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Abstract—Accurate indoor localization and navigation enable
real-time, ubiquitous location-based services. Over the past
decade, data-driven approaches for inertial odometry have shown
the potential to enhance indoor positioning accuracy. However,
low-cost inertial measurement units (IMUs), commonly used in
smartphones and IoT devices, are prone to significant noise, lead-
ing to drift and degraded performance in navigation algorithms.
This paper presents DeepILS1, a novel, lightweight, and real-time
end-to-end framework designed to process raw inertial data for
precise pedestrian localization in indoor environments. DeepILS
utilizes a residual network enhanced with channel-wise and spa-
tial attention mechanisms, enabling accurate velocity and position
estimation across diverse motion dynamics. The framework’s
effectiveness was validated in real-time edge scenarios using four
benchmark datasets and two newly introduced datasets, collected
across diverse indoor environments at the KAIST campus and
Incheon National Airport, utilizing multiple hardware platforms,
including the KAIST IoT positioning module and Android smart-
phones. Experimental results, including tests on unseen data
and comprehensive ablation studies, demonstrate that DeepILS
improves localization accuracy by 70% compared to state-of-
the-art methods while effectively mitigating sensor noise and
enhancing robustness in real-world environments. Specifically,
DeepILS exhibits excellent edge performance on IoT devices,
making it highly suitable for real-time applications.

Index Terms—Pedestrian Localization, Indoor Navigation,
Deep Neural Networks (DNN), Convolution, State Estimation,
Quantization, ONNX, ZUPT, Deep Inertial Odometry, Artificial
Intelligence of Things (AIoT).

I. INTRODUCTION

THE inertial navigation system is widely adopted in intel-
ligent transportation, autonomous navigation [1], robotics

[2], and pedestrian positioning [3] to provide robust, power-
aware, cost-effective, and continuous motion information. In-
ertial odometry aims to predict the motion and position of
the pedestrian from the inherent noisy inertial measurement
unit (IMU) data. Among all the applications, pedestrian lo-
calization in an indoor environment is the most complex
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due to dynamic motion variants between the integrated IMU
device and the posture of the human body. The performance
of the traditional inertial tracking algorithms is degraded by
signal drifts due to long periods, varying pedestrian motion
(slow/fast walking, jogging, running, or stationary), and dif-
ferent smartphone attachments (in-pocket, handheld, in-bag,
or ear-position). Traditional approaches to processing IMU
data rely on feature engineering of sensor characteristics and
underlying dynamic motion properties.

The workflow for processing inertial data in indoor localiza-
tion, as outlined in [4], includes filtering IMU data, modeling
sensor properties, applying interpolation techniques, and sen-
sor data fusion to mitigate drift errors. IMUs are essential for
ego-motion perception in mobile systems but suffer from noise
and bias in acceleration and angular velocity, which lead to sig-
nificant positioning errors. Early efforts addressed inertial drift
through step detection, pedestrian walking patterns, and step
length estimation. However, these approaches often require
rigid sensor placement, such as foot-mounted configurations,
limiting their practicality in dynamic, real-world scenarios.

While multimodal sensor fusion techniques involving depth
cameras [5], lidars [6], and radars [7] have improved local-
ization accuracy, these solutions introduce installation cost,
privacy concerns, and energy efficiency challenges, making
them unsuitable for widespread deployment on consumer
devices. In contrast, smartphone-based inertial positioning is
more appealing due to the ubiquitous nature of smartphones,
their built-in IMUs, and their potential for low-cost, energy-
efficient operation. However, smartphone-based systems face
significant challenges due to the device’s varying orientation
and position, complicating accurate dead reckoning and step-
based localization. Recent advances in machine learning,
particularly deep learning, have shown promise in handling
the complexities of sensor fusion [8], drift error mitigation,
and sensor noise [9]. However, the computational demands
of these models often exceed the capabilities of mobile and
IoT devices, limiting their deployment in real-time, edge-
based applications. Most existing models are designed for
cloud-based systems, which are hindered by network latency
and privacy issues [10]. The need for efficient, lightweight
models capable of real-time smartphone processing remains
largely unmet. Smartphone-based positioning research aims to
develop practical, scalable solutions for real-time localization
that leverage existing hardware without relying on expensive
or complex sensor installations. This has become increas-
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ingly important for Artificial I ntelligence o f T hings (AIoT) 
applications, where accurate indoor positioning is critical for 
navigation, tracking, and context-aware services, yet solutions 
must operate efficiently on devices with limited computational 
and energy resources.

This article proposes DeepILS, an end-to-end framework 
designed for AIoT-enabled inertial localization. DeepILS cap-
tures complex motion patterns from IMU data, estimating 
pedestrian velocity in 2D space for accurate positioning in 
dynamic indoor environments. A key feature of DeepILS is 
its lightweight architecture, optimized for real-time operation 
on smartphones, overcoming the limitations of existing models 
in terms of computational complexity and energy efficiency. 
Furthermore, we developed an improved Android application, 
based on [11], to collect inertial odometry and ground truth 
data using ARCore. This application supports the evaluation 
of quantized DNN models on edge devices, validating the 
effectiveness of DeepILS for real-time indoor positioning and 
navigation on smartphones.

In this study, our contributions are as follows:

1) We propose DeepILS, an end-to-end data-driven inertial
localization framework that accurately predicts pedes-
trian velocities from raw IMU data, enabling precise re-
construction of indoor trajectories by capturing complex
spatial and temporal dependencies.

2) We design a novel lightweight residual network com-
prising an input module, a stacked residual architecture
with depth-wise separable convolutions, incorporated
channel-wise and spatial attention modules, and an out-
put block. The proposed design enhances generalization
across multi-variant domains by efficiently capturing
patterns and enhancing domain adaptability.

3) We present and publicly release two extensive inertial
odometry datasets, K-IOD and INA-IOD, curated ex-
plicitly to benchmark inertial odometry models across
a wide range of motion domains, device heterogeneity,
and indoor environments, providing a robust evaluation
framework for future research.

4) We comprehensively evaluated the proposed architecture
and several state-of-the-art models across six datasets,
including real-world unseen data. A PyTorch imple-
mentation of the proposed model was developed to
enable extensive experimentation. The testing phase was
specifically evaluated on edge devices, focusing on real-
time performance. Additionally, the source code and
datasets have been made publicly available. DeepILS
was successfully implemented as an AIoT application
on a smartphone, validating its navigation accuracy and
efficiency in resource-constrained edge environments.

The subsequent sections of this article are structured as
follows: Section II reviews the recent related work. Section
III details the proposed system methodology, including system
modeling, data augmentation strategy, neural network architec-
ture, loss function, and training process. Section IV presents
the experimental evaluation, analyzing results on proposed and
benchmark datasets and model performance on edge devices.
An ablation study is also conducted to assess the impact

Figure 1: Steps for Inertial sensor-based localization and navigation

of various components. Section V provides the concluding
remarks, summarizing the contributions gained and limitations
for future research.

II. RELATED WORK

Multimodal data fusion frameworks combining IMUs with
sensors like lidar, radar, and cameras have demonstrated high
accuracy [12]. However, IMU-only dead reckoning remains
challenging despite its advantages in energy efficiency and
edge IoT deployment. Smartphone-based inertial odometry
is particularly difficult due to constant changes in device
orientation and position relative to the human body, such as
when a phone is moved between hands or pockets. Traditional
approaches that rely on fixed or activity-adjusted step lengths
for distance estimation are complex and require extensive
calibration. This section reviews the latest state-of-the-art
research in inertial localization, highlighting the limitations of
both traditional and deep learning methods. The key stages
in IMU-based sensing include sensor design and selection,
calibration, error modeling, localization algorithm formulation,
multimodal sensor fusion, and deployment on IoT devices, as
shown in Figure 1.

