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CPAL: Cross-Prompting Adapter of Large Vision
Foundation Model for Multi-Modal Semantic

Segmentation
Ye Liu, Member, IEEE, Pengfei Wu, Miaohui Wang, Senior Member, IEEE and Jun Liu, Senior Member, IEEE

Abstract—With the development of sensor technology, various
sensors are being applied to visual perception tasks, expanding
the perception capabilities of traditional RGB cameras and
providing richer information from heterogeneous modalities.
However, how to fully exploit the information from different
modalities in important tasks such as semantic segmentation
remains an open and challenging issue. Existing methods typically
have smaller parameter scales, which restricts the representation
and generalization capabilities of the models. Training large-scale
models requires massive amounts of multi-modal data, which is
often difficult to obtain. However, in the RGB modality, people
can access relatively vast amounts of data to train large vision
foundation models (LVFM). Therefore, fine-tuning LVFMs in the
RGB modality to enable them to solve multi-modal segmentation
problems may be a more viable option. In this paper, instead of
focusing on the ability of LVFM solely on RGB modality, we are
dedicated to developing the potential of LVFM in both RGB and
non-RGB modalities simultaneously, which is non-trivial due to
the semantic gap between modalities. Specifically, we present a
novel bi-directional cross-prompting adapter to simultaneously
fully exploit the complementarity and bridging the semantic gap
between modalities. We also introduce modality specific LoRA
to fine-tune the foundation models of each modal. With the
support of these elements, we have successfully unleashed the
potential of LVFM in both RGB and non-RGB modalities simul-
taneously. Our method achieves state-of-the-art (SOTA) perfor-
mance on five multi-modal benchmarks, including RGB+Depth,
RGB+Thermal, RGB+Event, and a multi-modal video object
segmentation benchmark, as well as four multi-modal salient ob-
ject detection benchmarks. This demonstrates its generalization
ability and robustness across diverse tasks. The code and results
are available at: https://github.com/abelny56/CPAL.

Index Terms—Multi-modal Semantic Segmentation, large vi-
sion foundation model, prompt-tuning, cross-prompting adapter,
LoRA.

I. INTRODUCTION

IMAGE semantic segmentation aims at categorizing each
pixel into specific class, which has been applied in many

domains such as robot vision and autonomous driving, and
has seen significant progress [1]–[5]. However, semantic seg-
mentation relying solely on RGB images remains suscep-
tible to imaging conditions such as illumination variations,
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Fig. 1. Differences between our CPAL and previous multi-modal semantic
segmentation paradigm. (a-c) Previous methods which extend pre-trained RGB
models with fusion strategies and conduct full fine-tuning on multi-modal
semantic segmentation tasks. (d) Previous unidirectional prompting method.
(e) The proposed bi-directional cross-prompting tuning framework.

rainy or snowy weather, motion blur etc. Incorporating more
sensors can solve these problems to a certain extent. For
example, depth sensor [6]–[12] is capable of obtaining the
three-dimensional geometric information of the scene, thermal
camera [13]–[15] can capture the temperature information of
a scene, and event camera is able to detect and output only
local pixel-level brightness changes with low latency [16]–
[18]. However, current multi-modal semantic segmentation
methods face two major challenges:

1) At the data level, there is a shortage of large-scale multi-
modal data, due to equipment limitations and the high
costs associated with modal alignment and annotation.

2) At the methodological level, the challenge lies in how
to maximize the extraction of information from different
modalities.

Most existing methods are designed to address the second
challenge by devising models with better strategies to mine
useful information from different modalities [19]–[21] as
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shown in Fig. 1 (a-c). Although these methods have achieved
notable progress, their performance is limited by the scale
of training data and model parameters, making it difficult to
further enhance the performances.

Recent advancements in large language models [22], [23]
within the field of natural language processing have also
spurred the development of large-scale foundational vi-
sual models. Thanks to the relatively abundant RGB data,
these models demonstrate excellent generalization capabilities.
However, for multi-modal vision tasks, training large-scale
multi-modal foundational visual models is currently challeng-
ing due to the scarcity of multi-modal data. Therefore, fine-
tuning large-scale foundational models trained on RGB modal-
ities using limited multi-modal data is a more feasible option.
Recent method utilize a unidirectional scheme: using non-
RGB modalities [24] or both RGB and non-RGB modalities
[25] to prompt LVFMs trained on RGB modalities as shown in
Fig. 1 (d), this kind of scheme neglects the potential of LVFMs
in non-RGB modalities. The large number of parameters and
the scale of training data enable LVFMs to possess much
stronger generalization ability compared to smaller models.
Therefore, tapping into the capabilities of LVFMs in both
RGB and non-RGB modalities while bridging the semantic
gap between modalities are our primary design goals.

