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Abstract

Bayesian inference requires solving integrals over probability spaces, but except for

certain scenarios, they can only be approximated using Monte Carlo integration.

Bayesian computation emerged specifically to develop efficient approximation

methods, with sampling algorithms at its forefront. Nowadays, automatic

differentiation and fast array computation software make numerical optimization

the cutting edge in machine learning. These methods were introduced in Bayesian

computation as variational inference and have been essential in accelerating Bayesian

inference. This thesis is a methodological contribution to advancements in Bayesian

computation, combining fast density approximation techniques with traditional

asymptotically exact Monte Carlo methods.

We start with a comprehensive review of Monte Carlo and variational inference

techniques. Introduce an efficient, dimension-independent, and gradient-free sampling

algorithm leveraging parallel computing architectures. Develop a novel Bayesian

computation method that integrates flow matching with Markovian sampling,

enhancing the exploration of complex target distributions through adaptive tempering

mechanisms. Our work extends Bayesian nonparametric approaches to linear

regression models, effectively handling outliers and heteroskedasticity via Dirichlet

process mixtures. Finally, we present BlackJAX, a library for Bayesian inference,

enabling researchers and practitioners to build and experiment with new algorithms

seamlessly. These contributions collectively advance Bayesian computation, offering

robust and efficient tools for empirical applications.
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Chapter 1

Introduction

A syllogism applies deductive reasoning to arrive at a specific conclusion based on

general assumptions. It is a logical argument that uses general knowledge to grasp

specific phenomena. For instance, it was once believed that atoms were the smallest

units of matter. By adding a second premise, that the smallest units of matter

cannot be divided, we conclude that atoms cannot be divided.

This syllogism was proven wrong by the discovery of subatomic particles, and it

became evident that atoms could be divided into protons, neutrons, and electrons.

As scientific research progressed, new information contradicted the initial premises,

invalidating the conclusion. Deductive reasoning, while logically valid, relies heavily

on the correctness of its premises, and since its conclusions are based on the best

available knowledge, they can be misguided.

Bacon’s (1620) Novum Organum first formalized an opposing logic, renovating

Aristotle’s original deductive logic on Organum. Bacon argued that true knowledge

must be derived from the natural world, not from abstract reasoning alone. His

method emphasized inductive reasoning, where general principles are derived from

specific assumptions. Nowadays, it is widespread in any field to reason inductively

when gaining general knowledge of the physical world, observing, experiencing, and

gathering insights to discern broader patterns from specific instances.

It took over a century for the logic of inductive reasoning to be described by a

1



Chapter 1. Introduction

unique mathematical result known as Bayes’ Theorem (Bayes, 1763),

P (A|B) =
P (B|A)P (A)

P (B)
, (1.1)

characterized by the probabilities P of events A and B. Everything is interpreted

through the concept of conditional probability, and the notion of learning by

experience described by stochastic dependence and information updating. The

theorem describes how information on event B can be used to update expectations

on event A given that there is some known dependence between both events. The

theorem states the logic of inductive reasoning in terms of probabilities.

Although the theoretical groundwork was laid, implementing Bayes’ theory in

practice would require avoiding some ideological hurdles in the early 20th century.

The debate became surprisingly personal between those who perceived probabilities

as an objective law of nature and those who saw them as a subjective perception

of the observer. The main point of conflict was the need for an initial or prior

belief on the subjective probability of an event from which to update. Setting prior

probabilities is a major methodological challenge for Bayesian theory but offers a

complete probabilistic assessment of knowledge update from experimentation in

exchange.

An integration problem also limited the practice of Bayesian statistics. It was not

until the late 20th century that computers became widely available, and Bayesian

computation arose to approximate those intractable integrals. This work is a

methodological contribution to the approximations used in Bayesian inference. It

tries to bridge the gap between fast density approximation methods using numerical

optimization, a cornerstone of modern machine learning methods, and asymptotically

exact Monte Carlo methods, the traditional solution in Bayesian computation. It

also presents a modern software suite for the use of classic and the development of

novel Bayesian inference algorithms and an algorithm for inference in linear variable

selection models with robust variance.

2



1.1. Bayesian Statistics

1.1 Bayesian Statistics

This work is based on the subjective or Bayesian notion of probability. We are

interested in two probability assessments: that of an event A, representing the

current state of knowledge of the event, P (A); and that of an event A conditional

on the occurrence of event B, representing an update on our knowledge of event A

based on our knowledge of event B, P (A|B). Probabilities need to be coherent for

them to be useful. This means assigning a unique value to any event A such that

0 ≤ P (A) ≤ 1, assigning P (A) = 1 if A is sure to happen and P (A) = 0 if A is sure

not to happen.

The theorem of compound probability tells us that another way to express

coherence is to make sure that for any two events, A and B,

P (A ∩B) = P (B)P (A|B). (1.2)

This equation gives us some insight into the properties of conditional probabilities.

Consider the case where events A andB are independent, then P (A∩B) = P (A)P (B),

making P (A|B) = P (A). In other words, if A and B are independent, our current

knowledge about event A remains unchanged if we know the occurrence of event B.

From it, we can also derive Bayes’ theorem (1.1) given the symmetry P (A ∩B) =

P (B ∩A), giving us a way to represent the update from initial to conditional beliefs

mathematically.

Kolmogorov (1933) gave an axiomatic approach to probabilities, describing

them regardless of their statistical interpretation, by drawing an analogy between

probabilities and measures. Start by defining a set of elements or outcomes Ω whose

probability we care to measure. Since we might want to measure various elements

of Ω at a time, we must pair it with a set of subsets of Ω, constituting a σ-algebra

F . Three axioms define a σ-algebra: Ω ∈ F , if E1 ∈ F then E1 ∈ F , and for any

possibly infinite set of elements {Ei : i = 1, 2, . . . } it must be that ∪iEi ∈ F . Then,

we can define probabilities on the σ-algebra using three axioms again:

(i) for any E1 ∈ F it corresponds a probability 0 ≤ P (E1) ≤ 1;

3



Chapter 1. Introduction

(ii) since Ω represents all outcomes P (Ω) = 1;

(iii) for every sequence E1, E2, . . . of pairwise disjoint elements of F ,

P

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei). (1.3)

These three properties allow us to have coherent probabilities that behave coherently

when using limits. The triplet (Ω,F , P ) is called a probability space and describes

any random experiment.

Kolmogorov’s definition allows us to borrow useful tools from measure theory like

the Lebesgue integral, which we use to define a Lebesgue-integrable function called

the density function p(ω) of P (with respect to the Lebesgue measure) such that

P (E) =

∫
E

p(ω)dω. (1.4)

1.1.1 The Basics of Inference

In terms of an experiment, different runs are likely to generate different outcomes

ω ∈ Ω, where groups of these different outcomes are contained in the σ-algebra F . In

practice, observations are a random variable Y : Ω→ R, transforming the probability

space outcomes to real values. For any element A ∈ R, where R is the σ-algebra of

R, the probability of event A is

P (Y ∈ A) = P ({ω : ω ∈ Ω, Y (ω) ∈ A}). (1.5)

We can think of the sequence Y1, . . . , Yn as observations or data points of our

experiment; these allow us to reason inductively, that is, make inferences on the

probabilities of the experiment (general) from observations (specific).

If we knew the probability measure of the experiment, there would be no statistical

problem. Instead, we assume a family of probability measures on the measurable

space (Ω,F) indexed by a parameter space X , {Px : x ∈ X}, with density

functions—also referred to as the likelihood of data—,

P (A|x) =
∫
A

p(y|x)dy, ∀x ∈ X . (1.6)

4



1.1. Bayesian Statistics

The parameter space X can be a set of everything from real numbers to distributions

in the case of nonparametric Bayesian inference. In all cases, we are interested in

updating our knowledge about X , which elements are more or less likely to generate

the experiment, given observations from R, represented as the probability model in

its simplified form

(R, p(y|x), x ∈ X ) . (1.7)

Replicating the experiment under the same conditions gives us a sequence of

independent and identically distributed observations. The joint probability of this

sequence will equal the product of each of their probabilities. Then a statistical

model is that containing all the sampled results, representing acquired knowledge

from n independent repetitions of the experiment,

(
Rn,

n∏
i=1

p(yi|x), x ∈ X

)
. (1.8)

A sequence of independent and identically distributed realizations represents all the

acquired knowledge or data, D = {yi : i = 1, . . . , n}.

Similarly, we describe the uncertainty around the parameter space by making it

a random variable X with density function p(x), called a prior density. It represents

the unconditional or current knowledge about the parameter space X and the starting

point for the Bayesian update. The choice of prior density is crucial and will dominate

posterior knowledge of the experiment. Although practitioners must be careful not

to add frivolous prior information to their knowledge, using it to convey background

or expert knowledge is crucial for effective inference.

Using Bayes’ theorem (1.1), the prior knowledge is updated using the likelihood

of observing the independent and identically distributed sequence of experimental

results by taking the product of its densities, creating a posterior density representing

5



Chapter 1. Introduction

an update on our knowledge,

p(x|D) = Z−1

n∏
i=1

p(yi|x)p(x) (1.9)

Z =

∫
X

n∏
i=1

p(yi|x)p(x)dx. (1.10)

where Z is the model evidence or marginal likelihood of observations, which ensures

the posterior is the density of a probability space. In general, we cannot evaluate the

model evidence as it requires computing an intractable integral, making the posterior

(1.9) known up to a constant of proportionality.

1.1.2 The Computational Challenge of Inference

The computational challenge in Bayesian statistics is evaluating integrals over the

posterior probability space. For a generic function on the parameter space h(x), the

problem is evaluating the integral

E[h(X)|D] =
∫
X
h(x)p(x|D)dx. (1.11)

For example, in tasks such as calculating posterior averages over the parameter space

E[X|D] =
∫
X xp(x|D)dx or finding the density of future observations given known

data p(y|D) =
∫
X p(y|x)p(x|D)dx, known as the posterior predictive density. These

integral computations are pivotal for drawing inferences from the model, as they

allow for summarising posterior distributions and predicting future observations

based on current data. Two principal strategies emerge to address this integral

challenge: sampling and density function approximation.

Sampling Approach: Generate a series of samples of the parameter space,

used to approximate integrals with sums. Sampling aims to reproduce the

target distribution’s statistical properties by generating a sequence of parameter

configurations {xi : i = 1, . . . , N}, which converge to the desired integral over the

distribution as per the law of large numbers. This approach uses a robust numerical

method that ensures convergence to expectations under the posterior distribution

called Monte Carlo integration, which is the focus of Chapter 2 of this thesis.
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1.1. Bayesian Statistics

Ideally, the sequence of samples is generated independently using a direct

probabilistic method. While straightforward, direct probabilistic methods often

struggle with the high-dimensional, multimodal distributions characteristic of

Bayesian posteriors. This difficulty in maintaining a reasonable acceptance rate

makes these methods less favoured for complex Bayesian models. Alternatively,

Markov chain methods introduce a Markovian dependence on the generated samples,

adding crucial information for navigating the probability space. In practice, the

success of a sampling strategy hinges on its ability to efficiently explore the state

space, particularly for distributions with complex geometries.

Density Approximation Approach: Optimizes the choice within a specified

family of density functions, minimizing a notion of distance between the target and

approximate density, an indirect approach to solving integrals. This method seeks a

tractable density q(x) approximating the posterior p(x|D), using variational inference

techniques to minimize their divergence. This optimisation avoids inference using the

complex posterior altogether, instead using an approximate imitation. This approach

is the focus of Chapter 3 of this thesis.

Although the approximation is never exact, the method accelerates the inference

process, often yielding much quicker results than sampling methods. Recent

advancements in this domain have been directed towards enhancing the flexibility of

the family of density functions used for approximation and refining the divergence

measures employed in the optimization process. The density function approximation

approach strives to balance the trade-off between computational efficiency and

approximation accuracy. Approximate inference remains a compelling and viable

strategy for Bayesian inference, especially in scenarios where speed is of the essence.

The interplay between these methodologies underpins the computational

framework of Bayesian inference. Each approach addresses the challenge of

approximating integrals on the posterior probability space from different angles.

By delving into the specifics of each approach in the following chapters, we pave the

way for a comprehensive understanding of their use.

7



Chapter 1. Introduction

1.1.3 The Linear Model

A good starting inference example is the linear model, which provides a foundational

approach for understanding relationships between variables. In this context, a

dependent or endogenous variable Y is modelled through a linear combination of

one or more independent or exogenous variables z1, . . . , zk,

Y =
k∑
j=1

βjzj + ϵ, (1.12)

where β = [β1, . . . , βk]
T are unknown parameters we need to make inferences on,

and ϵ represents a random error term accounting for the influence of unobservable

variables and measurement error.

The i-th observation in a dataset yi has its own set of explanatory variables

zi,1, . . . , zi,k and error term ϵi and is assumed to be generated by,

yi =
k∑
j=1

βjzi,j + ϵi. (1.13)

The objective of the inference problem is to use the data D = {(yi, zi,1, . . . , zi,k) : i =

1 . . . , n} to acquire knowledge about unknown parameters. Probabilities are added

through the error term ϵi, which in its most basic form are assumed independent

and identically distributed, but more robust solutions relax one or both of these

assumptions. This section will focus on the simplest modelling choice while Chapter

6 presents an inference algorithm for more robust modelling.

Organizing the data into a matrix format for multiple observations, the matrix Z

with shape n× k contains all observations on the k independent variables,

Z =


z1,1 . . . z1,k
...

. . .
...

zn,1 . . . zn,k

 . (1.14)

Putting all dependent observations and error terms in vectors y = [yi, . . . , yn]
T

and ϵ = [ϵ1, . . . , ϵn]
T , the complete model is represented as a linear equation,

y = Zβ + ϵ. (1.15)
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1.1. Bayesian Statistics

The error terms ϵ are assumed to be independent and Gaussian with zero mean and

variance σ2,

ϵ ∼ N (0, σ2In). (1.16)

Then the likelihood function for the linear model, given the linear parameters

and the variance, is defined as

p(y|Z,β, σ2) =

(
1

2πσ2

)n
2

exp

(
− 1

2σ2
(y − Zβ)⊤(y − Zβ)

)
. (1.17)

After assigning prior distributions to the parameters X = (β, σ2), depicting our

beliefs about them before observing the data, their posterior distribution given the

data can be determined using Bayes’ theorem,

p(β, σ2|y, Z) ∝ p(y|Z,β, σ2)p(β, σ2), (1.18)

where p(β, σ2) is the joint prior distribution of the parameters.

Choosing an appropriate prior distribution is a critical aspect of Bayesian inference.

The choice of a prior can range from expressing total ignorance to incorporating

specific, informed beliefs based on previous studies or expert opinion. In ignorance,

a non-informative prior, such as a flat or Jeffreys’ prior, is used. Jeffreys’s (1946)

prior is particularly favoured in Bayesian statistics for its property of being invariant

under reparameterization, providing a uniform prior over all scales of the parameter.

On the other hand, prior knowledge can be introduced into the model using

conjugate priors, a practical option resulting in a tractable posterior: if the prior

is chosen from a specific family of distributions, and the likelihood density has a

specific form, the posterior distribution resulting from the Bayesian update remains

within that same family. Conjugacy simplifies the computational issue since the

posterior distribution is known exactly.

Consider the case of known variance parameter σ2, then the conjugate prior for

the linear parameters β is a multivariate normal distribution,

β ∼ N (β0, C), (1.19)

9



Chapter 1. Introduction

where β0 is the mean vector and C is the covariance matrix, indicating our prior

expectation and uncertainty about the values of β. Assuming density (1.17) for the

observations, the posterior distribution for β is also normal, with covariance matrix

and mean vector:

C∗ =
(
σ−2ZTZ + C−1

)−1
, (1.20)

β∗ = C∗ (σ−2ZTy + C−1β0

)
. (1.21)

Using conjugate priors the posterior mean β∗ is a weighted average between the least

squares estimator β̂ = (ZTZ)−1ZTy and the prior mean β0, with weights derived

from the precision of the data σ−2ZTZ and the precision of the prior C−1.

When both the regression coefficients β and the variance σ2 are unknown, their

joint conjugate prior is a multivariate normal for β with its covariance depending on

σ2 with inverse Gamma distribution,

β|σ2 ∼ N (β0, σ
2C), (1.22)

σ2 ∼ IG(a0, b0). (1.23)

Assuming again a Gaussian density for the observations, the posterior distribution is

also a Gaussian-inverse Gamma distribution with parameters:

C∗ =
(
ZTZ + C−1

)−1
, (1.24)

β∗ = C∗ (ZTy + C−1β0

)
, (1.25)

a∗ = a0 +
n

2
(1.26)

b∗ = b0 +
1

2

(
yTy + βT0 C

−1β0 + β∗TC∗−1β∗) . (1.27)

Since we know the exact form of the posterior distribution, we can evaluate some

functions in the integral problem (1.11). We can also generate independent samples

from the posterior distribution, assuming we can generate independent Gaussian and

inverse Gamma samples. This makes inference straightforward to approximate using

Monte Carlo integration, discussed in Chapter 2.

10



1.1. Bayesian Statistics

1.1.4 Bayesian Nonparametric Inference

When the parameter space is a set of distributions, inference is said to be done in

a nonparametric space. In this case, the choice in the parameter space defines the

likelihood of the data, thus making fewer, possibly unverifiable, assumptions about

the data-generating mechanism. Bayesian nonparametric methods are particularly

useful when the data suggest a model complexity that grows with the size of the

dataset or when a few parameters cannot neatly summarize the data-generating

mechanism.

Let P be the space of probability density functions such that any probability

distribution P , on the measurable space (Ω,F), has its density function p ∈ P . Then,

the statistical nonparametric model, containing all the acquired knowledge from n

independent repetitions of the experiment,(
Rn,

n∏
i=1

p(yi), p ∈ P

)
. (1.28)

A density can no longer describe prior knowledge, and the posterior distribution

cannot be represented using Bayes’ formula (1.1); instead, stochastic processes define

random probability measures and the posterior is derived analytically using conjugacy.

Nonetheless, using priors over function spaces provides the flexibility to model an

infinite array of possible distributions defining the likelihood of the data.

Dirichlet Process Prior: Introduced by Ferguson (1973), the Dirichlet process

is the first important breakthrough in constructing nonparametric priors. It is

practically attractive because of its conjugacy: under certain conditions on its

hyperparameters, it yields a Dirichlet process posterior if used as a prior.

The Dirichlet process is characterized by a base measure P0 and a concentration

parameter α, denoting a random probability measure with Dirichlet process

distribution as

P ∼ DP (α, P0). (1.29)

Then, for a measurable partition (E1, . . . , Ek), the vector (P (E1), . . . , P (Ek)) follows

a Dirichlet distribution with parameters (αP0(E1), . . . , αP0(Ek)). Here, P0 represents

11



Chapter 1. Introduction

the prior mean measure, while α determines the variance around P0. A higher α

indicates greater confidence in P0, leading to fewer deviations from the base measure.

One common representation of the Dirichlet process is the Chinese restaurant

process (Picard and J. Pitman, 2006). It draws the analogy to a Chinese restaurant

with an infinite number of tables that serve an infinite number of dishes and

sequentially sit an infinite number of customers. Each table serves a unique dish and

counts the customers at that table nt. The first customer n = 1 sits at any table and

is served a dish sampled from P0. Every customer after that n ≥ 1 sits at any of the

occupied tables t with probability nt/n+ α and is served the dish from that table or

at a new table with probability α/n+ α and is served a new dish sampled from P0.

These describe the prediction rules of the process, specifying its underlying

random predictive distribution: given an observed sample (y1, . . . , yn) from P , with

K unique values (ŷ1, . . . , ŷK) with counts (n1, . . . , nK), then

P (Yn+1|y1, . . . , yn, α, P0) =
K∑
t=1

nt
n+ α

δŷi +
α

n+ α
P0. (1.30)

This results in a partitioning of the data where the number of clusters grows

logarithmically with the number of observations, providing a framework for clustering

that also naturally handles the emergence of new clusters as more data is observed.

If we assume the distribution of our data has a Dirichlet process prior,

Y ∼ P (1.31)

P ∼ DP (α, P0), (1.32)

and suppose we observe data y1, . . . , yn drawn from P . By conjugacy of the Dirichlet

process, the posterior distribution of P given the data is also a Dirichlet process,

with updated concentration parameter α∗ = α+ n and base measure given by the

predictive rule (1.30). This property allows for the development of efficient Gibbs

sampling algorithms to sample from the posterior predictive distribution of the data.
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1.2 Contributions and Thesis Outline

The main material in this thesis is presented in six chapters, which contain background

on the area (Chapters 2 and 3) and new research that has been submitted for journal

publication (Chapters 4, 5, 6, and 7). A brief outline for each chapter is as follows:

Chapter 2: Monte Carlo Methods

Provides an introduction to Monte Carlo methods. It covers fundamental

techniques such as rejection sampling, importance sampling, and various

instances of Markov chain Monte Carlo methods. The methods are

detailed, offering insights into their theoretical background and practical

applications. The chapter serves as foundational material for the

development of new methods.

Chapter 3: Approximate Inference Methods

Provides an introduction to variational inference methods. It begins

by discussing divergence measures, particularly the Kullback-Leibler

divergence. Then, it shifts to the variational family, particularly

normalizing flows and their use as flexible variational approximations.

This treatment lays the foundation for applying variational inference

techniques in subsequent chapters.

Chapter 4: Transport Elliptical Slice Sampling

This chapter is a journal contribution and has been published with co-author

Professor Christopher Nemeth. The paper appeared in Proceedings of The 26th

International Conference on Artificial Intelligence and Statistics. PMLR, 2023. p.

3664-3676.

Introduces a new framework for efficient sampling from complex

probability distributions by combining normalizing flows with elliptical

slice sampling. The method learns a map from the non-Gaussian target

distribution to an approximately Gaussian one, then uses the elliptical
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slice sampler to sample from this transformed distribution. Our transport

elliptical slice sampler leverages parallel computer architectures to run

multiple Markov chains simultaneously, enhancing efficiency.

Chapter 5: Bayesian Inference with Markovian Flow Matching

This chapter is a journal contribution and has been published with co-authors Dr

Louis Sharrock and Professor Christopher Nemeth. The paper appeared in Advances

in Neural Information Processing Systems, vol. 37, 2024.

Adapts flow matching for probabilistic inference. Building on the flow

matching method by Lipman et al. (2022), we integrate Markovian

sampling to evaluate the flow matching objective. Our sequential method

employs Markov chain samples to define the flow matching objective’s

probability path, enhanced by an adaptive tempering mechanism to detect

multiple modes in the target distribution. We establish convergence to

the local optima of the flow matching objective and demonstrate our

methods using various examples.

Chapter 6: Robust Bayesian Nonparametric Variable Selection for Linear

Regression

This chapter is a journal contribution and has been published with co-authors Dr

Marco Battiston and Professor Christopher Nemeth. The paper appeared in Stat,

Volume 13, Issue 2, 2024. p. e696.

Presents a Bayesian nonparametric approach to linear regression that

addresses variable selection, outliers, and heteroskedasticity. Our model

is a Dirichlet process scale mixture that offers robust performance in the

presence of common data issues. We derive closed-form full conditional

distributions for all parameters, enabling an efficient Gibbs sampler

for posterior inference. Additionally, we extend the model to handle

heavy-tailed response variables.

14



1.2. Contributions and Thesis Outline

Chapter 7: BlackJAX: Composable Bayesian inference in JAX

This chapter is a journal contribution and has been submitted for publication with

co-authors Dr Adrien Corenflos, Dr Junpeng Lao, and Dr Rémi Louf. The paper is

available as an arXiv preprint, arXiv:2402.10797.

Introduces BlackJAX, a library for Monte Carlo and approximate

inference algorithms. BlackJAX allows users to build and experiment

with new algorithms using a functional approach. Written in pure Python

and using JAX for array computations (Bradbury et al., 2018), BlackJAX

efficiently runs on CPUs, GPUs, and TPUs. It integrates seamlessly with

probabilistic programming languages, working directly with unnormalized

target log density functions.
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Monte Carlo Methods

The sampling of complex posterior distributions begins with generating random

variables, that might be transformed using information from the target posterior,

and are then chosen or weighted to ensure they target the correct distribution. In

other words, Monte Carlo methods hinge on simulating a sequence of independent

and identically distributed random variables from well-characterized distributions.

This process is anchored in the generation of uniform random variables. How to

generate uniform random variables falls beyond the scope of this work; still, we

explore foundational methods that transition from uniform to non-uniform random

variables.

The inverse transform method generates simple random variables X = R by

converting the variability of a uniform random variable U in [0, 1] to that of a random

variable X, using its distribution function,

F (x) = P (X ≤ x) =

∫ x

−∞
p(x)dx. (2.1)

Make a random variable X a function from [0, 1] to R, mapped with the generalized

inverse function F−1 of a non-decreasing function F on R,

F−(u) = inf{x : F (x) ≥ u}. (2.2)

A random variable X ∼ P is generated when transforming a uniform random variable

F−(U) ∼ P (Lemma 2.4 in Robert and Casella, 2004). Distributions with explicit
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forms of F−, such as the exponential, double-exponential, or Weibull distributions,

allow for practical implementation. However, this method is confined to a select

group and alternative techniques do not depend on the analytical properties of

densities, which achieve wider applicability.

A different approach is needed for simulating general multivariate random

variables X = Rd with density p without relying on p’s analytical form beyond

its evaluation. The essence of this approach is in the representation

p(x) =

∫ p(x)

0

du, (2.3)

making p the marginal density of the uniform joint distribution on (X,U) restricted

to the space where 0 < u < p(x). By introducing an auxiliary variable U , the

problem becomes generating X and U from their joint uniform distribution in the set

{(x, u) : 0 < u < p(x)} (Theorem 2.15 in Robert and Casella, 2004). This technique

sidesteps the direct use of p, except for calculating p(x), offering a universal solution

for simulating any random variable with a density function.

The problem remains, however, of finding the subset of Rd such that u < p(x)

for any given u. One way around it is finding a sampleable density function q and a

constant M ≥ 1 such that p(x) ≤Mq(x) for all x ∈ Rd, then generating Z ∼ q and

U uniformly in {u : 0 < u < Mq(z)} until 0 < u < p(z), making Z ∼ p (Corollary

2.17 in Robert and Casella, 2004). The implementation of this result is called the

Accept-Reject method, detailed in Algorithm 1.

This discussion lays the groundwork for understanding the core principles of

simulation. While direct simulation methods such as the Accept-Reject provide a

foundational framework, simulation’s state of the art has evolved, embracing more

sophisticated methods, which we will explore in subsequent sections. Nevertheless,

we will return to these principles at the end of this chapter when discussing the

slice sampler. For a thorough discussion of Monte Carlo methods commonly used in

practice, see Robert and Casella (2004), and for a general discussion of the generation

of non-uniform random variables, see Devroye (2006).
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Chapter 2. Monte Carlo Methods

Algorithm 1 Accept-Reject algorithm

Require: q, p,M

1: Generate x ∼ q

2: Generate u ∼ Uniform(0, 1)

3: if u ≤ p(x)/Mq(x) then

4: Return x

5: else

6: Go to 1.

7: end if

2.1 Monte Carlo Integration

Consider evaluating an expectation

Ep[h(X)] =

∫
X
h(x)p(x)dx, (2.4)

where h(x) is a real-valued function on space X , but doing it analytically is infeasible.

With a series X1, X2, . . . , XN of random variables, independent and identically

distributed with density p, one can define an estimator

h =
1

N

N∑
i=1

h(xi). (2.5)

This estimator, essentially the sample mean of the transformed variables h(xi),

leverages the Central Limit Theorem to show that h converges in distribution to a

Gaussian distribution centred on Ep[h(X)]. The variance of the estimate will depend

on the variance of the function h(x),

σ2 = Var[h(X)] = Ep
[
h(X)2

]
− Ep[h(X)]2, (2.6)

making the estimator asymptotically unbiased with a variance that scales inversely

proportional to the square root of the sample size,

√
N
(
h− Ep[h(X)]

) d−→ N
(
0, σ2

)
. (2.7)
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2.1. Monte Carlo Integration

The elegance of Monte Carlo integration lies in its simplicity and the foundational

principles of elementary statistics it employs. For example, constructing an

asymptotic 95% confidence interval for Ep[h(X)] can be achieved through

h± 1.96 · σ̂√
N
, (2.8)

where σ̂2 is the empirical variance of h(xi),

σ̂2 =
1

N

N∑
i=1

(h(xi)− h)2. (2.9)

Monte Carlo integration provides a robust framework for approximating

expectations unattainable analytically, with their convergence properties firmly

rooted in the Central Limit Theorem. While the scale of the estimate’s variance

inherently limits the method’s precision, its ability to provide estimations where

analytical solutions are impossible makes it an indispensable tool.