A. Bayesian Filter Approaches

Li et al. [13] developed an Extended Kalman Filter (EKF)-
based sensor fusion method that integrates a heuristic drift
reduction (HDR) algorithm to mitigate heading errors. Using
the Zero-velocity Update (ZUPT) technique on a foot-mounted
wearable IoT device, this method estimates 3D positions.
It further constructs a biomechanical model by fusing 3D
attitude and position data, enhancing motion tracking in
both indoor and outdoor environments. However, ZUPT’s
reliance on precise detection of stationary periods limits its
effectiveness in continuous motion scenarios. Liu et al. [14]
introduced a tightly coupled EKF integrated with a 1D ResNet
model to estimate velocity using inertial data from a head-
mounted device. While robust in estimating system states, its
performance is constrained by the training data, leading to
failures with movements outside the training set. To reduce the
computational load of Bayesian algorithms at the edge, Tariq et
al. [15] proposed an efficient particle filter accelerator for mo-
bile robot localization, addressing particle degeneracy through
rapid convergence with minimal execution time. Despite its
edge deployment, the architecture is platform-dependent and
lacks generalizability across other IoT devices.
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Figure 2: Proposed DeepILS framework for inertial localization and positioning

B. End-to-End DNN frameworks

Inertial Measurement Unit (IMU) sensors inherently pro-
duce noisy data, often leading to model-based design lo-
calization errors. Consequently, deep neural network (DNN)
based data-driven approaches have gained attention as they
operate independently of domain-specific heuristics. These
models are trained efficiently by inputting raw sensor data
and embedding poses to learn the underlying motion domain
patterns and model the sensor noise without explicit feature
engineering. Recently, various research works applying deep
learning for inertial localization tasks have been proposed
[9], [11], [16]–[19]. One approach to the inertial localization
problem is to estimate the location displacement by differ-
entiating the average velocity using a fixed period. IONet
[9] is an LSTM-based learning framework in which polar
vectors are learned from segmented inertial data windows
and leverage the platform’s vibration frequency to compute
the absolute moving speed of a pedestrian. Another popular
technique of estimating inertial trajectories is leveraging the
moving pedestrian’s learned velocity to correct acceleration.
Ronin [11] transformed IMU data and generated velocity
matrices into a heading-independent spatial reference frame
to estimate novel velocity losses. While RoNIN mitigates
orientation impact by aligning the z-axis with gravity, its
reliance on orientation estimation is a limitation.

In their pioneering work, Wang et al. [20] employed the
ResNet18 as deep inertial odometry (DIO) method for pedes-
trian localization using smartphone inertial sensors without
relying on GPS or fixed poses of the device on the human
body. A key innovation in their approach is developing a
continuous rotation model, which significantly mitigates the
impact of inaccuracies in sensor-derived orientation data. In
their recent study, Wang et al. [21] introduce the HNNTA
model that uses CNN layers to analyze local patterns within
the IMU signals, while a Bi-directional LSTM (BiLSTM)
network, coupled with temporal attention, further processes
these signals to highlight significant global temporal char-
acteristics for velocity prediction in pedestrian localization.
Comprehensive experiments and ablation studies confirmed
the model’s effectiveness and statistical robustness. The only
difference between DIO and HNNTA is integrating the LSTM
block to extract temporal dimensions. Recently, Wang et al.
[22] unveiled the Spatiotemporal Co-Attention Hybrid Neu-
ral Network (SC-HNN), which comprises CNN and LSTM,
to facilitate pose-invariant velocity prediction using inertial
sensor data. While effective for feature extraction, the SC-
HNN model’s incorporation of multiple attention mechanisms

increases computational complexity and latency in inference
time.

NILoc [17] addresses neural inertial localization, aiming
to infer global location solely from inertial motion history.
However, a fundamental limitation of NILoc is the potential
absence of a unique motion pattern in certain areas, like open
spaces or symmetrical places. B. Rao et al. [16] introduced
the CTIN framework, an attention-based model integrating
spatial and temporal IMU data using ResNet and Transformer
architectures, further optimized with multi-task learning and
uncertainty modeling. While it demonstrates superior perfor-
mance on pedestrian datasets, its limitations include reliance
on imprecise 3D orientation estimates and challenges with
noisy sensor data in real-world environments. Wang et al.
[23] proposed the SSHNN framework, which maps 3D ac-
celerations and angular velocities into two-channel 2D spaces.
Using 2D-CNN layers, these inputs are reshaped into 1D time
series. A CNN attention mechanism and LSTM refine the
hidden states at each timestamp, while MLPs assess velocity
and uncertainty. The model achieves significant parameter and
FLOPs reduction but lacks edge implementation evaluation.

Recently, Zeinali et al. [18] introduced IMUNet, a mobile-
friendly inertial positioning architecture built on RoNIN [11],
utilizing depth-wise 1D-CNNs over traditional convolutions.
Despite its efficiency, IMUNet struggles with generalization
across diverse user trajectories, leading to performance degra-
dation. The reliance on IMU data makes it sensitive to noise,
especially at trajectory onset, resulting in accumulated errors
and limiting its applicability in varying real-world scenarios.

Recent DNN-based inertial localization frameworks show
promising accuracy but lack real-time performance evaluations
on IoT devices. They often overlook key aspects like inference
time, model size, and energy efficiency, with some models
facing issues related to noise sensitivity, generalization, and
increased computational complexity. DeepILS addresses these
limitations by optimizing for edge deployment, ensuring faster
inference, smaller model size, and reduced energy consump-
tion. Its design focuses on real-time performance, making it
more suitable for AIoT applications than existing approaches.

III. SYSTEM OVERVIEW AND METHODOLOGY

The smartphone-based inertial odometry problem is refor-
mulated to estimate velocity at the start of each time window,
avoiding the noise-prone traditional IMU kinematics models.
Deep Neural Networks (DNNs) map inertial signals to average
velocities while handling dynamic, repetitive displacements
between pedestrians and smartphones. Orientation data from
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sensors is excluded, with initial orientations treated as ar-
bitrary. The system improves inertial tracking accuracy by
focusing on gyroscope trends and reducing reliance on precise
orientation. The proposed DeepILS framework leverages raw
IMU data to estimate pedestrian velocities and reconstruct
indoor trajectories.

The system consists of two main components: 1) a coordi-
nate frame transformation to handle device orientation changes
and 2) a lightweight neural network optimized for real-time
velocity prediction. IMU and 3D pose data are synchronized
by resampling blocks both to 200 Hz. A coordinate frame
transformation converts IMU measurements into a consistent
reference frame, reducing errors from varying device orien-
tations. The processed data is then fed into the DeepILS
network, which uses depth-wise separable convolutions with
channel-wise and spatial attention modules to predict pedes-
trian velocities. These velocity predictions are integrated over
time to estimate positions. Figure 2 illustrates the proposed
inertial localization system pipeline.

A. System Modeling and Coordinate Frame Normalization

Inertial navigation utilizes Newtonian mechanics to track a
pedestrian’s location and orientation within a global frame by
using initial pose information and data from accelerometers
and gyroscopes. Inertial odometry, a common time-series
problem, relies on onboard IMU sensor values at discrete time
stamps k, denoted as:

X(k) =
[
ax(k), ay(k), az(k), ωx(k), ωy(k), ωz(k)

]T
,
(1)

where a(k) = [ax(k), ay(k), az(k)]
T ∈ R3 represents linear

acceleration, and ω(k) = [ωx(k), ωy(k), ωz(k)]
T ∈ R3

represents angular velocity, both derived from accelerometer
and gyroscope measurements. These measurements estimate
motion and orientation but suffer from noise and drift, which
are mitigated using bias correction and data augmentation
methods. Initial sensor bias correction compensates for sys-
tematic errors introduced by the IMU sensor. The choice
of coordinate frames is crucial for the efficiency of neural
network training in sensor-based motion tracking. Using the
device’s local coordinate frame poses significant challenges
due to its dynamic orientation; its coordinate frame changes
every frame as the device moves. This means that the same
motion can produce different sensor readings depending on
how the device is held, leading to inconsistent data repre-
sentations. We adopt the Heading-Agnostic Coordinate Frame
(HACF) as suggested in [11] to address this issue. HACF
is defined as any coordinate frame whose z-axis is aligned
with gravity. By transforming both the input IMU data and
the output velocities into this frame, we ensure a consistent
and uniform representation throughout the motion sequence.
This transformation is achieved using quaternions, enabling
smooth and continuous rotations into the HACF, as illustrated
in Figure 3.