To this end, we propose a novel bi-directional multi-modal
prompting learning framework named cross-prompt learning,
as shown in Fig. 1 (e). In this framework, a large vision
foundation model is applied simultaneously to both RGB and
non-RGB modality with its parameters frozen. In this frame-
work, a prompting network named cross-prompting adapter
is proposed to prompt the frozen models of both modalities
simultaneously. Specifically in the cross-prompting adapter,
multiple multi-modal cross prompter (MCP) blocks act at dif-
ferent stages of the foundation models, which fully integrates
information from both RGB and non-RGB modalities and
provides prompts for the frozen models of both modalities. The
staged prompt results are collected and purified through the
proposed gated perception module (GPM) to generate feature
maps for decoding and prediction. Additionally, to further
account for modal differences, we introduce LoRA (Low-Rank
Adaptation) to fine-tune the frozen models specifically for each
modality to learn modality-specific representations. Excessive
experiments on various types of multi-modal segmentation
datasets have demonstrated the effectiveness of the proposed
method.

We summarize the contributions of our work as follows:
• We propose a bi-directional cross-prompt learning frame-

work for multi-modal semantic segmentation, which
simultaneously exploits the potential of a pre-trained
LVFM in both RGB and non-RGB modalities.

• Within the above framework, we propose a prompting
network named cross-prompting adapter with multiple
MCP and GPM blocks acting at different stages of the
foundation model and producing high-quality features for
decoding and prediction.

• We introduce the modality-specific LoRAs to further
fine-tune large foundation RGB models for multi-modal
segmentation tasks.

• We have conducted systematical experiments on five
multi-modal semantic segmentation benchmarks, whose
modality ranging from RGB-depth, RGB-thermal, and
RGB-event. Furthermore, we extended our approach to
a multi-spectral video object segmentation benchmark
and four RGB-D salient object detection benchmarks,
achieving state-of-the-art performance across all datasets.
This validates strong generalization ability and robustness
of proposed method.

II. RELATED WORK

A. Multi-modal Semantic Segmentation

General semantic segmentation (RGB inputs) aims to pre-
dict the pixel-wise segmentation mask of input RGB images,
wherein each pixel is categorized into a specific class. The
continuous expansion of large-scale datasets [26]–[28], cou-
pled with the rapid development of deep neural networks
[29], [30] has propelled this field forward. Although numerous
semantic segmentation models [31]–[33] have made signifi-
cant breakthroughs in segmentation accuracy and precision,
they encounter challenges under real-world conditions where
RGB cameras fail to provide adequate information, such as
strong or weak illumination, complex weather scenarios, etc.
Accounting for this, multi-modal semantic segmentation has
attracted growing attention owing to the capacity of various
modalities, such as depth [21], [34], thermal [19], [35], and
event [17], [36], to offer complementary information, thereby
improving segmentation performance in challenging scenarios
that cannot be effectively tackled solely with single-modal
images. Recently, the work of [37], [38] further effectuate
the shift from modality-specific fusion towards unified fusion.
Mamba network is introduced as encoder and fusion module
in Sigma [39] which achieves impressive performances.

Most methods above fully fine-tune models with complex
and redundant fusion strategies which fail to fully leverage
the advantages gained from pre-training with large amounts
of data. Recently, GoPT [24] has advanced the application
of Parameter-Efficient Fine-Tuning (PEFT) in multi-modal
semantic segmentation by utilizing non-RGB modalities to
prompt the RGB modality. DPLNet [25] takes a further
step by leveraging both RGB and non-RGB modalities to
prompt the RGB foundation model simultaneously. Despite the
differences in prompting methods, these two approaches have
only explored the potential of the foundation model within the
RGB modality.

Our approach aims to leverage a cross-prompting fine-
tuning method, fully exploiting the potential of pre-trained
LVFMs in both RGB and non-RGB modalities. This enables
the model to effectively utilize information across different
modalities, achieving complementary performance in complex
environments. Besides, unlike previous methods [19], [21],
[34], [35] that focus on fusion with a specific modality,
our designed CPAL exhibits universality and flexibility. It
can adaptively adopt fusion strategies based on the perceived
modality environment and utilize a gated structure to filter out
noisy information.
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Fig. 2. Overview of CPAL for multi-modal semantic segmentation. We adapt an off-the-shelf pre-trained RGB-based foundation by incorporating a cross-
prompting adapter with LoRAs for multi-modal tasks. The cross-prompting adapter is paralleled with the dual-stream encoder layer, enabling it to perceive
the task environment and generate bi-directional prompts to motivate the environment for modal complementary decision-making. LoRA is embedded in each
foundation model, making them learn modality specific semantics. Ultimately, the merged multi-scale staged prompted results are fed into the decoder head
for mask prediction.