2.1.1 Importance Sampling

Importance sampling emerges as a principal alternative to direct sampling. This

method generates samples x1, x2, . . . , xN from a carefully chosen distribution q,

distinct from the original distribution p, similar to the Accept-Reject method. Then,

since integrals such as (2.4) have an alternative representation incorporating both q

and p,

Ep[h(X)] = Eq
[
h(X)

p(X)

q(X)

]
=

∫
X
h(x)

p(x)

q(x)
q(x)dx, (2.10)

samples from q can be reweighed to get the importance Monte Carlo approximation,

hI =
1

N

N∑
i=1

p(xi)

q(xi)
h(xi), (2.11)

which converges like regular Monte Carlo (2.7) with variance

σ2 = Eq
[
h2(X)

p2(X)

q2(X)

]
− Eq

[
h(X)

p(X)

q(X)

]2
. (2.12)

19



Chapter 2. Monte Carlo Methods

Importance sampling’s strength lies in its flexibility in choosing the instrumental

distribution q, which can significantly affect the estimator’s efficiency and feasibility.

This method offers robustness for sensitivity analyses within Bayesian frameworks,

allowing the same sample generated from q to be applied across various functions h

and different densities p. This characteristic is particularly valuable for applications

requiring multiple evaluations under varying modelling assumptions.

Importance density q significantly influences the variance and stability of the

estimate hI . Although the choice of q offers considerable flexibility, with the estimator

converging almost surely for a wide range of densities, not all choices are equally

beneficial. The variance of the importance sampling estimator is finite when its

weighted second moment,

Eq
[
h2(X)

p2(X)

q2(X)

]
=

∫
X
h2(x)

p2(x)

q(x)
dx, (2.13)

is finite. This highlights the unsuitability of instrumental distributions q with tails

lighter than those of p, as these can lead to unbounded ratios of p/q, thus inflating the

variance to infinity for all target functions h. When the ratio p/q is unbounded, the

weights p(xi)/q(xi) assigned to samples can vary significantly, attributing excessive

influence to some samples rather than others and causing the estimator to fluctuate

significantly between iterations.

The choice of the instrumental density q plays a similar role in the Accept-

Reject algorithm. Hence, a q satisfying p(z) < Mq(z) can also serve as an

instrumental density for importance sampling. This ensures the finiteness of variance

for importance sampling estimators and highlights an intersection between the two

methods. However, the Accept-Reject method produces a sample as a subsample

of another set simulated from q, introducing a layer of selection that importance

sampling does not inherently possess, making a comparison between the variances of

the two methods complex.
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2.2 Markov Chain Methods

If generating independent and identically distributed samples is impractical, because

there is no explicit form for the inverse function or there is no density that closely

dominates the target, we can instead guide the generation of the new samples using

information from the previous samples. Specifically, make the sequence of random

variables X1, X2, . . . , XN a time-homogeneous Markov chain, where each variable

Xi+1 is conditional on the previous Xi alone according to a probability transition

kernel K(dx′|x), where for any x ∈ X , K(dx′|x) is a probability measure on the

parameter space X .

Dependent samples can be used for the Monte Carlo estimator (2.5), but the

convergence property of the estimator changes since the samples are no longer

independent. For a stationary Markov chain, the Central Limit Theorem (2.7) holds,

but the variance is not simply (2.6) and also includes the sum of the covariances

between h(Xi) and h(Xi+k) for all lags k,

σ2 = Var[h(Xi)] + 2
∞∑
k=1

Cov[h(Xi), h(Xi+k)]. (2.14)

This expression captures the impact of correlations within the Markov chain, adding

to the estimate’s uncertainty.

For a Markov chain to be stationary, the distribution of the initial X0 needs to

be the stationary distribution of the Markov chain. Truly stationary Markov chains

are never used since the ability to simulate the invariant distribution from the outset

would avoid the need for a Markov chain approach. Yet, the theory developed for

stationary chains holds significant value, as it offers insights into the behaviour of

nonstationary chains under stationary transition dynamics but with different starting

distributions.

Given conditions on the Markov transition kernel of stationarity on the target

density and aperiodic irreducibility, if the Central Limit Theorem applies to one initial

distribution, it extends to all initial distributions, maintaining the same asymptotic

variance (Proposition 17.1.6 in Meyn and Tweedie, 2012). This crucial concept
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allows us to operate with chains that do not start in equilibrium but with asymptotic

properties, including variance, informed by the stationary case.

Stationarity: A transition kernel K is stationary—or invariant—for target

probability distribution P when it satisfies the condition:∫
X
K(dx′|x)P (dx) = P (dx′). (2.15)

This can also be expressed through expectations, where for any bounded and

continuous test function h, the equality∫
X

∫
X
h(x′)K(dx′|x)p(x)dx =

∫
X
h(x)p(x)dx (2.16)

holds. Meaning that if a random variable X0 is distributed according to p, subsequent

variables X1, X2, . . . , XN derived from the chain will follow the distribution p.

Stationarity ensures that the distribution of states within the Markov chain converges

over time, preserving the stationary state’s distribution once reached.

Reversibility: The reversibility condition implies stationarity. A transition

kernel K is reversible relative to P when it satisfies the detailed balance condition,

K(dx′|x)P (dx) = K(dx|x′)P (dx′), (2.17)

indicating that the transition from state x to state x′ under p is equally likely to the

transition from x′ back to x. This condition not only ensures the stationarity of π

but also that the chain can proceed forward and backward in time without altering

the overall statistical properties of the sequence. This symmetry simplifies many

computational and theoretical aspects of working with Markov chains, especially in

Monte Carlo methods, and maintaining the detailed balance condition is a common

method of ensuring the stationarity of the target density.

Reversibility also holds up to a one-to-one transformation T : X → X that leaves

the target distribution invariant,∫
X
p(x)dx =

∫
X
p(T−1(x))dx, (2.18)
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where p(T−1(x)) is the density of x′ = T (x), then the modified detailed balance

condition,

K(dx′|x)P (dx) = K(T−1(dx)|T−1(x′))P (dx′), (2.19)

ensures reversibility. This form of reversibility becomes relevant when using Langevin

dynamics in the Markov transition.

Aperiodic Irreducibility: For any natural number n, the nth step transition

probability from a state x to a state x′ is given by the iterative relation

Kn(dx′|x) =
∫
X
Kn−1(dx′|y)K(dy|x), (2.20)

where K1(dx′|x) := K(dx′|x). A transition kernel K is considered aperiodically

irreducible with respect to a distribution P if, for any measurable set A with

P (A) > 0 and all initial conditions x such that P (X = x) > 0, there exists some

n0 > 0 such that for any n ≥ n0,

Kn(A|x) > 0. (2.21)

This means that reaching any set A within a finite number of steps with a positive

probability is possible from nearly any starting point in a nonperiodic manner. This

formalizes the Markov chain’s ability to access all relevant parts of the state space

over time, ensuring a complete exploration of the state space.

Stationarity and aperiodic irreducibility ensure that a Markov chain exhibits

pathwise ergodic behaviour, a fundamental aspect that enables long-term predictions

and analysis. Formally, for a Markov chain with transition kernel K in a state space

X with a stationary probability measure P , and assuming the chain is aperiodically

irreducible, it is true that

lim
N→∞

1

N

N∑
i=1

h(xi) =

∫
h(x)p(x)dx = Ep[h(X)]. (2.22)

This implies that for any bounded measurable function h and almost all initial

conditions x0, the time average of h over the chain converges to the expected
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value of h under the distribution P (Theorem 17.1.7 in Meyn and Tweedie, 2012).

Ergodicity is a crucial property as it guarantees that, irrespective of the chain’s

initial distribution, the time averages of functions computed along the chain will

converge to their expected values under the stationary distribution P , allowing for

statistical inference based on its long-run averages.

2.2.1 The Gibbs Sampler

Monte Carlo methods encounter practical challenges as the dimensionality of the

model increases since they rely on identifying a suitable proposal distribution. The

Gibbs sampler offers an alternative through sequential sampling of low-dimensional

subsets of the model’s parameters. This method constructs a Markov chain by

updating components of x conditionally on the others, reducing the problem to a

series of lower-dimensional sampling steps, which are often more manageable.

The Gibbs sampler was introduced by S. Geman and D. Geman (1984) for

image restoration, and Gelfand and A. F. Smith (1990) broadened its application

beyond image analysis, making it a fundamental tool in statistical modelling.

Start by partitioning the parameter variable X into r distinct blocks, such that

X = (X1, . . . , Xr). Each block Xj is updated by drawing from its full conditional

distribution,

Pj(Xj = xj|X−j = x−j) =
P ({Xj = xj} ∩ {X−j = x−j})

P (Xj = xj)
, j = 1, . . . , r, (2.23)

while holding the other blocks constant, where X−j are all the joined partitions

except j. The iterative process of updating all parameter blocks, one at a time, forms

one complete iteration of the Gibbs sampler, detailed in Algorithm 2.

Gibbs sampling maintains the desired stationary distribution through the detailed

balance condition: consider the transition probabilities in Gibbs sampling when

updating the j partition,

Kj(dx
′|x) = Pj(dx

′
j|x−j), (2.24)
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Algorithm 2 Gibbs Sampler

Require: (xj, Pj), j = 1, . . . , r

1: Generate x′1 ∼ P1(·|x2, . . . , xr)

2: Generate x′2 ∼ P2(·|x′1, x3, . . . , xr)

3:
...

4: Generate x′r ∼ Pr(·|x′1, . . . , x′r−1)

5: Return (x′1, . . . , x
′
r)

where x−j represents the current state of all partitions except j (regardless if they

have been already updated or not). Then we have that,

Kj(dx
′|x)P (dx) = Pj(dx

′
j|x−j)Pj(dxj|x−j)P (dx−j) (2.25)

= Pj(dxj|x′−j)Pj(dx′j|x′−j)P (dx′−j) = Kj(dx|x′)P (dx′),

given that x′−j = x−j since all partitions other than j remain unchanged in the

transition. Since the detailed balance condition holds for each individual update,

it holds for the sequence of updates, preserving the stationary distribution P (dx).

Verifying a convergence result for the Gibbs sampler requires assumptions on the

continuity, boundedness and support of the target density (Theorem 2 in G. Roberts

and A. Smith, 1994).

2.2.2 The Metropolis-Hastings Algorithm

Introduced for simulating the thermodynamic properties of particles by generating

random walk proposals on the state space (Metropolis et al., 1953), it was extended

to accommodate asymmetric proposals by Hastings (1970a), becoming a pivotal tool

from statistical physics to Bayesian statistics. The Metropolis-Hastings algorithm

uses a generally applicable acceptance mechanism to ensure the detailed balance of

the Markov transition kernel with respect to the target density, enabling sampling

without knowledge of the target normalization constant.

The algorithm involves a two-step cycle: proposing a move to a new state x′

from the current state x based on a proposal transition kernel T (dx′|x), followed
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by an acceptance-rejection criterion that ensures the invariance of P (dx) within

the resulting Markov chain. This only ensures that P (dx) acts as a stationary

distribution for the Markov chain and generally does not guarantee its irreducibility.

Since the detailed balance condition is not satisfied automatically by the proposal

kernel T , the accept-reject step is a correction to this discrepancy. For it to

be applicable, the proposal must have a degree of reversibility; that is, for any

states x and x′, the measures T (dx′|x)P (dx) and T (dx|x′)P (dx′) must be mutually

absolutely continuous. This requirement guarantees the positivity and finiteness of

the Metropolis-Hastings ratio,

r(x, x′) =
T (dx′|x)P (dx′)
T (dx|x′)P (dx)

(2.26)

which is the probability of the proposed move being accepted. Notice that the

distribution P has to be known only up to a multiplicative constant since constants

cancel out when evaluating the ratio. The Metropolis-Hastings algorithm is detailed

in Algorithm 3.

Algorithm 3 Metropolis-Hastings algorithm

Require: x, T (dx′|x)

1: Generate x′ ∼ T (·|x)

2: Generate u ∼ Uniform(0, 1)

3: if u ≤ r(x, x′) then

4: Return x′

5: else

6: Return x

7: end if

In direct probabilistic methods like the Accept-Reject algorithm, rejected moves

result in discarding the proposed state, and the process is repeated until acceptance.

Conversely, the Metropolis-Hastings algorithm retains the current state x as the

new sample when the proposed move is rejected. Therefore, frequently rejected

configurations are counted multiple times in calculating averages, increasing the
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correlation among sequential samples and increasing the estimator’s variance if a

well-tuned proposal is not used.

The probability transition kernel of the Metropolis-Hastings chain is

K(dx′|x) = min(1, r(x, x′))T (dx′|x) + (1− α(x))δx(dx′) (2.27)

α(x) =

∫
min(1, r(x, y))T (dy|x),

where α(x) represents the probability of accepting any move with initial condition x,

encoding all possible rejected steps.

Using the identity r(x, x0) = 1/r(x0, x) alongside the algebraic equality

min(1, r) = rmin (1, 1/r), since r > 0, we have that

min(1, r(x, x′))T (dx′|x)P (dx) = min(1, r(x′, x))r(x, x′)T (dx′|x)P (dx)

= min(1, r(x′, x))T (dx|x′)P (dx′); (2.28)

furthermore, given test function φ, and integrating over the parameter space with

respect to the rejection component,∫
X

∫
X
φ(x, x′)(1− α(x))δx(dx′)P (dx) =

∫
X

∫
X
φ(x, x′)(1− α(x′))δx′(dx)P (dx′),

(2.29)

which implies that (1 − α(x))δx(dx′)P (dx) = (1 − α(x′))δx′(dx)P (dx′), essentially

verifying the detailed balance condition on the transition kernel (2.27) using as

acceptance probability R(r(x, x′)) = min(1, r(x, x′)). Other functions satisfying the

property R(r) = rR(1/r) could induce a dynamics reversible with respect to P ;

nevertheless, the Metropolis-Hastings rate is optimal in terms of asymptotic variance

(Theorem 2.2.1 in Peskun, 1973).

If the Metropolis-Hastings ratio r(x, x′) > 0 for all x, x′ ∈ X , then the aperiodic

irreducibility of the proposal transition T ensures the aperiodic irreducibility of the

Markov chain generated by the algorithm. Hence, the pathwise ergodicity of the

algorithm is influenced by the choice of the proposal kernel T . Beyond its theoretical

implications for convergence, selecting a suitable proposal kernel is paramount for

27



Chapter 2. Monte Carlo Methods

an efficient algorithm. An optimal acceptance/rejection rate ensures a compromise

between large moves that decorrelate the chain but are more likely to be rejected

and small moves that are likely to be accepted. The forthcoming will illustrate some

options for the transition kernel and its implications for algorithmic efficiency.

Independent Metropolis-Hastings (Alg. 4): The independent proposal is

the Markov chain counterpart of the Accept-Reject method, where the proposal

distribution q, independent of the initial state x, serves as the transition distribution.

Despite the independence in generating proposals, the resultant sample does not

exhibit independence since the acceptance probability for a proposed move depends

on the current state, diverging from the independent and identically distributed

scenario unless p = q.

Algorithm 4 Independent Metropolis-Hastings algorithm

Require: x

1: Generate x′ ∼ q.

2: Generate u ∼ Uniform(0, 1)

3: if u ≤ p(x′)q(x)
p(x)q(x′)

then

4: Return x′

5: else

6: Return x

7: end if

The convergence of the chain generated by this algorithm is contingent upon the

properties of q. Specifically, the chain is irreducible and aperiodic-—thus ergodic-—if

q is almost everywhere positive on the support of p. The stronger result of uniform

ergodicity is ensured when a constantM exists such that f(x) < Mg(x) for all x ∈ X ,

further illustrating its relationship to the Accept-Reject algorithm (Theorem 7.8 in

Robert and Casella, 2004). However, the independent Metropolis-Hastings accepts

more proposed values than the Accept-Reject on average, improving its effectiveness

in comparison (Lemma 7.9 in Robert and Casella, 2004).

Random Walk Metropolis-Hastings (Alg. 5): The random walk proposal
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uses local exploration around the current state of the Markov chain by generating a

random perturbation centred on it. The proposal kernel T (dx′|x) is defined by the

transformation

X ′ = X + ϵ, (2.30)

where ϵ is a random perturbation with distribution g, independent of X.

Common choices for g include uniform distributions over spheres centred at the

origin, standard distributions like the Gaussian distribution, and heavy-tailed variants

like the Student–t and χ2 distributions. A symmetric g, satisfying g(−x) = g(x),

aligns with the original formulation by Metropolis et al. (1953), leading to the

reversible implementation detailed in Algorithm 5.

Algorithm 5 Random Walk Metropolis-Hastings algorithm

Require: x

1: Generate ϵ ∼ g.

2: Let x′ ← x+ ϵ

3: Generate u ∼ Uniform(0, 1)

4: if u ≤ p(x′)/p(x) then

5: Return x′

6: else

7: Return x

8: end if

The algorithm’s convergence properties and optimal scaling are essential

considerations for efficiently exploring the target distribution. A seminal result

in this domain is the work by Gelman, Gilks, and G. O. Roberts (1997), who

established that the optimal acceptance rate for high-dimensional target distributions

for the Random Walk Metropolis-Hastings algorithm is approximately 23.4%. This

result implies that the algorithm’s proposal distribution should be tuned to accept

about one in four proposed moves, for instance, by setting the variance when g is

Gaussian. The underlying intuition is that larger moves lead to faster state space
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exploration but with higher rejection rates, which can inefficiently recycle the current

state and lead to high autocorrelation, while smaller moves have higher acceptance

rates but can result in slow exploration due to the small distance covered in each

step, also leading to high autocorrelation.

Metropolis Adjusted Langevin Dynamics (Alg. 6): The Metropolis-

Adjusted Langevin Algorithm (MALA) is a non-symmetric transition kernel derived

from the discretization of continuous stochastic dynamics, using gradient information

from the initial position to transition to high-density areas in the distribution, and

maintaining detailed balance with the Metropolis-Hastings correction. Integrating

continuous dynamics allows MALA to offer a proposal mechanism that better explores

the target space.

The proposal mechanism is the discretization of a Langevin diffusion, a continuous-

time process given by the stochastic differential equation,

dXt = dBt +
1

2
∇ log p(Xt)dt, (2.31)

where Bt is the standard Brownian motion. This process is discretized for its use in

MALA, transforming the continuous dynamics into a random walk-like transition,

X ′ = X +
τ 2

2
∇ log p(X) + τϵ, (2.32)

where ϵ ∼ N(0, Id) and τ > 0 controls the scale of the discretization. The

discretization introduces a bias, corrected using Metropolis-Hastings, ensuring

convergence to the target distribution. This bias also makes the transition

nonreversible, with density proportional to

exp

−
∥∥∥X ′ −X − τ2

2
∇ log p(X)

∥∥∥2
2τ 2

 , (2.33)

making the Metropolis-Hastings ratio,

rMALA(x, x
′) =

p(x′) exp

(
−
∥∥∥x′ − x− τ2

2
∇ log p(x)

∥∥∥2 /2τ 2)
p(x) exp

(
−
∥∥x− x′ − τ2

2
∇ log p(x′)

∥∥2 /2τ 2) . (2.34)
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Algorithm 6 Metropolis-Adjusted Langevin Algorithm (MALA)

Require: x, τ , p

1: Generate ϵ ∼ N (0, Id).

2: Let x′ ← x+ τ2

2
∇ log p(x) + τϵ

3: Generate u ∼ Uniform(0, 1)

4: if u ≤ rMALA(x, x
′) then

5: Return x′

6: else

7: Return x

8: end if

The study of optimal scaling for MALA by G. O. Roberts and Rosenthal (1998)

analyses how the discretization step size τ influences the algorithm’s convergence

properties. They prove an optimal acceptance rate of 57.4% for MALA, targeting the

most efficient trade-off between acceptance frequency and the thoroughness of state

space exploration. Their findings highlight that, under optimal scaling, MALA can

significantly outperform traditional random walk Metropolis-Hastings approaches by

including local gradient information of the target in the transition, achieving a more

effective exploration of complex probability landscapes.

2.2.3 The Slice Sampler

Based on the alternative representation of the target density (2.3), we can generate

a Markov chain whose stationary distribution aligns with the uniform distribution

over S(p) = {(x, u) : 0 < u < p(x)}. Slice sampling employs a random walk within

S(p), proposing a method leading to a uniform stationary distribution over the set.

A straightforward strategy alternates movements along the u-axis and x-axis with

uniform steps in both directions, avoiding a Metropolis-Hastings correction to achieve

uniformity over S(p).

The slice sampling method, proposed by Radford M Neal (2003), requires two
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uniform random walk steps over the subgraph of p, applicable in any Euclidean

parameter space X = Rd, detailed in Algorithm 7. Step 2 of the algorithm is

nontrivial, but there are options to adaptively propose samples that are rejected until

a sample from the set is found. For instance, Radford M Neal (2003) proposes the

shrinkage procedure, which draws an initial sample and iteratively shrinks the range

from which subsequent samples are drawn if they fall outside the slice, guaranteeing

new samples are less likely to be rejected after each rejection while still being

reversible with respect to the uniform density.

Algorithm 7 Radford M Neal (2003) Slice Sampler

Require: x, u

1: Generate u′ ∼ Uniform(0, p(x))

2: Generate x′ ∼ Uniform({x : u′ ≤ p(x)})

3: Return x′, u′

The stationary distribution of the Markov chain generated by slice sampling

is uniform over the subgraph S(p), the area under the curve of the target density

function p. An initial horizontal slice is generated when sampling u′ uniformly from

the interval (0, p(x)), setting the minimum height to evaluate x on its graph. The

second slice samples a new state x′ uniformly from the set of all values within the

set {x : u′ ≤ p(x)}.

Uniform sampling within each slice ensures that the transition from x to x′ does

not favour any particular region of S(p) more than another, preserving uniformity

over S(p) across iterations. This conclusion holds even if the target density p is

known only up to a normalization constant because the relative proportions of the

density function are preserved under scaling, and thus, the algorithm’s ability to

generate a uniform distribution over S(p) remains unaffected.

Sampling uniformly from the subgraph S(p) might be intractable, especially as

the dimension d increases. This can be avoided using a generalization beyond the

straightforward approach of Radford M Neal (2003) slice sampler, which operates

under single-slice uniform sampling, by leveraging the concept of multiple slices to
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facilitate the sampling process. The core idea is to decompose the target density into

the product of positive functions,

p(x) =
k∏
i=1

pi(x) (2.35)

which may not necessarily be densities themselves. Such a decomposition is

particularly useful in Bayesian settings, where pi(x) could represent individual

likelihood or the prior. By introducing multiple auxiliary variables ui, each

corresponding to a component pi, the algorithm constructs a multi-dimensional

sampling framework detailed in Algorithm 8.

Algorithm 8 Generalized Slice Sampler

Require: x, u

1: for i = 1, . . . , k do

2: Generate u′i ∼ Uniform(0, pi(x))

3: end for

4: Generate x′ ∼ Uniform({x : u′i ≤ pi(x), i = 1, . . . , k})

5: Return x′, u′1, . . . , u
′
k

The decomposition in (2.35) allows for the representation

p(x) =

∫ p1(x)

0

du× · · · ×
∫ pk(x)

0

du (2.36)

embedding p within a higher-dimensional uniform joint distribution involving x and

k auxiliary variables. The generalized slice sampler increases the number of steps

needed for one iteration but offers a more flexible framework for constructing uniform

proposals, up to one dimension at a time. This approach preserves the advantages of

slice sampling, such as its independence from the normalization constant of p, and

introduces greater flexibility in navigating the distribution’s landscape.

Elliptical Slice Sampler (Alg. 9): Murray, R. Adams, and MacKay (2010)

present an efficient method suitable for models where the posterior target density

(1.9) has a multivariate Gaussian prior density N (0,Σ) and any likelihood function
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L(x) =
∏

i p(yi|x), making the target distribution

p(x|D) ∝ L(x)N (0,Σ). (2.37)

The approach builds on a Metropolis-Hastings proposal introduced by R. Neal

(1998), proposing new states x′ as a combination of the current state x and an auxiliary

random draw ν from the prior, established by a step size parameter ϵ ∈ [−1, 1],

x′ =
√
1− ϵ2x+ ϵν, ν ∼ N (0,Σ). (2.38)

The proposed state ranges from a sample of the prior ϵ = ±1 to the current state

ϵ = 0. Since the proposal is symmetric with respect to the prior, the proposed move

is accepted based on the likelihood ratio between x′ and x. This method is useful for

probabilistic models where posterior variables exhibit strong prior dependencies, like

a Gaussian process prior.

The elliptical slice sampler modifies the latter approach by proposing states on

an ellipse

x′ = ν sin θ + x cos θ, ν ∼ N (0,Σ), (2.39)

where parameter θ ∈ [0, 2π] is generated using slice sampling. In other words, the

parameter θ is chosen uniformly on subgraphs of the likelihood function of the

model S(L), generating a new sample that always leaves the prior invariant. This

reparameterization allows an adaptive choice of the step size without preliminary

tuning using a shrinkage procedure similar to that proposed by Radford M Neal

(2003). This method is implemented in Algorithm 9.

Nonreversible Metropolis Updates (Alg. 10): Radford M Neal (2020) builds

on the foundation laid by slice sampling, where s is sampled uniformly between 0

and p(x) to form a joint distribution that is uniform over the region 0 < s < p(x), to

make a (symmetric) nonreversible Metropolis accept/reject step. The innovation is

in the retention of s between updates, using its current value to inform accept/reject

decisions. Metropolis updates can be seen within this framework, with new samples

being accepted or rejected depending on whether p(x′) > s. This strategy diverges
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Algorithm 9 Murray, R. Adams, and MacKay (2010) Elliptical Slice Sampler

Require: x, L,Σ

1: ν ∼ N (0,Σ)

2: u ∼ Uniform(0, L(x))

3: θ ∼ Uniform(0, 2π)

4: [θmin, θmax]← [θ − 2π, θ]

5: x′ ← x cos θ + ν sin θ

6: if u ≤ L(x′) then

7: Return x′

8: else

9: if θ < 0 then

10: θmin ← θ

11: else

12: θmax ← θ

13: end if

14: θ ∼ Uniform(θmin, θmax)

15: Go to 5.

16: end if
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from traditional slice sampling by allowing for nonreversible updates to s, translating

it by a fixed amount, potentially adding noise, and reflecting off boundaries defined

by the density of x.

The method involves a variable v such that s = |v|p(x), uniformly distributed

over [−1,+1]. Updates to v consist of adding a fixed value δ ∈ R and some optional

random noise and reflecting off the boundaries [−1,+1], ensuring an invariant uniform

distribution over [−1,+1]. Furthermore, acceptance of a proposed move from x

to x′ requires adjusting s (and hence v) to keep the auxiliary variable unchanged,

preserving the reversibility of the move with respect to the augmented state space.

The generic nonuniform Metropolis update is presented in Algorithm 10, where the

proposal kernel T needs to be symmetric.

This non-reversible updating mechanism encourages |v| to oscillate slowly between

values near 0 (where acceptance rates are high) and near 1 (where acceptance is less

likely), potentially clustering acceptances and rejections and enhancing the chain’s

exploration. While the average acceptance rate remains unchanged, as v maintains a

uniform distribution regardless of x, clustering acceptances and rejections can lead

to more efficient sampling over the state space. Particularly when some variables

are updated by other methods, such as Gibbs sampling on discrete variables of the

parameter space, where clustering acceptances or rejections can help the exploration

in sync with other changing parameters of the model.

2.2.4 Diagnostic Tools

Diagnosing the quality of the samples in a Markov chain first requires ensuring the

chain has converged to its stationary distribution and then estimating the variance of

its estimator. Because the chain’s initial condition is not the target density, it might

take some time to converge to its required density, and once it does, the covariance

between samples needs to be considered in the estimator’s variance.