IMU sensors collect raw inertial data Xb(k) in the body
frame, which requires transformation to the HACF before
effective utilization by data-driven models. This transformation

Figure 3: Coordinate Frame Systems. Device coordinate frame to Heading-
agnostic coordinate frame (HACF).

involves aligning the device frame with gravity and remov-
ing heading information to achieve rotation invariance. The
quaternion-based transformation uses the quaternion qgrv(k)
obtained from the Game Rotation Vector sensor, which pro-
vides the device’s orientation relative to a fixed reference
frame without magnetic interference. The transformation is
given by:

Xh(k) = qgrv(k)⊗Xb(k)⊗ q∗grv(k), (2)

where ⊗ denotes quaternion multiplication, and q∗grv(k) is
the conjugate of qgrv(k). This transformation eliminates the
influence of device orientation changes, making the IMU
data rotation-invariant in the HACF. Quaternions represent
orientation as a four-dimensional vector q = [q0, q1, q2, q3]

T,
where q0 is the scalar part and [q1, q2, q3]

T form the vector
part. Using quaternions eliminates singularities associated with
Euler angles and reduces computational complexity compared
to rotation matrices.

The angular velocity vector ωb(k) in the body frame is
transformed to the HACF using:

ωh(k) = qgrv(k)⊗ ωb(k)⊗ q∗grv(k). (3)

Here, ωb(k) is represented as a pure quaternion with zero
scalar part. The quaternion qgrv(k) is updated at each time
step based on the angular velocity. The continuous quaternion
differential equation is:

q̇(t) =
1

2
q(t)⊗ ωb(t), (4)

where ωb(t) = [0, ωx(t), ωy(t), ωz(t)]
T. Integrating over a

small interval ∆t yields the discrete update:

q(k + 1) = q(k) +
1

2
q(k)⊗ ωb(k)∆t, (5)

followed by normalization to ensure ∥q(k+1)∥ = 1. Alterna-
tively, the quaternion update uses the exponential map [24]:

q(k + 1) = q(k)⊗ exp

(
1

2
ωb(k)∆t

)
, (6)

where the quaternion exponential is:

exp

(
1

2
ωb(k)∆t

)
=

{[
cos

(
θ
2

)
, ω̂b(k) sin

(
θ
2

)]T
, θ ̸= 0,

[1, 0, 0, 0]
T
, θ = 0,

(7)
with θ = ∥ωb(k)∥∆t and ω̂b(k) = ωb(k)/∥ωb(k)∥.

Acceleration vectors ab(k) are similarly transformed:

ah(k) = qgrv(k)⊗ ab(k)⊗ q∗grv(k). (8)
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Figure 4: Neural Network Architecture for Data-driven Inertial Localization System

In the HACF, gravity aligns along the z-axis, allowing straight-
forward gravity compensation by subtracting g = [0, 0, g]T,
where g ≈ 9.81m/s2. The motion-induced acceleration is:

am(k) = ah(k)− g. (9)

Assuming small ∆t, velocity and position are updated via
numerical integration:

v(k + 1) = v(k) + am(k)∆t, (10)

p(k + 1) = p(k) + v(k)∆t+
1

2
am(k)(∆t)2. (11)

By transforming IMU data into the HACF using qgrv(k),
we achieve rotation invariance, as the data representation
becomes independent of the device’s heading. Rotation in-
variance improves inertial navigation by focusing models on
motion patterns instead of device orientation, enabling better
generalization across users and scenarios. Quaternion-based
transformations are computationally efficient, numerically sta-
ble, and avoid gimbal lock, making them ideal for real-time
IMU data processing by reducing computational overhead and
ensuring stable rotation representation.

B. Data Augmentation Strategy

The input to the network is constructed from a window of
IMU data, spanning from k − 200 to k, with a step size of
10.We adopt a data augmentation strategy involving random
rotations to enhance model robustness against sensor noise
and orientation variations. Specifically, we apply horizontal
random rotations around the gravity-aligned z-axis to both the
raw data and the ground truth:

X′
h(k) = Rz(θ)Xh(k), (12)

where θ is a random angle uniformly sampled from [0, 2π),
and Rz(θ) is the rotation matrix given by:

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (13)

This rotation is applied to the horizontal components (x and
y) of both the acceleration and angular velocity vectors:

a′h(k) = Rz(θ)ah(k), (14)
ω′

h(k) = Rz(θ)ωh(k). (15)

Horizontal plane rotation simulates diverse device orientations,
enhancing neural network generalization by reducing over-
fitting to specific orientations. This augmentation improves
robustness and noise immunity by promoting orientation-
invariant feature learning while preserving signal magnitude.
Uniformly distributing sensor noise across orientations mini-
mizes direction-specific noise effects, resulting in a resilient
model that maintains high performance despite unexpected
rotations.

C. Proposed Neural Network Architecture

The proposed neural network architecture, depicted in Fig-
ure 4, is meticulously designed to address the challenges of
data-driven inertial odometry for lightweight edge applica-
tions. It consists of three major components: the Input Block,
Residual Groups, and the Output Block, each optimized for
extracting and refining critical spatiotemporal features.

1) Input Block: The Input Block transforms the raw inertial
measurements [a, ω] into a structured feature map suitable for
downstream processing. This is achieved through sequential
operations, including a 1D convolution (k = 5, s = 2, p =
3), batch normalization, ReLU activation, and max-pooling
(k = 3, s = 2). These steps collectively normalize feature
distributions, introduce non-linearity, and reduce dimension-
ality, producing a feature map of shape (128, 64, 50), where
128 is the batch size, 64 is the number of channels, and
50 is the downsampled sequence length. The convolution
kernel (k = 5) balances local feature extraction with broader
temporal coverage, while the stride (s = 2) and padding
(p = 3) ensure effective downsampling without compromising
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Figure 5: Depth-wise separable convolution for 1D inertial measurement data

boundary information. This process is mathematically formal-
ized as:

MaxPool1D(ReLU(BNorm1D(Conv1D5
64,◦(a, ω)))),

(16)
where Conv1Dk=5

64 denotes a convolution with 64 output
channels, kernel size 5, stride 2, and no bias for enhanced
regularization.

2) Residual Groups: The core feature extraction occurs
in four Residual Groups, each comprising two BasicBlock1D
modules. These blocks leverage depthwise separable convo-
lutions to reduce computational complexity while preserv-
ing critical features. Depthwise convolution processes each
channel independently, followed by pointwise convolution to
integrate inter-channel relationships, as illustrated in Figure 5.
The depth-wise convolution splits the input feature map of
size c × s into c groups, where c is the number of channels,
and s is the number of sampling points. Each group undergoes
1D convolution independently, producing depth-wise features,
which are later combined. The filter length n is constant,
and the number of filters matches the input channels. This
operation is formalized as:

DWc,s =
∑
i

Kc,i ·Xc,l+i−1, PWk,s =
∑
i

Kk,c ·Xc,l+i−1,

(17)
where DWc,s and PWk,s represent depthwise and pointwise
features, respectively. DWS convolution significantly reduces
computational cost compared to standard convolution [25]
while capturing local spatial patterns across channels, improv-
ing model robustness.

To refine features, the Channel Attention (CA) and Spatial
Attention (SA) modules illustrated in s shown in Figure 6 are
integrated into each block. The CA module employs adaptive
average and max pooling to generate global descriptors, passed
through fully connected layers and combined to emphasize
inter-channel dependencies. The attention map AMC is de-
fined as:

AMC = σ(FC(AvgPoolAdp(F )) + FC(MaxPoolAdp(F ))),
(18)

Figure 6: Channel-wise and spatial attention modules with adaptive aver-
age/max pooling integrated into DeepILS framework

where σ is the sigmoid activation function and FC refers to
fully connected layers comprising two 1D convolution layers
with ReLU activation, merged via element-wise addition. The
first convolution performs a linear transformation with a kernel
size of 1, maintaining the channel count, while the second
convolution reduces the number of channels by a factor of
κ = 16, compressing the parameter overhead to RC/κ×1×1.
The modulated feature map is expressed as:

FCA = AMC(F )⊗ F. (19)

The SA module identifies significant spatial regions by con-
catenating average and max pooling results across the channel
dimension and processing them through a 1D convolution
(k = 7, p = 3) to produce the attention map as in Equation
20:

AMS = σ(Conv1D7[AvgPool(FCA) ++ MaxPool(FCA)]),
(20)

where ++ denotes the concatenation of the average and max
pooled features. The refined feature map after both attention
mechanisms is:

FSA = AMS(FCA)⊗ FCA. (21)

These attention mechanisms, as shown in Figure 6, selectively
enhance key temporal and spatial features, improving the
robustness of the learned representations. To compute the final
output of each residual group, a residual connection integrates
the input and the refined feature map FSA. The output Fout is
computed as:

Fout = FSA + F, (22)

where F is the residual block input, the addition is performed
element-wise. The residual connection preserves input features
while enabling the network to refine them through attention-
enhanced features. It prevents vanishing gradients, ensures
stable training, and promotes feature reuse, improving the
model’s efficiency and ability to capture complex temporal
dependencies in inertial data.