B. Parameter-Efficient Fine-Tuning

Pre-trained large-scale models can acquire robust feature
representation capabilities from extensive data. Consequently,
how to effectively utilize these large foundation models to
adapt them to downstream tasks has become a significant prob-
lem [40]–[42]. Parameter-efficient tuning [43]–[46] (PEFT)
is specifically designed to enhance the efficiency of fine-
tuning process. Recently, prefix-tuning, a novel approach to
parameter-efficient fine-tuning, has gained significant traction
in many down-stream NLP tasks [44], [47]. VPT [48] intro-
duces prompt-tuning into the vision task, which proposes to
fine-tune the prompt tokens and the head to attain outstanding
performance and diminish training costs. Low rank adaptation
[45] (LoRA) reparameterises some certain layers in the pre-
trained model, which designs the low rank approximation to
fine-tune the large-scale language model.

Unlike previous approach [24] where non-RGB modalities
prompt the main modality, in this work we propose the
cross-prompt tuning framework and introduce LoRA tuning
to multi-modal semantic segmentation. We utilize the MCP
block within cross-prompting adapter to generate cross-modal
prompts, further activating high-level features through the
LoRA embedded in the last encoder stage.

III. METHOD

In this work, we propose CPAL for effectively and effi-
ciently adapting the pre-trained large-scale RGB-based seman-
tic segmentation model to multi-modal tasks. Instead of fully
fine-tuning the whole foundation model, CPAL leverages a
relatively lightweight cross-prompting adapter and low-rank
adaptation (LoRA) to achieve parameter-efficient tuning, re-
sulting in exceptional multi-modal complementarity and supe-
rior segmentation accuracy. Within this framework, the cross-
prompting adapter consists of two components: multi-modal
cross promoter (MCP) and gated perception module (GPM).

It is worth noting that, for enhanced modality perception, all
the modules within the adapter are designed with a multi-scale
approach. The overall architecture of our CPAL is presented
in Fig. 2.

A. Multi-modal Semantic Segmentation and Foundation
Model.

Problem Definition. For RGB semantic segmentation tasks,
the objective is to learn a segmentation model SRGB : IRGB

→ OMask, where IRGB is the input RGB image, and OMask

is the predicted category of each pixel in the image. For the
task of multi-modal semantic segmentation, an additional input
is incorporated, expanding the model input to (IRGB , IA),
with the subscript A denoting non-RGB modalities such as
depth, thermal infrared, or event information. Consequently,
the formulation of the multi-modal segmentation model can
be expressed as SRGB−A : (IRGB , IA) → OMask, wherein
SRGB−A represents the multi-modal segmentation model.

Foundation Model. Although the PEFT methods have
achieved success in language models [49], its application in
multi-modal dense prediction tasks has not been fully ex-
plored. Unlike language models, for better adaptation to dense
prediction tasks, we meticulously select recent LVFM, Intern-
image [50], as our foundation model. It features a multi-stage
encoder structure designed for semantic segmentation, capable
of extracting features at different scales, with a parameter
count of 1.12 billion. Generally, the foundation segmentation
model SRGB can be decomposed into Enc•Dec, where Enc :
IRGB → TRGB denotes the encoder foundation, which serves
as the feature extraction function, TRGB represents the output
features of input images, and the decoder head Dec : TRGB

→ OMask is adopted to upsample the feature maps output by
the encoder and achieve pixel-level prediction.

The initial step involves introducing the RGB modality,
namely IRGB , to the stem layer that includes a patch em-
bedding layer and a position dropout layer, generating RGB
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Fig. 3. Detailed design of Multi-modal Cross Prompter (MCP) which consists of two sub-blocks.

modality tokens T 0
RGB . Subsequently, these tokens are fed

into the multi-stage encoder with l layers. In this context, we
denote T i−1

RGB as input to the i-th encoder layer Ei. Formally,
the computational process of the forward operation in the i-th
layer of the encoder can be represented as:

T i
RGB = Ei(T i−1

RGB), i = 1, 2, . . . , l (1)

OMask = Dec(T a
RGB , T

b
RGB , T

c
RGB , T

d
RGB), (2)

where the encoder layer Ei comprises a deformable convo-
lution v3 (DCNv3) and a feed-forward network (FFN). Each
sub-layer is structured as a residual connection, followed by a
normalization operation. The multi-scale feature maps (T a

RGB

, T b
RGB , T c

RGB , T d
RGB) of each stage are taken as the input

for the decoder head Dec to predict pixel-wise masks.

