐻U	are linked together through a generalized hopping matrix 

𝐻".  The direction z is defined as being parallel to the axis of the chain. Each slice can be 

assigned a label z.  

 
The Hamiltonian for this system is expressed in the following form:  
 

                                𝐻 =

⎝

⎜
⎜
⎜
⎜
⎛

•
•
0
0
0
0
0
0

					

•
•
𝐻"
l
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0
0
0
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0
0
0
0
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l

0
0
0

		

0
0
0
𝐻"
𝐻,
𝐻"
l

0
0

		

0
0
0
0
𝐻"
𝐻,
𝐻"
l

0

		

0
0
0
0
0
𝐻"
•
•

				

0
0
0
0
0
0
•
•

		

⎠

⎟
⎟
⎟
⎟
⎞

	                              (3.35) 

                                      

 In this case, 𝐻, and 𝐻"are typically complex matrices, and the only condition is that the 

complete Hamiltonian, represented as H, must be Hermitian.  In this part, the first goal is to 

calculate the Green's function of this kind of lead for general 𝐻" and 𝐻U.  In order to determine 

𝑯𝟎 
 

𝑯𝟎 
 

𝑯𝟎 
 

𝑯𝟎 
 

Z 

𝐻1 𝐻1 𝐻1 
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the Green's function, it is necessary to calculate the spectrum of the Hamiltonian by solving the 

Schrödinger equation for the lead. 

 

Here, the wave function that describes layer z is represented as 𝜓n, where z is an integer that is 

measured in units of inter-layer distance.  Assuming that the system is infinitely periodic only in 

the z direction, we can represent the on-site wavefunction	𝜓n, using Bloch form. This form 

consists of a product of a propagating plane wave and a wavefunction, 𝛷p, which is 

perpendicular to the transport direction, z. The layer Hamiltonian, 𝐻U, has dimensions M × M, 

meaning it consists of M site energies and their respective hopping elements. Therefore, the 

perpendicular wavefunction, 𝛷p, will have M degrees of freedom and can be represented as a 1 × 

𝑀 dimensional vector. Thus, 𝜓n, the wave function, has the following form:  

here 𝑛p 	is an arbitrary normalization parameter. Substituting this into the Schrödinger equation 

(Equation 3.36), we get: 

 

 In order to determine the band structure for such a problem, one would choose values of k and 

then calculate the eigenvalues at that point, which would be represented by the equation 𝐸 =

𝐸>(𝑘), where k =1,2,3,…,M.   Where 𝑙 is the band index. For each k value, there will be M 

solutions to the eigenvalue issue, and hence M energy values. It is not very difficult to build a 

 

𝐻"
l𝜓n4" + 𝐻,𝜓n + 𝐻"𝜓nZ" = 𝐸𝜓n 

 

(3.36) 

 

𝜓n = ª𝑛p𝑒!pn𝛷p 

  

  (3.37)  
 

g𝐻U+𝑒!p𝐻" + 𝑒4!p𝐻"
l − 𝐸h𝛷p = 0    (3.38) 
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band structure by choosing several different values for the variable k.  In a scattering problem, 

the problem is solved by applying an alternative method. Instead of determining the eigenvalues 

at a specific k, we determine the values of k at a particular E. In order to accomplish this, a root-

finding may have been utilised, but this would have needed an immense computational effort 

because the wave numbers are generally complex. On the other hand, we may formulate an 

alternate eigenvalue problem in which energy is the result and wave numbers are the result by 

introducing the function:  

 

This is combined with equation 3.38: 
  

 

 

If we consider a layer Hamiltonian, represented as 	𝐻,, with dimensions of M×M, then equation 

3.40 will generate 2M eigenvalues, represented as 𝑒!p3n,and eigenvectors, represented as 𝛷p, of 

magnitude M. After that, these states can be classified into four separate categories according on 

whether they are propagating or decaying, as well as whether they are left going or right going.  

When the value of 𝑘> is real, we suggest that the state is propagating.  A wave number with a 

positive imaginary part is referred to as a left decaying state, while a wave number with a 

negative imaginary part is referred to as a right decaying state. The propagating states are sorted 

according to their group velocity, which is provided by:  

 

𝑣p = 𝑒4!pn𝛷p   (3.39) 

¥−𝐻"
4"(𝐻, − 𝐸) −𝐻"4"𝐻"

l

𝐼 0
¦ ¥
𝛷p
𝑣p
¦ = 𝑒!pn ¥

𝛷p
𝑣p
¦       (3.40) 
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If the state's group velocity, 𝑣p>, is positive, then it is a right propagating state; if it is negative, 

then it is left propagating.   

 

The eigenstates are sorted into left and right propagating or decaying states according to the 

wave number and group velocity, as shown in Table 3.1.  

 

 

Category Left Right 

 Decaying 𝐼𝑚(𝑘>) > 0 𝐼𝑚(𝑘>) < 0 

Propagation 𝐼𝑚(𝑘>) = 0, 𝑣|
p3 < 0 𝐼𝑚(𝑘>) = 0, 𝑣|

p3 > 0 

 

Table 3.1: Sorting the eigenstates into left and right propagating or decaying states according to 

the wave number and group velocity. 

 

Now, I will represent the wave numbers that belong to the left propagating-decaying set as 𝑘>, 

whereas the wave numbers that belong to the right propagating-decaying set will simply be 

denoted as 𝑘2. Therefore,	𝜙p2 represents a wave function that corresponds to a right state, 

while	𝜙p> represents a wave function that corresponds to a left state.  If 𝐻" is invertible, there 

must exist an equal number, M, of left and right travelling states. It is obvious that if 𝐻"is 

singular, the matrix in equation 3.59 cannot be built because it depends on the inversion of 𝐻". In 

𝑣p> =
1
ℏ
𝜕𝐸p,>
𝜕𝑘  (3.41)  
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addition, one of various ways can be used to solve this problem. The first [2, 8, 10] uses the 

decimation method to get a useful, non-singular 𝐻". Another option is to populate a solitary H1 

with small values at random, creating a specific numerical mistake. This method is reasonable 

since the numerical error that is introduced could be as small as the numerical error that is 

introduced by decimation.  A different solution would be to rewrite equation 3.40 without 

inverting 𝐻"	as follows:   

 

Although, solving this generalized Eigen-problem requires additional computational resources. 

Any of the previously mentioned solutions are effective in addressing the issue of a solitary 𝐻" 

matrix. Additionally, the requirement that there must be an equal number, M, of left and right 

going states, whether	𝐻" is singular or not [11-15]. The solutions to the eigenvalue equation 3.38 

at a specific wave number, k, will provide a set of basis that are orthogonal. However, the 

eigenstates, 𝛷p3 , produced by solving the Eigen problem equation 3.42 at a particular energy, E, 

will not typically construct a set of states that are orthogonal.   This is really important, as we 

will need to calculate the Green's function in a non-orthogonal method while creating it. As a 

result, it is important to introduce the duals to, 𝛷p3, and,  𝛷p} 3,  in a method that corresponds to 

the following:  

 

 

¥−(𝐻, − 𝐸) −𝐻"
l

𝐼 0
¦ c~0b0d = 𝑒!pn c𝐻" 0

0 𝐼d c
~0
b0
d      (3.42)  
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The result is the generalized completeness relation: 
 

 

Given that we have all the eigenstates at a specific energy, we can first calculate the Green's 

function for the infinite system. If the appropriate boundary conditions have been satisfied, we 

can then calculate the Green's function for the semi-infinite leads on their surfaces. By using the 

fact that the Green's function solves the Schrödinger equation at z=z', we may construct the 

Green's function by combining the eigenstates 𝛷p3 and 𝛷p} 3: 

 

 

 The M-component vectors 𝜔p3 and 𝜔p} 3 need to be found. It is necessary to see the structural 

similarity between this equation and equation 3.13, as well as the fact that all the degrees of 

freedom in the transverse direction are included within the vectors 𝛷p and 𝜔p. The current 

objective is to get the vectors.  According to section 3.4.1, it is required that equation 3.45 is 

𝛷̄(p%)
l 𝛷p& = 𝛷̄(p} %)

l 𝛷p} & = 𝛿!6 (3.43) 
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continuous at z=z' and also satisfies Green's function equation (equation 3.12). The initial 

condition is expressed as: 

 

 
Furthermore, the second one:  
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That is known as well from the Schrödinger equation. 
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After that, the dual vectors defined in equation 3.43 are applied.  Multiplying equation 3.46 by 

𝛷̄(p4) results in:  

 

 

 

  

Similarly, multiplication by 𝛷̄qp}4r
l results in:   

 

By applying the continuity equation 3.46 and equations 3.49 and 3.50, the Green's function 

equation (equation 3.49) can be expressed as:  
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Therefore, it follows that:  
 

 

  

 

 

 

This provides an expression for 𝜔p
l immediately:   

 

where the variable v is defined:  
 

Equation 3.53 represents the wave number (k), which represents both left and moving states. By 

substituting equation 3.53 into equation 3.45, the Green's function of an infinite system is 

obtained. 

