
SQ-DDTO: Deep Reinforcement Learning-driven Task Offloading Decisions in Vehicular
Edge Computing Networks

Ehzaz Mustafaa,1,∗, Junaid Shujab, Faisal Rehmana, Abdallah Namounc, Muhammad Bilald, Kashif Bilala

aDepartment of Computer Science, Comsats University Islamabad, Abbottabad Campus.
bDepartment of Computer Science, Southeast Missouri State University, USA

cAI Centre, Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
d School of Computing and Communications, Lancaster University, United Kingdom

Abstract

Vehicular Edge Computing offers low latency and reduced energy consumption for innovative applications through com-
putation offloading in vehicular networks. However, making optimal offloading decisions and resource allocation remains
challenging due to varying speeds, locations, channel quality constraints, and characteristics of both vehicles and tasks. To
address these challenges, we propose a three-layered architecture and introduce a two-level algorithm named Sequential
Quadratic Programming-based Dueling Double Deep Q Networks (SQ-DDTO) for optimal offloading actions and resource
allocation. The joint computation offloading decision and resource allocation is a mixed integer nonlinear programming
problem. To solve it, we first decouple the computation offloading decision sub-problem from resource allocation and ad-
dress it using Dueling DDQN, which incorporates separate state values and action advantages. This decomposition allows
for more granular control of computation tasks, leading to significantly better results. To enhance sample efficiency and
learning in such complex networks, we employ Prioritized Experience Replay (PER). By prioritizing experiences based
on their importance, PER enhances learning efficiency, allowing the agent to adapt quickly to changing conditions and
optimize task offloading decisions in real time. Following this decomposition, we use Sequential Quadratic Programming
(SQP) to solve for optimal resource allocation. SQP is chosen due to its effectiveness in handling non-convexity and complex
constraints. Moreover, it has strong local convergence properties and utilizes gradient information which is crucial where
rapid decision-making is necessary. Experimental results demonstrate the effectiveness of the proposed algorithm in terms
of average delay, energy consumption, and task loss rate. For example. the proposed algorithm reduces the system cost by
25.1% compared to DQN and 16.67% compared to both DDQN and DDPG. Similarly. our method reduces the task loss
rate by 37.06% compared to DQN, 34.78% compared to DDPG and 10.2% compared to DDQN

Keywords: Mobile Edge Computing (MEC), Computation Offloading, Resource Allocation, Deep Reinforcement Learning
(DRL), Deep Q Network(DQN)

1. Introduction

Mobile Edge Computing (MEC) and the Internet of Ve-
hicles (IoV) are two rapidly evolving technologies that hold
great potential for enhancing the performance and capabilities
of autonomous vehicles [1]-[2]. MEC brings computational re-
sources and storage closer to the network edge, enabling faster
processing and reduced latency for various applications. On
the other hand, IoV facilitates communication between vehi-
cles and roadside infrastructure, enabling intelligent transporta-
tion systems and advanced vehicular services [3]. Integrating
MEC with IoV forms Vehicular Edge Computing (VEC), a dis-
tributed computing paradigm designed to position computing
resources and data storage near vehicles, to minimize latency
and improve response times [4]-[5]. This setup allows vehi-
cles to communicate with each other and with roadside infras-
tructure, enabling various applications, including autonomous

∗Corresponding Author
Email address: aizazmustafa@cuiatd.edu.pk (Ehzaz Mustafa)

vehicles, traffic management, collision avoidance, emergency
services, and infotainment. By exchanging information such
as position, speed, and road conditions, vehicles can improve
safety, efficiency, and comfort on the roads [6]-[7].

However, this exchange of information poses several chal-
lenges. Firstly, the dynamic nature of IoV, with high mobility
and varying channel conditions, requires careful design of com-
putation offloading and resource allocation strategies to main-
tain optimal system performance [8]-[9]. In addition, ensur-
ing reliable communication between vehicles and Road Side
Units (RSUs) is crucial to maintaining network performance
[10]-[11]. Recent studies face limitations when vehicles are an-
ticipated to leave or remain within the connectivity zone of an
RSU during task submission and receiving results. These stud-
ies often neglect the impact of high-speed mobility, leading to
frequent changes in communication channels, potential loss of
tasks, and disruptions [12]. Channel factors such as path loss
and attenuation and vehicle factors such as speed significantly
affect channel quality and are also explored in a limited way.

Preprint submitted to Elsevier October 17, 2024

Deep Reinforcement Learning (DRL) is a viable option to
optimize computation offloading and resource allocation deci-
sions in dynamic vehicular networks [13]-[15]. Recent studies
explored Deep Q Networks (DQN) [16] and Deep Determinis-
tic Policy Gradients (DDPG) [17], which are widely used for
making intelligent offloading and resource allocation decisions.
However, DQN suffers from overestimation bias [18], while
DDPG, which relies on noise to explore the action space and is
specifically designed for continuous action spaces, might lead
to inefficient exploration in discrete spaces [19]. Despite these,
recent studies are also limited in anticipating whether vehicles
will remain or leave the connectivity zone of Road Side Units
(RSUs), considering channel quality factors such as path loss
and attenuation, vehicle characteristics such as computational
power, etc. These limitations lead to inefficient offloading and
resource allocation decisions. Based on these limitations, we
propose a two-level Sequential Quadratic Programming-based
Dueling Double Deep Q Networks (SQ-DDTO) algorithm that
provides an optimal mapping of offloading decisions and cor-
responding resource allocations. Our three-layered environ-
ment models the dynamic network scenario, allowing vehicles
to make offloading decisions based on real-time states, such as
speed and location within the RSU’s zone. Second, we also
carefully consider channel factors, vehicle characteristics, and
task characteristics such as task time. Finally, We use SQP in-
stead of convex relaxation because it can effectively handle
the non-convexity and complex constraints that usually oc-
cur in dynamic task offloading problems. SQP has strong
local convergence properties and utilizes gradient informa-
tion, which makes it optimal for dynamic environments where
rapid decision-making is crucial. We provide the following
novel contributions.

• We consider a three-layered architecture for computation
offloading where the lower layer encompasses vehicles
traveling on a straight path with varying speeds and lo-
cations. In the middle layer, we deploy RSUs integrated
with computing capabilities that receive tasks from ve-
hicles and are responsible for task execution and result
transfer. These RSUs are connected to an edge server
with a high-fiber network. We consider a high-end edge
server for DRL training in the upper layer. The idea is to
relieve the computation burden from RSUs.

• For optimal computation offloading decisions and re-
source allocation in highly complex networks while
considering several factors such as vehicle speed, lo-
cation, channel quality, and task characteristics, we
propose a novel algorithm, SQ-DDTO, a two-level al-
gorithm. We model the problem as a mixed integer
nonlinear programming problem and solve it by first
decomposing the original problem into subproblems.
Then, we deploy Dueling DDQN for optimal offload-
ing decisions. Due to the dueling architecture, the
state values and action advantages are split, hence max-
imizing the learning ability and ensuring faster con-
vergence. Finally, we use SQP to solve the subproblem

of computing resource allocation because of its effec-
tiveness in the non-convexity and complex constraints
of dynamic offloading problems.

• We compare the performance of the proposed algorithm
with rule-based schemes and DRL-based schemes, in-
cluding DQN, DDQN, and DDPG. The results demon-
strate the effectiveness of the proposed algorithm in terms
of delay, energy, and task loss rate.