3) Output Block: The output block translates the refined
feature map Fout into velocity predictions. A transition con-
volution (k = 1) reduces the number of channels from 512
to 128, followed by flattening to a shape of (128, 896). This
representation is passed through two linear layers (512 output
features each) interspersed with ReLU activations and dropout
(p = 0.5) to prevent overfitting. The final linear layer maps
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the features to the output space [vx, vy], representing global
velocity components.

4) Micro Design: This section provides a deeper insight
into the rationale for selecting specific design components,
including channel and spatial attention module integration and
architecture’s optimization strategies. Due to inertial data’s
temporal continuity and local dependencies, the hierarchical
convolutional neural network (CNN) framework was chosen
over recurrent or transformer models. Depthwise separable
convolutions effectively capture localized patterns with com-
putational efficiency, making them ideal for edge devices
with limited resources. The modular architecture, featuring
BasicBlock1D modules, ensures scalability while minimizing
parameters. These modules use depthwise separable convolu-
tions to isolate spatial and channel-specific features, reducing
computational costs by decoupling operations.

Channel Attention (CA) and Spatial Attention (SA) mod-
ules address inter-channel redundancy and temporal noise. The
CA module uses global pooling (average and max pooling)
to reweight sensor axes based on task relevance, focusing on
informative channels. The SA module highlights significant
temporal regions by combining pooled descriptors with con-
volution to capture spatial dependencies tied to key events like
abrupt movements. When combined, these mechanisms allow
the network to adaptively reweight the channel features and
learn significant temporal regions in IMU data.

Depthwise separable convolutions reduce parameters while
preserving representational capacity, enabling real-time mobile
edge computing. ReLU activations and batch normalization
within the BasicBlock1D modules also standardize feature dis-
tributions, accelerating convergence and mitigating gradient
issues. The residual connections facilitate gradient flow, ensur-
ing stability in deeper network configurations while promot-
ing feature reuse. CBAM-inspired attention mechanisms were
adopted for proven effectiveness in enhancing feature repre-
sentations while maintaining minimal computational overhead,
as demonstrated in [26]. This work extends the CBAM archi-
tecture to process inertial data by tailoring its attention mod-
ules for 1D time-series. The adaptive pooling operations in
the CA module aggregate global descriptors, facilitating the
modeling of long-range dependencies. Meanwhile, the convo-
lutional operations in the SA module preserve localized details,
which are essential for capturing subtle temporal variations
inherent in inertial signals.

D. Loss Function

We have utilized Mean Square Error (MSE) as a loss
function during our training algorithm as used in research
works [14] [21]. The mathematical interpretation of MSE loss
is defined as Equation (23).

Lmse =
1

m

m∑
i=1

∥V̂i −Vi∥2, (23)

where V̂i are the predicted velocities from the neural network,
and Vi are the ground truth velocities.

Algorithm 1 Training with Differential Loss for Validation
Input: Ak = {ax(k), ay(k), az(k)}, Accelerometer data

Gk = {ωx(k), ωy(k), ωz(k)}, Gyroscope data
Ground Truth: Translationsk, Rotationsk

Output: Predicted velocities V̂x, V̂y for all samples
Coordinate Frame Transformation:
for each sequence in Dtrain do

Pos← Translationsk = [x, y, z]

Vx, Vy ← ∆Pos
∆t

qori ← Rotationsk ⊗ q(w, x, y, z)

qaccel rot ← qori ⊗ q(0, ax, ay, az)⊗ q∗
ori

qgyro rot ← qori ⊗ q(0, ωx, ωy, ωz)⊗ q∗
ori

end
Training Loop:
while not converged do

for each batch Bk in Dtrain do
Data Augmentation:
Ak ← Rz(θ)Ak, Gk ← Rz(θ)Gk, θ ∼ U(0, 2π)
Ak,Gk,Vk ← Bk
Training Step:
V̂

(k)
x , V̂

(k)
y ← fθ(Ak,Gk)

Compute Losses: Ltrain ← LMSE(V̂k,Vk)

Update Model Gradients: θ ← θ − η∇θLtrain
end
Validation Loop:
for each batch Bk in Dval do

Ak,val,Gk,val,Vk,val ← Bk
V̂

(k,val)
x , V̂

(k,val)
y ← fθ(Ak,val,Gk,val)

Validation Loss: L(k)
val ← LMSE(V̂k,val,Vk,val)

Differential Loss: L(k)
diff ← LMAE(V̂k,val,Vk,val)

end
Average Validation Loss: Lavg

val ←
1
K

∑K
k=1 L

(k)
val

Average Differential Loss: Lavg
diff ←

1
K

∑K
k=1 L

(k)
diff

if Lavg
diff < Lbest diff then
Lbest diff ← Lavg

diff

Saving Parameters(fθ, θ, epoch)
end

end

E. Training of the Proposed Deep Neural Network

Algorithm 1 outlines the training procedure, starting with
the computation of ground truth velocities (Vx, Vy) from po-
sitional changes and time intervals ∆t. Sensor data is aligned
to a global reference frame using quaternion transformations
for consistent orientation. Random rotations are applied to
augment inertial sequences, improving generalization. The
augmented data is fed into DeepILS, optimized using the
Adam optimizer with a learning rate of 1 × 10−4. Mean
Squared Error (MSELoss) minimizes discrepancies between
predicted and actual velocities. A ReduceLROnPlateau sched-
uler dynamically reduces the learning rate by a factor of
0.1 if validation loss stagnates for ten epochs after the tenth
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epoch. To prevent overfitting, 50% dropout is applied at the
output layer. Velocity predictions are computed per batch,
and the loss is calculated as the absolute difference between
predictions and ground truth, ensuring accuracy and stability.
Model parameters are saved when validation differential loss
improves, mitigating outlier effects and enhancing robustness.
DeepILS is implemented in PyTorch 2.2 and trained on an
NVIDIA RTX 4090 GPU with a batch size of 128. Data is
shuffled at the start of each epoch to ensure diverse inputs and
model robustness.

IV. EXPERIMENTAL EVALUATION AND RESULTS

This section introduces the development of the KAILOS
IoT Device, followed by a brief overview of the proposed in-
ertial odometry datasets. Subsequently, we discuss our training
algorithm, evaluation metrics, and performance evaluation of
DeepILS on IoT edge.

A. KAILOS IoT Device

The KAIST IoT positioning module (KAILOS Tag) with
embedded 32-bit ESP32-S3 System-on-Chip (SoC) featuring
integrated WiFi and Bluetooth modules is developed to acquire
domain-fixed inertial data, i.e., chest-mounted, as shown in
Figure 7 and 8. The device stands out with its array of sensors,
including an Inertial Measurement Unit (IMU), magnetometer,
ambient light sensor, and barometer, ensuring the collection of
highly accurate multi-modal sensor data. The positioning tag
is further enhanced with an LTE/Global Navigation Satellite
System (GNSS) SoC, enabling precise global positioning ser-
vices indoors and outdoors. The inertial data is collected using
the on-board IMU sensors and sent to the cloud positioning
server through WiFi or LTE. It is essential to note that, in the
context of this experiment, the device is exclusively utilized for
collecting raw IMU data within the specified motion domain.

B. Evaluation Metrics Definition

We have utilized a similar evaluation metric as proposed
in [11] [20] [14] to quantitatively validate the performance of
DeepILS on all the datasets having length m. The Absolute
Trajectory Error (ATE) assesses the overall accuracy of the
predicted inertial trajectory globally. It is calculated as the
Root Mean Square Error (RMSE) between the complete
ground truth and the predicted trajectory in meters.