 

 In order to obtain the Green's function for a semi-infinite lead, it is necessary to add a wave 

function into the Green's function. This means the boundary conditions at the edge of the lead are 
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satisfied, similar to the one-dimensional case.  Here, the boundary condition requires that the 

Green's function disappears at a specific location ( 𝑧 = 𝑧,). In order to achieve this. 

Equation 3.55 for Green's function states that 𝑔	 = 	𝑔y +△.  This produces the surface Green's 

function for a semi-infinite lead in the left direction: 

 

and continuing right:  
 

 

To complete the process, we need to get the Hamiltonian of the scattering region using Density 

Functional Theory (DFT). Then, we can combine this with the surface Green's functions using 

Dyson's equation. This will allow us to get the overall Green's function and the transmission 

amplitude  𝑡p> 	[16].  
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       𝑡p> =		 𝛷̄(p3)
l 𝐺&,&?>𝑣𝛷(p3)º

b0
b3
	𝑒!p3                                                        (3.60) 

 

 

 

 

 

3.5 Summary 

This chapter explores the Landauer formula, which relates to the electrical conductance 𝐺 and 

thermoelectric coefficients to the transmission coefficient. This chapter explains the method of 

calculating the scattering matrix of a system connected to one-dimensional leads using the 

Green's function approach within scattering theory. This was generalised to higher-dimensional 

transport calculations, which provides the basis for the GOLLUM transport code and will be 

used in the next chapters.  
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Chapter 4 

 

Quantum Interference in Molecules 

4.1 Introduction 

In the field of molecular electronics, one of the main challenges is to get a more in-depth 

understanding of the fundamental behaviour of electron transport through single-molecule 

junctions. In order to increase our understanding, many experimental techniques have been 

created to make contact with individual molecules. In recent years, it has become clear that the 

electrical properties of a molecular junction are controlled by the whole system, which includes 

both the electrodes and the molecule. As mentioned in chapter 1 and shown in Figure 1.2, there 

are several components that comprise a single-molecule junction including the molecular bridge, 

the two electrodes, and the two anchors. The anchors are used to connect the molecule to the 

electrodes. The fundamental characteristics of charge transport in a junction are greatly affected 

by the electrical connection between its individual components [1]. An isolated molecule has 

different energy levels, referred to as frontier orbitals (such as the HOMO and LUMO), while 

metal electrodes have a band structure that includes a continuum of states, with a precisely 

defined Fermi energy. Once these two components are close to each other, they interact with 

each other, which leads to different physical effects. Due to the fact that there is a transfer of 

charge between the two systems, the impact of donating or withdrawing electrons from the 

molecule has an effect not only on the energy levels of the molecule, but also on the contacts. 

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) may be moved upwards or downwards as a result of this charge transfer. This results in 

a slope in the transmission function at the Fermi level that is either more pronounced or less 
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pronounced [2]. Additionally, the position of the molecular orbitals in relation to the Fermi level 

of the electrodes is influenced by the chemical bonds that are present in the anchor group. These 

bonds are responsible for the chemical binding of the molecules to the electrodes. As noted in 

chapter 1, quantum interference (QI) effects have received great interest in the field of charge 

transport at the individual molecule level due to their remarkable ability to control the flow of 

charge through molecular materials and devices in experimental investigations, at a phase-

coherent level [3-5].  By changing the conductance in molecular systems, it is possible to see a 

phenomenon called constructive quantum interference (CQI) or destructive quantum interference 

(DQI), depending on whether the conductance is increased or decreased, respectively [6].  

 

4.2 Tight binding model and density functional theory calculations 

A method that is used to compute electronic band structures is known as the tight-binding model 

(TBM) or the linear combination of atomic orbitals (LCAO) method. This method employs a set 

of wave functions that are produced from the superposition of wave functions of isolated orbitals 

that are located at each atomic site.  

As noted in chapter 2, DFT is a technique that has the ability to solve the many-body 

Schrodinger equation by transforming it into a problem with electrons that do not interact with 

another one. In what follows, computations are carried out on benzene with specific 

connectivities, to illustrate the role of different kinds of linkers that are located between the 

benzene core and the anchor groups. DFT calculations were performed using a combination of 

SIESTA and GOLLUM and detailed comparisons with tight binding model (TBM) calculations 

are made. 
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As a typical example, benzene can be connected to lead either via meta connectivity or para 

connectivity, as shown in Figure 4.1. These are referred to as Meta-Benzene and Para-Benzene 

for reference. This Figure shows a comparison between TBM and DFT transmission coefficients 

for the two connectivities. 

 

Figure 4.1: The transmission coefficients of Meta-Benzene and Para-Benzene by DFT and TBM 

respectively. 

 

For both the meta and para connectivities, the right figure shows the transmission coefficients 

obtained from a tight binding model, where the centre of the HOMO-LUMO gap is located at 

𝐸 = 0.	 For the meta connectivity, the tight binding model clearly predicts destructive quantum 

interference (DQI), signaled by the presence of a transmission dip at the centre of the HOMO-

LUMO gap, whereas for the para connectivity, constructive quantum interference (CQI) is 

predicted, corresponding to a smooth transmission coefficient near the gap centre. 
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Clearly these features are shared by the DFT calculation in the left figure, so the simple 

conceptual TBM on the right predicts the key features of the full DFT calculation on the left. 

The following figure shows the frontier molecular orbitals of the isolated molecules with meta 

and para connectivities: 

Figure 4.2: Shows meta and para wave functions. 

 

From Figure 4.2, it is interesting that one can predict whether DQI or CQI is likely to occur by 

looking at the symmetry of the frontier molecular orbitals. The molecular orbitals are real and so 

the amplitude of the orbital could either be positive or negative. In Figure 4.2 for example, red is 

positive and blue is negative. Since these molecules are symmetric, their molecular orbitals must 

be either symmetric or antisymmetric, in agreement with Figure 4.2. This means that if the value 

of the orbital amplitude at the left end of a molecule is multiplied by the value of the orbital 

amplitude at the right end of the molecule, then the result ‘orbital product’ is either positive (eg 

LUMO=-2.05 eV

HOMO=-4.54 eV
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for the symmetric LUMO of the molecule on the right of Figure 4.2, the LUMO product is 

positive) or negative (eg for the antisymmetric HOMO of the molecule on the right the HOMO 

product is negative and for both the LUMO and HOMO of the molecule on the left the LUMO 

product and the HOMO product are both negative). According to an ‘orbital product rule’ [7,8] if 

the HOMO and LUMO products have opposite signs, as for the para-connected molecule on the 

right of Figure 4.2, then CQI is expected. On the other hand, if the HOMO and LUMO products 

have the same sign, as for the meta-connected molecule on the left of Figure 4.2, then DQI is 

expected. Clearly, this is in agreement with the DFT and TBM transmission curves of Figure 4.1. 