2. Related Work

DRL, game theory numerical optimization, and heuris-
tic schemes usually optimize computation offloading. In [20],
a lightweight framework for mobile computation offload-
ing is proposed to conserve energy and enhance smartphone
performance by transferring compute-intensive tasks from
the client to the server. This framework provides app-specific
offloading services with customizable features and introduces
a multi-task offloading strategy to handle high demand from
multiple devices. The server’s master node evaluates whether
a task should remain on the device or should be offloaded,
as well as which virtual machine to utilize. This approach
efficiently lowers the energy consumption while enhancing
performance for compute-intensive applications. This pa-
per [21] investigates the issue of task offloading in VEC net-
works when demand is deterministic. It illustrates where
tasks come in bursts, making resource scheduling and timely
offloading even more difficult. A model for exploiting task
characteristics to improve offloading strategies is proposed.
The problem is formulated as a 0-1 programming task which
has minimized the delays concerning tasks. This paper in-
troduces an energy-efficient offloading algorithm for the in-
terior point method (IPM) and has improved offload utility.

In [22] the authors present a new deep reinforcement
learning framework focusing on low coupling and high scal-
ability, enabling effective exploration. The foremost among
these innovations is the separation of control dependencies
from within an action, action masking, target attention, and
a dual-clip PPO that encourages the training of an actor-
critic network. The research results include target atten-
tion, action-making, control dependency decoupling, and
a dual-clip PPO algorithm that enhances the training of
the actor-critic network. In the paper [4], a blockchain-
empowered VEC framework is proposed to boost the com-
puting power of vehicles by using V2V task offloading. The
challenges of vehicles with high mobility and allocating re-
sources among unfamiliar vehicles have been addressed. A
DRL-based computation offloading scheme combined with
a smart contract running on the blockchain is proposed to
enable secure and efficient task offloading. The practical
Byzantine fault tolerance mechanism and a consensus al-
gorithm for node selection are used that facilitate efficient
consensus-making. It encourages the base stations to en-
hance reliability in the execution of task allocation.

2

Figure 1: System Architecture

In [24] the authors introduce a new MEC platform through
multiple UAVs that uses reinforcement learning to increase
QoS and plan path-inefficient environments. This paper
considers obstacle-prone environments, cooperation among
multiple UAVs to maintain connectivity, and the challenges
faced by mobile servers that provide services using UAVs.
The main contributions of this research are threefold, i.e.,
formulation of a combined problem of QoS optimization
and path planning in a joint RL framework, the path-inefficient
function for modeling demand behavior patterns at termi-
nal users following sigmoid-like behavior, and the introduc-
tion of risk into the reward matrix for reinforcement learn-
ing. The authors in [25] investigate vehicular edge comput-
ing, which can provide higher bandwidth and lower service
latency over cloud computing. The paper deals with the
challenges resulting from resource scattering and vehicle
mobility, it concentrates on energy consumption minimiza-
tion at edge computing servers. The approach to these prob-
lems is adaptive scheduling, which is based balance of an
auction-bid scheme used to determine RSUs from the pool,
reducing computing requests task dependency graph on a
node-core level. It also proposes a deadline-aware queue
jump algorithm for task assignment and group scheduling
to improve application scheduling. In this paper author
proposed a primitive version and experimental results show
that it effectively reduces energy consumption with lower
response time compared to existing methods.

The paper [26] highlights a key challenge regarding Wire-
less Body Area Networks is the sink node which is composed
of a few energies and computationally restricted sensing de-
vices. This paper proposes a solution for offloading com-
putation tasks that enhances task management using mo-
bile cloud and edge computing. As a result, the solution
to an optimization problem targeted at minimizing energy
consumption and delay is presented by the authors. The
approach is used to reduce load and the offloading costs of

computation tasks, as verified by simulations. In [27] dis-
cussed the pertinent issues of deploying DLR agents into
power-saving constrained resource-sized embedded systems
and presented an approach to significantly the Policy Net-
work of RL agents, using Layer-wise Relevance Propaga-
tion (LRP) to score on convolution filters for pruning. It
casts a compromise between pruning and fine-tuning using
Policy Distillation for high efficiency. The proposed method
significantly reduces model size and inference time while
maintaining performance by comparing relative improve-
ments in various video games of Atari. Overall, this pa-
per outlines major progress toward making RL agents more
friendly to embedded applications.

Similarly, the authors in [28] significantly the resource
utilization efficiency and QoS issues over multiple time scales
of computation offloading of collaboratively vehicle networks
(CVNs). Therefore, an asynchronous federated deep Q-learning
network-based task offloading algorithm (AF-DQN) is pro-
posed for task management in a semi-distributed learning
framework. It also introduces a heuristic queue backlog-
aware algorithm for computation resource allocation. Sim-
ulations suggest that the proposed approaches dramatically
reduce end-to-end queue times. Overall, the study attempts
to optimize the throughput in CVNs while ensuring QoS
constraints. This paper [29] deals with the problem of data
analysis in vehicular networks, where today’s vehicles gen-
erate huge sensing data. It proposes a new edge-computing-
based technique to collaboratively and efficiently locate data
in a distributed manner. They suggest strategies for balanc-
ing computational costs over the network with the latency
to get to vehicles of interest. They achieve strong improve-
ments over baseline methods, with up to a 40X performance
gain and up to a 3X reduction in computational overhead
compared to prior algorithms. The evolution is data-driven
using real-world datasets to demonstrate the performance
of their techniques in vehicular networks.

3

3. System Architecture

We consider a three-layered system, as depicted in Figure 1.
The system includes three layers for vehicles, RSUs, and edge
servers. In the lower layer, vehicles travel along a straight road.
Here each vehicle has an On-Board Unit (OBU) that enables
communication with RSUs and handles task processing. We
divide the road into M zones. Each zone is covered by one
RSU of equal length. R = {R1,R2, . . . ,RM} represents the set
of RSUs. It is crucial to note that the coverage of the RSUs
does not overlap, so vehicles within the i-th zone are restricted
to communicate with only one RSU Ri.

Table 1: Symbols and Their Meanings
Symbol Meaning
dv, j(t) Distance between vehicle v and RSU j at time t
wv, j(t) Vehicle v’s status with RSU j (1 if in range, else 0)
tv(t) Time to complete task locally on vehicle v at time t
pv(t) Computational power of vehicle v at time t
spv(t) Speed of vehicle v at time t
gv, j(t) Channel gain between vehicle v and RSU j at time t
Lv(t) Number of tasks assigned to vehicle v at time t
Tv(t) Total number of tasks assigned to vehicle v at time t
Xti Offloading decision for vehicle i at time t
Bti Resource allocation for vehicle i at time t

Rlocal Reward for local computation
α Weight for energy in the reward function
β Weight for task loss in the reward function
E Energy consumed during local computation

Loff Latency of offloading task to RSU
CF Congestion factor in offloading latency
Eoff Energy consumed during offloading
H Channel gain
P Proximity penalty based on distance from RSU

Rout of range Negative reward for being out of range
V(s) State value function in dueling DDQN

A(s, a) Action advantage function in dueling DDQN
Q(s, a) Action-value function in DDQN
γ Discount factor
y′i Target Q-value for each branch in dueling DDQN
Loss Loss function for updating the network
δ(i) TD error for tuple i
p(i) Selection probability for tuple i
w(i) Weight for tuple i
ϵ Exploration rate in ϵ-greedy approach

In the middle layer, R RSUs are distributed along the road,
each connected to an edge server ES through a fiber-wired con-
nection. In each time interval t, the RSUs receive task requests
from vehicles within their coverage area. Depending on the net-
work conditions, traffic factors, computational load, vehicle’s
energy, task time, etc., RSUs can choose a binary offloading de-
cision for all vehicles in their respective zones using vehicles’
state information to reduce the computational load of vehicles
and to minimize the latency, energy, and task loss rate. Each
Ri has a coverage radius Li and possesses computational capa-
bilities defined by CPU processing frequency frsui . Due to the
limited computational power, waiting tasks that require imme-

diate execution are queued. The queue length at Ri is expressed
as

qrsui =
∑
tk∈Qi

ck (1)

where ck denotes the CPU cycles required for the task tk in
the queue [33].