Assume that the chain has converged, then the covariance between samples of
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Algorithm 10 Radford M Neal (2020) Nonreversible Metropolis Algorithm

Require: x, v, δ, σ, T (dx′|x)

1: x′ ∼ T (·|x)

2: ϵ ∼ N (0, σ)

3: v ← v + δ + ϵ

4: while v > +1 do

5: v ← v − 2

6: end while

7: while v < −1 do

8: v ← v + 2

9: end while

10: if |v| ≤ p(x′)/p(x) then

11: v′ ← vp(x)/p(x′)

12: Return x′, v′

13: else

14: Return x, v

15: end if
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the chain is

C(k) = Cov[Xi, Xi+k], (2.40)

and thus its overall variance is given by (2.14), and can be rewritten in terms of

(2.40),

σ2 = C(0) + 2
∞∑
k=1

C(k). (2.41)

In time series analysis, C(k) is called the autocovariance function of the chain and

C(k)/C(0) its autocorrelation function, making σ2 the integrated autocovariance

function and

τ = 1 + 2
∞∑
k=1

C(k)

C(0)
, (2.42)

the integrated autocorrelation function. Let x̄ be the Monte Carlo estimate (2.5) of

the chain’s average, we could do a sample estimate of the autocovariance function,

Ĉ(k) =
∑

0<i<N−k

(xi − x̄)(xi+k − x̄), (2.43)

and plug it into (2.41) for a sample estimate of the chain’s variance. However, the

variance of the estimate Ĉ(k) will cause the sum in (2.41) to explode as k increases,

increasing the noise in the estimate the larger the chain. Instead, Geyer (1992)

proposes the alternative function

c(k) = C(2k) + C(2k + 1), (2.44)

which is strictly positive, strictly decreasing, and strictly convex, and the alternative

approximation for the integrated autocorrelation function,

τ̂ = −1 + 2
N∑
k=0

ĉ(k) (2.45)

ĉ(k) = Ĉ(2K) + Ĉ(2k + 1). (2.46)
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When comparing experiments in the following chapters, we usually run multiple

chains c on multi-dimensional j configuration spaces,

τc,j = −1 + 2
N∑
k=0

ĉc,j(k) (2.47)

ĉc,j(k) = Ĉ(2K) + Ĉ(2k + 1) (2.48)

Ĉc,j(k) =
∑

0<i<N−k

(xc,i,j − x̄c,·,j)(xc,i+t,j − x̄c,·,j) (2.49)

x̄c,·,j =
1

N

N∑
i=1

xc,i,j, (2.50)

where the autocovariance is computed using the Fourier transform method from

Wolff, Collaboration, et al. (2004). We present the autocorrelations and effective

sample sizes for the median of all chains and the worst-case dimension,

τmax = max
j=1,...,d

[
median
c=1,...,C

τc,j

]
(2.51)

ESS = min
j=1,...,d

[
median
c=1,...,C

NC

τc,j

]
. (2.52)

Diagnosing the convergence of a Markov chain to its stationary distribution is

crucial to ensure the accuracy of posterior estimates. Measuring the divergence of

the samples from the target verifies that the chain has sufficiently explored the target

space. The divergences used in this work are the Kernelized Stein Discrepancy (KSD;

Liu, Lee, and M. Jordan, 2016), useful when comparing samples to an unnormalized

target density, and the Maximum Mean Discrepancy (MMD; Gretton et al., 2012),

useful when comparing two sets of samples.

The Kernelized Stein discrepancy is computable even if the target density p is

unnormalized, providing a convenient way to assess samples’ compatibility directly

with the model. Its U- and V-statistics are calculated using the inverse multiquadric
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kernel k(x, x′) = (1 + (x− x′)T (x− x′))−1/2 as

U-stat =
1

CN(CN − 1)

∑
c,i

∑
c′ ̸=c,i′ ̸=i

AπA′
πK(xc,i,xc′,i′) (2.53)

V-stat =
1

C2N2

∑
c,i

∑
c′,i′

AπA′
πK(xc,i,xc′,i′) (2.54)

ApA′
pK(x, x′) = ∇x · ∇x′k(x, x

′) +∇xk(x, x
′) · ∇x′ log p(x

′)

+∇x′k(x, x
′) · ∇x log p(x) + k(x, x′)∇x log p(x) · ∇x′ log p(x). (2.55)

It can be shown that the U-statistic is an unbiased estimate of Ex,x′∼p′ [ApA′
pK(x, x′)]

for process p′ generating the samples, while the V-statistic is biased but always non-

negative (Liu, Lee, and M. Jordan, 2016). If p = p′ then Ex,x′∼p′ [ApA′
pK(x, x′)] = 0

by Stein’s identity (Stein et al., 2004).

The Maximum Mean Discrepancy represents distances between distributions as

distances between mean embeddings of features. It is defined by a feature map

φ : Rd → F and measures the discrepancy between two distributions P and Q,

MMD(P,Q) = ∥EP [φ(X)]− EQ[φ(X)]∥F , (2.56)

where the strength of the metric depends on the expressiveness of the feature map,

which corresponds to a kernel by ⟨φ(x), φ(y)⟩F = k(x, y). Using the Gaussian kernel

k(x, y) = exp (−∥x− y∥2/2) we empirically compute the MMD between two chains

X1, . . . , XN and Y1, . . . , YN ,

MMD2(X, Y ) =
1

N(N − 1)

∑
i ̸=j

k(xi, xj)−
2

N2

∑
i,j

k(xi, yj) +
1

N(N − 1)

∑
i ̸=j

k(yi, yj).

(2.57)
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Approximate Inference Methods

In Bayesian computation, sampling methods have long stood as the cornerstone,

offering a robust framework with a precise understanding of our estimate’s variance

backed by elementary statistical results. However, as the complexity of models and

the size of data sets grow, the practical limitations of traditional sampling techniques,

especially in terms of computational efficiency, become increasingly apparent. Despite

their theoretical appeal, these methods often fall short in scenarios demanding rapid

decision-making or when handling models of considerable complexity.

Advances in the literature ushered in the alternative strategy of target density

approximation (Saul, Jaakkola, and M. I. Jordan, 1996; M. I. Jordan et al., 1999; Beal,

2003). These methods do not approximate the integral directly; instead, they focus

on approximating the target posterior density p(x|D) with a tractable density q(x),

minimizing a notion of divergence between the two. Although density approximation

may lack the asymptotic guarantees of sampling methods, its ability to provide rapid

inference solutions and the pragmatic acknowledgement of the approximate nature

of real-world inference tasks explain its rapid increase in popularity.

In essence, the method presented in this chapter transforms the problem of

Bayesian computation from integration to an optimization task. Specifically, the task

of searching for an optimal density q within a variational family of densities Q that

yields the most accurate approximation of the posterior. This requires minimizing
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a divergence measure D between the approximate distribution q(x) and the exact

posterior p(x|D), formally expressed as

q∗(x) = argmin
q∈Q

D[q(x)||p(x|D)], (3.1)

where q∗(x) denotes the distribution that best approximates the exact posterior

within the constraints of the chosen divergence measure and variational family.

Resulting in the approximation of (1.11),

E[h(X)|D] ≈
∫
X
h(x)q∗(x)dx, (3.2)

where the right-hand side can be solved analytically if simple enough or approximated

using Monte Carlo integration, assuming that q∗ is easy to sample from. This

methodical shift streamlines the inference process and opens up new possibilities for

efficiently handling complex models, such as using neural networks to construct Q.

The first section of this chapter focuses on the divergence measure, while the second

section focuses on the variational family.

3.1 Divergence Measure

Consider the posterior density (1.9) and its intractable model evidence

Z =

∫
X

n∏
i=1

p(yi|x)p(x)dx =

∫
X
p(D, x)dx. (3.3)

An approach that avoids the direct computation of the posterior density can maximize

the likelihood of observations (or model evidence) by maximizing its lower bound

dependent on a parametrised surrogate density q. Using Jensen’s inequality, we can

get a lower bound on the logarithm of the model evidence, varying depending on the

approximate density q, called the Evidence Lower Bound (ELBO),

logZ = log

∫
X
p(D, x)q(x)

q(x)
dx

≥
∫
X
log

p(D, x)
q(x)

q(x)dx = Eq
[
log

p(D, x)
q(x)

]
. (3.4)
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The ELBO serves as a surrogate objective for logZ, with the optimization of q(x)

effectively providing a tighter approximation to the model evidence. Equivalently,

finding the density q ∈ Q minimizing the negative ELBO in (3.1) effectively finds

the density that closest approximates the target posterior.

The ELBO is instrumental within the Bayesian framework as it provides a

divergence from the true posterior; however, the concept of divergence transcends

this specific application and requires a more general definition. Defining a general

divergence thus connects the specific goals of Bayesian approximation with the

broader landscape of optimization problems.

3.1.1 Kullback-Leibler Divergence

Let P be the space of probability density functions such that any probability

distribution P which makes a probability space with the σ-algebra of the configuration

space X has its density function p ∈ P. Then, D : P × P → [0,∞) is a divergence

on P when it is true that D(p, q) ≥ 0 for any p, q ∈ P and D(p, q) = 0 if and

only if p = q. A divergence establishes a statistical distance between probability

distributions defined on the space X , serving as a metric for quantifying the “closeness”

between a target distribution and its approximation.

The Kullback-Leibler Divergence (KLD; Kullback and Leibler, 1951) is a

divergence between two probability distributions, quantifying the amount of natural

information units lost when q(x) is used to approximate p(x|D). Formally, for

distributions p and q in the space P ,

KLD[q(x)||p(x|D)] =
∫
X
log

q(x)

p(x|D)
q(x)dx. (3.5)

The nonnegativity of the KLD is given by the concavity of the logarithm and

Jensen’s inequality,∫
X
log

p(x|D)
q(x)

q(x)dx ≤ log

∫
X

q(x)

q(x)
p(x|D)dx = log 1 = 0, (3.6)
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and negating both sides,

0 ≤
∫
X
log

q(x)

p(x|D)
q(x)dx = KLD[q(x)||p(x|D)], (3.7)

with equality if and only if p(x|D) = q(x) for all x ∈ X with positive probability.

Direct minimization of the KLD requires an evaluation of the target distribution

itself. In the case of Bayesian inference, it requires the computation of the posterior

distribution (1.9),

p(x|D) = Z−1

n∏
i=1

p(yi|x)p(x) = Z−1p(D, x) (3.8)

which depends on the model evidence Z, an intractable integral. However, notice

that using the nonnegativity property of KLD (3.7) we can derive the ELBO (3.4)

using the definition of the Bayesian posterior density,

0 ≤ KLD[q(x)||p(x|D)] = −
∫
X
log

p(D, x)
q(x)

q(x)dx+ logZ

= KLD[q(x)||p(D, x)] + logZ. (3.9)

Variational inference (VI) reformulates the divergence to avoid the direct computation

of intractable quantities. Considering that the model evidence Z is independent

of the configuration x, then reusing the previous logic of the ELBO, we instead

minimize the variational free energy when doing VI,

KLD[q(x)||p(D, x)] = KLD[q(x)||p(x|D)]− logZ (3.10)

which is the negative of the ELBO.

An important property of the KLD is its asymmetry KLD[q(x)||p(x|D)] ̸=

KLD[p(x|D)||q(x)], which plays a crucial role in the outcome of the optimisation (3.1).

KLD[q(x)||p(x|D)], the exclusive or reverse KLD, is used as a black-box variational

inference objective since it can be easily approximated using Monte Carlo integration.

The inclusive or forward KLD requires solving an integral of the form (1.11) and is

used in specific problems where good approximations can be found for the integral,

KLD[p(x|D)||q(x)] =
∫
X
log

p(x|D)
q(x)

p(x|D)dx. (3.11)

44



3.1. Divergence Measure

Minimizing the reverse KLD[q(x)||p(x|D)] avoids assigning probability mass in

q to regions where p is negligible or zero, “mode-seeking” while avoiding the tails

of p when q is constrained to be unimodal. The penalty for q assigning mass to

regions where p is zero is infinite but finite when assigning zero mass to q where p

is positive. The penalty is apparent by the fraction inside the logarithm in (3.5),

which explodes to infinity when p(x|D) is null and q(x) is not. The one-dimensional,

unimodal example, with a skewed target to approximate within a Gaussian family, is

illustrated on the left side of Figure 3.1. Notice how the approximation misses the

skewed left tail of the target and centres around the mean of the target.

Minimizing the forward KLD[p(x|D)||q(x)] acts oppositely, forcing the support of

q to cover the support of p completely, “mass-covering” the tails of p. The contrary

penalty is clear from the fraction inside the logarithm in (3.11), which explodes to

infinity when q(x) is null and p(x|D) is not. The one-dimensional, unimodal example

is illustrated on the right side of Figure 3.1, where the approximation covers the

whole mass of the target.

Figure 3.1: Gaussian approximation that underestimates (left) and overestimates

(right) the real variance of the skewed target.

Minimizing the forward KLD results in an approximation where p(x|D) ≤Mq(x)

for all x with positive target density, mirroring the requirements for proposal densities

in the Accept-Reject, importance sampling, and independent Metropolis-Hastings

methods of Chapter 2. This alignment emphasizes the forward KLD’s utility in
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creating well-suited approximations for a wide range of sampling-based inference

tasks, where ensuring coverage over the entire support of p is crucial for effective

approximation.

However, while the approximation resulting from minimizing the forward KLD is

appealing, practical challenges limit its direct application. The computation of the

forward KLD is nontrivial since it requires solving analytically an integral over p(x|D)

or sampling it for a Monte Carlo approximation, which is the essence of the Bayesian

computational problem. The next two chapters propose black-box algorithms for

Bayesian inference using the forward KLD in a sampling scheme.

3.1.2 Monte Carlo Variational Inference

Focus on the reverse KLD as an optimization objective, specifically on the variational

free energy objective (3.10), which avoids computing the intractable model evidence,

KLD[q(x)||p(D, x)] = Eq[log q(X)]− Eq[log p(D, X)]. (3.12)

Limiting its use to situations where we can solve each expectation analytically is

too restrictive for the expressiveness of the approximation q. Instead, we use the

same ideas of Monte Carlo integration discussed in Chapter 2 to approximate the

optimization objective. However, to use a first-order optimization method in (3.1),

we need access to the gradient of (3.12) with respect to the hyperparameters that

specify q in Q, a nontrivial problem when these parameters define the probability

space we are evaluating expectations over.

Knowing the importance of independent samples on the estimate’s variance, the

crucial constraint on the approximation distribution is that it is easy to sample from.

This might still seem restrictive to well-known families of univariate distributions

where we can apply the inverse transform to its generalized inverse function. However,

a generally applicable trick will open the door to any bijective transformation of

a vector of independent random variables and to neural networks building flexible

variational families.
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3.1. Divergence Measure

Assuming thatX is a continuous random variable with density qψ, where the range

of possible hyperparameters ψ ∈ Ψ define the variational family Q, the optimization

problem becomes,

ψ∗ = argmin
ψ∈Ψ

KLD[qψ(x)||p(x|D)], (3.13)

where q∗ = qψ∗ . Make sampling X ∼ qψ equivalent to first sampling Z ∼ q0, a

vector of independent configurations with no hyperparameters, and then computing

X = Tψ(Z) for some parametrised diffeomorphic map Tψ. Diffeomorphism ensures

the map is differentiable and bijective; then, using the change of variables formula,

we have the variational objective (3.12),

KLD[qψ(x)||p(D, x)] = Eq0 [log qψ(Tψ(Z))]− Eq0 [log p(D, Tψ(Z))]. (3.14)

Since q0 is independent of the hyperparameters ψ, the gradient is evaluated only in

the transformation inside the expectation and not in the probability space defining

it,

∇ψ KLD[qψ(x)||p(D, x)] = Eq0 [∇ψ log qψ(Tψ(Z))]− Eq0 [∇ψ log p(D, Tψ(Z))]. (3.15)

Now, we can use Monte Carlo integration to approximate the gradients of the log

densities as we would with any other function of the random variable,

∇ψ KLD[qψ(x)||p(D, x)] ≈
1

N

N∑
i=1

∇ψ log qψ(Tψ(zi))−
1

N

N∑
i=1

∇ψ log p(D, Tψ(zi))

= ∇ψ
1

N

N∑
i=1

log qψ(Tψ(zi))− log p(D, Tψ(zi)), zi ∼ q0.

(3.16)

The forward KLD instead relies on expectations over the target probability space,

KLD[p(x|D)||qψ(x)] = logZ + Ep[log p(D, X)]− Ep[log qψ(X)], (3.17)

and the first-order derivative of this objective with respect to the hyperparameters
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ψ requires evaluating only one expectation,

∇ψ KLD[p(x|D)||qψ(x)] = −Ep[∇ψ log qψ(X)]

≈ −∇ψ
1

N

N∑
i=1

log qψ(xi), xi ∼ p. (3.18)

The real challenge is sampling from the target, a problem that can generally only be

asymptotically solved using methods described in Chapter 2. Chapter 4 introduces a

novel scheme to train (3.18) using samples generated with Markov chain methods.

3.2 Variational Family

The derivation of the Monte Carlo approximation to the gradient of the reverse

KLD (3.16) suggests a generic way to construct expressive variational families: find

a base distribution q0 that is easy to sample from, parameterise a diffeomorphism

Tψ, use it to define the parametrised approximation qψ. Notice that now, using the

change of variables formula, the approximate density is defined in terms of the base

distribution and the diffeomorphism,

qψ(x) = q0(T
−1
ψ (x))| det∇T−1

ψ (x)|. (3.19)

Since (3.19) needs to be computed at each gradient evaluation of the KLD and

the determinant of a d-dimensional matrix requires d! operations to evaluate in

general, we want to constrain Tψ so that its Jacobian matrix has some structure that

facilitates the computation of its determinant.

Start with a scenario where we want to approximate our target density using the

multivariate Gaussian family, parametrised by their mean vector µ and covariance

matrix Σ. Making L the square root of the covariance matrix, for instance, using

a Cholesky decomposition Σ = LLT , we can make Z ∼ q0 a random vector of d

independent standard Gaussian variables and use Tψ(Z) = µ+ LZ to generate the

multivariate Gaussian random vector X, where ψ = (µ, L) and L is lower triangular

with positive diagonal elements.
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Sampling d independent standard Gaussian random variables is straightforward

and cheap using the Box-Muller transform: start with two uniform random variables

(U1, U2), use the inverse transform method described at the start of Chapter 2 to

convert them into polar coordinates in the Gaussian sphere,

(R, θ) = (−2 logU1, 2πU2), (3.20)

and convert them back to Cartesian points,

(Z1, Z2) = (
√
R cos θ,

√
R sin θ). (3.21)

Since Σ is a positive definite matrix, we can be sure the transformation Tψ is

bijective for any hyperparameter ψ. Also, the Jacobian matrices of Tψ and T−1
ψ

are lower triangular, requiring only d operations to calculate its determinant. The

diagonal elements of L need to be positive, so instead, we optimize their logarithm

over all real values. We can now use first-order optimization methods to optimize

over reverse KLD using (3.16) and get an approximation like on the left of Figure

3.1, or over the forward KLD using (3.18) and get an approximation like on the right

of Figure 3.1.

This is an example of a linear transformation with a triangular shift matrix; other

constraints can be put on the shift matrix to make the computation of its Jacobian

simple, such as orthogonal matrices (Tomczak and Welling, 2016), or parametrise

its LU factorization (Durk P Kingma and Dhariwal, 2018) or QR decomposition

(Hoogeboom, Van Den Berg, and Welling, 2019) instead of the shift matrix directly.

Non-linear transformations are more restrictive since they require a specific form for

a constrained Jacobian, some examples are the planar and radial flows of Rezende

and Mohamed (2015). The following sections will discuss a general strategy to build

expressive transformations using many hyperparameters, leveraging neural networks

on their parameterisation, while keeping its Jacobian matrix constrained.
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3.2.1 Discrete Normalizing Flows

The linear transformation described above is an example of a diffeomorphism with a

triangular structure. That is, a transformation where each dimension is a function of

only the current dimension and all dimensions that come before it, assuming some

specific order for the dimensions of X = [X1, . . . , Xd]
T and Z = [Z1, . . . , Zd]

T ,

Xi = Ti(Z1, . . . , Zi), i = 1, . . . , d. (3.22)

In terms of optimal transport, this is called Rosenblatt’s (1952) transformation,

and it serves as a regularity constraint that would normally be enforced using a cost

function on the distance between the original Z and the transformedX (see discussion

in El Moselhy and Y. M. Marzouk, 2012). This structural constraint ensures both

the existence and uniqueness of a transport map that transforms samples from the

reference distribution to samples from the target distribution under some constraints

on both measures, such as having density functions (Bogachev, Kolesnikov, and

Medvedev, 2005). Thus, it provides a theoretical guarantee of universality or the

guarantee that there is some triangular transformation that can learn our target.

Considering the theoretical guarantees of triangular transformations, a general

class of transformations that maintain a triangular or autoregressive structure,

referred to as autoregressive normalizing flows in the machine learning community,

are defined as,

Xi = Ti(Zi : Ψ(Z1, . . . , Zi−1)), i = 1, . . . , d, (3.23)

where Ψ can be any conditioning function generating the parameters of the

coupling function Ti. Since the hyperparameters depend only on Z1, . . . , Zi−1, the

transformation still has a triangular structure, and the determinant of its Jacobian

matrix is just the product of the matrix’s diagonal elements,

det∇T (z) =
d∏
i=1

∂Ti
∂zi

. (3.24)
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Neural networks are used for the conditioning function, making it arbitrarily

complex, while simpler invertible transformations are used as coupling functions. A

favoured example of the latter is a linear transformation,

Ti(Zi : ψ1, ψ2) = expψ1Zi + ψ2, (3.25)

Ψ(Z1, . . . , Zi−1) = (ψ1, ψ2), (3.26)

introduced in the inverse autoregressive (Durk P Kingma, Salimans, et al., 2016) and

masked autoregressive (Papamakarios, Pavlakou, and Murray, 2017) flows. While

more complex coupling functions have been proposed, see Kobyzev, Prince, and

Brubaker (2020) for an extensive treatment, the linear coupling’s simplicity is usually

preferred when creating arbitrary complexity by using large neural networks in the

conditioning function and composing a sequence of simple linear transformations.

An important property of diffeomorphic transformations is that they are

composable: for any finite amount of invertible and differentiable transformations

T1, ..., TK , their composition TK ◦ · · · ◦ T1 is also invertible and differentiable, and

the determinant of the Jacobian matrix for the composition can be easily derived

using the identity,

det∇(TK ◦ · · · ◦ T1)(Z) = det∇TK((TK−1 ◦ · · · ◦ T1)(Z))× · · · × det∇T1(Z).

(3.27)

Thus, composing a sequence of diffeomorphic transformations is simple: evaluate

each transformation and the determinant of its Jacobian in sequence and use the

last transformed value and the product of the determinants in (3.19).

Notice that if we have samples from Z and want to transform them to X = T (Z)

using an autoregressive flow, each dimension can be evaluated in parallel since they

all depend on values of Z. However, if we have samples from X and want to evaluate

their density (3.19), we would need to invert the transformation Z = T−1(X), and

each dimension needs to be evaluated sequentially since they all depend on previous

dimensions of Z. This makes the forward transformation much more efficient to

evaluate as the dimension of the target grows. If we focus only on sampling or density

51



Chapter 3. Approximate Inference Methods

evaluation, we can make the parallel computation T or T−1. But, if we need both

sampling and density evaluation in our analysis, an autoregressive flow might be

computationally restrictive.

The coupling flow allows parallel computation of T and its inverse T−1 at the cost

of losing the theoretical guarantees of the autoregressive flow. We now need to split

the input of the flow into two disjoint partitions (ZA, ZB), (XA, XB) ∈ Rm × Rd−m

then the coupling flow is defined as,

XA = TA(Z
A : Ψ(ZB)) (3.28)

XB = ZB, (3.29)

where again Ψ is a conditioning function generating the parameters of the coupling

function TA. Usually, this transformation is composed with the opposite transforming

XB = TB(Z
B : Ψ(ZA)) while leaving XA = ZA for a complete transformation of

all parameters.

Since the input generating the parameters of the transformation is fixed, the

forward and inverse of this flow can be evaluated in parallel. Also, its Jacobian

matrix is a block triangular matrix, and its determinant is simply,

det∇T (z) =
∏
i∈A

∂TA
∂zi

. (3.30)

Some examples of coupling flows are NICE (Dinh, Krueger, and Y. Bengio, 2014),

RealNVP (Dinh, Sohl-Dickstein, and S. Bengio, 2016), and Glow (Durk P Kingma

and Dhariwal, 2018), where conditioning functions are again neural networks and

coupling functions are linear, component-wise transformations.

3.2.2 Continuous Normalizing Flows

Composing a series of one-step transformations T1, ..., TK creates a flow of K discrete

time steps. Increasing the number of time steps in the flow allows for arbitrarily

complex transformations. An alternative strategy is to consider a single time step

instead and parameterise the flow’s infinitesimal dynamics, integrating them to get
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the bijective transformation. In other words, we construct the flow by defining an

ordinary differential equation (ODE) that describes the flow’s evolution over time,

where time represents a real-valued scalar variable analogous to the number of steps.

Continuous normalizing flows (CNFs) provide a more flexible way to model

complex distributions, allowing for smooth transformations that can capture intricate

structures in the data more naturally. A neural network specifies the time dependent

vector field of the ODE, modelling the probability density path between reference

and target density. Then, we use numerical tools to solve the ODE and construct a

time dependent diffeomorphic map used as a normalizing flow.

R. T. Chen et al. (2018) introduced the use of an ODE defined in times t ∈ [0, 1]

and letting a diffeomorphism be its solution at time t = 1. This can be seen as

an infinitely deep normalizing flow by taking the limit on the number and size of

discrete steps in the transformation. Let vt be a time-dependent vector field that

runs continuously in the unit interval. This vector field can be used to construct a

time-dependent diffeomorphic map called a flow ϕ : [0, 1] × Rd → Rd, defined via

the ODE,

d

dt
ϕt(x) = vt(ϕt(x)) (3.31)

ϕ0(x) = x. (3.32)

Given a reference density q0, and the flow ϕ, we can generate a probability density

path q : [0, 1]×Rd → R+ as the pushforward of q0 under ϕ, qt := [ϕt]♯q0 for t ∈ [0, 1],

yielding, via the instantaneous change of variables formula (e.g., R. Chen and Lipman,

2024),

log qt(xt) = log q0(x)−
∫ t

0

∇ · vs(xs)ds, (3.33)

where xs := ϕs(x), and ∇ is the divergence operator, i.e. the trace of the Jacobian

matrix.

The trace operator might appear more computationally feasible than the

determinant, but it requires d backpropagation gradient calculations to compute.
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We can instead approximate it using one backpropagation gradient calculation using

Hutchinson’s trace estimator (Hutchinson, 1989; Grathwohl et al., 2018),

∇ · vt(ϕt(x)) ≈ zT∇vt(ϕt(x))z, (3.34)

where z can be any d-dimensional random vector with zero mean and unit covariance,

making it feasible to handle high-dimensional problems.

In modern applications, the vector field vt is parameterized using a neural network

vψt , in which case the ODE is referred to as a neural ODE (R. T. Chen et al., 2018),

yielding a deep parametric model ϕψt for the flow. In terms of normalizing flows, the

diffeomorphic transformation Tψ = ϕψ1 and the approximate density (3.19) is given

by qψ1 := [ϕψ1 ]♯q0,

log qψ1 (xt) = log q0(x)−
∫ 1

0

∇ · vψs (xs)ds. (3.35)

We can train CNFs by incorporating the pushforward distribution into the KLD

as in the discrete case. This approach minimises the KLD between the target and its

approximation (3.35), ensuring that the flow accurately models the probability path

transforming reference to target. However, alternative methods for training CNFs

avoid computing costly integrals at each iteration. These methods will be explored

in detail in Chapter 5, introducing a scheme that uses Markov chain samples to learn

a CNF approximating the target.
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Transport Elliptical Slice Sampling

We propose a new framework for efficient sampling from complex probability

distributions using a combination of normalizing flows and elliptical slice sampling

(Murray, R. Adams, and MacKay, 2010). The central idea is to learn a diffeomorphism,

through normalizing flows, that maps the non-Gaussian structure of the target

distribution to an approximately Gaussian distribution. We then use the elliptical

slice sampler, an efficient and tuning-free Markov chain Monte Carlo (MCMC)

algorithm, to sample from the transformed distribution. The samples are then

pulled back using the inverse normalizing flow, yielding samples that approximate the

stationary target distribution of interest. Our transport elliptical slice sampler (TESS)

is optimized for modern computer architectures, where its adaptation mechanism

utilizes parallel cores to run multiple Markov chains for a few iterations rapidly.

Numerical demonstrations show that TESS produces Monte Carlo samples from

the target distribution with lower autocorrelation compared to non-transformed

samplers and demonstrates significant efficiency improvements when compared to

gradient-based proposals designed for parallel computer architectures, given a flexible

enough diffeomorphism.
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Figure 4.1: Illustration of Algorithm 12 using an exact transport map, i.e.

equality in (4.2) holds: sampling from the Banana density π(x1, x2) ∝

exp
(
−[x21/8 + (x2 − x21/4)

2
]/2
)
using the transport map T (u1, u2) = (

√
8u1, u2+2u21)

starts by transforming the target space to the reference space via a change of variables,

drawing samples from an ellipsis on the extended reference space (not pictured) and

pushing samples back to the target space.

4.1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms enable scientists to draw samples

from complex distributions, typically produced by models that represent the intricate

details in real-world datasets. The exploration of these complex and high-dimensional

distributions is challenging, and to be efficient, practitioners use the local pointwise

information of the target distribution to create a Markov chain of dependent samples.

The ideal outcome would be to have independent samples, but the Markov chain

approach generates sequentially correlated samples. Therefore, a major focus in

MCMC research is to develop algorithms that reduce these correlations and generate

samples that approximate independence.