Finally, it should be noted that if the magnitudes of the HOMO and LUMO product are different, 

then the DQI dip will be positioned closer in energy to the orbital with the smaller magnitude of 

the product. 

4.3 Examples of conjugated πz systems 

In what follows, I shall explore the occurrence of DQI and CQI in a variety of conjugated πz 

systems. Examples of such systems are shown below. 

 

Figure 4.3: The molecular systems with one conjugated π system, namely a collection of πz 

orbitals.  
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A typical conjugated π system consists of an array of coupled πz orbitals, each located on a 

carbon atom. Basically, the HOMO and LUMO levels are formed from linear combinations of 

these πz orbitals and so that's where all the electron transport takes a place. Since there is only a 

single πz orbital on each carbon atom, we can produce a simple tight binding model to describe 

the key qualitative features. In contrast, as we shall see below, some conjugated π systems are 

formed from both πz and πx or πy orbitals located on each atom, in which case the TBM model 

should be generalised to accommodate these extra degrees of freedom. In this case, we shall find 

that DQI dips that occur when there is a single πz orbital on each carbon atom can be masked by 

the presence of additional πx or πy orbitals. 

 

4.4 An example of connectivity table (C) and the magic number theory table (M) of the 

benzene ring 

For a conjugated system with a single πz orbital located on each atom, if the atoms are identical, 

then the simplest TBM Hamiltonian  𝐻	is obtained by choosing the site energies to be zero 

(which corresponds to choose the energy origin to equal the site energies) and choosing the 

nearest neighbour Hamiltonian matrix elements to equal -1 (which corresponds to choosing the 

unit of energy equal to the nearest neighbour coupling), with all others equal to zero. With such a 

choice, find that 𝐻 = −𝐶, where 𝐶 is a connectivity table, such that 𝐶!6 = 1 if atoms 𝑖 and 𝑗 are 

nearest neighbours and 𝐶!6 = 0 otherwise. As an example, the connectivity table of benzene is 

shown below. The Greens function for such a molecular core is 𝑔(𝐸) = (𝐸 − 𝐻)4" =

(𝐸 + 𝐶)4" and since the middle of the HOMO=LUMO gap is 𝐸 = 0, the mid-gap greens 

function, arising at 𝐸 = 0 is 𝑔 = 𝐶4". To make it easy to picture the structure of 𝑔, magic 

number theory introduces a magic number table 𝑀, defined to be 𝑀 = 𝑎𝑔 = 𝑎𝐶4", where 𝑎 is 
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any convenient constant. For the benzene core described by the above simple TBM, choosing 

𝑎 = 2 yields the magic number table 𝑀 shown below. (As a check the reader can verify that 

𝑀𝐶 = 2𝐼, where 𝐼 is the unit matrix.) 

 

 

Table 4.1. The connectivity table 𝐶 and magic number table 𝑀 of benzene. 

 

The magic number theory [7-11] notes that provided the Fermi energy of the electrodes is close 

to the middle of the HOMO-LUMO gap, then if the linkers connecting the molecular core to the 

electrodes are connected to sites 𝑖 and 𝑗 of the core, the electrical conductance 𝜎!6 	is proportional 

to ?𝑔!6|# = 𝑎#?𝑀!6|#. For benzene, Table 4.1 shows that the magic number table is block off 

diagonal, so that 𝑀!6 and 𝜎!6 are zero if 𝑖 and 𝑗 are both odd or both even. Such connectivities 

correspond to a meta connected core and therefore magic number theory predicts DQI for meta 

connected benzene, in agreement with Figure 4.1. On the other hand, if 𝑖 is odd and 𝑗 is even, or 

vice versa, 𝑀!6 and 𝜎!6 are non-zero and therefore for such para or ortho connectivites, magic 
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number predicts a non-zero mid-gap transmission coefficient, again in agreement with Figure 

4.1. 

 

Similarly, for a molecule with the same core, but linkers connected to sites 𝑙, 𝑚, the electrical 

conductance 𝜎>A is proportional to |𝑔>A|#. This means that the ratio of the conductance 

corresponding to the two different connectivities is �%&
�35

= ||%&|$

||35|$
= |%%&|$

|%35|$
. In the last step, the 

arbitrary constant 𝑎 has cancelled, so that the conductance ratio is obtained simply by looking up 

the numbers 𝑀!6 and 𝑀>A from the magic number table. 

4.5 The effect of introducing a single heteroatom 

Magic numbers, or equivalently the core mid-gap Greens function 𝑔 can also be used to predict 

the effect of introducing a single heteroatom into a ‘parent’ conjugated π system, for example by 

substituting a nitrogen atom into for example naphthalene as shown in Figure 4.4. After 

heteroatom substitution into site 𝑙, if the site energy is changed from zero to 𝜖>, then the Green's 

function 𝐺	of the resulting ‘daughter molecule’ can be computed by using Dyson’s equation [7], 

which takes the form 

 

𝐺!6 = 𝑔!6 +
|%3	03|3&
"4|3303

                    (4.1) 

 

 

 

 

                                                                                                                      

 2 
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                                                                                      𝜖> 

 

Figure 4.4: In this figure, (Left) A lattice of sites representing the connectivity of naphthalene. 

(Right) A lattice of sites representing the connectivity of quinoline, in which the site energy of 

site l = 4 is perturbed by the presence of a nitrogen atom, coloured blue. 

 

From the magic number table of the parent, shown in Table 4.1, 𝑔>> = 0, so equation (1) 

simplifies to 

𝐺!6 = 𝑔!6 + 𝑔!>𝜀>𝑔>6                    (4.2) 

This equation represents the mid-gap Green’s function of the parent in the presence of the 

heteroatom. 

 

From equation (4.2), this formula predicts that if we place the nitrogen in a certain site, it may 

have no effect and if we place the nitrogen somewhere else, may have a large effect. For 

example, if i is odd and j is odd, then𝑔!6 = 0	 and the parent exhibits DQI.  In this case, if 𝑙 is 

odd, 𝐺!6 is also zero, DQI persists and the heteroatom as a negligible effect. On the other hand, if 

𝑙 is even, the second term in (4.2) is non-zero. This means that 𝐺!6 ≠ 0, DQI is alleviated and the 

heteroatom causes a large increase in conductance. 
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For the case where 𝑖 is odd and 𝑗 is even or vice versa, 𝑔!6 ≠ 0 and the parent exhibit CQI. In 

this case, 𝑔!>𝜀>𝑔>6 is zero for any choice of 𝑙, so the daughter also exhibits CQI and the 

heteroatom has a negligible effect. 

This shows that magic numbers are important for understanding the impact of introducing a 

heteroatom into a conjugated π system. 

 

4.6 Studied Molecules 

In what follows, the aim will be to study CQI and DQI in the following molecules, which have 

different cores and different linkers to the electrodes. One reason for studying these molecules is 

that the carbon atoms within the carbon chains possess πz or πy orbitals, so that these molecules 

will reveal the effect on QI of these more complex π systems. 
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Figure 4.5: Shows the five studied molecules. 

 

4.7 Transmission coefficient 

The transmission coefficients 𝑇(𝐸) for the above molecules, with various anchors and linkers, 

are calculated using DFT. Initially, the molecules are relaxed using the SIESTA software 

program.  Finally, the 𝑇(𝐸) values are calculated for molecules using different linkers and 

anchors, and their CQI or DQI characteristics are related to connectivity. 

4.8 Transmission coefficients for the benzene with different linkers connected to gold 

electrodes and an increasing number of central rings (naphthalene and anthracene) and the 

tight binding model results:  

The DFT-based transmission coefficients 𝑇(𝐸) for molecule 1, with and without heteroatoms are 

shown in Figure 4.6, while Figure 4.7 shows their TBM transmission coefficients, along with the 

bond currents within the molecular core, occurring when electrons are injected at 𝐸 = 0. One 

questions of interest is whether or not the predictions of section 4.5, which assumes that there is 

4 
 

 

5 
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only a single π orbital per atom, remain correct when  both πz or πy orbitals are present in the 

pairs of carbon atoms within the linkers. 