In each time interval, the set of vehicles within the coverage
of Ri is{vi,1, vi,2, . . . , vi,K}. The current task of each vehicle vi,K

is depicted as

ti,k = {di,k, ci,k, tmaxi,k } (2)

Here, di,k denotes the task data size generated by the vehi-
cle vi, ci,k represents the CPU cycles that are required to com-
plete the task and tmaxi,k is the maximum tolerable latency of the
given task. The tasks not offloaded and executed by the vehi-
cle itself are processed on the OBU in local computing mode.
The computational capacity of each vehicle vi,K is specified by
its CPU processing frequency fvi , and length of the task queue
by qvi . This means that the state of vehicle vi,K is described by
its computational state { fvi , qvi } and the information of the task
ti,k = {di,k, ci,k, tmaxi,k }, collectively denoted as

ovi = { fvi , qvi , di,k, ci,k, tmaxi,k } (3)

Through this model, task offloading decisions of vehicles
are depicted as at each time slot t, vehicles {vi,1, vi,2, . . . , vi,K}

within each Ri’s range possess an offloading decision {xTi,1 , xTi,2 , . . . , xTi,K },
where xTi,K ∈ {0, 1}, which is a binary decision. Here, 0 repre-
sents the local computation and 1 represents offloading. We
aim to learn the optimal offloading decision, which ensures op-
timal computational resource management and minimizes over-
all costs in terms of delay, energy consumption, and task loss
rate during task offloading modes.

3.1. Computation Model

In our proposed model, the set of vehicles in zone i at time
t, denoted by vi(t), should complete their computing tasks be-
fore leaving the zone. We anticipate that vehicles will not exit
the respective RSU zone during each time interval t. If some
vehicle is expected to leave the zone and cannot complete the
task in the time frame t, it should execute it locally. The task of-
floading decision for all vehicles in vi(t) is represented by xi(t),
a binary variable defined as:

xi(t) =

1, if computation load Li(t) is offloaded to Ri,

0, if processed locally by the vehicles.
(4)

3.1.1. Local Computation Model
We assume all vehicles have OBU with CPU processing fre-

quency, denoted by fv. The number of CPU cycles required to
process one bit of data is denoted by c. In this case, the average
local computing delay for the computation load Li(t) is given
by:

4

Tlocali (t) =
c · Li(t)
fv · ni(t)

· (1 − xi(t)), i ∈ M, (5)

where ni(t) is the number of vehicles in zone i at time t, and
xi(t) = 0 corresponds to local processing.

3.1.2. Remote Computation Model
In the edge computing model, each RSU Ri has to perform

multiple tasks in parallel. The computational resources of the
RSU Ri are limited and vary dynamically over time. The avail-
able computing resources of Ri at time t are denoted by fi(t).

If the computation load Li(t) is offloaded to Ri, the process-
ing delay includes the vehicle to RSU communication delay and
the RSU execution delay. The RSU Ri has to complete the task
independently rather than sharing the computation load with ad-
jacent RSUs. In this scenario, when the computation load Li(t)
is completely executed at the respective RSU, the average com-
puting delay is given by:

Tcompi
(t) =

c · Li(t)
fi(t) · ni(t)

. (6)

In this dynamic IoV scenario, vehicle-generated tasks must
be processed while the vehicles are within the RSU’s coverage
area. It is assumed that the task must be processed within the
same time slot. If not, it will be discarded by the RSU. Hence,
RSUs must make the optimal decision to minimize the task loss
rate.

3.2. Communication Model
For better communication, we assume each R’s radio ac-

cess utilizes Orthogonal Frequency Division Multiple Access
(OFDMA). OFDMA is an efficient communication radio ac-
cess method that divides the available spectrum into multiple
sub-carriers. This enables parallel communication by assigning
different sub-carriers to different vehicles.

For vehicle-to-RSU communication, the Signal to Interfer-
ence plus Noise Ratio (SINR) from vehicle vi to RSU R j is
expressed as:

γvi, j =
pvi, j Hvi, j

N0W + Ivi, j

, (7)

where Hvi, j denotes the channel gain. Here, pvi, j denotes
the vehicle’s transmit power and is used for the vehicle to RSU
communication. The channel capacity is W, and N0 is the Gaus-
sian white noise power spectral density. Hence, the Gaussian
white noise power of the channel is depicted as N0W. Co-
channel interference, denoted as Ivi, j , arises from other vehicles
using the same channels, while inter-channel interference is not
present due to the orthogonality of OFDMA.

The maximum transmit power for vehicle i is Pvi, j . There-
fore, the transmit power pvi, j must satisfy the constraint:

pvi, j ∈ [0, Pvi, j], i ∈ N j, j ∈ M. (8)

By using the Shannon capacity formula for a channel, the
vehicle to RSU communication rate for the uplink task from
vehicle i to RSU j is given by:

rvi, j = W log2

(
1 + γvi, j

)
. (9)

Hence, the vehicle to RSU task communication delay for
vehicle i is computed as:

tvi, j =
dini, j

rvi, j

, (10)

where dini, j symbolizes the size of task data to be transmit-
ted. The transmission power allocation for all vehicles into the
set P is given by:

P = {pvi, j }i∈N j, j∈M (11)

For a vehicle to RSU communication, we formulate the
SINR from RSU R (l ∈ Li, j) to vehicle i as:

γrvi, j ,l
=

Prvi, j ,l
Hrvi, j ,l

N0W + Irvi, j ,l

, (12)

where Prvi, j ,l
is the transmit power of RSU R for sending the

results of the task to vehicle i, the channel gain in the equation is
Hrvi, j ,l

, N0W is the Gaussian white noise power of the channel,
and Irvi, j ,l

is the co-channel interference. By using the orthog-
onality of OFDMA, we ensure that there is no inter-channel
interference.

The RSU to vehicle communication rate for the downlink
from RSU R to vehicle i can be expressed as:

rrvi, j ,l
= W log2

(
1 + γrvi, j ,l

)
. (13)

Thus, the RSU to vehicle task causes a communication de-
lay from RSU R to vehicle i is given by:

trvi, j ,l
=

douti, j

rrvi, j ,l

, (14)

where douti, j denotes the size of the task result data to be
transmitted [31].

3.2.1. Energy Consumption
The energy consumption for local computational processing

for vehicle i is given by:

evi, j = κi, j(fvi, j)
2 · ci, j, (15)

where the constant representing the effective switched ca-
pacitance is given by κi, j, which depends on the chip architec-
ture.