Designing efficient MCMC algorithms usually relies on using local gradient

information from the target distribution; by discretizing, for example, Hamiltonian

(Duane et al., 1987; Radford M Neal et al., 2011) or Langevin (Rossky, Doll, and

Friedman, 1978; Grenander and Miller, 1994) dynamics of a process stationary on

our target distribution. Calculating gradients has been automated (Linnainmaa,

1976), but optimizing these algorithms to minimize both computations and
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correlations between sequential samples efficiently requires algorithmic parameters to

be manually tuned. Much work has been dedicated to developing efficient, black-box

methods to tune these parameters, with notable examples including the NUTS

(M. D. Hoffman, Gelman, et al., 2014) algorithm, which is widely available in

probabilistic programming languages (Salvatier, Wiecki, and C. Fonnesbeck, 2016;

Carpenter et al., 2017; Bingham et al., 2019; Phan, Pradhan, and Jankowiak, 2019).

Within the machine learning community, variational inference (VI; M. I. Jordan

et al., 1999) has grown in popularity as an inexact but comparatively faster approach

to solving the same inferential problem. As such, MCMC has lost its preferential

status as the default approach for Bayesian inference for prediction and uncertainty

quantification in this thriving community. Recent efforts (M. Hoffman, Radul, and

Sountsov, 2021; M. D. Hoffman and Sountsov, 2022) have focused on speeding up

MCMC by focusing on widening instead of lengthening computations on modern

computer architectures, e.g. utilizing GPUs or TPUs, which allow for vast parallel

computations. Tuning parallel MCMC chains has proven to be a somewhat different

challenge from its sequential counterpart (Radul et al., 2020), and parallel efforts

need to consider the lockstep necessity of gradient evaluations of parallel chains on

modern vector oriented libraries (Abadi et al., 2016; Bradbury et al., 2018; Paszke

et al., 2019).

4.2 Transport Elliptical Slice Sampler

In this research, we assume that x ∈ X ⊂ Rd are model parameters and D represents

our data. Our goal is to then approximate the posterior distribution, whereby Bayes

rule the posterior density is given by π(x) ∝ L(D|x)π0(x), for L(D|x) the likelihood

function and π0(x) the prior density. Our goal is to introduce a new MCMC algorithm

which leverages the tuning-free nature of elliptical slice sampling with the efficient

density transformation tools of normalising flows, thus creating the transport elliptical

slice sampler (TESS); an adaptive mechanism that allows scientists to perform fast
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parallel sampling from unnormalized densities. An intuitive pictorial representation

of our TESS algorithm is given in Figure 4.1.

4.2.1 Elliptical slice sampling

Introduced by Murray, R. Adams, and MacKay (2010) as a simple MCMC algorithm

with no tuning parameters, the elliptical slice sampler builds on a Metropolis-Hasting

sampler introduced by R. Neal (1998), which is designed for situations where the

prior π0(x) is Gaussian. Without loss of generality, we can assume that the prior is a

standard Gaussian density π0(x) = ϕ(x).The algorithm of R. Neal (1998) proceeds by

first proposing a new state of the Markov chain, x′ =
√
1− β2x+ βv, where v ∈ Rd

is an independent momentum variable following a standard Gaussian distribution.

The proposal moves x along the half ellipse, which connects the points v and −v,

which pass through x, for values β ∈ [−1, 1].

Elliptical slice sampling, instead, uses the proposal x′ = x cos θ + v sin θ which

moves on the full ellipse connecting x, −x, v and −v for θ ∈ [0, 2π]. This ellipse moves

in the contours of a standard Gaussian distribution, making it ideal for sampling in

a well-tuned pullback space. Both proposals leave the prior density invariant, and

elliptical slice sampling uses the slice sampling algorithm (Radford M Neal, 2003)

to choose a value θ, which ensures that the likelihood L(D|x) is invariant. Overall,

this proposal scheme keeps the target posterior invariant (Murray, R. Adams, and

MacKay, 2010), details of which are presented in Algorithm 11.

4.2.2 Normalizing flows

Normalizing flows (NF; Rezende and Mohamed, 2015) are a flexible class of trans-

formations produced by the sequential composition of invertible and differentiable

mappings. Using NF involves choosing a simple reference density, for example, a

standard Gaussian distribution ϕ(·), and a parameterized diffeomorphism Tψ, with

optimized parameters ψ, to transform the reference density to our target π(x) via a

change of variables. In other words, we want to find a map Tψ such that for u ∼ ϕ
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Algorithm 11 Elliptical slice sampler (Murray, R. Adams, and MacKay, 2010)

Require: x, L(D|·)

1: v ∼ N (0, Id)

2: w ∼ Uniform(0, 1)

3: log s← logL(D|x) + logw

4: θ ∼ Uniform(0, 2π)

5: [θmin, θmax]← [θ − 2π, θ]

6: x′ ← x cos θ + v sin θ

7: if logL(D|x′) > log s then

8: Return x′

9: else

10: if θ < 0 then

11: θmin ← θ

12: else

13: θmax ← θ

14: end if

15: θ ∼ Uniform(θmin, θmax)

16: Go to 6.

17: end if

59



Chapter 4. Transport Elliptical Slice Sampling

and x = Tψ(u), we have x ∼ π. Assuming this function exists, applying a change of

variable yields the following identities

π(x) = ϕ(T−1
ψ (x))| det∇T−1

ψ (x)| =: ϕ̂(x) (4.1)

ϕ(u) = π(Tψ(u))| det∇Tψ(u)| =: π̂(u), (4.2)

where ∇Tψ and ∇T−1
ψ are the Jacobian matrices of Tψ and its inverse, respectively.

In the context of VI, an approximation of ϕ̂(x) would approximate our target density

when carrying out inference since this approximation is both normalized and trivial

to sample from.

4.2.3 Fixed transport maps with elliptical slice sampling

To fulfil our requirement for a simple and cost-effective MCMC proposal, we begin by

generalizing the dimension-independent, gradient-free, and tuning-free elliptical slice

sampler. We will add tuning parameters to our generalized elliptical slice sampler

using NF. The diffeomorphism Tψ will be responsible for efficiently exploring the

posterior target density by transforming the proposal’s dynamics and tracing the

contours of a standard Gaussian density to follow the contours of an approximation of

the target. Following previous works in the transport Monte Carlo field (as described

in Section 4.3), we present TESS as a two-step procedure. Firstly, we learn the

transport map between the target and reference densities. Secondly, we utilize the

transport map within the elliptical slice sampler to generate samples from the target

density.

1. Map optimization To estimate the parameters ψ of our NF map, we minimize

divergence between our target density π(x) and the push-forward reference density

ϕ̂(x) (4.1). For our intended purpose, by the law of the unconscious statistician,

this is equivalent to minimizing the divergence between the pull-back target density

π̂(u) (4.2) and the reference density ϕ(u). The Kullback-Leibler divergence (KL;

Kullback and Leibler, 1951) is arguably the most widely used and studied divergence,

here presented in the context of approximate Bayesian inference but also studied
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in other branches of statistics and information theory (Joyce, 2011). It not only

has a tractable Monte Carlo estimate, but it is directly related to the foundation

of VI and provides intuition into the connection between maximizing the likelihood

of observational data and minimizing the distance between target and reference

densities (D. M. Blei, Kucukelbir, and McAuliffe, 2017),

KL(π||ϕ̂) =
∫

log
π(x)

ϕ̂(x)
π(x)dx. (4.3)

The optimal transport map is found by optimizing the parameters ψ of the

diffeomorphism Tψ such that the Kullback-Leibler divergence between the target and

reference densities is minimised, i.e.

ψ∗ = argmin
ψ∈Ψ

KL(π||ϕ̂). (4.4)

2. Sampling from the target Our proposed sampling method generalizes the

elliptical slice sampler by targeting the extended state space π(x)ϕ(v) for any posterior

density π(x), regardless of the choice of the prior distribution. The target density

is preconditioned using a transform via a normalizing flow to map to a standard

Gaussian distribution. That is, given a map Tψ∗ , with fixed parameters ψ∗, such

that π̂(u) ≈ ϕ(u) we proceed as follows: i) from an initial state (x, v) = (T ∗
ψ(u), v),

ii) move around an ellipse connecting u and v and iii) accept the new state according

to a slice variable chosen uniformly on the interval [0, π̂(u)ϕ(v)]. One iteration of

this method is detailed in Algorithm 12.

Proposition 1. The transition kernel of the Markov chain derived from Algorithm

12 leaves the target density π(x)ϕ(v) invariant.

Proof. As established in Murray, R. Adams, and MacKay (2010) and Nishihara,

Murray, and R. P. Adams (2014), the elliptical slice sampler and generalized elliptical

sampler target the correct stationary distribution as the algorithm is reversible and

produces an irreducible, aperiodic Markov chain.

The same result holds for the TESS algorithm from initial state u = T−1
ψ (x) and

where (u, v) and (u′, v′) represent the initial and accepted transformed parameters
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Algorithm 12 Transport Elliptical Slice Sampler

Require: u, Tψ(·), π̂(·)

1: v ∼ N (0, Id)

2: w ∼ Uniform(0, 1)

3: log s← log π̂(u) + log ϕ(v) + logw

4: θ ∼ Uniform(0, 2π)

5: [θmin, θmax]← [θ − 2π, θ]

6: u′ ← u cos θ + v sin θ

7: v′ ← v cos θ − u sin θ

8: if log π̂(u′) + log ϕ(v′) > log s then

9: x′ ← Tψ(u
′)

10: Return x′, u′

11: else

12: if θ < 0 then

13: θmin ← θ

14: else

15: θmax ← θ

16: end if

17: θ ∼ Uniform(θmin, θmax)

18: Go to 6.

19: end if
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of the sampler (steps 1 and 6-7), with s the slice variable (step 3) and {θk}Kk=1 the

parameters representing points in the slice expressed in radians until acceptance at

K (steps 4 and 17). Let

θ′k =

θk − θK , if k < K,

−θK if k = K,

(4.5)

then by the properties of the elliptical slice sampler, the transformation

(u, v, s, {θk}Kk=1) 7→ (u′, v′, s, {θ′k}Kk=1)

is bijective, preserves volume and p({θk}Kk=1|u, v, s) = p({θ′k}Kk=1|u′, v′, s). Using the

uniform density of the slice variable s it is easy to see that

p(u′, v′, {θk}Kk=1, s|u, v)π̂(u)ϕ(v) = p(u, v, {θ′k}Kk=1, s|u′, v′)π̂(u′)ϕ(v′),

and so if (u, v) ∼ π̂(u)ϕ(v) then (u′, v′) ∼ π̂(u′)ϕ(v′). Finally, as x = Tψ(u) we have

(x′, v′) ∼ π(Tψ(u
′))| det∇Tψ(u′)|ϕ(v′) = π(x′)ϕ(v′).

The TESS algorithm will likely be geometrically ergodic under certain transfor-

mations if those transformations lead to nice tail properties on the pulled back target.

A sketch of this argument follows from three key components: (i) Natarovskii,

Rudolf, and Sprungk (2021) show that the standard elliptical slice sampler is

geometrically ergodic if the target density has tails which are rotationally invariant

and monotonically decreasing, e.g. exp(−c||x||) for c > 0. (ii) This implies geometric

ergodicity for TESS if for a target density π and Markov transition kernel P (x, ·),

with C > 0 and γ ∈ (0, 1), geometric ergodicity of the elliptical slice sampler holds

when

||P n(x, ·)− π||TV ≤ C(1 + ||x||)γn, ∀n ∈ N,∀x ∈ Rd.

Then for P̃ (x, ·) the transition kernel of TESS we have,

||P̃ n(u, ·)− π̂||TV = ||P n(Tψ(u), ·)− π̂||TV

≤ C(1 + ||Tψ(u)||)γn,
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which holds only if the transformation Tψ leads to nice tail properties for π̂. (iii)

Following from Theorems 2 and 3 of Johnson and Geyer (2012), if there exists a

diffeomorphism which ensures that T pulls in the tails of the distribution enough,

then geometric ergodicity holds on the transformed distribution. An open question

is determining the necessary conditions on Tψ for this result to hold beyond simple

transformations.

4.2.4 Adaptive transport maps

There are two key components to TESS, the MCMC sampling phase and the

transformation function Tψ, which so far we have treated as two independent

procedures. However, the function Tψ is parameterised by ψ, and these parameters

must be learnt using samples from the target π(x). Therefore, we propose an adaptive

version of TESS that alternates between optimizing ψ and sampling x to produce an

accurate map between the reference measure and the target distribution.

The parameters ψ are optimized by first running the TESS sampling procedure

(Alg. 12) using k parallel Monte Carlo chains with an initial value of ψ, initialized

randomly, resulting in k approximate samples from our target π(x). We then run m

iterations of a stochastic gradient descent algorithm on the loss function

KL(π(x)||ϕ̂(x)) ≈ 1

k

k∑
i=1

log
π(xi)

ϕ̂(xi)
. (4.6)

The warm-up stage of the sampler repeats this process for h epochs with batches

of size k, adjusting the inherited parameters from the previous epoch and finally

fixing the parameters to then iterate N times Algorithm 12, generating samples from

our extended target space π(x)ϕ(v). This adaptive sampling algorithm is detailed in

Algorithm 13.

An important property of the Kullback-Leibler divergence is that it is an

asymmetric divergence, i.e. KL(π||ϕ̂) ̸= KL(ϕ̂||π). Minimizing KL(ϕ̂||π) forces

π(x) to cover the mass of ϕ̂(x), thus producing a poor approximation of the tails of

the posterior target density. Alternatively, minimizing KL(π||ϕ̂) forces ϕ̂(x) to cover
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the mass of π(x), providing an overconfident approximation to the target density

that can be corrected using a sampling method that leaves the target distribution

invariant.

Algorithm 13 Adaptive TESS

Require: u
(0)
1:k, h,m,N, TESS ▷ TESS applies Algorithm 12

1: Set initial parameters of Tψ and π̂.

2: for t← 1, . . . , h do ▷ Warm-up

3: for i← 1, . . . , k do

4: x
(t)
i , u

(t)
i ← TESS(u

(t−1)
i , Tψ, π̂)

5: end for

6: Update ψ in Tψ by running m iterations of gradient descent on (4.6) using

samples x
(t)
1:k.

7: end for

8: u
(0)
1:k ← u

(h)
1:k

9: for t← 1, . . . , N do ▷ Sampling

10: for i← 1, . . . , k do

11: x
(t)
i , u

(t)
i ← TESS(u

(t−1)
i , Tψ, π̂)

12: end for

13: end for

14: Return x
(1)
1:k, . . . , x

(N)
1:k

We follow the approach of M. Hoffman, Sountsov, et al. (2019) and initialize

the parameters of the NF using an approximation of the parameters that minimize

KL(ϕ̂||π) via a stochastic gradient descent scheme. In other words, minimizing the

Monte Carlo approximation

KL(ϕ(u)||π̂(u)) ≈ 1

M

M∑
i=1

log
ϕ(ui)

π̂(ui)
, ui

iid∼ ϕ. (4.7)
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4.2.5 Choice of transport map

A wide class of linear and nonlinear functions can be used within our normalizing

flow map. This work focuses on the coupling architecture for Tψ introduced by

Dinh, Krueger, and Y. Bengio (2014). Consider the disjoint partition x = (xA, xB) ∈

Rp × Rd−p and a coupling function t(·;ψ) : Rp → Rp parameterized by some set of

parameters ψ. Then, one can define a transformation G : Rd → Rd by the formula

xA = t(uA; Ψ(uB)) := eψ1 ⊙ uA + ψ2 (4.8)

xB = uB, (4.9)

given parameters Ψ : Rd−p → Rp × Rp learned only from the extended input. Here

we assume an affine bijection, defined in (4.8), and make Ψ a dense feedforward

neural network, for further generalizations and variations see Kobyzev, Prince,

and Brubaker (2020). The main practical advantages of the coupling architecture

with affine transformations are that it is easily inverted through a shift and scale

of the transformed xA with parameters given by the unchanged xB = uB, and

that the modulus determinant of its Jacobian matrix can be easily computed as

| det∇G(x)| =
∏d

i=1(e
ψ1)i. Furthermore, since the inverse of the transformation is

of similar structure, also its constant of volume change can be easily derived as

| det∇G−1(x)| =
∏d

i=1(e
−ψ1)i. Both of these use parameters given by Ψ(uB) = Ψ(xB),

and we drop the absolute value from our computations since the multiplied values

are non-negative. We allow for arbitrary complexity of our NF by introducing a

transformation D : Rd → Rd with the same structure as G but with the roles of the

random variables reversed, i.e. xA = uA and xB = t(uB; Ψ(uA)). Hence making our

final NF a sequential composition of n ≥ 1 transformations Tψ = Dn◦Gn◦· · ·◦D1◦G1.

4.3 Related work

Elliptical slice sampling The original elliptical slice sampler paper (Murray,

R. Adams, and MacKay, 2010) presented a simple algorithm that worked well on
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scenarios of strong prior (Gaussian) information. Nishihara, Murray, and R. P. Adams

(2014) were the first to explore the idea of generalizing this algorithm to any target

distribution while trying to maintain a simple kernel. Their proposal used a Student-t

distribution to approximate the target under the premise that this proposal would

adequately cover the tails of the target density. Their work also considered an

adaptive mechanism using parallel computing architectures, accelerating the MCMC

sampler by utilizing multiple chains with fewer iterations per chain. Fagan, Bhandari,

and Cunningham (2016) also used a generalized elliptical slice sampling proposal

paired with a preconditioning step to alleviate complex geometry on their target,

using expectation propagation to learn correlation structures for subsets of the

parameter space. The main difference between previous elliptical slice sampling

work and our methodology is normalizing flows to create a transport map between

a Gaussian density (for which the sampler works well) and the target density of

interest. As shown in Section 4.4, utilizing the richness of nonlinear transport maps

produces a fast and highly efficient MCMC algorithm.

Monte Carlo transport maps Our work draws inspiration and is closely

related to several threads of work that approach the problem of simulation by

simplifying the structure of the target density through a preconditioning step. For

general MCMC proposals, Parno and Y. M. Marzouk (2018) introduced the idea of

learning a diffeomorphism using samples from an MCMC algorithm to approximate

(4.3). Their work built on El Moselhy and Y. M. Marzouk (2012)’s proposal for

approximate inference, adding an MCMC kernel that corrects the approximation

and provides asymptotically exact samples. Their work showed that a relatively

simple transformation can provide valuable information about the global structure

of the target density, thus improving the efficiency of MCMC algorithms that use

local gradient information on certain, especially degenerate, test cases.

MCMC with normalizing flows The NeuTra Hamiltonian Monte Carlo

(HMC) algorithm introduced in M. Hoffman, Sountsov, et al. (2019) combines

neural transport maps with the HMC algorithm. This builds on the earlier work
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of Y. Marzouk et al. (2016), who frame the approximate inference problem as

solving a two-step process, where firstly an optimization problem is solved to find

a preconditioned diffeomorphism which minimizes (4.7). Then, the preconditioned

target is sampled using an HMC algorithm. The NeuTra algorithm relies on gradient-

based proposals to explore the target density. A key difference from the transport

elliptical slice sampler is that gradients of the target density are not required, this

makes the algorithm faster than gradient-based MCMC algorithms, and as illustrated

in Section 4.4, this is achieved without sacrificing sampling accuracy due to the

transport mapping. Additionally, TESS can be applied in settings where it is either

infeasible to calculate target gradients or they may be unstable (e.g Neal’s funnel

density (Gorinova, Moore, and M. Hoffman, 2020)).

4.4 Experiments

In this section, we compare the performance of the adaptive form of TESS (Alg.

13) with the performance of several state-of-the-art MCMC algorithms designed for

parallel computer architectures. Specifically, MEADS (M. D. Hoffman and Sountsov,

2022), ChEES-HMC (M. Hoffman, Radul, and Sountsov, 2021), and the popular

NUTS algorithm (M. D. Hoffman, Gelman, et al., 2014) where an adaptive step

size is tuned such that the average cross-chain harmonic-mean acceptance rate

is approximately 0.8. We also precondition the latter NUTS method, using the

same NF as in TESS, which leads to the NeuTra algorithm (M. Hoffman, Sountsov,

et al., 2019). We compare the effect of TESS’s overfitted adapted transformation

against an underfitted transformation (i.e. reversing the KL), which, unlike TESS,

is done independently and a priori to the sampling process. Each experiment runs

all algorithms on 128 parallel chains for 400 warm-up iterations per chain, during

which hyperparameters are tuned. Then, 100 iterations are used to produce posterior

samples with fixed hyperparameters. MEADS separates the 128 chains into 4 batches

of 32 chains each and tunes parameters during all 500 iterations, but only the last
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100 are used as posterior samples. The code to reproduce the experiments is provided

at albcab/TESS.

The transform map used in all experiments uses n = 2 transformations of a ψ-

parameterized dense feedforward neural network with two hidden layers of the same

dimension as the input (see Sec. 4.2.5 for details). The Adam (Diederik P Kingma

and Ba, 2014) method estimates ψ, with a learning rate that decays exponentially

over 400 iterations at a rate of 0.1 using a different initial learning rate for each

experiment. For the adaptive TESS algorithm, we set m = 1 on all experiments.

We compare the experimental results of each algorithm based on their Monte

Carlo sample efficiency, as indicated by the maximum integrated autocorrelation

time (τmax) with standard deviation (στ ). Additionally, we present the effective

sample size (ESS) in terms of the median worst-case integrated autocorrelation time

for individual chains and when all chains are grouped together. A more efficient

algorithm is indicated by lower autocorrelations and higher ESS, indicating that

samples are closer to independent. To demonstrate the impact of computational

cost on each algorithm, we normalize the ESS by the run time in seconds. ESS/sec

considers the time spent adapting and sampling and provides a fair comparison

between algorithms. To assess the accuracy of the posterior approximation for each

algorithm, we use the kernelized Stein discrepancy with U- and V-statistics, as

described in (Gorham and Mackey, 2017). Lower U- and V- statistic values indicate

a better approximation of the target posterior.

4.4.1 Biochemical oxygen demand model

We start with an experiment from (Parno and Y. M. Marzouk, 2018) designed to

undermine gradient methods because of its rapidly changing posterior correlation

structure, which is challenging for standard samplers to explore. Gradient methods

capture local geometry, but the local geometry in this example is not representative

of the global geometry of the target and thus provides insufficient information for

efficient sampling. On the other hand, the non-linear transformation of the target
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Algorithm τmax στ ESS ESS/chain ESS/sec Stein U-stat. Stein V-stat.

TESS 0.555 1.485 11523 90 1129.199 4.269e+02 4.570e+02

MEADS 9.959 1.468 643 5 208.613 1.476e+15 1.486e+15

Table 4.1: Biochemical oxygen demand model. Algorithm diagnostics where τmax

is the maximum integrated autocorrelation time over all dimensions; ESS is the

corresponding minimum effective sample size. Results are averaged over multiple

chains of each sampler, and στ is the empirical standard deviation of τmax over these

runs.

space with a NF-based approach captures the global, non-Gaussian structure of the

target density.

The simple biochemical oxygen demand model is given by B(t) = θ0(1−exp(−θ1t))

for times t < 5. In this synthetic data experiment, we set the parameters θ0 = 1

and θ1 = 0.1 and simulate y(ti) observations at times ti evenly spaced in [0, 5)

for i = 1, . . . , 20 such that y(ti) = θ0(1 − exp(−θ1ti)) + ϵi, where ϵi ∼ N (0, σ2
y)

and fixed σ2
y = 2 × 10−4. The target posterior density is given by the likelihood

L(y|θ0, θ1) =
∏

iN (y(ti);B(ti; θ0, θ1), σ
2
y) and flat prior π0(θ0, θ1) ∝ 1. The numerical

results are shown in Table 4.1 and Figure 4.2 plots the Monte Carlo approximation

of the posterior for the original and transformed densities.

It is clear from the results that local gradient information is insufficient to

efficiently sample from the rapidly changing local correlation structure of the target

density. On the other hand, the learned transport map from the warm-up procedure

of TESS provides a mass-covering approximation of the global structure of the target,

demonstrated in Figure 4.2 by ϕ̂(u), which allows the algorithm to move farther away

from its initial position, exploring the entire target space efficiently, and yielding not

only shorter autocorrelation times but also the correct posterior estimates of the

parameter space. In this case, gradient-based algorithms are forced to take very small

steps while encountering large rejection probabilities, thus inefficiently producing

samples from the posterior.
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Figure 4.2: Samples from the target density π(θ) of the Biochemical oxygen demand

model acquired by the TESS algorithm, mapped to ϕ̂(θ) (4.1), with diffeomorphism

Tψ learned from the warm-up procedure of Algorithm 13. With an approximation

that overestimates the real variance (right) of our target (left), we can capture its

global, non-Gaussian structure and explore it using a dimension-independent and

gradient-free method.

4.4.2 Sparse logistic regression

Next, we consider a sparse logistic regression model with hierarchies. Regression

parameters of the logistic likelihood are given a horseshoe prior (Carvalho, Polson,

and Scott, 2009), which induces sparsity on the regressors, i.e. variable selection.

These types of hierarchies on the prior scale of a parameter create funnel geometries

that are hard to explore efficiently without a local or global structure of the target.

Algorithms are run on the non-centred parameterization (Papaspiliopoulos, G. O.

Roberts, and Sköld, 2007) of our model using the numerical version of the German

credit dataset. The target posterior is defined by the likelihood L(y|β,λ, τ) =∏
i Bernoulli(yi;σ((τλ⊙β)TXi)), with sigmoid function σ(·), and prior π0(β,λ, τ) =

Gamma(τ ; 1/2, 1/2)
∏

j N (βj; 0, 1)Gamma(λj; 1/2, 1/2). Numerical results for each

MCMC algorithm are shown in Table 4.2. Notice how NUTS and NeuTra provide

the best results, but long sampling times reflect their inefficiency when running in
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Algorithm τmax στ ESS ESS/chain ESS/sec Stein U-stat. Stein V-stat.

TESS 5.182 0.352 1235 10 34.744 1.591e+00 1.693e+00

MEADS 7.105 0.413 901 7 49.453 9.408e-01 1.079e+00

ChEES-HMC 5.666 0.380 1130 9 81.588 1.193e+00 1.312e+00

NUTS 4.734 0.833 1352 11 0.379 1.004e+00 1.138e+00

NeuTra 2.482 1.949 2579 20 0.401 3.618e-01 4.971e-01

Table 4.2: Sparse logistic regression. Algorithm diagnostics where τmax is

the maximum integrated autocorrelation time over all dimensions; ESS is the

corresponding minimum effective sample size. Results are averaged over multiple

chains of each sampler, and στ is the empirical standard deviation of τmax over these

runs.

parallel. Every iteration takes as long as the longest chain takes to iterate. Waiting

for all chains to catch up severely slows down sampling time, the same effect can be

observed in all experiments.

As the parameter space dimension grows (d = 51 in this example), TESS will

require more samples, i.e., more chains, for a low variance estimate of (4.7). In

addition, a more complicated NF is required to capture the non-Gaussian structure

of the high-dimensional target space. When either fails and the diffeomorphism T

cannot capture the structure of the target space, the simple sampling procedure

inherited from the elliptical slice sampler will struggle to sample from the target

space, even if producing uncorrelated samples. We purposely illustrate the effect of

a deficient transformation on a high-dimensional problem so that the practitioner

can understand the caveats of our method. Studying ways to lower the variance of

(4.7), using control variates (Lemieux, 2014) and similar methods (Botev and Ridder,

2017), as well as alternative NF schemes is left to future work.
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Algorithm τmax στ ESS ESS/chain ESS/sec Stein U-stat. Stein V-stat.

TESS 0.267 0.893 23985 187 985.969 5.120e-02 1.301e-01

MEADS 1.382 1.197 4631 36 319.949 3.066e-01 3.867e-01

ChEES-HMC 3.451 1.825 1855 14 121.756 -8.203e-03 7.073e-02

NUTS 0.282 0.403 22672 177 182.255 2.222e-02 1.009e-01

NeuTra 0.441 1.020 14530 114 209.069 1.092e-01 1.880e-01

Table 4.3: Regime switching Hidden Markov model. Algorithm diagnostics where

τmax is the maximum integrated autocorrelation time over all dimensions; ESS is the

corresponding minimum effective sample size. Results are averaged over multiple

chains of each sampler, and στ is the empirical standard deviation of τmax over these

runs.

4.4.3 Regime switching Hidden Markov model

An important use of inference and uncertainty quantification is on time series data.