 

 
 

Figure 4.6: DFT-based transmission functions for the parent benzene (one phenyl ring) 

connected to the gold via SMe-anchor at meta connectivity. For the heteroatom-substituted 

daughters, the N atoms are indicated by red circles. 



76 
 

 

 

Figure 4.7: TBM results for transmission functions of the parent benzene (one phenyl ring) 

connected to the gold via SMe-anchor at meta connectivity, along with the heteroatom-

substituted daughters. 

 

From Figure 4.6, in the top graph, we see that the core is meta connected to the linkers, and the 

atoms i and j are both odd. Therefore, for the parent, as expected, a DQI transmission dip is 

present near the middle of the HOMO-LUMO gap. When a nitrogen heteroatom is inserted into 

an even numbered site, to yield the daughters metaN2 and metaN1, this alleviates the DQI near 

the middle of the HOMO LUMO gap, in agreement with the discussion in section 4.5. In 

contrast, when a nitrogen heteroatom is inserted into an odd numbered site, to yield the daughters 

metaN3, the DQI dip near the middle of the HOMO LUMO gap persists, again in agreement 

with the discussion in section 4.5. 
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If we compare the DFT calculation in Figure 4.6 and the TBM results in Figure 4.7, we find that 

the tight binding model is in qualitative agreement with the DFT calculations. (In this case the 

transmission curves of the parent and the daughter metaN3 are identical.) So, the simple 

conceptual TBM, which assumes only a single π orbital per atom, correctly predicts the key 

features of the full DFT calculation, even though both πz or πy orbitals are present in the pairs of 

carbon atoms within the linkers. 

 

 

4.9 Wave functions for meta, metaN1, metaN2 and metaN3 with anchor groups of the 

benzene  

To apply the orbital product rule, the frontier orbitals of both the parent and daughters are shown 

below. 

 

Figure 4.8: Frontier molecular orbitals of a meta-studied molecule with its eigenvalues obtained 

from DFT, where red represents positive and blue indicates negative regions of the wave 

functions. 



78 
 

 

Figure 4.9: Frontier molecular orbitals of metaN1 studied molecule with its eigenvalues obtained 

from DFT, where red represents positive and blue indicates negative regions of the wave 

functions. 

 

Figure 4.10: Frontier molecular orbitals of metaN2 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions. 
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Figure 4.11: Frontier molecular orbitals of metaN3 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions. 

 

According to the product rule, if the HOMO product and LUMO product have the same sign, 

then DQI is expected, whereas if they have different signs, COI is predicted. From Figures 4.8, 

4.9 and 4.11, the HOMO and LUMO products have the same sign, so DQI is predicted to occur 

somewhere within the HOMO-LUMO gap. As noted in section 4.2, if the magnitudes of the 

HOMO and LUMO product are different, then the DQI dip will be positioned closer in energy to 

the orbital with the smaller magnitude of the product. This is the reason why, as shown in Figure 

4.6, the DQI dip of metaN1 is closer to the LUMO and the DQI dip of metaN2 is closer to the 

HOMO. From Figure 4.10 we cannot apply the product rule because the right side of the HOMO 

is too small to assign a sign.  
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Figure 4.6 shows that there is in fact a DQI dip and since the HOMO product is small, the dip 

lies closer to the HOMO. 

 

The above results that the magic number theory predicts the shifting of these DQI dips, even 

though both πz or πy orbitals are present in the pairs of carbon atoms within the linkers. To check 

if this is generally true, we change the linker between the central benzene and the anchor group 

into just four carbon atoms (ie two triple bonds in each linker) and repeat the above analysis. The 

new set of molecules are shown in Figure 4.12. In these molecules the carbon atoms in the 

linkers each possess both πz or πy orbitals, as shown in Figure 4.13. 
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Figure 4.12: DFT-based transmission functions for benzene (one phenyl ring) with linkers 

composed of 4 carbon atoms (ie two triple bonds) and meta connectivity. The N atom is 

indicated by red circles. 

 

Comparing the DFT-based transmission curves in Figure 4.12, with those of Figure 4.6, we see 

that this change in the linkers has caused the DQI dips to disappear. Our task now is to 

understand the origin of this disappearance. As a first step, I computed the frontier orbitals of 

these molecules and present them in section 4.11.  

 

4.10 Examples of conjugated πZ and πY systems 

In what follows, I shall explore the occurrence of DQI and CQI in a variety of conjugated πz and 

πy systems. Examples of such systems are shown below. 

 

 

Figure 4.13: A comparison between molecules with a πz system (a) and a molecule (c) with two 

π systems, i.e. πz and πy. 
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4.11 Wave functions for meta, metaN1, metaN2 and metaN3 with triple bombs of the 

benzene 

To implement the orbital product rule, the frontier orbitals of the above molecules are shown 

below. 

 

 

 

 

 

Figure 4.14: Frontier molecular orbitals of a meta-studied molecule with its eigenvalues obtained 

from DFT, where red represents positive and blue indicates negative regions of the wave 

functions 
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Figure 4.15 Frontier molecular orbitals of metaN1 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

 

Figure 4.16 Frontier molecular orbitals of metaN2 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 
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Figure 4.17: Frontier molecular orbitals of metaN3 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

In all cases of Figure 4.14,4.15,4.16 and 4.17, the HOMO and LUMO orbital products have the 

same sign and therefore the orbital product rule predicts DQI, in contrast with the absence of 

DQI dips in Figure 4.12. 

 

To understand why the second π system in the triple bonds cause the DQI dips to disappear, 

we speculate that the πy system will couple to the sigma orbitals in the central benzene ring. and 

facilitate the transmission of electrons through the sigma orbitals of the benzene ring. So, even if 

the πz system shows DQI and does not transmit any electrons, the sigma orbitals can couple to 

the πy system of the triple bonds and still allow electrons to be transmitted. Consequently, the 

total transmission function does not exhibit a DQI dip, even though the πz system is subject to 

DQI.  Typically, sigma bonds do not transmit electrons very well at all, but for the benzene ring, 

it is small but not zero and becomes the dominant transmission mechanism when transmission 
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through the πz system is absent. Transmission through the sigma system of a molecular core is 

expected to decay rapidly as the size of the core (or distance between the contacts to the core) 

increases. 

 

So, if we increase the size of the central core, those sigma orbitals would not be able to transmit 

electrons at all. To test this hypothesis, we increase the number of rings in the central core, by 

replacing the benzene by either naphthalene (two rings) or anthracene (three rings). If the 

hypothesis is correct, then the sigma systems of naphthalene and anthracene should be much 

worse at transmitting electrons than the sigma system of benzene and the effect of the πy 

of the triple bonds should become negligible, thereby causing the DQI dip to appear. 

 

4.12 An example of connectivity table (C) and the magic number theory table (M) of 

naphthalene rings 
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Table 4.2. The connectivity table 𝐶 and magic number table 𝑀 of naphthalene. 

 

Table 4.2 shows the connectivity table and magic number table of naphthalene. The zeros in the 

latter show that mid-gap DQI is expected of the labels 𝑖 and 𝑗 of the site which connect to the 

linkers are either both odd or both even. 

To test the above hypothesis, I calculated the transmission functions of the parent naphthalene 

and a selection of heteroatom-substituted daughters, when the labels 𝑖 and 𝑗 of the site which 

connect to the linkers are both odd. I shall refer to this as meta connectivity. First, I chose the 

linkers to contain a benzene ring and two carbon atoms, as shown in Figure 4.18. The resulting 

DFT-based transmission curves are shown in Figure 4.18 and the corresponding TBM-based 

curves are shown in Figure 4.19. 