ATE =

√√√√ 1

m

m∑
i=1

||Ppred,i − PGT,i||2 (24)

The Relative Trajectory Error (RTE) measures the local
consistency between the predicted and ground truth trajectories
over a time window ∆k, where one unit of ∆k corresponds
to 200 input samples. It is computed as the Root Mean
Square Error (RMSE) of the difference between the relative
displacements in the predicted and ground truth trajectories:

RTE =

√√√√ 1

m−∆k

m−∆k∑
i=1

∥Dpred,i −DGT,i∥2, (25)

where Dpred,i = Ppred,i+∆k − Ppred,i and DGT,i = PGT,i+∆k −
PGT,i. Here, m is the total number of time steps in the
trajectory, and ∆k represents the window size. A lower ATE
indicates enhanced system performance, while a lower RTE
reflects increased prediction accuracy.

C. Proposed Datasets

1) KAIST Inertial Odometry Dataset (K-IOD): We propose
the first inertial odometry dataset from the KAIST N1 building
to address the limitations observed in existing benchmark
datasets. Previous datasets often fell short in real-time ap-
plicability due to their restricted motion domains and fixed
environments, i.e., enclosed indoor spaces. To capture diverse
motion domains and environments that accurately reflect the
true posture of pedestrian navigation, we employed multiple
devices,i.e., the KAILOS tag in a chest-mounted configura-
tion and two Android smartphones, the S20+ and S9+. The
KAILOS tag device, in its chest-mounted setup, collects raw
inertial data while simulating various pedestrian activities.
Simultaneously, the two smartphones were positioned in dif-
ferent placements, specifically in a pocket, handheld, and in-
hand, to capture raw inertial sensor data alongside ground truth
information provided by ARCore as shown in Figure 8. The
angular and linear accelerations recorded within each sensor
frame are aligned with the corresponding axes of that frame,
as referenced in the navigation frame.

This work utilizes the ARCore API to leverage VIO-
SLAM techniques to acquire accurate ground truth data. The
ARCore API captures camera poses at 30 Hz or 60 Hz,
depending on the smartphone’s camera capabilities. IMU
sensors, however, operate at significantly higher sampling
rates than those used for camera pose estimation. To address
this frequency mismatch, synchronization is performed based
on camera pose timestamps to ensure data consistency and
minimize data loss. Linear interpolation is further applied to
align IMU measurements with the camera pose data, ensuring
consistent synchronization and enhancing data accuracy and
uniformity. Over a four-hour data collection period, two human
subjects performed various motion patterns, including walking,
running, and slow walking. These activities were conducted
with smartphones placed in three distinct configurations. In-
ertial data was collected across diverse locations within the

Figure 7: Hardware design of KAILOS Tag. The tag is installed in a chest-
mounted attachment with a battery.
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building, such as corridors, underground parking, and areas
near elevators, as depicted in Figure 8. This comprehensive
approach resulted in a robust dataset encompassing diverse
environmental conditions and motion scenarios.

2) Incheon National Airport Dataset (INA-IOD): Herath et
al. [17] identified a limitation in their transformer-based DNN
framework, citing model failure in large open spaces due to the
lack of distinct motion patterns. To address this, we collected a
comprehensive inertial odometry dataset covering two floors of
Incheon National Airport. Data was collected over 2.5 hours
using a Samsung S20+ device, capturing IMU data via an
Android application integrated with the ARCore API. The
open airport spaces induced significantly higher inertial drift
errors than enclosed environments. The dataset also reflects the
complexity of real-world pedestrian motion, including varying
walking speeds, frequent pauses due to crowd congestion, and
challenges from the airport’s symmetrical architectural layout.
These dynamic factors provide a realistic testbed for evaluating
pedestrian navigation systems, highlighting the difficulties
faced in real-time inertial navigation solutions.

D. Evaluation on Benchmark Datasets

This section details the data collection methodologies of
benchmark datasets and presents a comprehensive comparative
performance analysis of the DeepILS model against state-
of-the-art (SOTA) architectures, including MobileNets [29],
MobileNetV2 [30], MnasNet [31], EfficientNet [32], IONet
[9], CTIN [16], and IMUNet [18]. The comparative results
are summarized in Table I. Furthermore, we visualize the
inertial trajectories estimated by DeepILS on these benchmark
datasets.

(a) (b) (c)
Figure 8: Inertial odometry dataset collected in the KAIST N1 building using
a KAILOS tag and two smartphones (S20+ hand-held and S9+ in various
placements) across different environments: (a) Corridors on floors 1-8, (b)
Underground car parking, and (c) Walk near elevators.

1) OxIOD Dataset: Chen et al. [27] introduced a large in-
ertial sensor dataset with precise ground truth values obtained
using a Vicon motion tracking system. Data was collected
in various motion configurations, including handbag, pocket,
trolley, and handheld, from 5 participants over 14.7 hours of
pedestrian motion activities. Our experiments utilized 344,971
training samples and 42,883 validation samples. Figure 9(a)
visualizes the DeepILS inertial trajectory on the OxIOD
dataset, achieving average ATE and RTE of 0.69 m and
0.764 m, respectively, outperforming other S.O.T.A methods
in positioning accuracy.

2) RoNIN Dataset: Yan et al. [11] introduced a dataset
using a dual-smartphone setup. One device captures inertial,
magnetometer, and barometer data, simulating natural pedes-
trian activities, while the second, a Tango phone, is body-
mounted to record ground truth trajectories via the V-SLAM
technique. This setup estimates body trajectories rather than
device trajectories using data-driven methods. The dataset
includes 42.7 hours of IMU data at 200 Hz from 100 subjects
across three buildings. The model was trained on 425,558
samples and tested on 73,066 samples. Figure 9(b) visualizes
the DeepILS inertial trajectory on the RoNIN dataset. DeepILS
achieves an average ATE of 1.79 m and RTE of 1.86 m,
surpassing S.O.T.A models in positioning accuracy. On unseen
sequences, it demonstrates robust generalization with ATE and
RTE of 2.515 m and 2.247 m, respectively.

3) RIDI Dataset: Yan et al. [28] proposed a dataset col-
lected using a smartphone paired with a Google Tango device.
This configuration captured angular velocities, magnetometer
readings, linear acceleration, 3D camera poses, and device
orientation via VIO-SLAM. The dataset comprises 100 min-
utes of walking data from six pedestrians, encompassing
diverse phone placements and motion scenarios. Our model
was trained on 109,372 samples and validated on 43,521
samples. As shown in Figure 9(c), DeepILS achieved an
ATE of 0.76 m and RTE of 1.19 m on the RIDI dataset,
demonstrating significant positioning accuracy.

4) IMUNet Dataset: Zeinali et al. [18] addressed a limi-
tation of prior works that relied on Tango phones [11], [28]
for ground truth data. Instead, they utilized the ARCore API
to collect SLAM-based ground truth data, enabling the use
of any Android phone with motion-tracking capabilities. The
study features two datasets, each lasting 60 minutes, collected
with a Samsung S10 device, with data interpolation applied
for consistency. DeepILS was trained on 108,003 samples
and validated on 30,648 samples. As shown in Figure 9(d),
DeepILS achieved an ATE of 1.22 m and RTE of 2.193 m,
improving localization accuracy by up to 53% compared to
IMUNet.

E. Evaluation on Proposed Datasets
This section comprehensively evaluates the proposed model

on real-world test sequences collected in complex motion
domains and diverse indoor environments.

1) Evaluation on K-IOD: The K-IOD dataset comprises
inertial sequences captured across varied indoor environments,
including corridors, underground parking spaces with low-
light conditions, and expansive auditoriums. The sequences
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 9: Visualization of test trajectories from various datasets: OxIOD [27], RoNIN [11], RIDI [28], IMUNet [18], K-IOD, and INA-IOD. ATE/RTE values
in meters for both seen and unseen data sequences (not included in the training set) indicate the performance of DeepILS across different environments and
motion profiles. (a) Trajectories from the OxIOD dataset featuring Handbag, Handheld, and Largescale sequences. (b) Trajectories from the RoNIN dataset
comparing seen (Sequence 1) to unseen sequences (Sequence 2 and 3). (c) Trajectories from the RIDI dataset. (d) Trajectory from the IMUNet dataset, obtained
using S10 and ground truth data from Tango phone and ARCore API. (e) Trajectories from the proposed K-IOD dataset collecting data from KAILOS-Tag
(chest-mounted), S20+, and S9+ (in-pocket, handheld placements) in various environments. (f) Left: Trajectories from the INA-IOD dataset, featuring large
sequences on the 1st and 2nd floors using S20+. Right: Medium sequence on the 2nd floor with frequent pose changes and fast speed.
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encompass diverse motion profiles, such as slow walking (1.4
m/s), fast walking (2.2 m/s), and running (2.8 m/s). The
DeepILS model was trained on 93,710 samples and vali-
dated using 25,997 samples. For sequences observed during
training, the model achieved an average absolute trajectory
error (ATE) of 0.89 m and a relative trajectory error (RTE)
of 0.98 m. These metrics increased to 1.75 m and 2.17 m,
respectively, for unseen sequences. These results demonstrate
that DeepILS effectively addresses challenges in controlled
settings; however, error magnitudes escalate in dynamic or
unstructured scenarios. Figure 9(e) illustrates predicted versus
ground truth trajectories across various sequences, highlight-
ing performance variations attributable to environmental and
motion characteristics.