In this example, we analyze financial time series, specifically the daily difference in

log price data of Google’s stock, referred to as returns rt, for t = 1, . . . , 431. We shall

assume that at any given time t the stock’s returns will follow one of two regimes:

an independent random walk regime rt ∼ N (α1, σ
2
1), or an autoregressive regime

rt ∼ N (α2 + ρrt−1, σ
2
2). We define the two regimes as st ∈ {0, 1} and the probability

of switching between or remaining within a regime at time t will depend on the

regime at t− 1, i.e. pst−1,st for st−1, st ∈ {0, 1}. The transition probabilities p1,1 and

p2,2, and their complementary probabilities p1,2 = 1 − p1,1 and p2,1 = 1 − p2,2 are

treated as model parameters. Since the regime is unobserved at any time, we carry

the probability of belonging to either regime over time as ξ1t + ξ2t = 1. Finally, we

define the initial values for returns r0 and the probability of belonging to one of the

two regimes ξ10.
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The regime switching model is defined by the likelihood

L(r|α, ρ,σ2,p, r0, ξ10) =
∏
t

ξ1tη1t + (1− ξ1t)η2t, (4.10)

where ξ1t =
ξ1t−1η1t

ξ1t−1η1t + (1− ξ1t−1)η2t
,

and ηjt = pj,1N (rt;α1, σ
2
1) + pj,2N (rt;α2 + ρrt−1, σ

2
2) for j ∈ {0, 1}. The prior

distributions for the parameters are

α1, α2, r0 ∼ N (0, 1), ρ ∼ N 0(1, 0.1), (4.11)

σ1, σ2 ∼ C+(1), (4.12)

p1,1, p2,2 ∼ Beta(10, 2), ξ10 ∼ Beta(2, 2), (4.13)

where N 0 indicates a Gaussian distribution which is truncated at zero and C+ is the

half-Cauchy distribution. Numerical results are shown in Table 4.3.

The marginal unimodality and somewhat independent correlation structure of

the parameters make this posterior distribution easy to sample from; diagnostic

results show the best performance for all algorithms with respect to other models.

TESS’s learned flexible transformation of the target density, allowing it to propose

uncorrelated sequential samples, is fundamental for its superior diagnostics. ChEES-

HMC outputs the samples with the lowest Stein discrepancy, but since it uses the

same step size for all target dimensions, it struggles to mix well with the worst-case

dimension. On the other hand, a flexible transport map can capture the covariance

structure of the target, allowing fast mixing even on the worst-case dimension. Pair

density plots are presented in Figure 4.3.

4.4.4 Predator-prey system

We consider a likelihood defined as a solution of an ODE system, specifically, the

predator-prey system defined by the Lotka-Volterra equations (Goel, Maitra, and

Montroll, 1971),
dp

dt
= αp− βpq, and

dq

dt
= −γq + δpq, (4.14)
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Samples from TESS Samples from MEADS

Figure 4.3: Posterior density pair plots for the regime switching hidden Markov model

using samples drawn with transport elliptical slice sampling on the left and MEADS

(M. D. Hoffman and Sountsov, 2022) on the right. Parameters ρ, σ1 and σ2 are log

transformed and parameters p1,1, p2,2 and ξ10 are sigmoid function transformed.
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where p and q are the prey and predator populations, respectively. We can solve

the ODE system of equations numerically and account for measurement error by

modelling the observations as log pt ∼ N (log p(t), σ2
p) and log qt ∼ N (log q(t), σ2

q)

for all t > 0. Furthermore, p(0) and q(0) are the initial values. Since we cannot

analytically solve the system of equations, we approximate its solution using the

Runge–Kutta method, adding an approximation error to our likelihood function.

Data for the Hudson’s Bay historical lynx-hare population are used as observations

in the model. The likelihood is defined as

L(p,q|θ) =
∏
t

N

log pt

log qt

 ;

log p(t)

log q(t)

 ,

σ2
p 0

0 σ2
q


where θ = (α, β, γ, δ, σ2

p, σ
2
q , p(0), q(0)) and {p(t), q(t)}t>0 are approximate solutions

to the Lotka-Volterra system of equations initialized at (p(0), q(0)). Prior distributions

for parameters are

α, γ ∼ N 0(1, 1/2), β, δ ∼ N 0(1/20, 1/20), (4.15)

log σp, log σq ∼ N (−1, 1), (4.16)

log p(0), log q(0) ∼ N (log 10, 1), (4.17)

where N 0 is a Gaussian distribution truncated at zero.

This experiment exhibits a situation similar to Section 4.4.1: gradient methods,

without global information on the structure of our target, lack enough information to

move efficiently around its rapidly changing correlation structure. On the other hand,

TESS captures the global structure of the target using a NF and can move purposely

around it when sampling. Figure 4.4 illustrates the contrast: MEADS, lacking

global information about the geometry of the target, is unable to converge towards

a sensible solution, exploring a region of the target space with large error variance

and insignificant initial positions, both for the predator and the prey populations;

on the other hand, TESS can converge towards reasonable initial populations and

concentrate sampling around small error variance. Samples from the other gradient

methods give results similar to those of MEADS. Gradient methods need a learned

76

http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt


4.4. Experiments

correlation matrix that captures the global correlation structure of the target and

uses gradient information to propose large steps locally. At the same time, TESS can

capture both the global correlation and local structure by learning an overconfident

transport map and then using this information on a cheap and gradient-free method

for sampling.

TESS MEADS

Figure 4.4: Density plots of the approximate posterior distribution for the initial

values and scale parameters from the predator-prey system model, drawn with

transport elliptical slice sampling on the left and MEADS on the right.
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4.5 Discussion

This research proposes TESS, an MCMC algorithm that performs dimension-

independent and gradient-free sampling from any unnormalized target density.

We also propose an adaptive version of our algorithm that learns a non-Gaussian

approximation to the target, helping the algorithm explore complex geometries

efficiently. TESS can also utilize parallel computer architectures to accelerate

sampling from posterior distributions. We believe this will allow practitioners

to perform uncertainty quantification of their models with parallel computational

resources and little time.

We found that our algorithm can outperform gradient-based competitors in

various models. However, it is important to develop flexible transport maps and

low-variance Monte Carlo approximations of the KL divergence, especially for high-

dimensional models. Future work will explore the role of the transport map on

the algorithm’s efficiency and its efficacy in capturing issues in Bayesian posterior

geometries and develop flexible transport maps for high-dimensional models.
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Chapter 5

Bayesian Inference with Markovian

Flow Matching

Continuous normalizing flows (CNFs) learn the probability path between a reference

and a target density by modelling the vector field generating said path using neural

networks. Recently, Lipman et al. (2022) introduced a simple and inexpensive method

for training CNFs in the context of generative modelling, termed flow matching (FM).

In this work, we re-purpose this method for probabilistic inference by incorporating

Markovian sampling methods in evaluating the FM objective and using the learned

probability path to assist with Bayesian sampling. We propose a sequential method,

which uses samples from a Markov chain to fix the probability path defining the FM

objective. We augment this scheme with an adaptive tempering mechanism that

allows the discovery of multiple modes in the target. Under mild assumptions, we

establish convergence to a local optimum of the FM objective, discuss improvements

in the convergence rate, and illustrate our methods on synthetic and real-world

examples.
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5.1 Introduction

Bayesian inference has become an indispensable tool in various scientific disciplines,

offering a robust framework for integrating prior knowledge with observed data

to produce posterior distributions which reflect parameter uncertainty. In many

applications, however, it is impossible to derive a closed-form representation for the

posterior, so approximation techniques are needed.

Markov chain Monte Carlo (MCMC) and Variational Inference (VI) are two

popular methods for approximating posterior distributions. While MCMC relies

on the construction of a Markov process which admits the target as its invariant

distribution, VI learns an approximation by identifying the closest member from a

predefined family of distributions. State-of-the-art VI methods use normalizing flows

(NFs), consisting of a sequence of invertible transformations between a reference and

a target distribution, to define a flexible variational family (Rezende and Mohamed,

2015). More recently, there has been growing interest in continuous normalizing

flows (CNFs), which define a path between distributions using ordinary differential

equations (R. T. Chen et al., 2018). CNFs avoid the need for strong constraints

on the flow (Grathwohl et al., 2018), with the downside of expensive maximum

likelihood training.

The use of NFs, particularly as a tool for preconditioning complex Bayesian

posteriors, has proven instrumental in accelerating sampling methods (Parno and

Y. M. Marzouk, 2018; M. Hoffman, Sountsov, et al., 2019; Karamanis, Beutler, et al.,

2022). The synergy between local MCMC algorithms and normalizing flows has also

been explored, leading to enhanced mixing rates and effective estimation of complex

posteriors (Gabrié, Rotskoff, and Vanden-Eijnden, 2022).

Our contributions. This work introduces a new probabilistic inference scheme

that integrates flow matching with Markovian sampling techniques. Our flow-

informed MCMC algorithm is a sequential method that utilizes Markov chain samples

to define the probability path for the FM objective and can effectively handle complex

posteriors (see Figure 5.1 for an illustration). Our scheme includes an adaptive
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t = 0.0 t = 0.25 t = 0.50 t = 0.75 t = 1.0

Figure 5.1: Illustration of a transformation learned using Algorithm 17. Top:

Standard Gaussian samples are transformed to a multimodal mixture by running

the dynamics forward in time given the learned vector field, left to right. Bottom:

Samples from the multimodal mixture are transformed to standard Gaussian by

running the dynamics backwards in time, right to left.

tempering mechanism, essential for discovering multiple modes in complex target

distributions. Under mild assumptions, we establish that our method converges to

a local optimum of the FM objective. We then empirically demonstrate that our

approach accelerates convergence and significantly improves the fitting of continuous

flows, thereby improving accuracy in modelling multimodal posterior distributions.

5.2 Preliminaries

Bayesian inference aims to evaluate integrals with respect to a posterior probability

measure µ(dx) on Rd, with density π(x) with respect to the Lebesgue measure. The

posterior density is given by Bayes’ Theorem as

π(x) = Z−1L(D|x)π0(x), (5.1)

where L is the likelihood of the data D, π0 is the prior density, and Z =∫
L(D|x)π0(x)dx is the model evidence or marginal likelihood. In general, we

cannot evaluate the evidence as it requires computing a potentially high-dimensional

integral. Therefore, (5.1) is usually only known up to a constant of proportionality.
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Thus, integrals with respect to the posterior or target measure must be estimated

using Monte Carlo methods. For this, samples are generated using a sampling

algorithm (e.g., MCMC), or else by approximating the target with an easy-to-sample

measure.

Markov Chain Monte Carlo (MCMC) methods are a cornerstone of

computational Bayesian statistics, yet they present several design challenges crucial for

their practical application. MCMC algorithms require a user-defined transition kernel

K, which can be numerically iterated to form a time-homogeneous Markov chain

that is stationary, reversible, and irreducible with respect to the target distribution

(Stoltz, Rousset, et al., 2010). An MCMC algorithm is reversible if it satisfies the

detailed balance condition,

K(dy|x)π(dx) = K(dx|y)π(dy), (5.2)

which is satisfied by the Metropolis-Hastings algorithm (Hastings, 1970b), with

transition kernel:

K(dy|x) = α(x, y)q(dy|x) + (1− b(x))δx(dy). (5.3)

Assuming that x is a sample from π, then a new sample y is generated from the

proposal distribution q(·|x) and accepted with probability:

α(x, y) = min

{
1,
π(y)q(x|y)
π(x)q(y|x)

}
, (5.4)

where 1− b(x) ∈ [0, 1] is the probability that the Markov chain remains at x,

b(x) =

∫
Rd

α(x, y)q(dy|x). (5.5)

The choice of transition kernel is critical to ensuring that the MCMC algorithm

can explore the target distribution within a reasonable number of Monte Carlo

iterations, which can be formally defined as the mixing time. A key goal is to derive

transition kernels with fast mixing times, which can be applied generically to any

target distribution. Moreover, issues like mode collapse, where the chain gets trapped
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in local modes of a multimodal distribution and fails to explore other significant

regions, pose a significant challenge. This is particularly problematic in complex

target distribution landscapes, where neglecting substantial probability mass can

lead to biased inferences.

Sequential Monte Carlo (SMC) methods provide a means of approximating

distributions with a set of N particles {x(i)}Ni=1. The particles are updated using

importance sampling techniques, which can be applied recursively over a number of

iterations to approximate the target distribution of interest (Del Moral, Doucet, and

Jasra, 2006b). A particle approximation for the density of the target π is given by,

π̃(x) =
N∑
i=1

wiδx(i)(x), (5.6)

where wi are the weights of the particles, and δ is the Dirac delta function. For

a number of iterations t = 1, . . . , T, SMC provides a scheme for evolving a set

of particles from a simple distribution p0(x) at time t = 0, such as a Gaussian

distribution, to the target distribution π(x) = pT (x) at time t = T (Chopin, 2002;

Jasra, Stephens, and Holmes, 2007).

A common way to construct the sequence of densities used in SMC is to create a

geometric interpolation from the prior to the target posterior density (Radford M Neal,

2001):

πt(x) ∝ L(D|x)βtπ0(x), t = 1, . . . , T, (5.7)

where β1:T is a sequence of temperatures which satisfies 0 < β1 < · · · < βT = 1.

In practice, it can be difficult to choose a good sequence of temperatures that

provides a smooth transition between densities. One heuristic for adaptively setting

the temperature schedule relies on the effective sample size (ESS) of the particle

approximation. By setting the ESS to a user-specified percentage α of the number of

particles N , the next temperature β′ in the schedule can be found using the bisection

method (Beskos et al., 2016): (∑N
i=1w

β
i (β

′)
)2

∑N
i=1w

β
i (β

′)2
= αN, (5.8)
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where wβi (β
′) = L(D|x)β′

π0(x)/L(D|x)βπ0(x) = L(D|x)β
′−β are the new importance

weights given the current temperature β.

5.3 Markovian Flow Matching

In this section, we present a new approach for adaptively learning MCMC kernels using

CNFs. A key challenge for MCMC practitioners is to find good proposal distributions

that allow for fast and efficient sampling from complex posterior geometries. Our

Markovian flow matching algorithm incorporates the global and local geometry of

the target distribution to enhance sampling.

5.3.1 Continuous Normalizing Flows

Let vt be a time-dependent vector field that runs continuously in the unit interval.

This vector field can be used to construct a time-dependent diffeomorphic map called

a flow ϕ : [0, 1]× Rd → Rd, defined via the ordinary differential equation (ODE):

d

dt
ϕt(x) = vt(ϕt(x)). (5.9)

Given an initial condition ϕ0(x) = x0 ∼ p0, we can transform it by running the

dynamics forward in time

ϕ1(x) = x0 +

∫ 1

0

vt(ϕt(x))dt. (5.10)

Alternatively, given an endpoint ϕ1(x) = x1 ∼ p1, we can transform it by reversing

the dynamics,

ϕ−1
0 (x) = x1 +

∫ 0

1

vt(ϕt(x))dt. (5.11)

Commonly, the vector field vt is parameterized using a neural network vθt , in which

case the ODE in (5.9) is referred to as a neural ODE (R. T. Chen et al., 2018). This

yields a deep parametric model for the flow ϕt, known as a continuous normalizing

flow (CNF).
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The change in the log density of the initial distribution at time t, can be

characterized directly as

d

dt
log pt(ϕt(x)) = −∇ · vt(ϕt(x)), (5.12)

where ∇ is the divergence operator, i.e. the trace of the Jacobian matrix (R. T. Chen

et al., 2018). In high-dimensional problems, this term can be expensive to compute,

in which case an approximation making the computation d times more efficient can

be achieved by using Hutchinson’s trace estimator (Hutchinson, 1989; Grathwohl

et al., 2018):

∇ · vt(ϕt(x)) ≈ zT∇vt(ϕt(x))z, (5.13)

where z can be any d-dimensional random vector with zero mean and unit covariance.

The estimator’s variance can grow with the size and spectrum of the matrix. If the

matrix has eigenvalues with large variance or is poorly conditioned, more random

vectors are needed to achieve accurate results. Given two distributions with densities

p0 and p1, we can construct a probability density path pt := [ϕt]♯p0, for 0 ≤ t ≤ 1, via

log pt(ϕt(x)) = log p0(ϕ0(x))−
∫ t

0

∇ · vs(ϕs(x))ds. (5.14)

In this case, we say that the vector field vt generates the probability path pt.

5.3.2 Flow Matching

To train the flow to map between a reference density p0 and a target density π, in

principle we can maximize the log-likelihood, since the density is tractable via (5.14).

In practice, however, this is often not feasible, since both sampling and likelihood

evaluation require multiple network passes to solve the ODE in (5.9).

An alternative training objective for CNFs is provided by flow matching (FM),

an approach recently introduced by Lipman et al. (2022). Given a target probability

density path pt, with corresponding vector field ut, we can learn a CNF defined by

vθt by minimizing the expected squared error,

Et,pt(x)∥vθt (x)− ut(x)∥22, (5.15)
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where θ represents the parameters of the neural network model. The key insight

in Lipman et al. (2022) is that, while we do not have direct access to the marginal

target vector field, ut, and so we cannot minimize (5.15) directly, it is equivalent to

minimizing the conditional flow-matching loss

FM(θ) = Et,p(x1),pt(x|x1)||vθt (x)− ut(x|x1)||22, (5.16)

where pt(x|x1) is the conditional probability density path satisfying p0(x|x1) = p0

and collapsing to a distribution centered around the sample from the target π, e.g.

p1(x|x1) = N (x|x1, σ2Id), with sufficiently small σ > 0.

For simplicity, we assume that the conditional probability path is Gaussian, i.e.

pt(x|x1) = N (x|mt(x1), st(x1)
2Id). If we assume that the reference density p0 is

a standard Gaussian, then we can force the probability paths to converge to this

standard Gaussian by fixing m0(x1) = 0 and s0(x1) = 1 at t = 0 and fixing the

ending point at t = 1 with m1(x1) = x1 and s1(x1) = σmin, for some sufficiently

small σmin. For 0 < t < 1, we use the optimal transport conditional probability path

(Lipman et al., 2022) by setting mt(x1) = tx1 and st(x1) = 1− (1− σmin)t.

5.3.3 Flow-informed Random Walk

CNFs are designed to learn a mapping between simple and complex distributions,

capturing the global geometry of the target distribution. This understanding of the

global geometry of the target can be leveraged to create informed Markov transition

proposals, thereby enhancing the efficiency of MCMC methods. Essentially, these

flows simplify the probability space, allowing MCMC methods to explore and sample

from the target space more effectively.

Using CNFs for Bayesian inference, we can use the probability path (5.14),

between the target posterior density π and a reference density p0. The target π can

be evaluated on the reference space using the forward dynamics

log[ϕ1]♯π(x0) = log π(ϕ1(x0))−
∫ 1

0

∇ · vt(ϕt(x0))dt. (5.17)
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This is called the pullback target density, where the samples are pushed to target

space using (5.10) and X1 ∼ π. The key challenge using this scheme for Bayesian

inference is that the MCMC kernel must preserve detailed balance (5.3) using the

pullback target density.

This is equivalent to using a transformation-informed proposal in a Markov

transition step (Parno and Y. M. Marzouk, 2018). Where, following the reverse

dynamics (5.11), MCMC samples are pushed to the target space with pushforward

reference density,

log[ϕ−1
0 ]♯p0(x1) = log p0(ϕ

−1
0 (x1))−

∫ 0

1

∇ · vt(ϕt(x1))dt. (5.18)

Initial positions are transformed to reference space by running the dynamics backward

in time, MCMC proposals are generated in the reference space using any standard

MCMC scheme, and accepted proposals are transformed back to target space.

We use the flow-informed random-walk algorithm since it outperforms all other

algorithms, especially on high-dimensional problems where overfitting of the CNF

can be corrected with stochastic steps, while exacerbated by independent proposals

(Karamanis, Beutler, et al., 2022). The flow-informed random-walk transition P ,

detailed in Algorithm 14, can be written down as

P (dy|x, π, θ) = α(x, y)ρθ(dy|x) + (1− b(x))δx(dy),

where ρθ(dy|x) is defined by the transition:

x1 = ϕ1(x), (5.19)

x0 = ϕ−1
0 (x) = x1 +

∫ 0

1

vθt (ϕt(x))dt, (5.20)

ϕ0(y) = y0 ∼ N (·|x0, σ2
opt), (5.21)

y1 = ϕ1(y) = y0 +

∫ 1

0

vθt (ϕt(y))dt, (5.22)

and α(x, y) and b(x) as in (5.4) and (5.5) respectively.

Alternative schemes for a flow-informed Markov transition kernel are independent

MH, detailed in Algorithm 15, and conditional importance sampling, detailed in

Algorithm 16.
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Algorithm 14 Flow-informed Random Walk

1: Input: x, π, θ

2: Output: x′

3: σopt ← 2.38/
√
d ▷ Optimal scaling (G. O. Roberts and Rosenthal, 2001)

4: Pullback initial position (5.20):

5: ϕ1(x) = xt=1 ← x

6:

 x0

log p1(x1)− log p0(x0)

←
x1
0

+

∫ 0

1

 vθt (ϕt(x))

−∇ · vθt (ϕt(x))

 dt

7: Random-walk proposal (5.21):

8: ϕ0(y) = yt=0 ∼ N (·|x0, σ2
opt)

9: Pushforward proposal (5.22):

10:

 y1

log p1(y1)− log p0(y0)

←
y0
0

+

∫ 1

0

 vθt (ϕt(y))

−∇ · vθt (ϕt(y))

 dt

11: Metropolis-Hastings correction:

12: α← min
{
1, π(y1) exp(−∇t log p(y1))

π(x1) exp(∇t log p(x0))

}
13: With probability α make x′ ← y1 else x′ ← x
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Algorithm 15 Flow-informed Independent Metropolis Hastings

1: Input: initial x, target density π, vector field vθt , reference density q0, flow

parameters θ.

2: Output: x′

3: ϕ1(u) = ut=1 ← x

4:

 u0

∇t log p(u0)

←
u1
0

+

∫ 0

1

 vθt (ϕt(u))

−∇ · vθt (ϕt(u))

 dt
5: ϕ0(x) = xt=0 ∼ q0

6:

 x1

log p(x1)

←
 x0

log p0(x0)

+

∫ 1

0

 vθt (ϕt(x))

−∇ · vθt (ϕt(x))

 dt
7: α← min

{
1, π(x1)p0(u0) exp(−∇t log p(u0))

exp(log p(x1))π(u1)

}
8: With probability α make x′ ← x1 else x′ ← x

Algorithm 16 Flow-informed Conditional Importance Sampling

1: Input: initial x, target density π, vector field vθt , reference density q0, flow

parameters θ, number of importance samples K.

2: Output: x′

3: ϕ1(u) = ut=1 ← x

4:

 u0

∇t log p(u0)

←
u1
0

+

∫ 0

1

 vθt (ϕt(u))

−∇ · vθt (ϕt(u))

 dt
5: w0 ← π(u1)

p0(u0) exp(−∇t log p(u0))

6: x(0) ← x

7: for k = 1 : K do

8: ϕ0(x) = xt=0 ∼ q0

9:

 x1

log p(x1)

←
 x0

log p0(x0)

+

∫ 1

0

 vθt (ϕt(x))

−∇ · vθt (ϕt(x))

 dt
10: wk ← π(x1)

exp(log p(x1))

11: x(k) ← x1

12: end for

13: Choose k′ with probability P (k′ = k) ∝ wk, then make x′ ← x(k
′)
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5.3.4 Adaptively-Tempered Markovian Flow Matching

If the geometry of the target posterior distribution is complicated, e.g. multimodal,

then it can be challenging to learn a CNF that easily maps between a simple reference

distribution p0 and the target posterior distribution π. In this section, we consider a

sequence of smooth transitions between the reference and target distributions using

the annealed target distributions (5.7). The annealed targets act as intermediary

steps within the flow-informed MCMC scheme.

Using adaptively tempered SMC, N particles are initialized from the prior

distribution π0, and the likelihood is gradually added by increasing the temperature

βt at every iteration, t = 1, . . . , T . The temperature βt is optimized using the effective

sample size (5.8).

Our proposed MCMC scheme combines Markov transition kernels, which act

globally P and locally Q on the target distribution. The Markov kernel P , outlined

in Algorithm 14, generates samples from the reference space using the random-walk

sampler and pushes these through to the target space via the flow (5.10), where the

vector field vθt is a neural network parameterized by θ. The Markov transition kernel

Q, uses the local gradient of the target distribution within a Metropolis-adjusted

Langevin algorithm (MALA):

Q(dy|x, π) = α(x, y)q(dy|x) + (1− b(x))δx(dy), (5.23)

q(y|x) ∝ exp

(
− 1

4τ
∥y − x− τ∇ log π(x)∥2

)
,

where α(x, y) and b(x) as in (5.4) and (5.5) respectively.

The overall MCMC scheme, which combines Markov kernels P and Q is outlined

in Algorithm 17. The balance between local (Q) and global (P ) MCMC steps is

controlled by the hyperparameter tQ, which determines the number of local steps

taken per global step.

The quality of the flow-informed random walk kernel (P ) is determined by the

neural network vector field vθt . The parameters of the neural network θ are updated

by minimizing the flow matching loss (5.16) using stochastic gradient descent, with
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5.3. Markovian Flow Matching

learning rate ϵ. The expectation in the flow matching loss is approximated using the

N particles to produce a Monte Carlo approximation,

FM(θ;x(1:N), σmin) =
1

N

N∑
i=1

∥vθt (ψt(x
(i)
0 |x(i)))− ut(ψt(x

(i)
0 |x(i))|xi)∥22, x

(i)
0

iid∼ p0,

where ψt(x0|x) = (1− (1− σmin)t)x0 + tx,

and ut(y|x) =
x− (1− σmin)y
1− (1− σmin)t

.

The full MCMC algorithm is run for T iterations where the vector field learns the

target distribution by gradually adding the likelihood until βT = 1. The combination

of Markov kernels P and Q trades off faster computations with faster convergence of

samples. The adaptive scheme is summarized in Algorithm 17.

Algorithm 17 Markovian Flow Matching

1: Input: σmin, θ0, α, T , N , tQ, ε1:T .

2: Output: optimal flow network parameters θT ≈ θ∗

3: xi ∼ π0 for i = 1, . . . , N

4: β ← solve (5.8) for 0 < β′ ≤ 1

5: for t = 1 : T do

6: if β ̸= 1 then

7: β ← solve (5.8) for β < β′ ≤ 1

8: end if

9: if t mod tQ + 1 = 0 then

10: Flow-informed Markov transition: (Alg. 14)

11: xi ∼ P (·|xi, π0Lβ, θt−1) for i = 1, . . . , N

12: else

13: Markov transition:

14: xi ∼ Q(·|xi, π0Lβ) for i = 1, . . . , N

15: end if

16: θt ← θt−1 + εt∇θFM(θt−1;x1:N , σmin)

17: end for
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Particle systems allow the state’s mutation to N computing cores running in

parallel at each iteration. The particle generation can be run in parallel using modern

vector-oriented libraries, and then each particle is used to approximate the loss and

update the parameters. Thus, the speedup gained by using more than one core scales

linearly with the number of cores as long as there are as many cores as there are

particles.

5.3.5 Convergence

Under certain regularity conditions, Proposition 2 ensures that the parameter estimate

θT as provided by Algorithm 17 converges to a local optimum of the FM objective θ∗.

The assumptions guarantee convergence by balancing the step size (large enough to

explore but small enough to stabilize); ensure stability, continuity, and integrability

of the Markov transition kernel with respect to θ and the Markov chain dynamics;

and control the smoothness and Lipschitz continuity of the gradient, crucial for

ensuring convergence. The proof relies on the connection between the algorithm

and the stability of an underlying ODE; establishing that the stochastic algorithm’s

iterates asymptotically track the ODE’s stable dynamics and converges almost surely

to the local minimizer.

Proposition 2. Assume that C1–C6 hold. If θt, for t > 0, defined by Algorithm 17

is a bounded sequence and almost surely visits a compact subset of the domain of

attraction of θ∗ infinitely often, then θt → θ∗, almost surely.

Proof. Let θ∗ be a minimiser of the FM objective (5.16). Consider the ODE

d

dt
ϑt(θ) = ∇FM(ϑt(θ);x) (5.24)

and its solution ϑt(θ) for t ≥ 0. The minimiser θ∗ is a stability point of this ODE,

i.e. ϑt(θ
∗) = θ∗ for all t ≥ 0. The domain of attraction of θ∗ is a set Θ containing θ∗

where for any θ ∈ Θ, ϑt(θ) ∈ Θ for all t ≥ 0 and ϑt(θ) → θ∗. Let O be a compact

subset of Θ and X be an open set in Rd.
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5.3. Markovian Flow Matching

Consider the Markov transition kernel given by a cycle of tQ repeated transitions

of a MALA kernel and a flow-informed RWMH transition:

M(x′|x, θ) =
∫
P (x′|xtQ , θ)Q(xtQ|xtQ−1) . . . Q(x1|x)dxtQ . . . dx1, (5.25)

which is π−invariant since both P and Q are π−invariant. Let M t(x′|x, θ) be the

repeated application of the Markov transition kernel:

M t(x′|x, θ) =
∫
· · ·
∫
M(x1|x, θ)M(x2|x1, θ) . . .M(x′|xt−1, θ)dxt−1 . . . dx1. (5.26)

Assume for a q > 1 sufficiently large:

C1 Assume that the step size sequence satisfies
∑∞

k=1 ϵk =∞ and
∑∞

k=1 ϵ
2
k <∞.