In the case of task offloading of the vehicle i, we consider
the energy consumption only during the vehicle to RSU task
communication, which is given as:

evri, j
= pvi, j · tvi, j . (16)

5

3.2.2. Processing Cost
Our system model considers the processing cost of a vehi-

cle’s task as a weighted sum of the energy consumption and
task execution delay. Let wi, j be the weight factor for vehicle
i. In our proposed work, there are two cases of task processing.
First, the task is processed locally, and second, the task is of-
floaded to the corresponding RSU. In case of local execution,
we denote αi, j = 0, and tvi, j is the task processing latency for
vehicle i, and Evi, j is the energy consumption. Hence, the total
cost can be expressed as follows:

u(1)
i, j = αi, j

(
tvi, j + wi, jEvi, j

)
. (17)

In case of remote execution βi, j, j = 0, the task processing
delay for vehicle i encompasses the vehicle to RSU task com-
munication delay from vehicle i to RSU j, denoted as tvri, j

, the
execution delay at the RSU j, denoted as tri, j, j , and the task result
migration delay from RSU j to vehicle i, denoted as trvi, j , j

.
The energy consumption, in this case, is represented by the

energy consumed during the vehicle to RSU transmission pro-
cess, Evri, j

. Furthermore, vehicle i must be within the coverage
area of RSU j to receive the task result transmitted from RSU.
Mathematically:

βi, j, j

(
tvri, j
+ tri, j, j + trvi, j , j

)
≤ χi, j, i ∈ N j, j ∈ M. (18)

Hence, we can express the total task processing mathemat-
ically as:

u(2)
i, j = βi, j, j

(
tvri, j
+ tri, j, j + trvi, j , j

+ wi, jEvri, j

)
. (19)

3.3. Vehicular Mobility Model

We assume that vehicles may enter or leave the road and
zones at any time except during the time interval t. In this time
frame, the set of vehicles within the coverage area of RSU ri

is denoted by vi(t). We consider that the duration of a time
slot t is short (e.g., milliseconds), so the number of vehicles
within the coverage area of RSU ri during a one-time slot can
be considered constant and is denoted by ni(t). However, ni(t)
may vary over longer time scales due to changes in traffic flow
dynamics. Thus, the average number of vehicles vi(t) is related
to the average speed s(t) on the road, which can be expressed
as:

s(t) = slim

(
1 −

n(t)
nmax

)
(20)

Here, s(t) represents the average speed of vehicles at time
t, slim is the maximum speed limit for vehicles on the road,
n(t) represents the average number of vehicles in the zone at
time t, and nmax is the maximum number of vehicles that can be
accommodated in the zone.

4. Problem Formulation

We aim to optimize the offloading decisions and resource
allocation to minimize the total cost associated with the energy,

latency, and task loss rate. Simply, the objective function is
to minimize the average total cost over time T , which includes
energy consumption, latency, and task loss rate:

(P1) min
xv,i(t),av, j(t)

1
T

T−1∑
t=0

(α · E(t) + β · L(t) + γ · R(t)) (21)

where, xv,i(t) ∈ {0, 1} is the offloading decision for vehicle
v for task i at time t. Here, xv,i(t) = 1 indicates that task i is
offloaded to the RSU, and xv,i(t) = 0 indicates that the task is
computed locally. av, j(t) represents the decision on the alloca-
tion of resources for vehicle v concerning RSU j at time t. E(t)
denotes the total energy consumption at time t. L(t) denotes the
total latency at time t. R(t) denotes the total task loss rate at time
t. α, β, γ are the weights associated with energy consumption,
latency, and task loss rate, respectively.

The optimization problem is subject to the following con-
straints:

• C1: The offloading decision xv,i(t) must be binary:

xv,i(t) ∈ {0, 1} ∀v ∈ V,∀i ∈ I,∀t ∈ T (22)

• C2: The resource allocation decision av, j(t) must be be-
tween 0 and 1:

0 ≤ av, j(t) ≤ 1 ∀v ∈ V,∀ j ∈ J,∀t ∈ T (23)

• C3: The total resource allocation across all RSUs for a
vehicle must sum up to 1:∑

j∈J

av, j(t) = 1 ∀v ∈ V,∀t ∈ T (24)

• C4: The latency of processing a task must not exceed a
predefined maximum delay:

Lv,i(t) ≤ Lmax ∀v ∈ V,∀i ∈ I,∀t ∈ T (25)

• C5: The total energy consumption must be within ac-
ceptable limits:

Ev(t) ≤ Emax ∀v ∈ V,∀t ∈ T (26)

• C6: The task loss rate must not exceed a predefined thresh-
old:

Rv(t) ≤ Rmax ∀v ∈ V,∀t ∈ T (27)

• C7: The vehicle should not leave the corresponding RSU
zone before receiving results:

βi, j, j

(
tvri, j
+ tri, j, j + trvi, j , j

)
≤ χi, j, i ∈ N j, j ∈ M. (28)

6

5. Proposed Solution

As our complete problem is a mixed integer non-linear
programming (MINLP) problem due to the mixed discrete
and continuous variables, the objective function, and non-
convex constraints, it is difficult to solve by numerical meth-
ods directly. To solve this, we propose a sequential quadratic
programming-based dueling DDQN (SQ-DDTO) for opti-
mal task offloading decisions and resource allocation. To
address the computing resource allocation problem, we can
decouple the original problem (P1). Following this decou-
pling, the Dueling DDQN is used for binary offloading de-
cisions, and computing resource allocation can be naturally
decoupled. This allocation is indicated by the set F , which
includes the CPU resources allocated in the vehicle v (Fv)
and in the Roadside Unit (RSU) r (Fr). We aim to mini-
mize the total latency, energy consumption, and task loss
rate across the vehicular edge network while satisfying the
constraints of task offloading decisions and resource alloca-
tion. Hence, we can express the resource allocation problem
by decoupling it from the offloading decisions as follows:

P2: min
Fv,Fr

Ctotal(F) =
N∑

i=1

M∑
j=1

Ci j(Fvi ,Fr j), (29)

s.t. C1,C2,C3,C4,C5,C6,C7. (30)

The given problem, P2, is a highly dimensional and nonlin-
ear optimization problem given by multiple constraints. We use
the Sequential Quadratic Programming (SQP) algorithm, which
is optimal for handling nonlinearity in multiple constraints. By
using this, the Lagrangian function for the optimization prob-
lem can be defined as:

L(F , λ, µ) = Ctotal(F) + λT g(F) + µT h(F) (31)

Here, g(F) and h(F) denote equality and inequality con-
straints, respectively, and λ and µ are the associated Lagrange
multipliers. At each iteration k, the SQP algorithm solves a
quadratic programming (QP) subproblem as:

min
S k

∇L(Fk, λk, µk)T S k +
1
2

S T
k BkS k, (32)

s.t. g(Fk)+∇g(Fk)T S k = 0, h(Fk)+∇h(Fk)T S k ≤ 0, (33)

where S k denotes the search direction and Bk is the Hessian
matrix. It is approximated using the Broyden Fletcher Goldfarb
Shanno method. Hence, the update rule for the allocation is
given by:

Fk+1 = Fk + αkS k, (34)

where αk denotes the step size obtained using a line search
method such as the Wolfe conditions. This iterative process
continues with the factors needed until convergence to the opti-
mal solution F ∗, the optimal allocation of computing resources
for each vehicle in the corresponding zone. Algorithm 1 pro-
vides the mathematical steps of the proposed SQP-based re-
source allocation strategy.