 

 

Figure 4.18: DFT-based transmission functions for naphthalene (two phenyl rings) connected to 

the gold via SMe-anchor at meta connectivity. The N atom is indicated by red circles. 
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Figure 4.19: Tight binding model result for naphthalene. 

 

For this meta connectivity, within the TBM, we expect the parent naphthalene to exhibit mid-gap 

DQI and mid-gap DQI to persist for metaN3, because the heteroatom is placed on an odd 

numbered site. In contrast, for metaN2 and meta N1, where the heteroatom is place on an even 

numbered site, Dyson’s equation predicts that the mid-gap DQI will be alleviated and the dip 

will shift away from the mid-gap. Figure 4.19 agrees with these predictions. 

In Figure 4.19, we find that the tight binding model predicts DQI dips within the gap for meta, 

meta N1, metaN2 and meta N3. In contrast, the DFT calculations in Figure 4.18 shows clear dips 

within the gap for meta and metaN2, but not obviously for metaN1 and metaN3. In fact, there are 

narrow DQI dips for metaN1 and metaN3 close to the HOMO resonance, so in this sense there is 

qualitative agreement between the TBM and DFT.  
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4.13 Wave functions for meta, metaN1, metaN2 and metaN3 with anchor groups of 

naphthalene  

To implement the orbital product rule, the following figures show the frontier orbitals. 

 

Figure 4.20: Frontier molecular orbitals of a meta-studied molecule with its eigenvalues obtained 

from DFT, where red represents positive and blue indicates negative regions of the wave 

functions 

 

Figure 4.21: Frontier molecular orbitals of metaN1 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 
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Figure 4.22: Frontier molecular orbitals of metaN2 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

 

 

Figure 4.23: Frontier molecular orbitals of metaN3 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions. 



90 
 

 

The HOMO and LUMO products of meta in Figure 4.20 have the same sign and therefore DQI is 

predicted. 

The HOMO and LUMO products of metaN1 in Figure 4.21 have the opposite signs and therefore 

CQI is predicted, in agreement with the DFT calculations. The orbital product rule cannot be 

applied in the other cases (Figures 4.22 and 4.23), because the HOMO amplitude is too small at 

one end of the molecules. 

To test the above hypothesis, I now repeat these calculations with linker formed from two triple 

bonds (ie each with four carbon atoms). The molecules and their DFT-based transmission curves 

are shown in Figure 4.24. 
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Figure 4.24: DFT-based transmission functions for naphthalene (two phenyl rings) with triple 

bonds at meta connectivity. The N atom is indicated by red circles.  

 

 

Compared with Figure 4.18, Figure 4.24 shows that the change in linker has caused the DQI dips 

of the meta and metaN2 molecules to disappear. This is a consequence of the presence of 

both the πz and the πy systems in the triple bonds, with the latter coupling to the sigma system of 

the core to provide a parallel conductance path which hide the DQI dip in the πz system of the 

core.  

 

4.14 Wave functions for meta, metaN1, metaN2 and metaN3 with triple bombs of 

naphthalene  

To implement the orbital product rule, the frontier orbitals of the above molecules are shown 

below. 
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Figure 4.25: Frontier molecular orbitals of a meta-studied molecule with its eigenvalues obtained 

from DFT, where red represents positive and blue indicates negative regions of the wave 

functions 

 

 

Figure 4.26: Frontier molecular orbitals of metaN1 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 
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Figure4.27: Frontier molecular orbitals of metaN2 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

Figure 4.28: Frontier molecular orbitals of metaN3 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

Again, the HOMO and LUMO products of meta in Figure 4.25 have the same sign and therefore 

DQI is predicted, whereas the HOMO and LUMO products of metaN1in Figure 4.26 have the 

opposite signs and therefore CQI is predicted. For the other molecules (Figures 4.27 and 4,28), 

the HOMO and LUMO products have the same sign and therefore DQI is predicted. However, 

no clear DQI dips are displayed by the DFT-based transmission curves in Figure 4.24. 
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To test the above hypothesis, I shall now increase the size of the core to anthracene, with three 

rings. If the hypothesis is correct, then transmission by the sigma system should be diminished, 

thereby allowing the DQI dips to become apparent. The new molecules are shown in Figure 4.29, 

along with their DFT-based transmission curves. Their corresponding TBM curves are shown in 

Figure 4.30 and are in excellent agreement with the DFT results. The DQI dips are now obvious, 

because although the πy systems in the triple bonds can couple to the sigma system of the core, 

the increase in size of the core has supressed transmission through the sigma system. 

 

 

 

Fig 4.29: DFT-based transmission functions for anthracene (three phenyl rings) with triple bonds 

at meta connectivity. The N atom is indicated by red circles.  
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Figure 4.30: Tight binding model result for anthracene. 

 

4.15 Wave functions for meta, metaN1 and metaN2 with triple bombs of anthracene  

To explore the predictions of the orbital product rule, the frontier orbitals of the above three 

molecules are shown below. 
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Figure 4.31: Frontier molecular orbitals of a meta-studied molecule with its eigenvalues obtained 

from DFT, where red represents positive and blue indicates negative regions of the wave 

functions 

 

 

Figure 4.32 Frontier molecular orbitals of metaN1 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 
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Figure 4.33: Frontier molecular orbitals of metaN2 studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

In all cases in Figures (4.31,4.32 and 4.33), the HOMO and LUMO orbital products are of the 

same sign and therefore DQI is predicted, in agreement with the DFT and TBM transmission 

curves. 

 

 

 

4.16 Summary 

In this chapter, I studied charge transport through molecular junctions with gold electrodes 

connected to molecular cores by linkers with conjugated π systems formed from both πz and πy 

orbitals. I found that DQI dips in transport though the πz system can be hidden, because the πy 

orbitals of the linkers can couple to the sigma system of the core and create a parallel 

conductance channel. Although this channel makes only a small contribution, it becomes 

dominate when DQI suppresses transport through the πz system. This mechanism was 

demonstrated by increasing the size of the core from benzene to naphthalene and then 

anthracene, which successively suppress transport through the sigma system and for the largest 

core allows the DQI transport dips to become visible. This points to an important design 

principle for future molecular electronic devices, since if one plans to use DQI to control 

transport through molecules, it would be wise to avoid links with more than one π system. 
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Chapter 5 
 

Single-Molecule Conductance Enhancement in a Stable Diradical 

 

5.1 Introduction  

 

Stable organic radicals have half-filled orbitals at the Fermi energy, making them promising 

candidates for electrical devices. Due to the possibility that all-organic conjugated radical species 

with unpaired electrons would give rise to new quantum phenomena, these species have 

generated a great deal of interest in single-molecule electronics research. Additionally, organic 

radicals can improve electrical conductivity [1-2]. Therefore, studies of charge transfer in single-

molecule junctions with radical species are of great importance for future functional electronic 

devices, such as spintronic and, recently, thermoelectric devices [3-12]. Extensive research has 

been done to improve charge transport properties in single molecules through changes in 

structure, environment, anchoring groups, external stimuli, and quantum interference (QI) [13-

19]. In this chapter, the effects of diradicals on the charge transport have been investigated 

including the effects of CQI and DQI.  
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5.2 Studied molecules  

The following molecules will be investigated. As indicated in the figure, these form series of 

related molecules, which may exhibit either DQI or CQI and which may be either neutral 

molecules or radicals. 

  

Figure 5.1: Studied diradical molecules and their corresponding neutral molecules. 

 

The spin occupancies for the diradicals are shown below: 

 

Figure 5.2: Schematic shows two spin states for diradical molecules. 
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5.3 Results and discussion 

5.3.1 CQI case 

 

As shown in Figure 5.5, the HOMO and LUMO products of CQI-neutral have different signs and 

therefore CQI is predicted. This is further confirmed by my transmission calculation where no 

dip appears in the HOMO-LUMO gap as indicated by the blue curve in Figure 5.3. In terms of its 

diradical counterpart, the two unpaired electrons sitting on the two oxygen atoms can have the 

same spin or different spins, namely, they can be singlets or triplets as shown in Figure 5.2.  