2) Evaluation on INA-IOD: The INA-IOD dataset contains
inertial sequences recorded in the expansive and dynamic
indoor environment of Incheon National Airport. This dataset
captures real-world scenarios characterized by crowded spaces,
variable lighting conditions, and frequent pose changes. Mo-
tion profiles include slow walking (1.4 m/s) and fast walking
(2.2 m/s), offering a rigorous testbed for inertial localization
due to environmental variability and motion dynamics. Deep-
ILS was trained on 210,453 samples and evaluated on 63,176
samples. For sequences encountered during training, the model
achieved an average ATE of 1.61 m and an RTE of 0.97 m.
For unseen sequences, these metrics increased to 2.25 m and
2.47 m, respectively. Figure 9(f) compares the predicted and
ground truth trajectories, emphasizing the model’s challenges
in navigating the dynamic and crowded airport setting. A
detailed performance analysis under varying environmental
and motion conditions follows in the subsequent sections.

3) Impact of Different Environments on DeepILS: DeepILS
was evaluated under varying environmental conditions using
the K-IOD and INA-IOD datasets. In structured settings such
as the corridors in K-IOD, the model achieved low mean
Absolute Trajectory Error (ATE) of 0.87± 0.12 m and Rela-
tive Trajectory Error (RTE) of 0.91± 0.15 m, reflecting high
localization accuracy due to consistent inertial measurements.
The localization errors moderately increased in more dynamic
environments like the crowded airport halls in INA-IOD.
Factors such as high pedestrian density, reflective surfaces,
and frequent changes in user movement introduced additional
noise and drift in the inertial data. This complexity led to mean
ATE and RTE values rising to 1.61± 0.34 m and 1.97± 0.28

(a) (b)
Figure 10: Impact of different motion profiles and environments on localiza-
tion accuracy. (a) Average localization errors (ATE and RTE) with standard
deviations for motion profiles. (b) Average localization errors across environ-
ments, demonstrating model robustness under dynamic settings.

m, respectively. Underground parking scenarios in K-IOD
presented further challenges. Environmental conditions like
low-light areas and magnetic interference adversely affected
sensor readings, resulting in a higher mean ATE of 1.47± 0.19
m. These factors introduced perturbations that made accurate
localization more challenging. Figure 10(a) illustrates how
DeepILS maintains acceptable performance levels across dif-
ferent environmental conditions, outperforming S.O.T.A mod-
els in handling environmental complexities.

4) Impact of Motion Profiles on DeepILS: DeepILS was
evaluated under varying motion profiles using the K-IOD and
INA-IOD datasets. During slow and steady movements, such
as walking at approximately 1.4 m/s, the model achieved low
mean Absolute Trajectory Error (ATE) of 0.89± 0.08 m and
Relative Trajectory Error (RTE) of 0.91± 0.10 m, demonstrat-
ing high localization accuracy under predictable dynamics. In
contrast, faster and more abrupt motions, including running at
2.8 m/s in the K-IOD dataset and 2.2 m/s in the INA-IOD
dataset, resulted in an ATE of 2.59± 0.42 m and 2.26± 0.36
m, respectively. Performance degradation during high-speed
motions arises from the limitations of inertial sensors under
dynamic conditions. Increased accelerations lead to higher-
frequency signal components and potential sensor saturation,
amplifying measurement noise and drift. This challenges the
model’s ability to infer position from noisy data accurately.

Despite these challenges, DeepILS maintained errors within
practical limits and outperformed S.O.T.A benchmarks. The
model’s architecture effectively learns spatial-temporal depen-
dencies in inertial data, adapting to varied motion dynamics
without filtering. Figure 10(b) highlights its stable performance
across different motion profiles. The low standard deviations
observed during slow motions indicate the model’s capacity to
suppress drift accumulation under stable conditions. Slightly
higher deviations during high-speed motions suggest areas
for potential optimization to capture high-frequency motion-
induced variations. These findings align with the correlation
between motion-induced noise and the temporal resolution for
accurate inertial data capture. As motion speed increases, the
inertial signals contain more rapid changes, necessitating a
model capable of learning from higher-frequency data pat-
terns. DeepILS addresses this through its efficient architecture,
which is designed to extract multi-scale temporal features es-
sential for accurate localization across diverse motion profiles.

Figure 11 illustrates the cumulative distribution function
(CDF) of ATE across the K-IOD and INA-IOD datasets.

(a) (b)
Figure 11: Commulative Distribution Function (CDF) of ATE positioning
error for proposed datasets and comparison with S.O.T.A models (a) CDF
of positioning errors across the K-IOD dataset (b) CDF of positioning errors
for the INA-IOD dataset.
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Table I: Performance Evaluation of DeepILS and S.O.T.A. Edge-Friendly Inertial Odometry Models on Benchmark Datasets as well as Proposed Datasets.

Datasets Subjects Metric IONet CTIN MobileNet MobileNetV2 MnasNet EfficientNet IMUNet DeepILS

OxIOD [27] Seen data ATE 2.05 3.17 3.2 3.38 3.08 3.22 2.88 0.69
RTE 2.15 2.05 2.68 2.89 2.64 2.69 2.58 0.764

RoNIN [11]
Seen data ATE 5.65 6.89 4.08 3.83 3.78 3.66 3.52 1.79

RTE 3.77 4.94 2.83 2.85 2.75 2.79 2.71 1.86

Unseen data ATE 9.54 8.16 6.15 6.18 5.194 5.62 5.63 2.515
RTE 8.24 6.37 4.76 4.68 4.59 4.63 4.48 2.247

RIDI [28] Seen data ATE 1.96 2.20 1.73 1.54 1.72 1.67 1.56 0.76
RTE 2.29 2.42 2.09 1.97 2.11 2.06 1.82 1.19

IMUNet [18] Seen data ATE 29.97 3.36 2.99 3.04 2.76 2.63 2.58 1.22
RTE 29.15 4.09 3.41 3.56 3.18 3.47 2.97 2.193

K-IOD
Seen data ATE 23.42 1.72 4.056 3.190 3.133 1.81 2.33 0.89

RTE 20.57 2.26 3.29 2.66 2.90 1.80 2.20 0.98

Unseen data ATE 32.40 4.68 9.84 8.87 6.17 5.52 3.90 1.75
RTE 27.96 3.17 10.85 9.44 7.47 6.01 4.03 2.17

INA-IOD
Seen data ATE 52.26 9.06 4.46 8.82 2.27 4.19 2.01 1.61

RTE 47.39 3.27 1.49 2.26 1.421 1.48 0.94 0.97

Unseen data ATE 120.11 12.05 14.17 11.52 7.69 5.107 3.82 2.25
RTE 50.66 4.95 16.61 12.74 8.32 6.92 4.99 2.47

DeepILS and IMUNet demonstrate superior consistency, with
DeepILS achieving the highest CDF values at lower ATE
thresholds across diverse sequences. The CDF effectively
quantifies the proportion of cases with ATE below specific
thresholds, providing an integrated assessment of the model’s
accuracy and reliability. DeepILS notably outperforms other
S.O.T.A models, achieving higher CDF values at lower ATE
thresholds.

F. Model Efficiency

The effectiveness of all data-driven models, including the
proposed DeepILS, depends on their capacity to discern spa-
tiotemporal features within IMU data and correct IMU drift
errors. End-to-end differential frameworks are designed to
provide robust real-time performance while minimizing energy
consumption and inference time, facilitating more efficient
sampling of incoming sensor data without encountering bot-
tlenecks. The selection of S.O.T.A models for comparison is
based on criteria such as model compactness and inference
efficiency. For smartphone applications, minimizing computa-
tional overhead is crucial to ensuring fast inference and low
energy consumption. Consequently, models that demonstrate
an optimal balance between accuracy and computational effi-
ciency are carefully selected for comparison with the proposed
architecture [33].