Algorithm 1 SQP-based Resource Allocation Strategy
Require: Initial resource allocation F0, convergence tolerance
ϵ, offloading decision αi j

Ensure: Optimal resource allocation F ∗

1: Initialize iteration counter k = 0 and symmetric positive
definite matrix B0

2: while true do
3: Formulate the Lagrangian L(Fk, λk, µk)
4: Solve the QP subproblem:

S k = arg min
S k
∇L(Fk, λk, µk)T S k +

1
2

S T
k BkS k

s.t. g(Fk) + ∇g(Fk)T S k = 0, (35)

h(Fk) + ∇h(Fk)T S k ≤ 0 (36)

5: Perform line search to find step size αk that satisfies
Wolfe conditions

6: Update resource allocation:

Fk+1 = Fk + αkS k (37)

7: if convergence criterion ∥Fk+1 − Fk∥ < ϵ is met then
8: Set F ∗ = Fk+1 and break
9: end if

10: Update Hessian matrix Bk+1 using BFGS method
11: Increment iteration counter k = k + 1
12: end while
13: return Optimal resource allocation F ∗

5.1. state space

The state space provides the system information observed
by the agent at the beginning of each time interval t. Our state
space encompasses various parameters that are crucial to the
decision-making process. Specifically, our the state space S is
defined as follows:

st =
[
dv, j(t),wv, j(t), tv(t), pv(t), spv(t), gv, j(t), Lv(t),Tv(t)

]
(38)

where: dv, j(t) denotes the distance between vehicle v and
RSU j at time t. wv, j(t) indicates whether the vehicle is within
the range of RSU j (1 if within range, otherwise 0). tv(t) de-
notes the time required to complete the task if computed locally
at time t. pv(t) is the computational power of the vehicle v at
time t. spv(t) is the speed of vehicle v at time t. hv, j(t) is the
channel gain between vehicle v and RSU j at time t. Lv(t) is the
number of tasks currently assigned to vehicle v at time t, and
Tv(t) denotes the total number of tasks assigned to vehicle v .

5.2. Action Space

The action space is the set of all possible actions an agent
can take during decision-making. In our designed action space,
the agent can choose between local execution or offloading based
on specific parameters. Hence, the action space vector for of-
floading at time t is

7

Xt = {xt1, xt2, . . . , xtn},

where xti represents the offloading decision for vehicle i at time
t.

5.3. Reward Functions

We aim to minimize the overall cost associated with the task
offloading problem by assigning weights to distinct cost com-
ponents. Hence, the reward for local computation is formulated
as follows:

Rlocal = −L − αE − βLloss (39)

Here, (L) represents the latency, which is the time t taken to
complete the task when computation is performed locally on the
vehicle itself. Lower latency results in a higher reward. Second,
the energy consumed during local computation is calculated as
the product of the vehicle’s computational power Pcomp and the
task duration t. Hence, minimizing energy consumption results
in improved reward. Finally, we also add a penalty function to
the reward function to satisfy the constraints of the optimization
problem, which is given as (Lloss). This penalty applies to tasks
lost due to excessive latency, poor channel quality, etc. Fewer
lost tasks lead to a higher reward.

E = Pcomp × t (40)

On the other hand, the reward for offloading can be ex-
pressed as:

Roff = −
Loff

G × S
− αEoffload − βLloss − γP (41)

Loff =
t × (1 + CF)

G × S
(42)

Here, Loff is the time required to complete the task when of-
floaded to an RSU. This is done by considering congestion fac-
tor (CF), channel gain (H), and vehicle speed (S). Thus, higher
latency results in a lower reward. Next, (Eoffl) is the energy re-
quired for offloading, which is calculated as the product of the
energy consumption rate (ECR) and offloading latency (Loff).
Hence, reducing energy consumption significantly improves the
reward and can be expressed as:

Eoff = ECR × Loff (43)

Similarly, the channel gain (H), which represents the quality of
the communication channel and is derived from path loss and
other factors, also contributed to the reward function. A higher
channel gain improves the reward. For example:

H = 10−PL/10 (44)

We also add a proximity penalty denoted as (P), which repre-
sents the penalty based on the distance from the RSU (dRSU)
relative to the maximum range (dmax). Thus, a higher proximity
penalty reduces the reward.

P =
dRSU

dmax
(45)

Finally, we add a significant negative reward if the vehicle
is out of range of any RSU, discouraging offloading decisions.
Thus, the negative reward for being out of range is given by
Rout of range = −100.

5.4. Proposed Dueling DDQN for enhanced Q-Value Estima-
tion

After decoupling the resource allocation sub-problem,
we model the rest of the problem as a Markov Decision Pro-
cess (MDP). This mainly includes state space, action space,
and reward function, which we discussed above. We imple-
ment a DDQN using a dueling architecture to make optimal
binary offloading decisions while balancing the latency, en-
ergy consumption, and task loss rate. We consider a neural
network which is a multi-layer perceptron, with an input
layer with 8 neurons that accepts a state vector to approx-
imate the Q function where each neuron corresponds to a
parameter in the state space. Second, we consider three
hidden layers with 64, 32, and 16 neurons with RelU activa-
tion function in each hidden layer. These layers are respon-
sible for extracting relevant features for decision-making,
and the output layer has the sigmoid activation function.
Finally, we split the network into two streams. In the first
stream, we estimate the value of being in a particular state,
independent of the action being taken. This includes a fully
connected layer and RelU activation function, followed by
an output layer with a single neuron representing the state
value. In the second stream, we estimate the advantage of
each action, followed by an output layer generating possible
actions.

To improve the stability and generalization of our proposed
algorithm, the Q-value estimation is divided into two parts, in-
cluding the state value function V(s) and the action advantage
function A(s, a). This separation allows the model to indepen-
dently evaluate the value of states and the advantage of actions,
leading to more effective learning. The action-value function
Q(s, a) is computed as follows:

Q(s, a) = V(s) +

A(s, a) −
1
|A|

∑
a′∈A

A(s, a′)

 (12) (46)

In our proposed algorithm, the combined Q-value function
for each action in dimension d is given by:

Qd(S , Xi) = V(S)+

Ad(S , Xi) −
1
n

∑
X′∈D

Ad(S , X′)

 (13) (47)

Here, Qd represents the Q-value of action Xi in dimension
d, V(S) is the state value, Ad(S , Xi) is the advantage value for
action Xi, andD denotes the set of actions in dimension d. The
optimal action Xi in each dimension is selected as:

8

Figure 2: Proposed SQ-DDTO Algorithm

Xi = arg max
X′d∈Ai

Qi(S , X′d) (14) (48)

The overall action vector, which includes both the offload-
ing and local computation, is represented as:

X = [Xx1, Xx2, . . . , XxN] (15) (49)

Here, Xxi denotes the offloading decision for each vehicle
i. As we aim to improve the generalization and stability of the
learning process using dueling architecture, we separate the es-
timation of Q-values into two distinct components of the state
value function V(s) and the action advantage function A(s, a).
This separation improves the efficiency of action learning. In
our proposed algorithm, the target Q-value y′i for each branch is
computed as:

y′i = Rt + γQ′i(S t+1, arg max
a′d∈Di

Qi(S t+1, a′d)) (16) (50)

where Rt is the immediate reward, γ is the discount factor
and Q′i(S t+1, a′d) represents the Q value for the next state S t+1
estimated by the target network. The loss function used to up-
date the online network’s parameters is:

Loss = E
 1
2N

∑
d

(y′d − Qd(S j, A j, d))2

 (17) (51)

Here, Qd(S j, A j, d) is the Q-value for the action dimension
d in the state S j with action A j, and y′d is the target Q-value for
branch d.

We use PER to improve sample selection efficiency. The
probability p(i) of selecting the i-th tuple is given by:

p(i) =
(|δ(i)| + ϵ)α∑
j(|δ(j)| + ϵ)α

(52)

where δ(i) represents the TD error, corresponding to the dif-
ference between the expected and predicted Q-values. ϵ is a
small constant to avoid zero probabilities. and α controls the
level of prioritization.