C2 (Integrability) There exists a constant C1 such that for any θ ∈ Θ, x ∈ X

and k ≥ 1, ∫
(1 + |x′|q)Mk(x′|x, θ)dx′ ≤ C1(1 + |x|q). (5.27)

C3 (Convergence of the Markov Chain) Let π be the unique invariant measure

for M . For each θ ∈ Θ,

lim
k→∞

sup
x∈X

1

1 + |x|q

∫
(1 + |x′|q)|Mk(x′|x, θ)− π(x′)|dx′ = 0. (5.28)

C4 (Continuity in θ) There exists a constant C2 such that for any θ, θ′ ∈ O,∣∣∣∣∫ (1 + |x′|q)(Mk(x′|x, θ)−Mk(x′|x, θ′))dx′
∣∣∣∣ ≤ C2|θ − θ′|(1 + |x|q). (5.29)

C5 (Continuity in x) There exists a constant C3 such that for any x1, x2 ∈ X ,

sup
θ∈Θ

∣∣∣∣∫ (1 + |x′|q+1)(Mk(x′|x1, θ)−Mk(x′|x2, θ))dx′
∣∣∣∣ ≤ C3|x1 − x2|(1 + |x1|q + |x2|q).

(5.30)

C6 (Conditions on the Score Function) There exist positive constants p,K1, K2, K3

and v > 1/2 such that for all θ, θ′ ∈ O and x, x1, x2 ∈ X ,

|∇θ log[X
θ
0 ]#p0(x)| ≤ K1(1 + |x|p+1), (5.31)

|∇θ log[X
θ
0 ]#p0(x1)−∇θ log[X

θ
0 ]#p0(x2)| ≤ K2|x1 − x2|(1 + |x1|p + |x2|p), (5.32)

|∇θ log[X
θ
0 ]#p0(x)−∇θ log[X

θ′

0 ]#p0(x)| ≤ K3|θ − θ′|v(1 + |z|p+1). (5.33)
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The constants C1, C2, C3 and v may depend on the compact set O and the real

number q. With the above assumptions, the result follows from Theorem 1 of

Gu and Kong (1998) by making Πθ = M(·|·, θ), H(θ, x1) = ∇θEt,p(x|x1)||vθt (x) −

ut(x|x1)||2.

5.4 Related work

In the domain of training CNFs, Zhang and Y. Chen (2021) introduces the Path

Integral Sampler, a methodology leveraging concepts from control theory to define

a loss function. Vargas, Grathwohl, and Doucet (2023) employ diffusion processes

to generate samples from complex distributions, offering an innovative perspective

on CNF training. Tong et al. (2023) use MCMC samples in a more straightforward

manner within FM for Bayesian posteriors. While they leverage MCMC samples

naively, our method employs a more intricate integration of these samples, offering

a nuanced distinction in handling Bayesian posterior estimations. Their approach,

although effective in specific scenarios, might not capture the complexities our method

addresses, particularly in the context of computational efficiency and accuracy in

diverse data distributions. The experiments in Section 5.5 illustrate the improvement

brought by our more intricate design, Tong et al. (2023)’s method is by construction

equivalent to our method when tQ = T , since it uses only local gradient updates to

generate samples that are used to learn the flow.

Within the extensive literature on discrete normalizing flows for preconditioning

the target posterior, our method draws inspiration from key developments. Parno

and Y. M. Marzouk (2018) pioneered preconditioning the target posterior. Building

on this, M. Hoffman, Sountsov, et al. (2019) incorporated discrete normalizing flows

into the preconditioning process, and Cabezas and Nemeth (2023) used a similar

approach with elliptical slice sampling. Naesseth, Lindsten, and D. Blei (2020)

used an independent MH proposal from the learned flow, and Gabrié, Rotskoff, and

Vanden-Eijnden (2022) introduced a hybrid approach, alternating between local
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and global updates to enhance efficiency. Karamanis, Beutler, et al. (2022) further

refined this concept by integrating SMC strategies to temper the target in their

scheme. We’ve developed a unique approach by integrating MCMC samples within

the FM framework, leveraging the flexibility of CNFs. This shift to continuous flows

allows for greater flexibility in modelling, freeing us from the constraints of specific

architectures typically associated with discrete flows.

5.5 Experiments

In this section, we evaluate the performance of MFM (Algorithm 17) on two synthetic

and two real data examples. Our method is benchmarked against three relevant

methods. The Denoising Diffusion Sampler (DDS; Vargas, Grathwohl, and Doucet,

2023) is a VI method which approximates the reversed diffusion process from a

reference distribution to an extended target distribution by minimizing the KL

divergence. Adaptive Monte Carlo with Normalizing Flows (NF-MCMC; Gabrié,

Rotskoff, and Vanden-Eijnden, 2022) is an augmented MCMC scheme which uses a

mixture of MALA and adaptive transition kernels learned using discrete NFs. Finally,

Flow Annealed Importance Sampling Bootstrap (FAB; Midgley et al., 2022) is an

augmented AIS scheme minimizing the mass-covering α-divergence with α = 2.

For each experiment, all MALA kernels use the same step size, targeting an

acceptance rate of close to 1 since we estimate expectations using the current

ensemble of particles, rather than a single long chain. Following Zhang and Y. Chen

(2021), we parameterize the vector field as

vθt (x) = NN(x, t; θ1) + NN(t; θ2)×∇ log π(x), (5.34)

where the neural networks are standard MLPs with 2 hidden layers, using a Fourier

feature augmentation for t (Tancik et al., 2020). This architecture is also used by

DDS (Vargas, Grathwohl, and Doucet, 2023, Section 4). Meanwhile, FAB and NF-

MCMC use rational quadratic splines (Durkan et al., 2019). Flows are trained using

Adam (Diederik P Kingma and Ba, 2014) with a linear decay schedule terminating
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at εK = 0. We report results for all methods averaged over 10 independent runs

with varying random seeds. The code to reproduce the experiments is provided at

albcab/mfm.

Code for the numerical experiments is written in Python with array computations

handled by JAX (Bradbury et al., 2018). The implementation of relevant

methods for comparison is sourced from open source repositories: DDS using

franciscovargas/denoising diffusion samplers, NF-MCMC using kazewong/flowMC,

and FAB using lollcat/fab-jax. All experiments are run on an NVidia V100 GPU

with 32GB of memory. In the following subsections, we will give more details on the

modelling and hyperparameter choices for each experiment, along with additional

results.

5.5.1 4-mode Gaussian mixture

Our first example is a mixture of four Gaussians, evenly spaced and equally weighted,

in two-dimensional space. The four mixture components have means (8, 8), (−8, 8),

(8,−8), (−8,−8), and all have identity covariance. This ensures that the modes are

sufficiently separated to mean that jumping between modes requires trajectories over

sets with close to null probability. Given the synthetic nature of the problem, we

can measure approximation quality using the Maximum Mean Discrepancy (MMD)

(e.g., Gretton et al., 2012). We can also include, as a benchmark, the results for

an approximation learned using FM with true target samples. Diagnostics for all

models are presented in Table 5.1, and learned flow samples in Fig. 5.2.

For this experiment, all methods use N = 128 parallel chains for training and

128 hidden dimensions for all neural networks. Methods with a MALA kernel use

a step size of 0.2, and methods with splines use 4 coupling layers with 8 bins and

range limited to [−16, 16]. We present results for K = 5 · 103 learning iterations for

MFM, and K = 103 iterations for the other algorithms, since this renders the total

computational cost of all algorithms somewhat comparable.

In this experiment, only our method (Fig. 5.2a) and DDS (Fig. 5.2c) learn the
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4-mode 16-mode

MMD seconds MMD seconds

FM w/ π samples 5.45e-4±3.51e-4 20.5± 0.41 2.16e-3±3.95e-4 22.8± 0.22

MFM kQ = 102 1.39e-3±8.22e-4 38.1± 1.29 3.57e-3±7.68e-4 38.5± 1.75

DDS 1.76e-4±2.32e-4 114.± 0.68 1.02e-1±4.10e-2 115.± 0.64

NF-MCMC 5.85e-3±3.91e-3 72.0± 11.7 8.05e-3±1.42e-2 67.0± 12.3

FAB 2.69e-4±2.06e-4 101.± 3.24 1.51e-3±1.06e-3 102.± 4.32

Table 5.1: Diagnostics for the two synthetic examples. MMD is the Maximum Mean

Discrepancy between real samples from the target and samples generated from the

learned flow. Results are averaged and empirical 95% confidence intervals over 10

independent runs.

fully separated modes, reflecting the greater expressivity of CNFs in comparison to

the discrete NFs used in, e.g., NF-MCMC (Fig. 5.2d). It is worth noting that DDS

provides a closer approximation to the real target than MFM and, notably, even

FM trained using true target samples (top row). Given that both methods use the

same network architecture but a different learning objective, this suggests a potential

limitation with the FM objective, at least when using this network architecture. This

being said, MFM is notably more efficient than DDS (as well as the other methods)

in terms of total computation time. While this is not a critical consideration in

this synthetic, low-dimensional setting, it is a significant advantage of MFM in

higher-dimensional settings involving real data (e.g., Section 5.5.3 and Section 5.5.4).

5.5.2 16-mode Gaussian mixture

The second experiment is a mixture of bivariate Gaussians with 16 mixture

components. This is a modification of the 4-mode example, with contrasting qualities

that illustrate other characteristics of each of the presented methods. In this case,

the modes are evenly distributed on [−16, 16]2, with random log-normal variances.
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(a) MFM kQ= 102 (b) FAB (c) DDS (d) NF-MCMC

Figure 5.2: Comparison between MFM, FAB, DDS, and NF-MCMC. Samples from

the target density for the 4-mode Gaussian mixture example.

The number of modes reduces the size of sets of (near) null probability between

the modes, making jumping between them easier. To increase the difficulty of this

model, all methods are initialized on a concentrated region of the sampling space.

Diagnostics are presented in Table 5.1 and learned flow samples in Fig. 5.3.

Like the 4-mode example, all methods use N = 128 parallel chains for training

and 128 hidden dimensions for all neural networks. Methods with a MALA kernel

use a step size of 0.2, and methods with splines use 4 coupling layers with 8 bins

and range limited to [−16, 16]. We present results for K = 5 · 103 learning iterations

for MFM and K = 103 iterations for all other algorithms, which yields a more

comparable total computation time.

In this example, DDS collapses to the modes closest to the initial positions while

our method captures the whole target. Since the modes are no longer separated by

areas of near-zero probability, the discrete NF methods are now able to accurately

capture the target density. In this case, DDS marginally outperforms MFM as

measured by the MMD, but this slight improvement in performance comes at the

cost of a much higher run-time.

5.5.3 Field system

Our first real-world example considers the Allen–Cahn equation, used as a benchmark

in Gabrié, Rotskoff, and Vanden-Eijnden (2022). The Allen–Cahn equation is defined

in terms of a random field ϕ : [0, 1]→ R satisfying the following stochastic partial
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(a) MFM kQ= 102 (b) FAB (c) DDS (d) NF-MCMC

Figure 5.3: Comparison between MFM, FAB, DDS, and NF-MCMC. Samples from

the target density for the 16-mode Gaussian mixture example.

differential equation:

∂ϕ

∂t
= a

∂2ϕ

∂s2
+ a−1(ϕ− ϕ3) +

√
2β−1η(t, s), (5.35)

where a > 0 is a parameter, β is the inverse temperature, s ∈ [0, 1] denotes the

spatial variable, and η is spatiotemporal white noise. The imposition of Dirichlet

boundary conditions ensures ϕ(s = 0) = ϕ(s = 1) = 0.

The associated Hamiltonian, reflecting a spatial coupling term penalizing changes

in ϕ, takes the form:

U∗[ϕ] = β

∫ 1

0

[
a

2

(
∂ϕ

∂s

)2

+
1

4a

(
1− ϕ2(s)

)2]
ds. (5.36)

At low temperatures, this coupling induces alignment of the field in either the positive

or negative direction, leading to two global minima, ϕ+ and ϕ−, with typical values

of ±1.

This fundamental reaction-diffusion equation is central to the study of phase

transitions in condensed matter systems. Incorporating random forcing terms or

thermal fluctuations allows for a stochastic treatment of the dynamics, capturing

the inherent randomness and uncertainties in physical systems. This system leads to

a discretized target density of the form

log π(x) = −β
(

a

2∆s

d+1∑
i=1

(xi − xi−1)
2 +

∆s

4a

d∑
i=1

(1− x2i )2
)
, (5.37)
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where ∆s = 1
d
, and with boundary conditions x0 = xd+1 = 0. In our experiments, we

set the dimensionality d = 64. Meanwhile, parameter values are chosen to ensure

bimodality at x = ±1: a = 0.1 and inverse temperature β = 20.

The bimodality induced by the two global minima complicates mixing when using

traditional MCMC updates. Learning the global geometry of the target and using

that information to propose transitions facilitates movement between modes. Unlike

previous work e.g., Gabrié, Rotskoff, and Vanden-Eijnden, 2022, we deliberately

choose not to employ an informed base measure. Instead, we opt for a standard

Gaussian with no additional information, making the problem significantly more

challenging. This choice illustrates the robustness of our approach.

Numerical diagnostics for each method are presented in Table 5.2. In this case, we

use the Kernelized Stein Discrepancy (KSD) as a measure of sample quality e.g., Liu,

Lee, and M. Jordan, 2016; Gorham and Mackey, 2017. While this is not a perfect

metric, it does allow us to qualitatively compare the different methods considered.

For this example, all methods use N = 1024 parallel chains for training and 256

hidden dimensions for all neural networks. Methods with a MALA kernel use a step

size of 0.0001, and methods with splines use 8 coupling layers with 8 bins and range

limited to [−5, 5]. We present results for kQ = 102 for MFM.

Field system Log-Gaussian Cox

K = 104 KSD U-stat. KSD V-stat. seconds KSD U-stat. KSD V-stat. seconds

MFM 2.17± 2.19 20.4± 2.30 146± 1.93 1.05e-1±0.05 31.2± 0.16 910± 47.1

DDS 15.2± 35.9 18.0± 36.9 2400± 8.65 7.59e-2±0.02 24.7± 0.08 3260± 8.41

NF-MCMC 548± 325 549± 325 2000± 15.6 11.8± 7.55 89.0± 238 215± 46.4

FAB 0.14± 0.42 1.78± 0.42 3880± 7.19 1.55e-1±0.06 52.3± 2.02 1040± 2.78

Table 5.2: Diagnostics for the two real data examples. KSD U-stat and V-stat are

the Kernel Stein Discrepancy U- and V-statistics between the target and samples

generated from the learned flow. Results are averaged and empirical 95% confidence

intervals over 10 independent runs.
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In this case, the tempering mechanism of our method is crucial for ensuring

that the learned flow does not collapse on one of the modes and instead explores

both global minima. This is confirmed when plotting the samples generated in the

grid in Fig. 5.4. This experiment demonstrates the capability of our method to

capture complex multi-modal densities, even without an informed base measure,

at a significantly lower computational cost (e.g., 10-25x faster) than competing

methods. It is worth noting that MFM (and the other two benchmarks) significantly

outperformed NF-MCMC in this example, despite the similarities between MFM and

NF-MCMC. While we tested various hyperparameter configurations for NF-MCMC,

we were not able to find a setting that achieved comparable results.

(a) MFM kQ= 102 (b) FAB (c) DDS (d) NF-MCMC

Figure 5.4: Comparison between MFM, FAB, DDS, and NF-MCMC. Representative

samples from the target density for the Field system example.

5.5.4 Log-Gaussian Cox point process

Bayesian inference for high-dimensional spatial models is known to be challenging.

One such model is the log-Gaussian Cox point process, which here we use to model

the locations of 126 Scots pine saplings in a natural forest in Finland.

The original 10 × 10 square meter plot is standardized to the unit square, as

depicted in Fig. 5.5. We discretize the unit square [0, 1]2 into a M = 40× 40 regular

grid. The latent intensity process Λ = {Λm}m∈M is specified as Λm = exp(Xm),

where X = {Xm}m∈M is a Gaussian process with a constant mean µ0 ∈ R and

exponential covariance function Σ0(m,n) = σ2 exp (−|m− n|/(30β)) for m,n ∈M ,

i.e. X ∼ N (µ01d,Σ0) for 1d = [1, . . . , 1]T ∈ Rd with dimension d = 900. The chosen
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Figure 5.5: Visualization of the standardized 10 × 10 square meter plot and the

locations of 126 Scots pine saplings in Finland.

parameter values are σ2 = 1.91, β = 1/33, and µ0 = log(126)− σ2/2, estimated by

Møller, Syversveen, and Waagepetersen (1998). The number of points in each grid

cell Y = {Ym}m∈M ∈ N40×40 are modelled as conditionally independent and Poisson

distributed with means aΛm,

L(Y |X) =
∏

m∈[1:40]2
exp(xmym − a exp(xm)), (5.38)

where a = 1/402 represents the area of each grid cell.

For this example, all methods use N = 128 parallel chains for training and 1024

hidden dimensions for all neural networks. Methods with a MALA kernel use a

step size of 0.01, and methods with splines use 8 coupling layers with 8 bins and

range limited to [−10, 10]. We present results for kQ = 103 for MFM. We were

unable to run NF-MCMC and FAB for K = 104 iterations because of memory issues;

instead, we present results for K = 103 iterations only for the models using discrete

normalizing flows.

In Table 5.2, we report diagnostics for each algorithm. In this case, the lack of

multimodality in the target makes it a good fit for non-tempered schemes. Similar

to the previous example, NF-MCMC is unable to obtain an accurate approximation

to the target distribution. We suspect that this may be a result of non-convergence:

due to memory issues, it was not possible to run NF-MCMC (or FAB) for more than
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K = 103 iterations. This also explains the (relatively) smaller run times of these

algorithms in this example. By a small margin, DDS provides the best approximation

of the target, slightly outperforming MFM and FAB. Meanwhile, MFM provides a

good approximation to the target at a lower computational cost with respect to its

counterparts.

5.6 Discussion

We introduce a new computational approach to Bayesian inference that uses sampling

methods to define the probability path for the FM objective. We also develop

an adaptive tempering mechanism that discovers multiple modes in the target

distribution. This innovation addresses a critical challenge in Bayesian inference

involving multimodal distributions. Furthermore, we have established our method’s

convergence to a local optimum of the FM objective.

The experiments in Section 5.5 showcase our method’s ability to accelerate

convergence and improve the fitting of CNFs in various synthetic and real-

world examples. These examples illustrate the method’s superiority in terms

of computational efficiency and accuracy in complex data distributions. The

comparative analysis with relevant methods underscores the enhanced performance

of our approach.

A promising avenue for future research lies in developing tailored CNFs specifically

designed for certain types of posterior distributions. This approach would go beyond

the current practice of including the log-posterior gradient and exploit unique

characteristics intrinsic to each model when constructing the flow. Such customization

would be particularly valuable for models with complex or highly structured data

distributions. Investigating the application of our approach to a broader range of

fields, such as bioinformatics, finance, and environmental science, could also yield

significant insights, especially in scenarios with large-scale data or intricate model

structures.
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Chapter 6

Robust Bayesian Nonparametric

Variable Selection for Linear

Regression

Spike-and-slab and horseshoe regression are arguably the most popular Bayesian

variable selection approaches for linear regression models. However, their performance

can deteriorate if outliers and heteroskedasticity are present in the data, which are

common features in many real-world statistics and machine learning applications.

This work proposes a Bayesian nonparametric approach to linear regression that

performs variable selection while accounting for outliers and heteroskedasticity. Our

proposed model is an instance of a Dirichlet process scale mixture model with the

advantage that we can derive the full conditional distributions of all parameters

in closed form, hence producing an efficient Gibbs sampler for posterior inference.

Moreover, we present how to extend the model to account for heavy-tailed response

variables. The model’s performance is tested against competing algorithms on

synthetic and real-world datasets.
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6.1 Introduction

Bayesian variable selection is a popular tool in statistics and machine learning that

can be used for feature selection in linear regression models (Schoot et al., 2021). The

two most popular models are arguably the spike-and-slab and horseshoe regression

models. Both models rely on choosing a sparsity-inducing prior over the regression

coefficients βββ ∈ Rp. In the spike-and-slab model, the prior is a mixture between a

point mass at zero and a diffuse prior, while in the horseshoe model, a continuous

prior balances the local and global shrinkage (see Section 6.2). Compared to the

estimator for the regression coefficients in standard linear regression, the posterior

distribution under these priors produces a shrinkage effect toward zero in the posterior

point estimates. This is especially useful in the p >> n regime, where the number of

attributes p can be much larger than the number of observations n.

This work proposes extensions of the spike-and-slab and horseshoe regression

models to deal with heteroskedasticity and outliers in the data. Specifically, we

propose a Bayesian nonparametric model in which each observation has its specific

variance σ2
i , sampled from an unknown distribution P . The distribution P is a

Dirichlet process prior and the resulting model is a Dirichlet process scale mixture

model. Due to the discreteness of the Dirichlet process, the resulting vector

of variances (σ2
1, . . . , σ

2
n) will be partitioned into groups, hence also producing a

corresponding clustering of the observations, in which observations belonging to the

same group will have the same conditional variance. Moreover, some observations

may be allocated to a group with a much larger variance than the others, allowing

for outliers in the data.

The key features of our proposed model are:

• Parsimonious regression construction: Our nonparametric method

performs feature selection, with the posterior concentrating on the most relevant

prediction coefficients. However, unlike variable coefficient models, there is no

increase in the degrees of freedom associated with the number of regression
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parameters (or smoothness of parameters to control, c.f. functional regression).

• Interpretable model structure: The proposed linear regression model

changes the structure of the marginal variance components while retaining the

highly interpretable properties of a standard sparse regression formulation.

• Posterior credible intervals: A fully Bayesian approach gives credible

intervals for the regression coefficients. We propose several ways to perform

posterior inference selection using these intervals, which provide uncertainty

quantification for decision-makers working with high-dimensional data.

• Efficient inference: Under our model, full conditional distributions of all

parameters can be derived in closed form, hence producing an efficient Gibbs

algorithm that gives a tuning-free and rejection-free Markov chain Monte Carlo

(MCMC) sampler.

The rest of the chapter is organized as follows. Section 6.2 briefly reviews the

spike-and-slab and horseshoe regression models. Section 6.3 introduces the Bayesian

nonparametric framework, our Dirichlet process mixture model for linear regression,

and details of our MCMC sampler. In Subsection 6.3.3.2, we provide an extension

to our model to account for heavy-tailed response variables. Finally, Section 6.4

compares our proposed model against popular alternative models on synthetic data

and real-world data examples.

6.2 Bayesian Variable Selection for Linear Regres-

sion

The Bayesian approach to variable selection for linear regression models is to

introduce sparsity-inducing priors on the regression coefficients. The two most

popular approaches in the literature, which we shall review here, are the discrete

mixture priors known as the spike-and-slab (Mitchell and Beauchamp, 1988; George

and McCulloch, 1993), and the continuous shrinkage priors, most notably the

horseshoe prior (Carvalho, Polson, and Scott, 2010).
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6.2.1 Spike-and-slab priors

The original spike-and-slab model was initially proposed by Mitchell & Beauchamp

(1988) and significantly developed by Madigan & Raftery (1994) and George &

McCulloch (1997). The final adjustments to the model were completed by Ishwaran

& Rao (2005) in what they refer to as the stochastic variable selection model. The

spike-and-slab prior is intuitively simple and consists of two components. The spike

is a delta function centered at zero indicating βj ≈ 0, and the slab gives probability

mass to non-zero coefficients.

In our regression framework, we have data y ∈ Rn that is explained by a matrix

of attributes X ∈ Rn×p and coefficients β ∈ Rp. Assuming a spike-and-slab prior for

β, we have the following model,

yi|xi,β, σ2 ∼ N (x⊤
i β, σ

2), i = 1, . . . , n with σ2|b1, b2 ∼ IG(b1, b2) and

βj|ηj, τ 2j ∼ N (0, ηjτ
2
j ), j = 1, . . . , p with τ 2j |a1, a2 ∼ IG(a1, a2) and

ηj|ν0, ω ∼ (1− ω)δν0(·) + ωδ1(·), j = 1, . . . , p with ω ∼ Unif[0, 1] (6.1)

The likelihood for the data assumes a standard Gaussian regression model, and

the prior for β is a scale mixture of Gaussians. The variable ηj is a latent indicator

and δv0(·) denotes a point mass at v0, where v0 is a value chosen close to 0, and thus

the variance of the prior on β is either almost zero or a broad Gaussian distribution.

6.2.2 Horseshoe priors

Spike-and-slab priors are intuitively appealing, but in practice, their discrete nature

makes posterior inference computationally difficult. A popular alternative perspective

on sparse Bayesian regression is given by the horseshoe prior construction (Carvalho,

Polson, and Scott, 2009; Carvalho, Polson, and Scott, 2010, see). The horseshoe prior

is a continuous shrinkage prior, which makes posterior computation more efficient

when using gradient-based MCMC sampling tools such as STAN (Carpenter et al.,

2017).
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yi|xi,β, σ2 ∼ N (x⊤
i β, σ

2), i = 1, . . . , n with σ2|b1, b2 ∼ IG(b1, b2) and

βj|λ2j , τ 2 ∼ N (0, λ2jτ
2), j = 1, . . . , p with τ ∼ C+(0, 1) and

λj ∼ C+(0, 1), j = 1, . . . , p (6.2)

Under the horseshoe regression model, the parameters λj and τ are the local and

global shrinkage parameters, respectively. Following Carvalho, Polson, and Scott

(2010), we choose half-Cauchy priors for λj and τ . The intuition behind the horseshoe

prior is that the global parameter τ will force the regression coefficients towards

zero. In contrast, the heavy tails of the half-Cauchy prior for the local shrinkage

parameters λj will allow for non-zero β coefficients.

The horseshoe model used in our experiments follows the form originally proposed

by Carvalho, Polson, and Scott (2010). A standard Gibbs sampling approach

on this model parametrization is difficult to implement due to the non-conjugate

posterior form of the shrinkage parameters in the model. In our implementation, we

introduce auxiliary variables that lead to conjugate full conditionals for all parameters

as suggested by Makalic and Schmidt (2015a) and allow for a straightforward

implementation of Gibbs sampling.

The parameterization given by Makalic and Schmidt (2015a) uses an inverse

gamma scale mixture representation of a random variable with a half-Cauchy

distribution. It can be shown that X ∼ C+(0, A) if X2|a ∼ IG(1/2, 1/a) and

a ∼ IG(1/2, 1/A2). Using this decomposition leads to the reparametrized horseshoe

model

yi|xi,β, σ2 ∼ N (x⊤
i β, σ

2), i = 1, . . . , n with σ2|b1, b2 ∼ IG(b1, b2) and

βj|λ2j , τ 2 ∼ N (0, λ2jτ
2), j = 1, . . . , p with τ 2|ξ ∼ IG(1/2, 1/ξ) and

λ2j |νj ∼ IG(1/2, 1/νj), j = 1, . . . , p with ν1, . . . , νp, ξ ∼ IG(1/2, 1) (6.3)

for which the sampling schemes presented in the next section easily follow.
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6.3 Nonparametric Stochastic Variable Selection

6.3.1 Background to Dirichlet processes

In Bayesian nonparametric statistics, unknown parameters are infinite-dimensional

and cannot be parametrized by a subset of Euclidean space. The most common

examples of nonparametric problems are the estimation of density functions,

distribution functions, and nonparametric regression (Hjort et al., 2010).

The most popular nonparametric distribution function is the Dirichlet process,

introduced in Ferguson (1973). In this setting, P has a Dirichlet process

distribution with base measure P0 and concentration parameter α, denoted

P ∼ DP (α, P0). For every measurable partition (A1, . . . , Ak), the random vector

(P (A1), . . . , P (Ak)) has a Dirichlet distribution on the k-dimensional simplex with

parameters (αP0(A1), . . . , αP0(Ak)). The base measure P0 is the mean of the prior

(i.e. E(P ) = P0), while the concentration parameter α regulates prior uncertainty

around P0. A large α value implies a strong belief in the prior.

There are many different representations of the Dirichlet process (see Ghosal and

Van der Vaart (2017), Chapter 4). For this research, we shall utilize the Chinese

restaurant process representation, which gives the marginal distribution of the data

when the unknown distribution P has been marginalized out. Specifically, if θ1:n is an

i.i.d. sample from P , θi|P
iid∼ P , and P ∼ DP (α, P0), then the marginal distribution

of θ1:n, when P is integrated out, is

π(θ1:n|α, P0) =

∫ n∏
i=1

P(θi)DP(dP ;α, P0),

which can be described by the marginal of θ1 and the conditional distributions of

θi|θ1:i−1 for i = 2, . . . , n, π(θ1:n|α, P0) = π(θ1|α, P0)
∏n

i=2 π(θi|θ1:i−1, α, P0), where

π(θ1|α, P0) = P0 and

θi|θ1:i−1, α, P0 ∼
1

i− 1 + α

n∑
i=1

δθi +
α

i− 1 + α
P0.