Table I provides an overview of the quantitative evaluation
of the proposed model on both benchmark and proposed
datasets. Additionally, it demonstrates the accuracy metrics of
the S.O.T.A architectures across these datasets. The qualitative
performance evaluation uses inertial trajectory samples from
the test set, as illustrated in Figure 9. This comparative anal-
ysis compares DeepILS with lightweight data-driven models
tailored explicitly for edge deployment, as discussed in [18].
The evaluation encompasses Mobilenet [29], MobilenetV2
[30], MnasNet [31], EfficientNet-B7 [32], and IMUNet [18],
examining their performance in achieving positioning accuracy
in contrast to the proposed model. Notably, Mobilenet and
MobilenetV2 represent CNN architectures optimized for IoT
devices with limited computational resources. At the same

time, MnasNet and EfficientNet-B7 are variants of resource-
efficient mobile CNN models discovered through Neural
Architecture Search (NAS) methodologies by incorporating
the IoT device latency information into the search process.
IMUNet is another CNN-based architecture modified by re-
placing the conventional convolution operations with depth-
wise 1D convolution blocks. Additionally, we incorporated
recurrent neural network-based architectures, such as IONet
[9], and CTIN [16], known for extracting temporal features
from sensor data, for comparative performance analysis with
our proposed model. Since the original implementations were
not publicly available, we re-implemented them based on the
descriptions in the respective publications, adhering strictly
to their architecture and training procedures to ensure a fair
comparison. DeepILS notably outperforms all benchmarked
architectures, particularly on unseen data from each dataset,
highlighting its ability to generalize learned patterns to new
and unseen environments.

G. Model Performance on Edge Devices

In this section, we present a comprehensive evaluation of
DeepILS and S.O.T.A. inertial odometry models, focusing
on critical performance metrics such as inference latency,
FLOPs, throughput, and resource utilization. This evaluation,
conducted on Samsung Galaxy smartphones with varying
chipsets, underscores the challenges of limited computational
resources in edge devices, where power, memory, and pro-
cessing constraints necessitate highly efficient model design
for real-time applications. Using TensorFlow Lite models con-
verted from the ONNX framework and optimized with post-
training quantization, we demonstrate the efficient deployment
of both the proposed and state-of-the-art models on resource-
constrained edge devices. This approach emphasizes balancing
computational efficiency and accuracy, especially in real-world
edge AI applications.

To transform DeepILS and all S.O.T.A models for edge
deployment, we used the ONNX framework to convert the
models into the TFLite format. The transformation involved
dynamic range quantization, which reduced the precision of
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Table II: Comprehensive performance comparison of DeepILS and S.O.T.A. architectures in terms of inference latency (µs), parameter count (millions), FLOPs
(millions), and throughput (samples/second). The comparison includes performance metrics on three Samsung devices (Galaxy S9+, Galaxy Note 20+, Galaxy
Z Flip 3) and GPU (INA-IOD, K-IOD). Inference latency (GPU) is measured in seconds, while throughput on GPU is measured in samples per second (SPS).

Models
TFLite Parameter FLOP Inference Latency Throughput Throughput (GPU) Inference Latency (GPU)
(MB) (M) (M) S9+ 20+ ZF3 RoNIN(S20+) INA-IOD K-IOD INA-IOD K-IOD

IONet [9] 4.8 3.27 61.13 1521 1359 714 1073.18 2826.9 2833.4 12.16 7.84
CTIN [16] 3.13 0.61 99.58 1940 1786 829 1148.38 1544.02 1614.5 21.62 11.96
MobileNet [29] 3.5 3.18 34.56 1193 907 583 1224.53 7669.2 7025.4 7.53 5.79
MobileNetV2 [30] 2.7 2.18 20.45 727 645 430 1579.82 6160.5 6027.4 8.19 5.86
MnasNet [31] 3.1 2.98 25.26 792 654 429 1517.08 5867.9 5892.6 8.62 6.09
EfficientNet [32] 3.8 3.23 42.34 1450 967 556 1228.37 4832.4 4678.3 13.07 8.40
IMUNet [18] 1.4 3.66 18.84 456 387 351 2186.12 9090.9 8465.7 6.36 5.39
DeepILS 2.3 2.29 15.10 423 354 302 2635.32 9748.0 8864.2 4.93 4.47

the model’s weights from 32-bit floating-point to 8-bit integers.
This compression process significantly reduced the model size
and improved inference speed while maintaining negligible
accuracy degradation. The inference latency, L, is the total
time required to process a single sample. It can be computed
as: L = (Ttotal/Nsamples) where Ttotal is the total processing
time, and Nsamples is the number of samples processed. As
shown in Table II, DeepILS consistently outperformed all
state-of-the-art (SOTA) models across all tested devices. On
the Samsung S20+, DeepILS achieved an inference latency
of 354 µs, offering a performance improvement ranging from
45.12% to 80.18% over competing models. Similarly, on the Z
Flip 3, DeepILS maintained a latency of 302 µs, outperforming
other models by 18.38% to 63.57%, thus highlighting its robust
scalability and efficiency across diverse hardware platforms.

Throughput, P , represents the number of samples processed
per second and is calculated as: P = (Nsamples/Ttotal) DeepILS
achieved a throughput of 2635.32 samples per second (SPS)
on the RoNIN sequences running on the S20+, surpassing
other models and demonstrating its suitability for real-time
AIoT applications with constrained resources. Further eval-
uation of DeepILS on GPUs using the INA-IOD and K-IOD
datasets demonstrated that the model achieved a throughput of
9478 SPS and 8864 SPS, surpassing models like MobileNet
and IMUNet. Additionally, DeepILS exhibited reduced GPU
inference latency, with 4.93 seconds on INA-IOD and 4.47
seconds on K-IOD, highlighting its capability for high-speed,
real-time processing. DeepILS achieves remarkable efficiency
with only 15.10M FLOPs and 2.29M parameters, drastically
reducing computational complexity while preserving high ac-
curacy. This optimized balance between minimal resource
consumption and robust model performance is pivotal for
enhancing energy efficiency and prolonging the operational
lifespan of edge devices in AIoT systems, marking a notable
advancement in sustainable, high-performance AI deployment.
As summarized in Table II, DeepILS demonstrates exceptional
efficiency across various computing platforms. Integrating
quantization and architectural optimization techniques enables
DeepILS to outperform most state-of-the-art models in both
throughput and latency. These optimizations make DeepILS
highly suitable for real-time inertial navigation in resource-
constrained, energy-sensitive edge AIoT applications, offering
a compelling solution for balancing performance with energy
efficiency.

Table III presents a rigorous comparative evaluation of

Table III: Evaluation of DeepILS Model & S.O.T.A. Models on RoNIN [11]
Dataset & the edge implementation parameters.

Models FLOPs Inference Parameters RoNIN
(M) Time (M) ATE RTE

R-ResNet [11] 37.98 2.43 ms 4.63 3.54 2.67
TLIO [14] 39.16 2.62 ms 5.42 5.22 4.22
DIO [20] 73.03 2.62 ms 6.14 5.10 3.68
HNNTA [21] 56.63 2.19 ms 1.22 4.99 3.69
SC-HNN [22] 28.61 2.65 ms 2.56 4.98 3.69
SSHNN [23] 28.57 2.57 ms 2.07 4.96 3.48
DeepILS 15.10 1.64 ms 2.29 1.79 1.86

DeepILS against leading S.O.T.A [11], [14], [20]–[23] inertial
odometry frameworks using the RoNIN dataset, underscoring
its exceptional computational efficiency and accuracy. With a
computational cost of only 15.10M FLOPs and an inference
latency of 1.64 ms per sequence, DeepILS establishes itself as
the most computationally efficient model among the evaluated
methods. This efficiency is notably superior to resource-
intensive models such as DIO and TLIO, which incur more
than twice the computational overhead in terms of FLOPs and
exhibit significantly longer inference times. Although DIO and
TLIO have the highest number of FLOPs due to their extensive
network architecture, this does not inherently result in lower
error rates for inertial odometry. In contrast, DeepILS achieves
superior performance with just 2.29M parameters, demonstrat-
ing a highly optimized architecture that effectively balances
efficiency and complexity without sacrificing accuracy.