The cumulative difference δ(i) is calculated as:

δ(i) = |yi − Q(si, ai)| (53)

To balance the impact of different losses and prevent over-
fitting, the weight w(i) for each tuple is computed as:

w(i) =
(

1
N · p(i)

)β
(54)

Moreover, we use ϵ-greedy approach as our exploration. In
this setup, the agent explores the environment with high proba-
bility (ϵ = 1.0) to encourage diverse experiences. After this, ϵ
decays exponentially at a rate of 0.995 until it reaches a mini-
mum threshold of 0.01. This strategy focuses on exploiting the
learned policy. Finally, our agent uses a PER buffer to store past
experiences and sample experiences based on their importance,
as determined by the TD error. Hence, PER enhances learning
efficiency by focusing on higher values to improve the policy,
accelerating the learning process efficiently.

6. Experiment Results and Evaluations

Our proposed algorithm is developed in Python. We
simulate the SQ-DDTO in a custom-built environment where
vehicles are modeled with varying speeds and locations on
a straight path which simulates real-world traffic settings.

9

Algorithm 2 Dueling DDQN-Based Offloading Decision Al-
gorithm with Prioritized Experience Replay

1: Input: Initial parameters θ, θ′, maximum episodes E, max-
imum steps per episode τ, exploration rate ε, prioritization
factor α, and importance sampling factor β.

2: Output: Optimized offloading decisions for minimizing
latency and energy consumption.

3: Initialize prioritized replay memory buffer with a maxi-
mum capacity.

4: Initialize online network parameters θ with random
weights.

5: Initialize target network parameters θ′ such that θ′ = θ.
6: Set epsilon (ε) for the epsilon-greedy strategy.
7: for episode = 1 to E do
8: Observe initial state S 0.
9: for t = 1 to τ do

10: With probability ε, select a random action At.
11: Otherwise, select At = arg maxa Q(S t, a; θ).
12: Execute action At, receive reward Rt, and observe next

state S t+1.
13: Compute the TD-error δt = |Rt +

γmaxa′ Q(S t+1, a′; θ′) − Q(S t, At; θ)|.
14: Use the TD-error to calculate the priority pt = (δt+ϵ)α

and store the transition (S t, At,Rt, S t+1) in the replay
memory buffer with priority pt.

15: Sample a minibatch of transitions (S j, A j,R j, S j+1)
from the buffer based on their priorities.

16: Calculate importance-sampling weights w(i) =(
1

N·p(i)

)β
.

17: Calculate the target Q-value using:

y j = R j + γQ(S j+1, arg max
a′

Q(S j+1, a′; θ); θ′)

18: Perform a gradient descent step on the weighted loss:

L(θ) =
1
N

N∑
j=1

w j(y j − Q(S j, A j; θ))2

19: Update target network parameters θ′ every tupdate
steps: θ′ = θ.

20: Update the current state S t to the next state S t+1.
21: end for
22: Decay epsilon ε for exploration-exploitation balance.
23: Decay importance-sampling factor β towards 1 over

time.
24: end for

Table 2: Hyperparameters of the SQ-DDTO Algorithm
Parameter Symbol Value
State Size S 8
Action Size A 2
Discount Factor γ 0.9
Initial Epsilon ϵ0 1.0
Epsilon Decay Rate ϵdecay 0.995
Minimum Epsilon ϵmin 0.01
Batch Size B 32-64
Max Episodes E 500
Max Steps per Episode Tmax 500
Soft Update Weight τ 0.995

With the high mobility models, vehicles change their posi-
tions and their locations are updated accordingly. RSUs are
modeled at random intervals and equipped with comput-
ing capabilities. Moreover, channel quality between vehicles
and RSUs is modeled using standard path loss and attenu-
ation models to reflect realistic communication constraints.
We evaluate our proposed algorithm SQ-DDTO with mul-
tiple experiments, performing different simulation parame-
ters such as ranges, number of RSUs and vehicles, and setup
of hyperparameters. We applied SQ-DDTO with different
neurons, layers, discount factors, learning rates, memory
sizes, weights, activation functions, etc., and selected the op-
timal one. We choose only those hyperparameter settings
that maximize our reward. Our state space consists of 8
features, and the action space is binary, representing the
offloading decisions. We use ReLU as an activation func-
tion for all hidden layers and set the learning rate to 0.01.
The discount factor is 0.9. We also manage the exploration-
exploitation trade-off using an ϵ-greedy policy, where the
initial value of ϵ is 1.0. In this setup, we use a decay rate of
0.995 and a minimum ϵ value of 0.01. [30]-[31]

Table 3: Simulation Parameters
Definition Value
Range of RSU [100-300] m2

Size of Task [0.1-5] MB
Number of Vehicles [10, 50]
Transmit Power [0-24] dBm
Background Noise Variance -100 dBm
System Bandwidth 20 MHz
Computing Capability of RSU 5 GHz
Computing Capability of Vehicles [0.1-1] GHz
Energy Coefficient of Vehicles 5 × 10−27

Weights of Time Cost 0.6
Weights of Energy Cost 0.4
Number of Base Stations 3-5

6.1. Convergence Evaluations
For better convergence and efficient and stable learning, we

employ a dual architecture, focusing on the value of states and
the advantage of actions independently. We also use PER, which

10

Figure 3: Convergence analysis of proposed algorithm in terms of reward over
episodes

Figure 4: Training cost of the proposed algorithm over episodes

can lead to faster convergence. In this setup, the agent learns
more effectively by concentrating on experiences that are more
likely to lead to significant policy or value function updates.
Figure 3 shows the convergence analysis of the proposed al-
gorithm in terms of rewards over training episodes. One can
see that the proposed algorithm converges quickly with an in-
crease in training episodes and becomes stable at around 250th
episodes. We evaluated and compared our system with DQN
and DDQN. It can be seen that DDQN slightly converges around
the 380th episode, while DQN does not converge in the first 500
episodes. This is due to the ability of dueling architecture for
better generalization and learning suitability, along with PER
for faster convergence.

In figure 4, we provide a curve showing the training loss
over episodes, which shows the superior convergence and learn-
ing ability of our proposed algorithm. As we utilize the dueling
DDQN, enhanced by PER, we can infer that the training loss de-
creases over time as the agent’s improved learning for optimal
offloading decisions. It can also be seen that the loss decreased
quickly in initial episodes due to the focus of the agent on high-
priority experiences. After 250 episodes, the loss stabilizes,
achieving minimal training cost values. This shows the stabi-
lization of the agent’s learning using dueling DDQN for optimal
offloading actions with improved values and advantages estima-
tion.

In figure 5, we illustrate the performance of the proposed al-

Figure 5: Performance of different learning rates over episodes

Figure 6: Performance of different discount values over episodes

gorithm with different learning rates, including 0.1, 0.01, 0.001,
and 0.0001. The purpose is to validate the convergence of the
proposed algorithm with optimal learning. With a minimal learn-
ing rate, the agent experiences significant fluctuations and un-
stable convergence. This reflects the highly volatile learning
process. The learning rate of 0.01 and 0.001 provides sub-
stantial and stable convergence while achieving minimal loss
and maximizing reward. However, these learning rates still
face slighter fluctuations. Finally, the learning rate of 0.0001
also converges slowly, which leads to exceeding training times
with gradual improvements. One can easily infer that the learn-
ing rate of 0.01 and 0.001 provides an optimal balance while
achieving effective convergence with reduced fluctuations and
stable performance. In figure 6, we compare different gamma
values for the convergence of SQ-DDTO. We can see that 0.9
and 0.95 perform better than 0.99 because a lower value of
gamma emphasizes more on immediate rewards. Moreover, the
agent learns the optimal offloading decisions in our dynamic
scenario faster. This gamma value allows the agent to learn
more quickly about changes, reducing the impact of future un-
certainties. At the same time, 0.99 may slow the learning per-
formance due to more focus on future rewards.