These two cases are therefore considered in this chapter. The transmission coefficient of the 

singlet case is plotted in Figure 5.3b, with spin up and spin down channels almost identical due 

to the symmetric character of this molecule. The two peaks near the Fermi level correspond to 

the SOMO (singly occupied molecular orbital) and the SUMO (singly unoccupied molecular 

orbital) respectively. The room temperature conductance is plotted in Figure 5.3 c, which shows 

an increased conductance compared with its neutral counterpart near the Fermi energy.   I further 

carried on the calculation with a triplet spin state and plot the transmission curves in Figure 5.4. 

The two unpaired electrons on oxygens occupy the two energy levels indicated by the two red 

peaks below Fermi energy. A bigger enhancement is observed due to more resonances near 

Fermi energy.   
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Figure 5.3: (a) the geometries of CQI-neutral and CQI-radical within junction. (b)their 

transmission curves (c)the room temperature conductance for stable radical where the purple one 

is the average of spin up and spin down transmission. 

 

Figure 5.4: (a) the geometries of CQI-neutral and CQI-1-radical within junction. (b)their 

transmission curves (c)the room temperature conductance for stable radical where the purple one 

is the average of spin up and spin down transmission. 
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Figure 5.5: Frontier molecular orbitals of CQI-neutral studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions. 

 

The two ends of the above HOMOs and LUMOs have different signs and therefore the product 

rule predicts CQI.  

 

I choose to end up with HOMO -2 and LUMO +2 foe this case and the following cases because 

they are the highest level. 
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Figure 5.6: Frontier molecular orbitals of CQI-radical studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

 

The two ends of the above HOMOs and LUMOs have different signs and therefore the product 

rule again predicts CQI.  
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Figure 5.7: Frontier molecular orbitals of CQI-1-radical studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

The two ends of the above HOMOs and LUMOs have different signs and therefore the product 

rule predicts CQI 

 

5.3.2 The DQI 1 case 

As shown in Figure 5.10, the HOMO and LUMO products of the DQI-1-neutral have the same sign and 

therefore DQI is predicted. This is further confirmed by my transmission calculation, where the dip 

appears in the HOMO-LUMO gap as indicated by the blue curve in Figure 5.8. In terms of its diradical 

counterpart, the two unpaired electrons sitting on the two oxygen atoms can again have the same spin or 

different spin, leading to either singlet or triplet states, as shown in Figure 5.2. The transmission 

coefficient of the singlet case is plotted in Figure 5.8b, with spin up and spin down channels almost 

identical due to the symmetric character of this molecule. The room temperature conductance is plotted in 



106 
 

Figure 5.8 c, which reveals an increased conductance compared with its neutral counterpart near the 

Fermi energy. I further carried on the calculation with a triplet spin state and plot the transmission curves 

in Figure 5.9.  

 

 

Figure 5.8: (a) the geometries of DQI-1-neutral and DQI-1-radical within junction. (b)their 

transmission curves (c)the room temperature conductance for stable radical where the purple one 

is the average of spin up and spin down transmission
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Figure 5.9: (a) the geometries of DQI-1-neutral and DQI-1’-radical within junction. (b)their 

transmission curves (c)the room temperature conductance for stable radical where the purple one 

is the average of spin up and spin down transmission 

 

Figure 5.10: Frontier molecular orbitals of DQI-1-neutral studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions. 
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The two ends of the above HOMOs and LUMOs have the same signs and therefore the product 

rule predicts DQI.  

 

 

 

Figure 5.11: Frontier molecular orbitals of DQI-1-radical studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

In this case, we cannot apply the product rule, because one side of LUMOs is negligibly small. 
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Figure 5.12: Frontier molecular orbitals of DQI-1’-radical studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

The two ends of the above HOMOs and LUMOs have the same signs and therefore the product 

rule predicts DQI. However, for spin up, we cannot apply the product rule because one side of 

LUMO is negligibly small.  

 

5.3.3 The DQI 2 case 

As shown in Figure 5.15, the HOMO and LUMO products of DQI-2-neutral have the same sign and 

therefore DQI is predicted. This is further confirmed by my transmission calculation, where a dip appears 

in the HOMO-LUMO gap as indicated by the blue curve in Figure 5.13. The transmission coefficient of 

the singlet case is plotted in Figure 5.13b, with spin up and spin down channels almost identical due to the 
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symmetric character of this molecule. The room temperature conductance is plotted in Figure 5.13 c 

indicating an increased conductance compared with its neutral counterpart near the Fermi energy. I 

further carried on the calculation with a triplet spin state and plot the transmission curves in Figure 5.14.  

 

Figure 5.13: : (a) the geometries of DQI-2-neutral and DQI-2-radical within junction. (b)their 

transmission curves (c)the room temperature conductance for stable radical where the purple one 

is the average of spin up and spin down transmission 



111 
 

 

Figure 5.14: : (a) the geometries of DQI-2-neutral and DQI-2’-radical within junction. (b)their 

transmission curves (c)the room temperature conductance for stable radical where the purple one 

is the average of spin up and spin down transmission 

 

Figure 5.15: Frontier molecular orbitals of DQI-2-neutral studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 
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The two ends of the above HOMOs and LUMOs have the same signs and therefore the product 

rule predicts DQI.  

 

 

 

Figure 5.16: Frontier molecular orbitals of DQI-2-radical studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave function 

 

From this figure, we cannot apply the product rule because the two sides of HOMOs and 

LUMOs are negligibly small.  
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Figure 5.17: Frontier molecular orbitals of DQI-2’-radical studied molecule with its eigenvalues 

obtained from DFT, where red represents positive and blue indicates negative regions of the 

wave functions 

 

The two ends of the above HOMOs and LUMOs have the same signs and therefore the product 

rule predicts DQI.  

For spin-up, we cannot apply the product rule because the two sides of HOMOs and LUMOs are 

negligibly small.  

 

From the above transmission and conductance properties of these molecules, we found that the 

conductance of the radical is greater than that of the neutral molecule in both cases of CQI and 

DQI. 
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5.4 Summary 

This chapter emphasizes that stable organic diradicals have the potential for enhanced 

conductance compared to their closed-shell counterparts. Specifically, the triplet spin state case 

provides more enhancement than the singlet spin state. The influence of diradical based on CQI 

and DQI neutral molecules is also studied. Generally, we observe a bigger enhancement for a 

DQI system than that on a CQI system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

5.5 References  

[1] Redox-addressable single-molecule junctions incorporating a persistent organic radical. S. 
Naghibi, S. Sangtarash, V. J. Kumar, J.-Z. Wu, M. M. Judd, X. Qiao, E. Gorenskaia, S. J. 
Higgins, N. Cox, R. J. Nichols, H. Sadeghi, P. J. Low, and A. Vezzoli, Angewandte Chemie 
International Edition, 61, e202116985, 2022 

[2] Radical-enhanced charge transport in single-molecule phenothiazine electrical junctions. J. 
Liu, X. Zhao, Q. Al-Galiby, X. Huang, J. Zheng, R. Li, C. Huang, Y. Yang, J. Shi, D. Z. 
Manrique, C. J. Lambert, M. R. Bryce, and W. Hong, Angewandte Chemie, 129, 13241–13245, 
2017 

[3] Concepts in the design and engineering of single-molecule electronic devices. N. Xin, J. 
Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M. A. Ratner, A. Nitzan, J. F. Stoddart, and X. Guo, 
Nature Reviews Physics, 1, 211–230, 2019 

[4] Remarkable multichannel conductance of novel single-molecule wires built on through-space 
conjugated hexaphenylbenzene. S. Zhen, J.-C. Mao, L. Chen, S. Ding, W. Luo, X.-S. Zhou, A. 
Qin, Z. Zhao, and B. Z. Tang, Nano Letters, 18, 4200–4205, 2018 