In terms of performance metrics, DeepILS achieves a
notable enhancement in positioning accuracy, yielding ATE
and RTE that are approximately 50-65% lower compared to
competing models. Additionally, Figure 12 provides a graph-
ical representation elucidating the correlation between model

Figure 12: The accuracy of the inertial navigation models versus the no of
parameters on the RoNIN [11] dataset
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complexity, measured by the number of parameters, and posi-
tioning accuracy, as indicated by the ATE. This comprehensive
assessment provides valuable insights into the computational
demands and memory footprint of the models, with DeepILS
demonstrating an optimal balance between model compactness
and performance.

H. Convergence Analysis of DeepILS

DeepILS employs Adam’s adaptive learning rate, which
dynamically adjusts parameter updates using first and second-
moment estimates of gradients in non-convex optimization
settings. The parameter update at step t follows:

θt+1 = θt −
α√
v̂t + ϵ

m̂t, (26)

where m̂t and v̂t denote the bias-corrected first and second-
moment estimates, respectively, and α represents the learning
rate. This reduces stochastic gradient variance, enabling more
stable optimization. Recent work shows Adam-like optimizers
converge under bounded gradients and specific conditions on
adaptive step sizes [34]. Convergence is particularly ensured
when the first-moment momentum parameter β1 is sufficiently
large, typically set near 1. The theoretical foundation of
DeepILS ensures the learning rate αt remains within optimal
bounds for gradient estimators [34]. By controlling gradient
variance via a moving average, DeepILS progressively reduces
variance over iterations, a critical factor for stable convergence
in non-convex problems. The loss function convergence can be
modeled as:

L(t) ≈ L0e
−rt + L∞, (27)

where L0 denotes the initial loss, r is the convergence rate,
and L∞ represents the minimum achievable loss. This formu-
lation aligns with the theoretical analysis presented in [34],
which establishes a convergence rate of O(log(T )/

√
T ) under

bounded gradient assumptions.
Empirically, DeepILS demonstrates rapid loss minimization,

with the fitted exponential decay curve closely following the
actual trajectory of the loss function. As shown in Figure 13,
the convergence behavior of DeepILS is compared against sev-
eral state-of-the-art models evaluated on the RoNIN dataset.
The loss decreases sharply during the initial epochs, reaching
a value of 0.03 after only 46 epochs, highlighting the model’s
efficiency. This rapid loss reduction in early training highlights

Figure 13: Comparison of Fitted Exponential Decay for Training Loss between
DeepILS and State-of-the-Art Models on the RoNIN Dataset.

the algorithm’s stability and robustness, even when evaluated
on unseen data. To further validate the generalizability of
DeepILS, we extended our evaluations to multiple datasets,
including OxIOD, RIDI, K-IOD and INA-IOD. Across all
datasets, DeepILS consistently achieved faster convergence,
typically within the first 50 epochs, significantly outpacing
baseline models, which required more epochs to reach similar
performance levels.

I. Ablation Study

We conduct a thorough ablation study to assess the con-
tribution of key components within the DeepILS framework.
By systematically testing each element, we evaluate its effect
on positioning accuracy and model generalization, providing
insights into the architecture’s most critical features.

1) Different loss function in DeepILS: In this ablation study,
we explore the impact of using the Huber loss function instead
of the mean squared error (MSE) loss on the training of
the DeepILS model. The model was trained over 200 epochs
across all six datasets, utilizing the same data augmentation
technique described in algorithm 1. After switching to the
Huber loss function, there was an observed average increase
of 21.98% in Absolute Trajectory Error (ATE) and 18.02% in
Relative Trajectory Error (RTE) across the datasets, as shown
in Figure 14(a). This rise in error rates indicates that employ-
ing the Huber loss may result in suboptimal performance for
applications where precision in small error margins is crucial.
This effect can be attributed to the quadratic term in the Huber
loss, which may not penalize slight deviations as stringently as
the MSE loss. Consequently, the original configuration of the
model using the MSE loss function is maintained for optimal
performance.

2) Impact of channel and spatial attention modules: In this
segment of our ablation study, we investigated the influence of
different placement arrangements of channel-wise and spatial
attention modules when integrated with Depthwise Separable
(DWS) convolution blocks on positioning accuracy. This in-
vestigation included several configurations: the original model
setup, a spatial-first arrangement where the positions of the
channel-wise and spatial attention modules were inverted, and
a configuration devoid of these attention modules. Performance
was evaluated using all the datasets with the training for
200 epochs. The results demonstrated that modifying the
arrangement of the attention modules led to a slight increase
in localization error by 6.2%, and also resulted in prolonged
training durations. Conversely, the complete removal of both
channel-wise and spatial attention modules precipitated a
substantial rise in localization error, amounting to 35.6%,
as illustrated in Figure 14(b). The channel-first configuration
demonstrated marginally better performance than the spatial-
first setup. These findings highlight the crucial role that both
channel-wise and spatial attention modules play in enhancing
the accuracy of the DeepILS model for inertial positioning
tasks.

3) Different data augmentation methods: We investigated
the impact of applying random Gaussian smoothing with a
standard deviation σ of 5 to the feature vectors, aiming to
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(a) (b) (c)
Figure 14: The inertial odometry performance of DeepILS during ablation experiment. (a) ATE/RTE of DeepILS on various datasets and increased error by
using Huberloss(). (b) ATE/RTE of DeepILS on various datasets by omitting (CA-SA). (c) ATE/RTE of DeepILS on OxIOD dataset sequences by applying
data augmentation techniques: Random Horizontal Rotate (RHR), Random Smoothing (RS) with max σ = 5, and no augmentation.

mitigate noise in the data sequences of the OxIOD dataset.
DeepILS was trained over 200 epochs across all sequences
of the OxIOD dataset. We evaluated the average positioning
error under three different settings: the original model, which
employs random horizontal rotation; a model using random
Gaussian smoothing; and a model without data augmentation.
The results indicated a significant increase in positioning errors
when modifications were applied to the data preprocessing
pipeline. Specifically, the application of Gaussian smoothing
(σ) resulted in an increase in the average positioning error
by more than 20%, with the Absolute Trajectory Error (ATE)
escalating by 22% and the Relative Trajectory Error (RTE) by
28%. Furthermore, the absence of any augmentation method
led to an even more pronounced deterioration in positioning
accuracy, with the average positioning error surging by more
than 35%, the ATE by 48%, and the RTE by 37% as shown
in Figure 14(c).

V. CONCLUSION AND FUTURE WORK

In this work, we proposed DeepILS, a novel neural network
architecture designed for a smartphone-based inertial localiza-
tion system. The model incorporates depth-wise separable con-
volution blocks and channel-wise and spatial attention modules
within a residual network framework. These attention modules
are systematically cascaded to enhance feature learning and
improve training performance on inertial data. DeepILS ex-
hibits robust handling of rotation-invariant motion sequences,
making it particularly well-suited for edge deployment due
to its significantly reduced inference latency (up to 60 times
faster), minimal parameter requirements, reduced computa-
tional complexity (FLOPs), and high throughput on resource-
constrained devices. By utilizing pose-invariant inertial mea-
surement unit (IMU) data from smartphones, DeepILS consis-
tently outperforms existing frameworks in pedestrian position
estimation. Evaluations conducted on benchmark and proposed
datasets demonstrate superior performance across multiple
metrics, surpassing state-of-the-art models. Comprehensive
experiments, including tests on unseen datasets and detailed
ablation studies, further underscore the model’s efficiency,
generalization capabilities, and statistical reliability in inertial
navigation. Despite these advances, challenges remain under
scenarios with highly variable motion domains. While the
observed error range (0.3–0.7 m) is slightly elevated in such
conditions compared to low-speed settings, it remains within

practical thresholds for real-world applications. Importantly,
DeepILS continues to outperform leading models, including
IMUNet and CTIN, highlighting its superior accuracy.

Future research will focus on enhancing DeepILS by in-
tegrating visual-inertial sensor fusion to improve localization
precision while adhering to the computational constraints of
edge devices. By incorporating camera data alongside in-
ertial sensor inputs, we aim to develop a robust, real-time
positioning system optimized for smartphone applications.
This approach balances accuracy, low-latency processing, and
computational efficiency, ensuring its applicability in edge-
based deployments. The source code and datasets used in this
study have been publicly available to promote further research
and development in edge AIoT applications.
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