Thus, a sample θ1:n from π(θ1:n|α, P0) will display ties with positive probability. The
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parameter α regulates the number of clusters in θ1:n. All else being equal, larger α

will lead to more distinct values within θ1:n.

6.3.2 Dirichlet process mixture model

The Dirichlet process mixture model (DPM) (Lo, 1984) assumes each observation

yi is sampled from a countable mixture model. The likelihood of each mixture

component, K(yi; θ
∗
k), is parametrized by an unknown parameter vector θ∗k. In the

following, K will be a Gaussian kernel, and θ∗k is the group-specific variance. Both

the mixture parameters θ∗ and the mixture weights wk can be encoded into a random

measure P =
∑

k≥1wkδθ∗k which is endowed with a Dirichlet process prior, hence

producing the following mixture model for i = 1, . . . , n

yi|P ∼
∞∑
k=1

wkK(yi; θ
∗
k) =

∫
K(yi; θ)P (dθ)

P ∼ DP (α, P0).

By introducing latent class variables, {θi}ni=1 s.t. P(θi = θ∗k) = wk, the DPM model

is equivalent to the latent variable mixture model

yi|θi ∼ K(yi; θi), i = 1, . . . , n

θi|P
iid∼ P, i = 1, . . . , n (6.4)

P ∼ DP (α, P0)

The DPM model has been used in various statistics and machine learning applications

for density estimation and clustering. In density estimation, the goal is to estimate

the unknown density of the observations through a mixture model, while in clustering,

the goal is to cluster observations into groups with a similar distribution. For the

latter task, the discreteness property of the Dirichlet process is very convenient since,

with positive probability, we will observe ties among the latent variables θ1:n. Two

observations yi and yj having the same value of the latent variables θi and θj will be

assigned to the same cluster and have the same distribution.
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In Section 6.3.3 we utilize the properties of the Dirichlet process mixture model

to propose a Bayesian nonparametric extension to the spike-and-slab and horseshoe

regression models. We show that our new model can capture heteroskedasticity and

outliers in the observations and capture clustering behavior in the variance structure.

Under both DP variable selection models, the mixture component has a likelihood

with a cluster-specific variance term, which is not fixed apriori but is learned from

the data.

6.3.3 Dirichlet process variable selection

In both the spike-and-slab (6.1) and horseshoe (6.3) models, one assumes that each

yi has the same conditional variance σ2. Under our nonparametric Dirichlet process

model, we introduce an observation-dependent variance σ2
i for each data point. The

vector σ2 := σ2
1:n is assumed to be sampled from an unknown discrete distribution

P sampled from a Dirichlet process. Specifically, we consider the following general

hierarchical model,

yi|xi,β,σ2 ∼ N (x⊤
i β, σ

2
i ), i = 1, . . . , n with βββ ∼ π and

σ2
i |P ∼ P (dσ2

i ), i = 1, . . . , n with P |α ∼ DP(α, IG(b1, b2))

andα ∼ Gamma(d1, d2) (6.5)

where the prior π for βββ either follows the spike-and-slab construction in lines 2-5

of eq. (6.1), or the horseshoe model in lines 2-4 of eq. (6.3). We refer to the general

model in eq. (6.5) as the Dirichlet process variable selection model and recognize

that the spike-and-slab and horseshoe models are special cases, which we denote as

Dirichlet process spike-and-slab (DPSS) and Dirichlet process horseshoe (DPHS),

respectively.

In this model, we are assuming a variance σi for each observation yi, where the

vector of variances σ1, . . . , σn is assumed to be conditionally i.i.d. from an unknown

distribution P . Specifically, we use a Dirichlet process as a nonparametric prior

for P , centered at IG(b1, b2) with concentration parameter α. From the properties
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of the DP, P will almost surely be a discrete distribution. This implies that, with

positive probability, we will observe ties among σ1, . . . , σn. In other words, some σi

will take the same value. We denote by σ∗
1, . . . , σ

∗
Kn

the Kn distinct values assumed

by σ1, . . . , σn. We will then have Kn clusters among our observations {yi}ni=1, where

observations within a cluster have the same variance, but different clusters have

different variances. Specifically, if σi = σj, then yi and yj will be in the same cluster

and have the same conditional variance but with possibly different means, depending

on their attributes.

6.3.3.1 Posterior inference

Under the DPSS and DPHS models, posterior inference can be carried out efficiently

using a Markov chain Monte Carlo sampler. We propose a general Gibbs sampler to

sample σ2
1:n (see Algorithm 18) based on the algorithm by Escobar and West (1995),

where at each iteration, we first resample a classification vector c1:n assigning each

σ2
i to a block in the partition and then resample the distinct values σ2∗

1:k.

The partition generated by the variance value assigned to each observation

is distributed, a priori, as a Chinese Restaurant Process (Aldous, 1985). This

distribution can be understood intuitively as a Chinese restaurant serving an infinite

amount of customers arriving in succession. Each customer must be seated on an

unbounded number of tables, where the probability of seating a customer at an

occupied table is proportional to the number of people already seated. Alternatively,

the customer could be seated at a new table with probability proportional to the

concentration parameter α. Assuming i.i.d. variances, we can assume, a posteriori,

that each observation is the last customer to arrive and each table represents a

cluster of variances (R. M. Neal, 2000). The customer/observation will be seated at

an already occupied table or a new table with probability proportional to

P[ci = c | c−i, y1:n, σ2∗
1:Kn

] ∝


n−i,cN(yi;xxx

T
i βββ, σ

2∗
c ) for 1 ≤ c ≤ K−

αg(yi;xi,β, b1, b2) for c = K− + 1,

(6.6)
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Algorithm 18 DP variable selection Gibbs sampler

for t in 1: number of iterations do

for i in 1:n do

Sample classification value ci with probability (6.6).

end for

for k in 1:Kn do

Sample σ2∗
k

σ2∗
k ∼ IG

(
b1 +

nk
2
, b2 +

1

2

∑
i:Ck

(yi − x⊤
i β)

2

)
,

where Ck = {σ2
i | ci = k}

end for

if Spike-and-Slab then

Sample β, τj, ηj and ω using Algorithm 19

else if Horseshoe then

Sample β, λj and τ using Algorithm 20

end if

Sample α, by sampling the latent variables

ψ|α,Kn ∼ Beta(α + 1, n) then a|ψ,Kn ∼ Bernoulli

(
w2

w1 + w2

)
and α|a, ψ,Kn ∼ Gamma(d1 +Kn + a, d2 − logψ)

where w1 = d1 +Kn + 1 and w2 = n(d2 − logψ).

end for
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where K− are the number of distinct cj for j ̸= i, labeled {1, . . . , K−}, and n−i,c is

the number of cj = c for j ̸= i. The likelihood of observation i being assigned a new

variance, i.e. seated at a new table, is defined as

g(yi;xi,β, b1, b2) : =

∫
N (yi;x

⊤
i β, σ

2)IG(σ2; b1, b2)dσ
2

=
bb12√
2π

Γ(b1 + 2−1)

Γ(b1)

(
(yi − x⊤

i β)
2

2
+ b2

)−(b1+
1
2
)

Finally, the concentration parameter α is sampled using a data augmentation trick

(Ghosal and Van der Vaart, 2017, see pg.89).

We sample the regression coefficients β for the spike-and-slab and horseshoe

models using Algorithms 19 and 20, respectively. The Gibbs sampler for the spike-

and-slab model follows from Ishwaran and Rao (2005) while the Gibbs sampler for

the horseshoe model is based on the data augmentation construction of Makalic and

Schmidt (2015b). The full conditional distributions of all parameters in both models

can be easily derived and have closed-form expressions (R. M. Neal, 2000; Ishwaran

and Rao, 2005; Carvalho, Polson, and Scott, 2009). Alternatively, particularly for

the case of p ≫ n, we can get a random sample from the Multivariate Normal

distribution of β using the linear solver of Bhattacharya, Chakraborty, and Mallick

(2016) adapted to our Dirichlet process mixture model. This extension is detailed in

Algorithm 21; this algorithm would replace the first step of Algorithms 19 and 20

once the parameters of matrices Σ and Λ are fixed. Since both Σ and Λ are diagonal

matrices, the extension changes the cost of sampling β from O(p3) when sampling

directly from the multivariate normal to O(n2p) when using the linear solver.

An advantage of our Dirichlet process model construction is that the number of

clusters Kn that partition the vector of variance parameters σ2
1:n are learned by the

DP model and do not need to be fixed apriori.

Clustering the variance parameters means that we can account for outlier

observations if one of the variances σ∗
1, . . . , σ

∗
Kn

is very large. Outlier observations

belonging to that specific cluster will have much higher variance than the others and

can take more extreme values. In this way, the model can simultaneously account
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Algorithm 19 Sample β with the spike-and-slab model

Sample β

β ∼ N (µβ|·,Σβ|·)

where µβ|· = (XTΣ−1X + Λ−1)−1XTΣ−1y and Σ−1
β|· = XTΣ−1X + Λ−1, with

Σ = diag(σ2
1, . . . , σ

2
p) and Λ = diag(τ 21 η1, . . . , τ

2
p ηp),

for j in 1:p do

Sample τj

τ−2
j |β, η ∼ Gamma

(
a1 + 1/2, a2 + β2

j /2ηj
)
,

end for

for j in 1:p do

Sample ηj

ηj|β, τ, ω ∼
w1,j

w1,j + w2,j

δv0(·) +
w2,j

w1,j + w2,j

δ1(·) ,

where w1,j = (1− ω)v−1/2
0 exp(−β2

j /2v0τ
2
k ) and w2,j = ω exp(−β2

j /2τ
2
j ).

end for

Sample ω

ω|η, τ ∼ Beta(1 + |{j | ηj = 1}|, 1 + |{j | ηj = v0}|)
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Algorithm 20 Sample β with the horseshoe model

Sample β

β ∼ N (µβ|·,Σβ|·)

where µβ|· = (XTΣ−1X + Λ−1)−1XTΣ−1y and Σ−1
β|· = XTΣ−1X + Λ−1, with

Σ = diag(σ2
1, . . . , σ

2
p) and Λ = diag(τ 2λ21, . . . , τ

2λ2p),

for j in 1:p do

Sample the local shrinkage parameter λ2j and auxiliary variable νj,

λ2j |· ∼ IG(1, 1/νj + β2
j /2τ

2), νj|· ∼ IG(1, 1 + 1/λ2j);

end for

Sample the global shrinkage parameter τ 2 the auxiliary variable ξ,

τ 2 ∼ IG

(
(p+ 1)/2, 1/ξ +

p∑
j=1

β2
j /2λ

2
j

)
, ξ ∼ IG(1, 1 + 1/τ 2);

Algorithm 21 Linear solver sampling of β given Σ and Λ.

Sample u ∼ N (0,Λ) and δ ∼ N (0, In).

Let v = Σ−1/2X + δ.

Solve (Σ−1/2XΛXTΣ−1/2 + In)w = Σ−1/2y − v.

Let β = u+ ΛXTΣ−1/2w.
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for heteroskedasticity and outliers characterized by clusters with extreme variances.

6.3.3.2 Heavy Tails: Student-t extension

In many real-world datasets, the response variable y may contain larger-than-expected

values, commonly referred to as outliers. A common approach to model such data

is to replace the normal distribution assumption for the conditional distribution

of yi given xxxi with a Student-t distribution. Compared to a normal distribution,

the Student-t distribution has heavier tails and permits outlier observations with

a higher probability than under the normal model. We can account for outliers

in our Dirichlet process variable selection model (6.5) by replacing the conditional

distribution of yi with

yi|xi,β,σ2 ∼ Student-t(x⊤
i β, σ

2
i , ν) i = 1, . . . , n,

for some degrees of freedom ν. The parameter ν regulates the thickness of the tails of

the distribution. A small value for ν leads to thicker tails with the expectation that

large or extreme values for yi will be observed. As ν →∞, the Student-t distribution

recovers the normal distribution.

A Gibbs sampler to perform posterior inference for the Student-t model can

be derived from Algorithm 18 by including an additional data augmentation step.

The required conditional distributions are derived by representing the Student-t

distribution as a normal distribution with an inverse gamma variance. The remainder

of this section describes these procedures.

We assume our response variables are distributed as Y ∼ Student-t(µ, σ2, ν) with

density,

f(y|µ, σ2, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνσ2

(
1 +

(y − µ)2

νσ2

)− ν+1
2

(6.7)

with mean E(Y ) = µ and variance Var(Y ) = σ2 ν
ν−2

. A well-known reparameterization

of the model follows that if,

Y |G ∼ N (µ,G−1) and G ∼ Gamma(ν/2, νσ2/2),
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Algorithm 22 DP variable selection Gibbs sampler, Student-t extension

for t in 1: number of iterations do

for i in 1:n do

Sample classification vector ci with probability (6.9).

end for

for k in 1:Kn do

Sample σ2∗
k

σ2∗
k ∼ Gamma

(
ν

2
nk + b1,

ν

2

∑
i:Ck

Gi + b2

)
,

where Ck = {Gi | ci = k}.

end for

if Spike-and-Slab then

Sample β, τj, ηj and ω using Algorithm 19, replacing Σ = diag(σ2
1:n) with

Σ = diag(G1:n)
−1.

else if Horseshoe then

Sample β, λj and τ using Algorithm 20, replacing Σ = diag(σ2
1:n) with

Σ = diag(G1:n)
−1.

end if

for i in 1:n do

Sample Gi

Gi ∼ Gamma

(
ν + 1

2
,
1

2
[(Yi −XT

i β)
2 + νσ2

i ]

)
.

end for

Sample α, by sampling the latent variables

ψ|α,Kn ∼ Beta(α + 1, n) then a|ψ,Kn ∼ Bernoulli

(
w2

w1 + w2

)
and α|a, ψ,Kn ∼ Gamma(d1 +Kn + a, d2 − logψ)

where w1 = d1 +Kn + 1 and w2 = n(d2 − logψ).

end for
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then the marginal of Y (when integrating out G) is Y ∼ Student-t(µ, σ2, ν).

The extension of the DPSS and DPHS models to a Student-t model is as follows

yi|xi,β, σ2
i ∼ Student-t(x⊤

i β, σ
2
i , ν) with β ∼ πSS/HS and

σ2
i |P ∼ P with P ∼ DP(α,Gamma(b1, b2)) (6.8)

Using the reparameterized Student-t model, and integrating out P from (6.8), the

joint posterior distribution π(β,G1:n, σ
2
1:n, α|Y1:n, X1:n) is proportional to,

n∏
i=1

N (yi;x
T
i β, G

−1
i )Gamma(Gi; ν/2, νσ

2
i /2)π(σ1:n|α)π(α)πSS/HS(β),

where, as before, π(σ1:n|α) denotes the marginal likelihood of σ1:n when P is integrated

out, which can be represented using the Chinese restaurant process. The proposed

Gibbs sampler is specified in Algorithm 22, where at each iteration, we first resample

a class vector c1:n assigning each σ2
i and Gi to a block in the partition and then

resample the distinct values σ2∗
1:k followed by each latent variable Gi. In the heavy-

tailed case, the observation is related to a variance through its latent variable and

hence, the posterior probability of the classification vector is

P[ci = c | c−i, G1:n, σ
2∗
1:Kn

] ∝


n−i,cGamma(Gi; ν/2, νσ

2∗
c /2) for 1 ≤ c ≤ K−

αg(Gi; ν, b1, b2) for c = K− + 1,

(6.9)

where K− be the number of distinct cj for j ̸= i, labeled {1, . . . , K−}, and n−i,c is

the number of cj = c for j ̸= i. Also, the likelihood of observation i being assigned a

new variance is modified to

g(Gi; ν, b1, b2) : =

∫
Gamma(Gi; ν/2, νσ

2/2)Gamma(σ2; b1, b2)dσ
2

=
(ν/2)ν/2

Γ(ν/2)
G

ν
2
−1

i

bb12
Γ(b1)

Γ(b1 +
ν
2
)

(b2 + νGi/2)
b1+

ν
2

.

Finally, regression coefficients β are sampled using Algorithms 19 and 20 with small

modifications to include the augmented variable Gi.
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6.4 Experiments

This section compares the DPSS and DPHS models against the standard spike-and-

slab and horseshoe models of Ishwaran and Rao (2005) and Carvalho, Polson, and

Scott (2010). We begin by studying their predictive performance, ability to model

heterogeneous data, and variable selection capabilities over a range of scenarios

utilizing synthetic data, and then, we test the models’ performance on a real-world

dataset. Specifically, on reconstructing a network of genomic data through variable

selection on a linear model. Code for synthetic and real experiments can be found in

https://github.com/albcab/RobustVariableSelection.

Each algorithm is run for J = 10, 000 iterations for all experiments with a burn-in

period of J/2. Convergence and mixing of the Markov chain is confirmed through

visual diagnostics. Hyper-parameters for the models are set to a1 = b1 = 2.01,

a2 = b2 = d1 = 1, and d2 = 1/2, which leads to weakly informative priors. This

claim is verified with simple cross validation for all the datasets. It is worth noting

that one could place additional hyper-priors on these parameters and add extra

steps to the MCMC algorithm. However, in doing so, we would risk rejecting steps,

potentially leading to longer mixing times. It is worth noting that in comparable

studies (e.g. Ishwaran and Rao, 2005), it is common to fix these parameters when

assessing performance simply. Finally, both the dependent and independent variables

are normalized to have zero mean for the testing of each model.

In synthetic data, Performance is evaluated over a range of regression scenarios

varying the number of attributes p = 50, 100, 200, 500, 1000, 2000 and data lengths

n = 10, 20, 50, 100, 200. The sparsity pattern will be similar across experiments

according to the Briemann structure (Breiman et al., 2001). Specifically, we consider

two scenarios for Gaussian linear regression: Scenario (1) - homoskedastic errors

with ϵ ∼ N (0, 1) as the single component and ϵ ∼ Student-t(0, 1, 2) when testing

the heavy tails extension; Scenario (2) - heteroskedastic errors with five components

ϵi ∼ N (0, σ2
i ) or ϵ ∼ Student-t(0, σ2

i , 2) for σ2
i ∈ {0.5, 1, 1.5, 2, 2.5} distributed

evenly among the observations as well as 1, 2 and 4 outliers ϵ ∼ N (0, 10) or ϵ ∼
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Student-t(0, 10, 2) in the case of n = 50, 100, 200, respectively.

In each scenario, and for each combination of attributes and data lengths, 100

synthetic datasets are created and parameters are estimated for each of these datasets.

The results presented in the remainder of this section consider all 100 estimates for

robustness.

6.4.1 Homoskedastic and Heteroskedastic Errors

We compare the Dirichlet process variable selection models against the standard

spike-and-slab and horseshoe models in the presence of homoskedastic (Scenario 1 )

and heteroskedastic (Scenario 2 ) noise. Figure 6.1 presents boxplots of the posterior

error ∥β̂ − β0∥2/∥β0∥2 for every combination of the number of observations n and

parameters p, with Scenario 1 plotted on the left and Scenario 2 given on the right,

while Figure 6.2 presents the same error boxplots when testing the heavy-tailed

extension of the models.

Robustness - it is clear from the upper right plots on Figure 6.1 that for

Scenario 2, the robustness provided by the DPSS and DPHS models improves the

predictive estimates of parameters β when data is sufficient to make the model

overdetermined, i.e. when n is at least as large as p. As expected, under Scenario

1, the results are similar for the models, allowing heterogeneous and homogeneous

variances. Interesting behavior is observed when the model is underdetermined at

varying degrees. When the model is highly underdetermined n≪ p, models with the

horseshoe priors provide more robust results than spike-and-slab priors. However,

as n approaches p the spike-and-slab prior provides lower errors than the horseshoe

(albeit at a smaller scale), until the model becomes overdetermined and the horseshoe

prior models are preferred. Similar results are observed for the heavy-tailed extension

of the models. In contrast to the Gaussian models, when the models are at least

determined n ≥ p, the positive effect of robust variance modeling is less noticeable.

Coefficients - looking at Figure 6.1 and 6.2 from top to bottom, the effect of

adding coefficients to the model is illustrated on the predictive capabilities of the
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Figure 6.1: Boxplots of estimation error ∥β̂ − β0∥2/∥β0∥2 on Scenario 1 (S1) and

Scenario 2 (S2) for algorithms Dirichlet process horseshoe, Dirichlet process spike-

and-slab, Horseshoe, and Spike-and-slab.
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Figure 6.2: Boxplots of estimation error ∥β̂ − β0∥2/∥β0∥2 on Scenario 1 (S1) and

Scenario 2 (S2) for algorithms Dirichlet process horseshoe, Dirichlet process spike-

and-slab, Horseshoe, and Spike-and-slab on their heavy tailed Student-t extension.
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models. The Dirichlet process model performs well in heterogeneity, particularly

as the number of model coefficients exceeds the number of observations. The

robustness added by the heterogeneous variances benefits the horseshoe prior in the

overdetermined case and the spike-and-slab prior in the underdetermined case.

Clusters - one of the key advantages of the nonparametric approach we adopt

is the availability of posterior densities for the number of variance components K.

The Dirichlet process’ assumption of a number of clusters that scale logarithmically

towards infinity with n can be observed by looking at the boxplots for samples of

K for an increasing n in Figure 6.3 for the heavy-tailed extension. A potentially

useful caveat of the heavy-tailed extension of the robust models is that the number of

clusters K increases at a slower rate than in the case of Gaussian errors. In the case

where a finite number of clusters in the data is known, or the number of clusters K

should scale faster or slower than logarithmically, priors that generalize the Dirichlet

process can be used, e.g. the Pitman-Yor process (Jim Pitman and Yor, 1997). It

is interesting to notice how, as the number of coefficients increases but the number

of observations remains constant, the number of clusters K seem unbiased when

the number of coefficients becomes much larger than the number of observations, as

shown in Figures 6.4 and 6.5. A comparison of these two Figures also shows how the

heavy-tailed extension of the robust model provides a more gradual increase in the

number of clusters K.

6.4.2 Support Recovery

In addition to estimating the regression coefficients, a further task of interest,

especially in high-dimensional regression, is to select a subset of attributes deemed

significant for the predictive model. In a frequentist context, this is usually achieved

via forward selection with sequential F-tests or with ℓ1 or ℓ0 shrinkage and/or

selection, for instance, through the use of the AIC or BIC criteria.

One advantage of the Bayesian approach is that we can sample from the joint

posterior of the coefficients, thus constructing credible intervals with relative ease.
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Figure 6.3: Boxplots of the derived number of clusters K from the posterior of

σ1, . . . , σn for p = 200 for algorithms Dirichlet process horseshoe, Dirichlet process

spike-and-slab, with a Gaussian likelihood on the left and a Student-t likelihood on the

right, where the true number of clusters is K = 5, 5, 6, 7, 9 for n = 10, 20, 50, 100, 200.

Figure 6.4: Histogram of the derived number of clusters K from the posterior of

σ1, . . . , σn for n = 200 and p = 50, 200, and 2000, where the two number of clusters

is K = 9.
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Figure 6.5: Histogram of the derived number of clusters K from the posterior of

σ1, . . . , σn for n = 200 and p = 50, 200, and 2000 on their heavy-tailed Student-t

extension, where the two number of clusters is K = 9.

In this section, we compare two methods for estimating the support of the regression

model:

• The first approach is to look at the posterior of the inclusion parameter ηj for

selecting either the spike or slab. Specifically, if the mode of the posterior η̂j is

above level 1 − ζ we add the index j to the estimated support set M̂. This

method works only in the DPSS and SS models.

• The second approach is to look at the empirical posterior credible interval of

β̂i at the percentiles ζ/2× 100 and (1− ζ/2)× 100. If the constructed interval

excludes zero, we add the index to the estimated support set M̂. This method

is used for the DPHS and HS models.

We note that the second approach is somewhat similar to the z-cut method

discussed in Ishwaran and Rao (2005); however, they construct a set M̂ :=

{i | ∀i s.t. |β̄i| ≥ z(1−ζ/2)} where β̄i represents the posterior mean of the regression

coefficients.

To summarise the performance of the two approaches, we take the number of

true and false positive (TP, FP) coefficients included in the model and consider how

this changes as a function of n. These values will change as a function of ζ, and

in practice, this may be tuned to favor either TP or FP results. For simplicity, we
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report results with ζ = 0.05. Table 6.1 summarises the performance of the posterior

inclusion thresholding method for different values of n in the heteroskedastic scenario

(Scenario 2 ) and the standard Gaussian formulation of the models; similar results

were observed on their heavy-tailed extension. In the case of an overdetermined

model, both the standard and robust implementations learn the underlying data-

generating process correctly. However, when the model is underdetermined, the

standard spike-and-slab tends to be more conservative in including variables. At the

same time, the robust method favors a better estimate of TP with the drawback of

more FP. Similar results can be observed in the case of the horseshoe prior. The

support recovery, or model selection, of the robust models, will be detailed further

when applied to real-world data, where the benefits of each prior are illustrated.

Model n 20 50 100 200

SS TP 5 [0.95,8] 14 [12,14] 14 [14,14] 14 [14,14]

FP 3 [0,7] 0 [0,1] 0 [0,0] 0 [0,0]

DPSS TP 5 [2,8] 14 [12,14] 14 [14,14] 14 [14,14]

FP 3 [0.95,8] 0 [0,1] 0 [0,1] 0 [0,0]

SS TP 4 [1,10] 17 [1,25] 28 [28,28] 28 [28,28]

FP 5 [0,13.15] 18 [0,43.3] 0 [0,1] 0 [0,1]

DPSS TP 4 [1,9.05] 20 [14,26] 28 [28,28] 28 [28,28]

FP 4 [0,14] 24 [6.95,46.05] 0 [0,1] 0 [0,1]

SS TP 4 [0,18.15] 25 [0,51.05] 31 [1,56] 56 [56,56]

FP 6 [0,36.55] 53 [0,124.2] 62 [0,144] 0 [0,1]

DPSS TP 3 [0,12.1] 42 [16.95,56] 54 [47.9,56] 56 [56,56]

FP 6 [0,22] 99 [25.9,142.05] 133 [95.8,144] 0 [0,1]

Table 6.1: Tabulated results of true positive (TP) and false positive (FP) results with

95% credible intervals for the inclusion of regression coefficients for p = 50, 100, 200

with nonzero coefficients TP = 14, 28, 56.
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6.4.3 Reconstruction of transcription regulatory networks

We consider the problem of reconstructing genetic regulatory networks from gene

expression data (Marbach et al., 2010). This problem can be modeled as a directed

network, where each node corresponds to a different gene, and each connection

represents a directed interaction between two genes at the transcription level.

The sparse spike-and-slab and horseshoe priors provide an attractive approach

to reconstructing these networks using support recovery methods.

The models are tested on data from the challenge posed at the The Dialogue

for Reverse Engineering Assessments and Methods (DREAM) 2009 conference,

specifically the multifactorial subchallenge. The challenge is reverse engineering five

independent networks using 100 steady-state measurements for each network with

100 genes. All the genes’ expression levels are measured under different perturbed

conditions. Each gene Xi for i = 1, ..., 100 is treated independently and modeled

through a linear relationship with the rest of the genes in the network X, i.e.

Xi = XTβi + ϵ. Every βi has an independent spike-and-slab or horseshoe prior and

ϵ is a normal random variable with mean zero and homogeneous variances in the

case of SS and HS, or heterogeneous variances, in the case of DPSS and DPHS. For

each gene, the support is recovered using the method described in Section 6.4.2 for

the case of a spike-and-slab prior with βi. In the case of a horseshoe prior, we follow

Steinke, Seeger, and Tsuda (2007) and approximate the posterior probability of a

connection from gene j to gene i by the probability of the event |(βi)j| > 0.1 under

the posterior for βi.

The performance of the different approaches is evaluated using the mean of the

logarithmic loss of the probabilities of connections pij from gene j to each gene i,

defined as

1

100

100∑
i=1

{
− 1

99

∑
j ̸=i

[yij log pij + (1− yij) log (1− pij)]

}
,

where yij = 1 if there is a directed connection from j to i and yij = 0 otherwise. Table

6.2 presents these results for each tested model. The improvement in prediction given
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by heterogeneous variances in the model is substantial. This supports the results

from Section 6.4.2 on synthetic data, illustrating the improvement offered by robust

models to correctly classify variables included in the model, specifically in their

capability of reducing type II error in the predictions while correctly identifying the

significant coefficients in the linear relationship. Interestingly, while the DPSS model

provided better support recovery results in the synthetic data example, the DPHS

provides better results in the real data example of gene network reconstruction.

SS DPSS HS DPHS

N1 0.1143 0.0948 0.0920 0.0854

N2 0.1498 0.1380 0.1248 0.1173

N3 0.1610 0.1158 0.1196 0.0900

N4 0.1588 0.1118 0.1124 0.0970

N5 0.1314 0.1095 0.1044 0.0933

Table 6.2: Logarithmic-loss errors for the five DREAM Gene Network detection

datasets (N1-N5).