6.2. Performance Comparison with Rule-Based Schemes
We compare our proposed algorithm regarding average de-

lay, energy consumption, and task loss rate with the following
rule-based benchmarks.

11

Figure 7: Performance of average delay with different number of vehicles

Local Computing (LC): All the tasks of vehicles are executed
locally.
Edge Computing (EC): All the tasks of vehicles are offloaded
to the RSU for remote execution.
Cloud Computing (CC): All the tasks of vehicles are offloaded
to the cloud server for remote execution with powerful comput-
ing capabilities.
Random Offloading (RO): All the tasks are randomly dis-
tributed between local and remote computing without employ-
ing any informed decisions.
Greedy Binary Offloading (GO): In this approach, a greedy
approach is used to make binary offloading decisions of execut-
ing either entirely locally or entirely on the edge server, with-
out task partitioning. In each time frame t, if the total reward
achieved through local execution exceeds the offloading mode
for the tasks of each vehicle, then local execution will be se-
lected for the next time frame t + 1. If not, the offloading mode
is selected.

In Figure 7, we provide a comparative analysis of the pro-
posed algorithm concerning the average delay. One can see
that all algorithms face higher delays as the number of vehicles
increases. This is due to an increase in the overall workload.
More vehicles generate more tasks, which tends to increase de-
lay significantly. We have validated that RO performs worse
than all other schemes in experiments. This is because RO
randomly selects the offloading decisions and resources with-
out any informed and intelligent decisions based on specific
parameters such as channel quality, speed, and vehicle direc-
tion. EC and CC perform better than local computing because
they utilize high computing capabilities. Here, local comput-
ing provides almost static delay because local CPU cycles are
used for each task without migrating to the RSUs. We can also
see that the proposed algorithm performs better compared to all
schemes with different numbers of vehicles and surpasses tradi-
tional schemes effectually due to its learning ability in dynamic
and complex networks.

Figure 8 compares the average cost of the system in terms of
energy consumption with varying numbers of vehicles. All al-
gorithms suffer from increased system costs with a higher num-
ber of vehicles. RO performs worst due to its poor decision-

Figure 8: Performance of System cost with different number of vehicles

Figure 9: Performance of task loss rate with different number of vehicles

making and resource allocation strategy. LC also performs worst
because it consumes vehicle resources without sending resource-
intensive tasks to RSUs, edge, or cloud servers. EC, CC, and
GO perform better than RO and LC due to utilizing the compu-
tational resources of remote servers and relieving the burden of
vehicles. As presented, the proposed algorithm excels in sys-
tem cost by reducing the average energy consumption and op-
timal resource allocation using SQP. It can also be inferred that
the proposed algorithm surpasses all rule-based methods with
varying numbers of vehicles due to its optimized task offloading
decisions and resource allocation strategies, irrespective of sys-
tem dynamics, such as vehicle speeds, location, distance, and
channel qualities. To evaluate the performance over task loss
rate, we first define it as the ratio of lost tasks whose process-
ing constraints, such as C4, C6, and C7, exceed their threshold,
as presented in P1. Figure 9 compares the proposed algorithm
with all rule-based methods. With an increase in the number of
vehicles, the task loss rate of all algorithms increases. This is
due to the extensive competition for computing resources and
vehicle bandwidth allocations. This requires more processing
time for all vehicle tasks, which leads to a higher task loss rate.
Among all, the proposed algorithm performs better due to its
optimal selection of computing modes and efficient allocation
of resources for all vehicles.

12

Figure 10: Performance of average delay with different number of vehicles

Figure 11: Performance of System cost with different number task arrival rates

Figure 12: Performance of task loss rate with different number RSU ranges

6.3. Performance Comparison with DRL-based Schemes

We further evaluate the performance of our proposed algo-
rithm with DRL-based schemes, including Deep Q Networks
(DQN), Double Deep Q Networks (DDQN), and Deep Deter-
ministic Policy Gradient (DDPG), which is suitable for contin-
uous action space. In Figure 10, we compare the performance
of the proposed algorithm in terms of average delay with dif-
ferent numbers of vehicles. When the number of vehicles in-
creases in each zone, all the algorithms return a higher average
delay. This is because when more vehicles enter the respective
zones, they require more communication and communication
resources, leading to a significant increase in delays. This also

leads to more interference in vehicle-to-infrastructure channels
and an increase in average delay. Here, we can infer that DDPG
does not perform well due to the discrete action space; however,
it prefers continuous action spaces. DQN also performs the
worst due to overestimation bias, which is reduced by DDQN
using different networks to select and evaluate actions. The pro-
posed algorithm excels at minimizing average delay because it
separates state values and advantages, which helps distinguish
between valuable and less valuable states effectively. In Figure
11, we analyze the system cost in terms of energy consumption
with variable task arrival rates. It is depicted that all algorithm
results exceed system costs when the task arrival rate increases.
However, with these variable task arrivals, the proposed algo-
rithm performs better than DQN, DDQN, and DDPG.

We also compare the performance of the proposed algo-
rithm in terms of task loss rate with a varying number of RSU
ranges. The different range of RSUs significantly impacts the
ratio of task loss rate. As presented in Figure 12, all algorithms
have a high task loss ratio with smaller RSU coverage that de-
creases significantly with increasing RSU coverage. More sub-
stantial coverage of the RSU reduces the task loss rate because
it increases the time that vehicles remain connected to the RSU,
allowing more tasks to be successfully offloaded and processed
at the RSUs. This extended connectivity reduces the chance
that tasks are dropped because vehicles leave the coverage ar-
eas before completing their offloaded tasks. We can see that the
proposed algorithm surpasses DQN, DDQN, and DDPG due to
its stable learning for optimal offloading decisions and efficient
resource allocation in such highly complex networks.

7. Conclusion

In this research, we provided a novel two-level SQ-DDTO
algorithm for optimal offloading decisions and resource alloca-
tion. First, we decoupled both the problems of offloading deci-
sions and resource allocation and then utilized dueling DDQN
for better generalization and learning while making offloading
decisions. Then, to improve the sample efficiency, we em-
ployed PER, which prioritizes each experience according to the
temporal difference error instead of random selection. Follow-
ing this decoupling, we use SQP to solve the problem of com-
puting resource allocation. The experimental results show that
the proposed algorithm surpasses rule-based and DRL-based
schemes, including DQN, DDQN, and DDPG, in terms of aver-
age delay, energy consumption, and task loss rate. In the future,
we aim to investigate the strength of DRL-based computation
offloading and resource allocation algorithms in urban traffic
scenarios with more realistic simulation tools such as Simula-
tion of Urban Mobility (SUMO).

Declaration of Generative AI

The authors declare that they used Generative AI in the writ-
ing process solely to improve the readability and language of
the introduction and conclusion.

13

References
[1] Gill, S.S., A manifesto for modern fog and edge computing: Vision,

new paradigms, opportunities, and future directions, in Operationalizing
Multi-Cloud Environments. 2022, Springer. p. 237-253.