[5] Controlling formation of single-molecule junctions by electrochemical reduction of 
diazonium terminal groups. T. Hines, I. Díez-Pérez, H. Nakamura, T. Shimazaki, Y. Asai, and N. 
Tao, Journal of the American Chemical Society, 135, 3319–3322, 2013 

[6] Achieving efficient multichannel conductance in through-space conjugated single-molecule 
parallel circuits. P. Shen, M. Huang, J. Qian, J. Li, S. Ding, X.-S. Zhou, B. Xu, Z. Zhao, and B. 
Z. Tang, Angewandte Chemie, 132, 4611–4618, 2020 

[7] Towards molecular spintronics. A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. 
Lambert, J. Ferrer, and S. Sanvito, Nature Materials, 4, 335–339, 2005 

[8] Complete mapping of the thermoelectric properties of a single molecule. P. Gehring, J. K. 
Sowa, C. Hsu, J. de Bruijckere, M. van der Star, J. J. Le Roy, L. Bogani, E. M. Gauger, and H. S. 
J. van der Zant, Nature Nanotechnology, 16, 426–430, 2021 

[9] Normal and reversed spin mobility in a diradical by electron-vibration coupling. Y. Shen, G. 
Xue, Y. Dai, S. M. Quintero, H. Chen, D. Wang, F. Miao, F. Negri, Y. Zheng, and J. Casado, 
Nature Communications, 12, 6262, 2021 

[10] Single-molecule calorimeter and free energy landscape. Y. Wang, Z. Tang, H.-Y. Chen, W. 
Wang, N. Tao, and H. Wang, Proceedings of the National Academy of Sciences, 118, 
e2104598118, 2021 



116 
 

[11] Thermoelectric enhancement in single organic radical molecules. J. Hurtado-Gallego, S. 
Sangtarash, R. Davidson, L. Rincón-García, A. Daaoub, G. Rubio-Bollinger, C. J. Lambert, V. S. 
Oganesyan, M. R. Bryce, N. Agraït, and H. Sadeghi, Nano Letters, 22, 948–953, 2022 

[12] Thermoelectric properties of 2,7-dipyridylfluorene derivatives in single-molecule junctions. 
G. Yzambart, L. Rincón-García, A. A. Al-Jobory, A. K. Ismael, G. Rubio-Bollinger, C. J. 
Lambert, N. Agraït, and M. R. Bryce, Journal of Physical Chemistry C, 122, 27198–27204, 2018 

[13] Quantum interference-enhanced chemical responsivity in single-molecule dithienoborepin 
junctions. M. Baghernejad, C. Van Dyck, J. Bergfield, D. R. Levine, A. Gubicza, J. D. Tovar, M. 
Calame, P. Broekmann, and W. Hong, Chemistry – A European Journal, 25, 15141–15146, 2019 

[14] Covalently bonded single-molecule junctions with stable and reversible photoswitched 
conductivity. C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. 
Wang, B. Feng, Z. Liu, G. Zhang, D.-H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, and X. 
Guo, Science, 352, 1443–1445, 2016 

[15] Direct single-molecule dynamic detection of chemical reactions. J. Guan, C. Jia, Y. Li, Z. 
Liu, J. Wang, Z. Yang, C. Gu, D. Su, K. N. Houk, D. Zhang, and X. Guo, Science Advances, 4, 
eaar2177, 2018 

[16] Effect of anchoring groups on single-molecule charge transport through porphyrins. Z. Li, 
M. Smeu, M. A. Ratner, and E. Borguet, Journal of Physical Chemistry C, 117, 14890–14898, 
2013 

[17] Single-molecule field effect and conductance switching driven by electric field and proton 
transfer. Z. Yan, X. Li, Y. Li, C. Jia, N. Xin, P. Li, L. Meng, M. Zhang, L. Chen, J. Yang, R. 
Wang, and X. Guo, Science Advances, 8, eabm3541, 2022 

[18] Voltage-induced single-molecule junction planarization. Y. Zang, E.-D. Fung, T. Fu, S. 
Ray, M. H. Garner, A. Borges, M. L. Steigerwald, S. Patil, G. Solomon, and L. Venkataraman, 
Nano Letters, 21, 673–679, 2020 

[19] The drive force of electrical breakdown of large-area molecular tunnel junctions. L. Yuan, 
L. Jiang, and C. A. Nijhuis, Advanced Functional Materials, 28, 1801710, 2018 

 

 

 

 

 



117 
 

Chapter 6 

 Conclusion and Future Work 

6.1 Conclusion  

In conclusion, I have explained the fundamental equations and tools that support my work, 

including the Schrödinger equation, density functional theory (DFT), and the DFT-based 

SIESTA program. Additionally, I have discussed single-electron transport theory and given some 

examples about how it might be used. These concepts are explained in chapters 2 and 3, 

respectively.  

In chapter 4, I studied charge transport through molecular cores connected to electrodes by 

linkers with conjugated π systems are formed from both πz and πy orbitals. I found that DQI dips 

in transport though the πz system can be hidden, because the πy orbitals of the linkers can couple 

to the sigma system of the core and create a parallel conductance channel. To explore this issue, I 

introduced magic number theory, an orbital product rule and made use of Dyson’s equation to 

describe the effect of heteroatom substitution. I found that although the sigma channel usually 

makes only a small contribution, it becomes dominant when DQI suppresses transport through 

the πz system. This mechanism was demonstrated by increasing the size of the core from benzene 

to naphthalene and then anthracene, which successively suppresses transport through the sigma 

system and for the largest core allows the DQI transport dips to become visible.  

 

Chapter 5 discussed the impact of diradicals on electron transport properties. I found that the 

conductance of the diradical is enhanced in both the CQI and DQI cases. 
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6.2. Future work 

During the period of my research, I investigated the electrical conductance of several different 

molecules that were connected to gold electrodes. To continue the work done in Chapter 4 where 

one C atom is substituted by atom N, the effect of substituted by more N atoms and other type of 

atoms will be studied. In this thesis, I have mainly focussed on electrical conductance. For the 

future, it would be of interest to examine thermoelectric effects and thermal transport, to 

determine if heteroatom substitution and diradicals can be utilised to increase the thermoelectric 

efficiency of organic molecules. 
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Appendices  

Appendix 1: Correction for Basis Set Superposition Error (BSSE) and Counterpoise               

                      Correction (CP) 

Basis Set Superposition Error Correction (BSSE) is a critical component that affects the 

precision of energy interaction calculations with incomplete bases.  It is typically understood in 

conjunction with intermolecular interactions, especially in systems with weak intermolecular 

interactions.  The SIESTA implementation of DFT used in this thesis means that the BSSE 

begins to use the linear combination of the atomic orbital formalism, which consists of a final 

nuclei-focusing basis when atoms are close enough to overlap their basis functions.  This may 

artificially reinforce the atomic bond, shorten atomic distances, and therefore change the overall 

system energy.  Boys and Bernardi proposed a method for lowering BSSE in molecular 

complexes in 1970 that used a so-called counterpoise-correction scheme with two geometrical 

configurations. Consider the molecular systems A and B, which are separated by a distance R.  

The interaction energy can be explained in.  

∆𝐸!+&(2�� (𝑅) = 𝐸��(𝑅) − 𝐸� − 𝐸�                                                                             (1) 

The overall energy of the supersystem is represented as ∆𝐸!+&(2 AB, while 𝐸�and 𝐸� represent 

the energies of the isolated subsystems. 

Figure 1: shows counterpoise correction for dimers 𝐴 and 𝐵.   
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Figure 1: shows the Counterpoise method for calculating binding energy. (a) illustrates the basis 

functions for a whole system, with the atoms in white and the basis functions in grey. (b) and (c) 

represent the basis function for individual monomers, whereas (d) and (e) show the counterpoise 

correction.  In (a), each molecule can be evaluated using the same basis function as the overall 

system.  