6.5 Discussion

This research outlines a nonparametric extension of popular Bayesian variable

selection models to account for heterogeneity, outliers, and clustering effects. We also

extend the model to allow for heavy-tailed data distributions. Fitting our Dirichlet

process variable selection models is computationally efficient using a Gibbs sampling

construction. The results presented for both synthetic and real data examples show

a robust improvement in predictive accuracy on test data and improved efficiency in

identifying key model attributes.

This work could be further extended to encompass other variable selection models,

including extensions of existing models, such as the regularized horseshoe model

(Piironen, Vehtari, et al., 2017). It would also be interesting to explore nonparametric
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priors that allow for more flexible assumptions on the expected clustering effect, such

as the Pitman-Yor process (Jim Pitman and Yor, 1997).
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Chapter 7

BlackJAX: Composable Bayesian

inference in JAX

BlackJAX is a library that implements sampling and variational inference algorithms

commonly used in Bayesian computation. It is designed for ease of use, speed,

and modularity by taking a functional approach to the algorithm’s implementation.

Designed from basic components to specific iterative procedures, BlackJAX allows

the end user to build and experiment with new algorithms by composition. BlackJAX

is written in pure Python using JAX (Bradbury et al., 2018) to compile and run

NumpPy-like programs on CPUs, GPUs and TPUs. The library integrates well with

probabilistic programming languages by working directly with the (unnormalized)

target log density function, given that the function is pure. The library is intended

for users who need to create complex sampling mechanisms beyond the black-box

solution, researchers who want to experiment when developing new algorithms and

students who want to learn how inference algorithms work.
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7.1 Introduction

Sampling from a probability distribution, either manually defined or constructed

using probabilistic programming languages (PPLs), is a recurring topic in statistics

and machine learning. Automatic sampling software has historically been limited

to Gibbs-type methods (Meyer and Yu, 2000; Lunn et al., 2000; Depaoli, Clifton,

and Cobb, 2016), requiring knowledge of the model structure. Black-box samplers,

typically relying on Hamiltonian Monte Carlo (HMC, Duane et al., 1987), allowed

general, model-agnostic improvement in the applicability of the method. This was

spearheaded by Stan (Carpenter et al., 2017), which leveraged the development of

automatic differentiation. The same developments have allowed for automatically

learning rich approximations via variational inference (VI, M. I. Jordan et al., 1999) to

the models of interest. Together, these led to the creation of an array of modern PPLs

that have pushed the boundaries on the feasibility of Bayesian computation (Abril-Pla

et al., 2023; Bingham et al., 2019; Phan, Pradhan, and Jankowiak, 2019). While

black-box samplers have paved the way, we believe that inference in today’s models

increasingly requires reintroducing structure-aware algorithms.

To achieve this, BlackJAX provides users with composable inferential building

blocks are written using JAX (Bradbury et al., 2018), such as Metropolis–

Hastings (Metropolis et al., 1953; Hastings, 1970a; Robert, 2016) accept/reject

step, Hamiltonian or Langevin (Besag, 1994) dynamics, stochastic gradient utilities,

resampling and tempering mechanisms for use within sequential Monte Carlo (SMC,

Del Moral, Doucet, and Jasra, 2006a), or mean field approximations (M. I. Jordan

et al., 1999), as well as other mechanisms. These components are unified under a

convenient, functionally oriented API that can be combined to form new or existing

algorithms immediately applicable to sequential and parallel modern computer

architectures.
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7.2 Design principles

BlackJAX supports both sampling algorithms, such as Markov Chain Monte

Carlo (MCMC), Sequential Monte Carlo (SMC), and Stochastic Gradient MCMC

(SGMCMC), and approximate inference algorithms, such as Variational Inference

(VI). In both cases, the iterative procedure of the algorithm must be kept functionally

pure, i.e. return values that are identical for identical arguments and have no side

effects, allowing efficient parallelization. Thus, a fundamental component of the

algorithm is a state object that contains all the necessary information for the next

iteration. All sampling algorithms carry the current value in its state while some

might also carry the density and gradient evaluations of the current value to minimize

computations or other necessary objects for computing the transition. Similarly, all

approximate inference algorithms carry the current parameters of the approximate

distribution and might carry other necessary values to compute the iteration.

The user starts by initializing a state given an initial value. Then, recycling

the current state, stepping or iterating to a new state with either a new sample or

an improved approximation. In the latter case of VI, the user requires a function

to generate samples given the current approximation. The stepping function also

returns an information state concerning the current iteration, it includes essential

information that might be useful for the user. The user-facing interface of each

variant is illustrated in the following code:

1 # Generic sampling algorithm:

2 sampling_algorithm = blackjax.sampling_algorithm(logdensity_fn, ...)

3 state = sampling_algorithm.init(initial_position)

4 new_state, info = sampling_algorithm.step(rng_key, state)

5

6 # Generic approximate inference algorithm:

7 approx_algorithm = blackjax.approx_algorithm(logdensity_fn, optimizer, ...)

8 state = approx_algorithm.init(initial_position)

9 new_state, info = approx_algorithm.step(rng_key, state)

10 position_samples = approx_algorithm.sample(rng_key, state, num_samples)
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7.2.1 Lower-level API

Users might need a tailored algorithm for the model they are trying to sample or

approximate from, or they might try out different Markov transition kernels running

in parallel with various particles in an SMC algorithm, or they might use optimization

to approximate the hyperparameters of the models while sampling from the rest.

For any of these cases, BlackJAX provides access to a lower-level API, giving access

to functions implementing methods with more parameters. Then the user-facing

interface becomes (using MCMC and VI for illustration, but it can be any algorithm

type):

1 # Lower-level sampling algorithm:

2 init = blackjax.mcmc.sampling_algorithm.init

3 state = init(initial_position, logdensity_fn)

4 kernel = blackjax.mcmc.sampling_algorithm.build_kernel(...)

5 new_state, info = kernel(rng_key, state, logdensity_fn, ...)

6

7 # Lower-level approximate inference algorithm:

8 init = blackjax.vi.approx_algorithm.init

9 state = init(initial_position, optimizer, ...)

10 step = blackjax.vi.approx_algorithm.step

11 new_state, info = step(rng_key, state, logdensity_fn, optimizer, ...)

12 sample = blackjax.vi.approx_algorithm.sample

13 position_samples = sample(rng_key, state, num_samples)

Using these lower-level implementations, a Metropolis-within-Gibbs algorithm is

easily implementable by using higher-order functions and composing various Markov

transition kernels:

1 def cond_logdensity_fn(condition):

2 return lambda eval: logdensity_fn(**eval, **condition)

3

4 state1 = init1(initial_position1, cond_logdensity_fn(initial_position2))

5 state2 = init2(initial_position2, cond_logdensity_fn(initial_position1))

6

7 def _kernel1(key, state1, state2):

8 target_cond = cond_logdensity_fn(state2.position)

9 state1 = init1(state1.position, target_cond)

10 return kernel1(key, state1, target_cond, ...)

11

12 def _kernel2(key, state2, state1):

13 target_cond = cond_logdensity_fn(state1.position)

14 state2 = init2(state2.position, target_cond)
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15 return kernel2(key, state2, target_cond, ...)

16

17 def one_step(states, key):

18 key1, key2 = jax.random.split(key)

19 state1, state2 = states

20 state1, info1 = _kernel1(key1, state1, state2)

21 state2, info2 = _kernel2(key2, state2, state1)

22 return (state1, state2), (info1, info2)

The functional design of the library, where programs are constructed by applying

and composing functions, allows the end user to build and experiment with new

algorithms by applying the same mathematical logic used to design them. The

lower-level interface can apply different base kernels in an SMC setting or combine

optimization within sampling algorithms. For a detailed and exhaustive example,

see the implementation of the window adaptation scheme for adaptation of step size

and mass matrix in HMC.

7.2.2 Basic components

Basic components are functions that perform specific tasks but are generally

applicable. All inference algorithms are composed of basic components; in a sense,

these components provide the lowest level of algorithm abstraction. We assume

that when implementing a new inference algorithm, scientists first break it into its

basic components. With BlacKJAX, they can find all basic components already

implemented before implementing their own.

For instance, BlackJAX contains two variants of the MH accept/reject step,

starting from the computation of the accept/reject probability: the simpler

safe energy diff if the proposal transition kernel is symmetric and the more

general compute asymmetric acceptance ratio if the proposal transition kernel is

asymmetric. Hence, the HMC algorithm uses the former while the Metropolis

adjusted Langevin algorithm (MALA Besag, 1994) uses the latter. After the

acceptance probability of the proposal is computed, the proposal is accepted or

rejected using static binomial sampling. In BlackJAX, this staple of MCMC

135

https://github.com/blackjax-devs/blackjax/blob/main/blackjax/adaptation/window_adaptation.py
https://github.com/blackjax-devs/blackjax/blob/main/blackjax/mcmc/proposal.py#L45
https://github.com/blackjax-devs/blackjax/blob/main/blackjax/mcmc/proposal.py#L186
https://github.com/blackjax-devs/blackjax/blob/main/blackjax/mcmc/proposal.py#L216


Chapter 7. BlackJAX: Composable Bayesian inference in JAX

can be immediately swapped for the non-reversible slice sampling algorithm

of Radford M Neal (2020) simply by replacing static binomial sampling with

nonreversible slice sampling.

Consider the case of HMC as a further illustration. An iteration of HMC requires a

proposal and an acceptance mechanism, traditionally using the MH with a symmetric

proposal. The proposal mechanism of HMC requires the generation of a Gaussian

momentum and a velocity Verlet integrator. Each of these basic components could be

replaced with a different component, the user might choose to use a two or three-stage

palindromic symplectic integrator (McLachlan, 1995) or to use slice sampling instead

of the MH acceptance (Radford M Neal, 2003).

The utility of basic components comes when a team of researchers such as M. D.

Hoffman and Sountsov (2022) could implement their generalized HMC algorithm

simply by replacing the symmetric MH step of HMC with a non-reversible slice

sampling step, as described above, and using a persistent generation of the momentum

variable. For its implementation in BlackJAX see ghmc. Researchers can readily

test and compare new ideas by changing or modifying two basic components while

keeping the rest of the algorithm the same. Appendix A.1 has a detailed overview of

how each type of algorithm is structured.

7.2.3 Existing sampling libraries

In the Python ecosystem, Bayesian inference libraries usually either implement

domain-specific algorithms, such as EMCEE (Foreman-Mackey et al., 2019),

Dynesty (Speagle, 2020), pocoMC (Karamanis, Nabergoj, et al., 2022), and

Mici (Graham, n.d.) (to name a few) or are directly tied to a PPL (Bingham

et al., 2019; Tran et al., 2019; Oriol et al., 2023; Carpenter et al., 2017; Lao

et al., 2020). BlackJAX is one of the few Python libraries specifically aimed at

users who want to use but also develop inference methods. Its design philosophy

allows for more control over how the algorithm is built, enabling users to make

modifications and tailor the implementation to specific needs, fostering innovation
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and experimentation in probabilistic modelling. Efforts in the same direction can be

found in FunMC (Sountsov, Radul, and Vasudevan, 2021), part of the TensorFlow

Probability (Dillon et al., 2017) ecosystem. In Python, AeMCMC automatically

constructs MCMC samplers for probabilistic models by exploiting the symbolic graphs

structure of programs written in Aesara. In Julia, Mamba.jl provides a platform for

implementing and applying MCMC methods to perform Bayesian analysis.

7.3 Past impact of BlackJAX on the practice of

Bayesian inference

Since its inception, BlackJAX has already left a tangible mark on the landscape of

Bayesian inference. The library’s impact extends across both the applicative and

methodological aspects of Bayesian analysis. BlackJAX joins the already existing

rich ecosystem of JAX-powered scientific libraries (Schoenholz and Cubuk, 2020;

Wilkinson, Särkkä, and Solin, 2023; Bonnet et al., 2023) and is directly compatible

with several of them either as a client: consuming outputs from these (Pinder

and Dodd, 2022; DeepMind et al., 2020), or as a component, used within the

libraries (Phan, Pradhan, and Jankowiak, 2019; Kumar et al., 2019).

BlackJAX contains a comprehensive implementation of state-of-the-art HMC

algorithms, including vanilla HMC with various integrators, the no-U-turn sampling

(NUTS) to choose the number of integration steps at each iteration dynamically (M. D.

Hoffman, Gelman, et al., 2014), and the generalized HMC algorithm (Horowitz, 1991).

It also contains adaptation schemes for the algorithms’ hyper-parameters: window

adaptation and sophisticated calibration methods such as M. Hoffman, Radul, and

Sountsov (2021) and M. D. Hoffman and Sountsov (2022).

Consequently, several papers have leveraged BlackJAX to conduct research in

various fields (see, e.g., Galan et al., 2022; Price-Whelan et al., 2024; Balkenhol

et al., 2024). Moreover, BlackJAX has made contributions to the methodological

development of Bayesian inference: it has been adopted in a range of papers to
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develop new Bayesian sampling methods (Staber and Da Veiga, 2022; Cabezas and

Nemeth, 2023; Cooper et al., 2023).

Beyond research publications, BlackJAX has found a place in courses and tutorials,

for example, functional programming by Darren Wilkinson and its use in Kevin

Murphy’s authoritative manuscript (Murphy, 2022). This usage attests to the

library’s recognition as a practical resource for teaching Bayesian concepts, making

it accessible to a broader audience of learners and practitioners

7.4 Roadmap to the future of BlackJAX

The development of BlackJAX represents a significant step forward in Bayesian

computation libraries. Building on the principles of ease of use, modularity, and

efficiency, we have ambitious plans for its future to enhance its capabilities and

usability further. Our roadmap outlines the fundamental directions we intend to

pursue in its ongoing development.

7.4.1 Enhanced algorithm portfolio

We recognize that the field of Bayesian computation is dynamic and diverse, with

emerging algorithms and techniques. Soon, we aim to expand the library’s algorithm

portfolio to include a broader range of state-of-the-art sampling and approximate

inference methods. This expansion will empower users with more options for their

specific computational needs. Current plans include:

Parallel and Sequential Tempering SMC Building on the existing SMC

algorithms with annealing in BlackJAX, our immediate goal is to introduce parallel

and sequential tempering SMC algorithms (Corenflos, Chopin, and Särkkä, 2022). By

integrating these algorithms, BlackJAX aims to empower users with the capability

to tackle a broader range of Bayesian inference problems.

Unbiased MCMC with Couplings This development is particularly exciting,

as it aligns with recent advancements in the field. Unbiased MCMC techniques
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promise to reduce bias in posterior inference, improving estimation accuracy (Jacob,

O’Leary, and Atchadé, 2020). Including such methods in BlackJAX will provide

users with additional tools for more reliable Bayesian analysis.

Structured VI Our roadmap also includes methods such as the Integrated Nested

Laplace Approximation (INLA). INLA is known for its efficiency in approximating

posteriors for models with structured additive effects (Rue, Martino, and Chopin,

2009). By integrating INLA and similar methods into BlackJAX, we aim to facilitate

efficient and accurate inference for complex structured models.

Diagnostics BlackJAX will provide diagnostic tools to assess the performance

of various sampling and approximate inference methods. These diagnostics will aid

users in understanding the quality of their Bayesian inference results and identifying

potential issues in their models.

7.4.2 Documentation and tutorials

Clear and comprehensive documentation is essential for any library’s success. We

plan to expand documentation and tutorials, especially those catering to users with

varying levels of expertise. This will empower students and researchers to learn and

work with BlackJAX effectively. We plan to strengthen BlackJAX’s integration with

popular probabilistic programming languages. This includes further tutorials and

examples for defining probabilistic models in these languages and seamless interaction

with BlackJAX for posterior inference. By bridging the gap between BlackJAX

and probabilistic programming, we aim to simplify the development of complex

probabilistic models.

We plan to introduce an inference database feature similar to Stan’s posteriordb,

allowing users to access a collection of posteriors for testing and benchmarking. This

feature aligns with the principles of transparency and reproducibility in Bayesian

inference. It will include reference implementations in probabilistic programming

languages and reference posterior inferences in the form of posterior samples. The

integration of inference databases will support users in assessing and validating their
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Bayesian models.

7.5 Project openness and development

BlackJAX’s source code is available under the permissive Apache License license,

which allows users to use the software for any purpose, distribute it, modify it, and

distribute modified versions under the license terms without concern for royalties.

BlackJAX is developed by a community of open-source contributors at blackjax. A

comprehensive test suite is run automatically by a continuous integration service

before code is merged into the main codebase to maintain high project quality and

usability.

Anyone is welcome to contribute to the BlackJAX project. Contributions can

be made in code, documentation, expert reviews of open pull requests, or other

forms of support, such as case studies using BlackJAX. Breaking decisions about the

BlackJAX project are made by consensus among the BlackJAX core contributors,

and all BlackJAX core contributors must agree on such a decision before it can be

implemented.

The author has contributed to approximately 5% of the algorithms currently

available in the library, focusing primarily on the library’s design philosophy,

documentation, and ongoing maintenance efforts. These contributions help ensure

that BlackJAX remains accessible, well-structured, and sustainable for long-term

community use.

7.6 Discussion

The landscape of Bayesian computation has evolved significantly in recent years,

driven by the intersection of probabilistic programming languages (PPLs) and

innovative sampling libraries. With its efficiency and versatility, Hamiltonian Monte

Carlo (HMC) has played a pivotal role in developing black-box Bayesian inference.
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Probabilistic programming languages like Stan have revolutionized Bayesian analysis

by making advanced HMC accessible to a broader audience.

In this context, BlackJAX is an essential addition to the Bayesian computation

toolkit. By taking a functional approach to algorithm design and providing a library

of basic components, BlackJAX empowers users to create and experiment with new

inference algorithms. Its support for a wide range of sampling and approximate

inference methods, combined with a convenient, functionally oriented API, positions

it as a powerful tool for seasoned researchers and students seeking to learn how

inference algorithms work.

BlackJAX stands as a valuable tool in the landscape of Bayesian computation.

The impact of BlackJAX on the practice of Bayesian inference is already evident in

its role as an enabler of innovative research, a tool for methodological advancements,

and an educational aid. Looking ahead, our roadmap includes practical goals such as

expanding the algorithm portfolio to include techniques like parallel and sequential

tempering SMC, unbiased MCMC with couplings, and structured variational inference

methods like INLA. We also recognize the importance of documentation, integration

with probabilistic programming languages, and the introduction of inference databases

for improved accessibility and transparency. BlackJAX remains an open and

collaborative project, welcoming contributions from the community to ensure its

continued growth and utility in Bayesian analysis.
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Chapter 8

Conclusions

This thesis addresses several challenges in Bayesian computation. First, method-

ological contributions bridge the gap between fast-density approximation techniques

using numerical optimization and the traditional asymptotically exact Monte Carlo

methods. Furthermore, we presented a contemporary software suite to facilitate

the use and development of classic and new algorithms. We also introduced a

novel algorithm tailored for inference in linear variable selection models with robust

variance, enhancing the toolkit available for statisticians in this domain.

The first three chapters laid a comprehensive foundation by reviewing essential

background literature. Chapter 2, in Monte Carlo methods, provides an introduction

to fundamental techniques and various forms of Markov chain Monte Carlo methods.

Chapter 3, in approximate or variational inference methods, discusses the Kullback-

Leibler divergence and normalizing flows in their role of building flexible variational

families.

Chapter 4 introduced Transport Elliptical Slice sampling, a novel algorithm for

dimension-independent and gradient-free sampling from unnormalized target densities.

It includes an adaptive scheme that learns a non-Gaussian approximation of the

target, which aids sampling. Our method leverages parallel computer architectures

to expedite sampling from posterior distributions. Our findings indicate that TESS

can outperform gradient-based algorithms across various models.
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Chapter 5 introduced a novel computational approach that integrates flow

matching with sampling methods using a sequential scheme that learns the target

probability path with samples from a Markov chain. We developed an adaptive

tempering mechanism that effectively discovers multiple modes in the target

distribution. Our method converges to a local optimum of the flow matching

objective, as demonstrated through experiments in both synthetic and real-world

scenarios.

Chapter 6 presented a nonparametric extension of popular Bayesian variable

selection models that accounts for heterogeneity, outliers, and clustering effects.

Our model is also extended to handle heavy-tailed data distributions. Using Gibbs

sampling, our Dirichlet process variable selection model proved computationally

efficient, and experimental results demonstrate improvements in predictive accuracy

and efficiency in identifying key model attributes.

Chapter 7 introduced BlackJAX, an established Bayesian computation library

that adopts a functional approach to algorithm design and offers a repository of basic

components. BlackJAX enables users to develop and experiment with new inference

algorithms, offers broad support for various sampling and approximate inference

methods, and is coupled with a user-friendly API, making it a powerful resource for

experienced researchers and students.

8.1 Future work

There remains considerable scope for further research. This section outlines several

promising directions for future work to enhance the flexibility, efficiency, and

applicability of the methodologies and tools presented.

Developing flexible transport maps and low-variance Monte Carlo approximations

of the Kullback-Leibler divergence remains a critical challenge for high-dimensional

models. Future research will focus on refining transport maps to address the complex

geometries of Bayesian posterior distributions. By creating more adaptable transport
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maps, we can better capture the intricacies of high-dimensional spaces, leading to

more accurate and reliable inference outcomes.

This is particularly relevant for tailored continuous normalizing flows, which allow

more modelling flexibility than their discrete counterparts. By exploiting the unique

characteristics of different models, we can enhance the construction of these flows.

Extending the application of our methods to diverse fields such as bioinformatics,

finance, and environmental science could yield substantial insights, particularly when

dealing with large-scale data or intricate model structures.

This research also opens up opportunities to extend variable selection by

incorporating additional models, such as the regularized horseshoe model, providing

more robust techniques. Furthermore, exploring other nonparametric priors, like

the Pitman-Yor process, offers more flexible assumptions regarding clustering effects.

These extensions would enable more robust modelling of variable selection in complex

data environments.

We also have ambitious goals for the continued development of BlackJAX. We

aim to expand its algorithm portfolio to include advanced techniques such as parallel

and sequential tempering SMC, unbiased MCMC with couplings, and structured

variational inference methods like INLA. Improving documentation, ensuring seamless

integration with probabilistic programming languages, and introducing inference

databases for better accessibility and transparency are also key priorities. BlackJAX

will remain an open and collaborative project, encouraging community contributions

to foster its growth and maintain its relevance in Bayesian computation.

These future research directions promise to build on the foundations in this thesis,

ensuring that the tools and methods we develop continue to meet the evolving needs

of researchers and practitioners in this dynamic field.
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Appendix A

BlackJAX: Composable Bayesian

inference in JAX

A.1 Skeletons

In this appendix, we present the basic skeleton of sampling and approximate inference

algorithms:

1 from typing import Callable, NamedTuple, Tuple

2

3 import jax

4

5 # import basic compoments that are already implemented

6 # or that you have implemented with a general structure

7 # for example, if you do a Metropolis-Hastings accept/reject step:

8 import blackjax.mcmc.proposal as proposal

9 from blackjax.base import MCMCSamplingAlgorithm

10 from blackjax.types import PRNGKey, PyTree

11

12

13 class SamplingAlgoState(NamedTuple):

14 """State of your sampling algorithm.

15 """

16 position: PyTree

17 ...

18

19

20 class SamplingAlgoInfo(NamedTuple):

21 """Additional information on your algorithm transition.
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22 """

23 ...

24

25

26 def init(position: PyTree, logdensity_fn: Callable, *args, **kwargs):

27 # build an inital state

28 state = SamplingAlgoState(...)

29 return state

30

31

32 def build_kernel(*args, **kwargs):

33

34 def kernel(

35 rng_key: PRNGKey,

36 state: SamplingAlgoState,

37 logdensity_fn: Callable,

38 *args,

39 **kwargs,

40 ) -> Tuple[SamplingAlgoState, SamplingAlgoInfo]:

41 """Generate a new sample with the sampling kernel."""

42

43 # build everything you’ll need

44 proposal_generator = sampling_algorithm_proposal(...)

45

46 # generate pseudorandom keys

47 key_other, key_proposal = jax.random.split(rng_key, 2)

48

49 # generate the proposal with all its parts

50 proposal, info = proposal_generator(key_proposal, ...)

51 proposal = SamplingAlgoState(...)

52

53 return proposal, info

54

55 return kernel

56

57

58 class sampling_algorithm:

59 """Implements the (basic) user interface for your sampling kernel.

60 """

61

62 init = staticmethod(init)

63 build_kernel = staticmethod(build_kernel)

64

65 def __new__( # type: ignore[misc]

66 cls,

67 logdensity_fn: Callable,

68 *args,

69 **kwargs,
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70 ) -> MCMCSamplingAlgorithm:

71 kernel = cls.build_kernel(...)

72

73 def init_fn(position: PyTree):

74 return cls.init(position, logdensity_fn, ...)

75

76 def step_fn(rng_key: PRNGKey, state):

77 return kernel(

78 rng_key,

79 state,

80 logdensity_fn,

81 ...,

82 )

83

84 return MCMCSamplingAlgorithm(init_fn, step_fn)

85

86

87 # and other functions that help make ‘init‘ and/or ‘build_kernel‘ easier to read

and understand

88 def sampling_algorithm_proposal(*args, **kwags) -> Callable:

89

90 # as an example, a symmetric Metropolis-Hastings step would look like this:

91 init_proposal, generate_proposal = proposal.proposal_generator(...)

92 sample_proposal = proposal.static_binomial_sampling(...)

93

94 def generate(rng_key, state):

95 # propose a new sample

96 proposal_state = ...

97

98 # accept or reject the proposed sample

99 proposal = init_proposal(state)

100 new_proposal, is_diverging = generate_proposal(proposal.energy,

proposal_state)

101 sampled_proposal, *info = sample_proposal(rng_key, proposal, new_proposal

)

102

103 # build a new state and collect useful information

104 sampled_state, info = ...

105

106 return sampled_state, info

107

108 return generate

Listing A.1: Basic skeleton of a sampling algorithm

1 from typing import Callable, NamedTuple, Tuple

2

3 import jax

4 from optax import GradientTransformation

147



Appendix A. BlackJAX: Composable Bayesian inference in JAX

5

6 # import basic compoments that are already implemented

7 # or that you have implemented with a general structure

8 from blackjax.base import VIAlgorithm

9 from blackjax.types import PRNGKey, PyTree

10

11

12 class ApproxInfState(NamedTuple):

13 """State of your approximate inference algorithm.

14 """

15 optim_state: Callable

16 ...

17

18

19 class ApproxInfInfo(NamedTuple):

20 """Additional information on your algorithm transition.

21 """

22 ...

23

24

25 def init(position: PyTree, logdensity_fn: Callable, *args, **kwargs):

26 # build an inital state

27 state = ApproxInfState(...)

28 return state

29

30

31 def step(

32 rng_key: PRNGKey,

33 state: ApproxInfInfo,

34 logdensity_fn: Callable,

35 optimizer: GradientTransformation,

36 *args,

37 **kwargs,

38 ) -> Tuple[ApproxInfState, ApproxInfInfo]:

39 """Approximate the target density using your approximation.

40 """

41 # extract the previous parameters from the state

42 params = ...

43 # generate pseudorandom keys

44 key_other, key_update = jax.random.split(rng_key, 2)

45 # update the parameters and build a new state

46 new_state = ApproxInfState(...)

47 info = ApproxInfInfo(...)

48

49 return new_state, info

50

51

52 def sample(rng_key: PRNGKey, state: ApproxInfState, num_samples: int = 1):
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53 """Sample from your approximation."""

54 # the sample should be a PyTree of the same structure as the ‘position‘ in

the init function

55 samples = ...

56 return samples

57

58

59 class approx_algorithm:

60 """Implements the (basic) user interface for your approximate inference

method.

61 """

62

63 init = staticmethod(init)

64 step = staticmethod(step)

65 sample = staticmethod(sample)

66

67 def __new__( # type: ignore[misc]

68 cls,

69 logdensity_fn: Callable,

70 optimizer: GradientTransformation,

71 *args,

72 **kwargs,

73 ) -> VIAlgorithm:

74 def init_fn(position: PyTree):

75 return cls.init(position, optimizer, ...)

76

77 def step_fn(rng_key: PRNGKey, state):

78 return cls.step(

79 rng_key,

80 state,

81 logdensity_fn,

82 optimizer,

83 ...,

84 )

85

86 def sample_fn(rng_key: PRNGKey, state, num_samples):

87 return cls.sample(rng_key, state, num_samples)

88

89 return VIAlgorithm(init_fn, step_fn, sample_fn)

90

91

92 # other functions that help make ‘init‘,‘ ‘step‘ and/or ‘sample‘ easier to read

and understand

Listing A.2: Basic skeleton of an approximate inference algorithm
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