[2] Panigrahy, S. & Emany, H. A survey and tutorial on network optimization
for intelligent transport system using the internet of vehicles. Sensors. 23,
555 (2023)

[3] Gong, T., Zhu, L., Yu, F. & Tang, T. Edge intelligence in intelligent trans-
portation systems: A survey. IEEE Transactions On Intelligent Trans-
portation Systems. 24, 8919-8944 (2023)

[4] Zhang, X., Liu, J., Hu, T., Chang, Z., Zhang, Y. & Min, G. Federated
learning-assisted vehicular edge computing: Architecture and research
directions. IEEE Vehicular Technology Magazine. (2023)

[5] Georgiades, M. & Poullas, M. Emerging technologies for V2X commu-
nication and Vehicular Edge Computing in the 6G era: Challenges and
Opportunities for Sustainable IoV. 2023 19th International Conference
On Distributed Computing In Smart Systems And The Internet Of Things
(DCOSS-IoT). pp. 684-693 (2023)

[6] Panigrahy, S. & Emany, H. A survey and tutorial on network optimization
for intelligent transport system using the internet of vehicles. Sensors. 23,
555 (2023)

[7] Marwein, P., Nath Sur, S., Gao, X. & Kandar, D. Recent Survey on Inter-
net of Vehicles: Architecture, Applications, Challenges, and Its Solutions.
Journal Of Testing And Evaluation. 52, 731-753 (2024)

[8] Hasan, M., Jahan, N., Nazri, M., Islam, S., Khan, M., Alzahrani, A., Alal-
wan, N. & Nam, Y. Federated learning for computational offloading and
resource management of vehicular edge computing in 6G-V2X network.
IEEE Transactions On Consumer Electronics. (2024)

[9] Umar, A., Hassan, S., Jung, H., Garg, S., Hossain, M. & Guizani, M.
Computation offloading in NOMA-MEC-enabled aerial-vehicular net-
works exploiting mmWave capabilities. Computer Networks. pp. 110335
(2024)

[10] Liao, Z., Xu, S., Huang, J. & Wang, J. Task Migration and Resource
Allocation Scheme in IoV With Roadside Unit. IEEE Transactions On
Network And Service Management. 20, 4528-4541 (2023)

[11] Fan, X., Gu, W., Long, C., Gu, C. & He, S. Optimizing Task Offloading
and Resource Allocation in Vehicular Edge Computing Based on Hetero-
geneous Cellular Networks. IEEE Transactions On Vehicular Technology.
(2023)

[12] Shinde, S. & Tarchi, D. A markov decision process solution for energy-
saving network selection and computation offloading in vehicular net-
works. IEEE Transactions On Vehicular Technology. 72, 12031-12046
(2023)

[13] Zabihi, Z., Eftekhari Moghadam, A. & Rezvani, M. Reinforcement learn-
ing methods for computation offloading: a systematic review. ACM Com-
puting Surveys. 56, 1-41 (2023)

[14] Luo, Z. & Dai, X. Reinforcement learning-based computation offloading
in edge computing: Principles, methods, challenges. Alexandria Engi-
neering Journal. 108 pp. 89-107 (2024)

[15] Mustafa, E., Shuja, J., Rehman, F., Riaz, A., Maray, M., Bilal, M. &
Khan, M. Deep Neural Networks meet computation offloading in mobile
edge networks: Applications, taxonomy, and open issues. Journal Of Net-
work And Computer Applications. pp. 103886 (2024)

[16] Li, C., Zhang, Y. & Luo, Y. DQN-enabled content caching and quantum
ant colony-based computation offloading in MEC. Applied Soft Comput-
ing. 133 pp. 109900 (2023)

[17] Zhang, C., Peng, C., Lin, M., Du, Z. & Wu, C. Double DQN Reinforce-
ment Learning-Based Computational Offloading and Resource Allocation
for MEC. International Conference On Mobile Networks And Manage-
ment. pp. 240-253 (2023)

[18] Nguyen, T., Nguyen, N. & Nahavandi, S. Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications.
IEEE Transactions On Cybernetics. 50, 3826-3839 (2020)

[19] Du, W. & Ding, S. A survey on multi-agent deep reinforcement learning:
from the perspective of challenges and applications. Artificial Intelligence
Review. 54, 3215-3238 (2021)

[20] J. Lu et al., âA Multi-Task Oriented Framework for Mobile Computation
Offloading,â IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 187â201,
Jan. 2022, doi: 10.1109/TCC.2019.2952346.

[21] H. Li, X. Li, and F. Shen, âTask offloading under deterministic demand
for vehicular edge computing,â Etri J., vol. 45, no. 4, pp. 627â635, Mar.
2023, doi: 10.4218/ETRIJ.2022-0115.

[22] D. Ye et al., âMastering Complex Control in MOBA Games with Deep
Reinforcement Learning,â AAAI 2020 - 34th AAAI Conf. Artif. Intell., vol.
34, no. 04, pp. 6672â6679, Apr. 2020, doi: 10.1609/AAAI.V34I04.6144.

[23] J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, and Z. Han, âDRL-Based V2V
Computation Offloading for Blockchain-Enabled Vehicular Networks,â
IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 3882â3897, Jul. 2023, doi:
10.1109/TMC.2022.3153346.

[24] H. Chang, Y. Chen, B. Zhang, and D. Doermann, âMulti-UAV Mobile
Edge Computing and Path Planning Platform Based on Reinforcement
Learning,â IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 3, pp.
489â498, Jun. 2022, doi: 10.1109/TETCI.2021.3083410.

[25] B. Hu, Y. Shi, and Z. Cao, âAdaptive Energy-Minimized Schedul-
ing of Real-Time Applications in Vehicular Edge Computing,â IEEE
Trans. Ind. Informatics, vol. 19, no. 5, pp. 6895â6906, May 2023, doi:
10.1109/TII.2022.3207754.

[26] R. Zhang, C. Zhou, and I. ICC, âA computation task offloading scheme
based on mobile-cloud and edge computing for WBANs,â IEEE Int. Conf.
Commun. (ICC), 2022, Accessed: Oct. 01, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9838921/.

[27] R. Xu, S. Luan, Z. Gu, Q. Zhao, and G. Chen, âLRP-based policy
pruning and distillation of reinforcement learning agents for embed-
ded systems,â IEEE Int. Symp. Real-Time Distrib. Comput., 2022, doi:
10.1109/ISORC52572.2022.9812837.

[28] G. Tian, Y. Ren, C. Pan, Z. Zhou, and X. Wang, âAsynchronous
federated learning empowered computation offloading in collab-
orative vehicular networks,â IEEE Wirel. Commun. Netw. Conf.
(WCNC), 2022, Accessed: Oct. 01, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9771736/.

[29] R. Duvignau, B. Havers, V. Gulisano, and M. Papatriantafilou, âTime-
and Computation-Efficient Data Localization at Vehicular Networksâ
Edge,â IEEE Access, 2021, Accessed: Oct. 01, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9562541/.

[30] Sun, D., Chen, Y. & Li, H. Intelligent Vehicle Computation Offloading in
Vehicular Ad Hoc Networks: A Multi-Agent LSTM Approach with Deep
Reinforcement Learning. Mathematics. 12, 424 (2024)

[31] Geng, L., Zhao, H., Wang, J., Kaushik, A., Yuan, S. & Feng, W. Deep-
reinforcement-learning-based distributed computation offloading in ve-
hicular edge computing networks. IEEE Internet Of Things Journal. 10,
12416-12433 (2023)

[32] Chen, C., Zhang, Y., Wang, Z., Wan, S. & Pei, Q. Distributed computation
offloading method based on deep reinforcement learning in ICV. Applied
Soft Computing. 103 pp. 107108 (2021)

[33] Fan, W., Zhang, Y., Zhou, G. & Liu, Y. Deep Reinforcement Learning-
Based Task Offloading for Vehicular Edge Computing With Flexible
RSU-RSU Cooperation. IEEE Transactions On Intelligent Transportation
Systems. (2024)

14