 

Figure 1 a, b, and c illustrate the two isolated molecules and their corresponding basis functions, 

whereas the shaded grey atoms in figures 1, d and e show the ghost states (basis set functions 

without electrons or protons).  The Basis Set Superposition Error Correction (BSSE) is obtained 

by recalculating the binding energy 𝐸�!+ using the mixed basis sets produced by introducing 

ghost orbitals and then decreasing the error from the uncorrected energy.  

	 

𝐸�!+ = 𝐸? − (𝐸G + 𝐸()		                                                                              (2) 
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In figure 1, 𝐸? , 𝐸G 	and	𝐸( represent the total energy of the systems (a), (d), and (e), respectively.   

This is an important idea, which has been effectively used in many systems to provide 

dependable and realistic energies.  

 

Appendix 2: The coefficients of thermoelectricity S  

At the turn of the nineteenth century, Seebeck, Peltier, and Thompson discovered the connection 

between heat, current, temperature, and voltage. The Seebeck effect describes the generation of 

electrical current as a result of a temperature difference, whereas the Thompson and Peltier effects 

describe the cooling or heating of a current-carrying conductor. A deeper mechanism can be 

envisaged in which the differential temperature (∆T) and a theoretical drop in value (∆V) occur in 

the system, causing heat and charge variations. In order to obtain the thermoelectric coefficients 

of a device that has two terminals, the usual Landauer-Buttiker formulas can be generalised to 

account for heat (Q) and charge (I) currents under the linear base and temperature scheme. The 

structure of the system consists of a scattering area connected to two leads that are connected to 

two electron reservoirs. The construction of these reservoirs depends on the use of the chemical 

potentials 𝜇^ and 	𝜇9,  temperatures 𝒯  and 𝒯9, and the Fermi distribution function.    

𝑓! 	(𝐸) = ¨1 + 𝑒
u4�%
p6𝒯% ©

4"

       (1) 

The right moving charge current of an individual k-state coming from the left reservoir may be 

calculated using the number of electrons per unit length n, Fermi distribution 𝑓  , group velocity	𝜈| 

, and the scattering region's transmission coefficient T(E).   

                                                                                                                                   (2) 

		𝐼pZ = 𝑛𝑒𝜈|(𝐸(𝑘))	𝑇g𝐸(𝑘)h		𝑓 (𝐸(𝑘))                                                                                        
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Therefore, it is possible to get the total charge from right moving states by adding up all positive 

k states and then integrating them into an integral form;  

where 𝑛	 = 	1/𝐿 for the electron density. 

        And,  𝜈| =
"
ℏ
	�u(p)
�p

. 

 

𝐼pZ =5𝑒	
1
𝐿	
1
ℏ	
𝜕𝐸(𝑘)
𝜕𝑘 	𝑇(𝐸(𝑘))	𝑓 (𝐸(𝑘)) =

p

	U
2𝑒
ℎ 	𝑇(𝐸)

Zy

4y
𝑓 (𝐸)	𝑑𝐸 

   

        (3) 

 
 
 
 
So, for the states that move to the left, we get:  
 
 

𝐼p4 =	U
2𝑒
ℎ 	𝑇(𝐸)

Zy

4y
𝑓9(𝐸)	𝑑𝐸 

                              

(4) 

  
 

 Thus, the total right-moving current may be expressed as follows: 
  

𝐼 = 𝐼Z − 𝐼4 =	
2𝑒
ℎ U 	𝑇(𝐸)

Zy

4y
(𝑓 (𝐸) − 𝑓9(𝐸))	𝑑𝐸    (5) 

  

Equation 7 is the formula that represents Landauer-Büttiker.   A similar derivation can be done 

for the heat current (or energy current) of the same system, beginning with the connection 𝒬 =

𝐸𝑛𝜈|  rather than 𝐼 = 𝑛𝑒𝜈| . The result is similar to the previous one, but it has two new terms: 



123 
 

 

¥
𝐼
𝑄̇¦ = c𝐺 𝐿

𝑀 𝐾d c
∆𝑉
∆𝒯d 

           

        (6) 

 

The Onsager relation describes the relationship between the thermoelectric coefficients L and M 

in the absence of a magnetic field:  

 

𝑀 = −𝐿𝒯             (7)  

 

 T represents the temperature. The present relationships can be described using the following 

observable thermoelectric coefficients, electrical resistance (R) = 1/G,  

thermopower (S) = -∆V⁄∆T, the Peltier coefficient Π, and the thermal constant (k): 

¥
∆𝑉
𝑄̇ ¦ = Ë

1
𝐺

−
𝐿
𝐺

𝑀
𝐺 𝐾 −

𝐿𝑀
𝐺

Ìc 1∆𝒯d = c𝑅 𝑆
𝛱 −𝐾d c

1
∆𝒯d            (8) 

 

It is possible to define the thermopower S as the potential drop that occurs as a result of a 

temperature differential when there is no electrical current present:  

 
																	𝑆 = − c∆𝑉∆𝒯de)U

= ^
HY

                                               (9) 

 

The heat transfer only caused by the charge current in the absence of a temperature differential is 

called the Peltier coefficient	𝛱.  

 
Π = c�̇

g
d
�𝒯)U

= �
M
= −S𝒯                                                    (10) 
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Finally, in the absence of an electric current, the heat current generated by a temperature drop is 

defined as the thermal conductance k:  

 

𝑘 = −¥ 𝑄̇
∆𝒯
¦
e)U

= −¨1 +
𝑆#𝐺𝒯
𝑘 © 

 

   
(11) 

  
 Of course, the assessment of S or Π indicates the device's potential as a current-driven cooling 

device or as a heat-driven current generator.  

The following observable thermoelectric coefficients can also be used to define the 

thermoelectric figure of merit, ZT:  

𝑍𝒯 =
𝑆#𝐺𝒯
𝑘    (12) 

  

The ZT is determined in classical electronics by finding the highest induced temperature 

difference when Joule heating is present, which is caused by an applied electrical current.  

Assume that the current-carrying conductor is positioned between two heat baths which are	𝒯  

and 𝒯9,and two electrical potentials which are 𝑉  and 𝑉9.    

The thermoelectric figure of merit is calculated by determining the maximum induced 

temperature differential in a conductor due to an electrical current. Using equation 3.14, we may 

define (Q̇) as the heat gain from bath L to R.  

 

𝑄̇ = 𝛱	𝐼 − 𝑘𝛥𝒯 
 

(13) 

 Heat transfer causes the left bath to cool and the right bath to heat, resulting in an increase in ΔT. 

The Joule heating amount is proportional to the electrical resistance and the square of the current 
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and is represented as 𝑄̇� = 𝑅𝐼#. In the steady state case, this Joule heating will also change the 

temperature difference caused by the heat transfer.  

 

𝛱	𝐼 − 𝑘𝛥𝒯 =
𝑅	𝐼#

2  
 

(14) 

 whereas R/2 represents the sum of two parallel resistances (internal and external).  After 

reorganising this, the temperature difference is as the following: 

 

𝛥𝒯 =
1
𝑘 ¨𝛱	𝐼 −

𝑅	𝐼#

2 © 

 
                              (15) 

 
 

 
          

This expression illustrates the dependence of the temperature differential on the current. To 

obtain the greatest temperature difference, the derivative of equation 17 with respect to the 

electric current is used: 

𝜕∆𝒯
𝜕𝐼 =

𝛱 − 𝐼𝑅
𝑘 = 0 

                    (16)  

Lastly, we may find the maximum temperature difference by rewriting I=Π /R and putting 

equation 12 into equation 18, and we can get: 

		(∆𝒯)A?P =
𝛱#

2𝑘𝑅 =
𝑆#𝒯#𝐺
2𝑘  

                                                                                                                
(17)        

   

(∆𝒯)A?P
𝒯 =

𝑆#𝐺𝒯
2𝑘 =

1
2𝑍𝒯 

     (18) 

 

 A dimensionless number that may be used to express the "efficiency" of a molecular device. 

 