B. Cross-prompting Adapter with LoRAs

As illustrated in Fig. 2, our CPAL architecture features
a dual-stream encoder structure catering to both the RGB
modality and the supplementary modality individually. Each
stream within this architecture is characterized by a shared
set of frozen parameters. CPAL initially processes a pair of
RGB and non-RGB input images, namely IRGB and IA, into
the stem layer, obtaining the RGB tokens T 0

RGB and non-
RGB tokens T 0

A. Then, our universal cross-prompting adapter
is embedded between the dual-stream encoders. The operation
of the cross-prompting adapter is divided into two phases. The
first phase involves the acquisition and prompt of features
from both modalities. For the i-th layer of each encoder,
tokens (T i−1

RGB , T i−1
A ) originating from diverse modalities are

fed into the multi-modal cross prompter (MCP) to generate
bi-directional cross-modal prompts (Pi

RGB , Pi
A). The cross-

modal prompts, enriched with diverse scale information, are
then added to the encoder network in a form of residual. This
integration enhances the interactivity of modal information,
fostering a more dynamic task environment in a systematic,
layer-by-layer fashion:

(Pi
RGB ,Pi

A) = Pi(Ti−1
RGB , T

i−1
A ), i = 1, 2, . . . , l (3)

(Ti
RGB ,Ti

A) = Ei(T i−1
RGB , T

i−1
A ) + (Pi

RGB ,Pi
A), (4)

where Pi denotes the embedded MCP block in the i-th
layer of the encoder. Then, the multi-scale features from
each encoder stage are fed into the gated perception module
(GPM) Mi. Leveraging the preceding prompts, this module
integrates information from different modalities and filters
out redundant counterparts, thereby facilitating the adapter’s
inferential decision-making function. Finally, the decoder head
receives the multi-modal and multi-scale complementary fea-
tures output by the adapter to obtain the final segmentation
results.

Ti
RGB−A = Mi(T i

RGB , T
i
A), i = a, b, c, d (5)

OMask = Dec(T a
RGB−A, T

b
RGB−A, T

c
RGB−A, T

d
RGB−A) (6)

Multi-modal Cross Prompter (MCP). The current ap-
proaches to multi-modal semantic segmentation predominantly
involve full fine-tuning, with fusion strategies between dif-
ferent modalities often meticulously designed specifically.
These methods typically exhibit large parameter counts and
lack generalizability. Recent fine-tuning method [24] has not
accounted for the variations in the primary and secondary
roles of different modalities. They have also failed to fully
leverage the potential of pre-trained models on non-RGB
modalities. To enhance the fine-tuning of frozen large pre-
trained foundation model and facilitate the cross-prompting
adapter’s awareness of different modalities in the environment,
we propose the universal MCP block, so that we can better
utilize complementary information across RGB and non-RGB
modalities.

As depicted in Fig. 3, the MCP employs a modular design,
integrating into both the DCNv3 stage and the FFN stage indi-
vidually. Each MCP block is constructed by concatenating two
structurally identical sub-blocks in series. Formally, providing
tokens Ti−1

RGB , Ti−1
A of two modalities from the i-th encoder

layer equipped with a MCP module Pi. We denote Pi
RGB

and Pi
A as the output to Pi, modality prompts are generated

as follows:

T̃ i
A = LN(DCNv3(T i−1

A )) + T i−1
A + P̃ i

RGB , (7)

T̃ i
RGB = LN(DCNv3(T i−1

RGB)) + T i−1
RGB + P̃ i

A, (8)
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(P̃ i
RGB , P̃

i
A) = Pi

1(T
i−1
RGB , T

i−1
A ), (9)

where DCNv3 and LN represent the deformable convolution
block and layer normalization in each encoder layer. Pi

1 refers
to the first sub-block of the i-th MCP. Additionally, P̃ i

RGB and
P̃ i
A symbolize the feature prompts extracted from RGB and

non-RGB modality. We obtain T̃ i
A and T̃ i

RGB by adding the
prompts from two modalities to the intermediate layer results
of the encoder, respectively. After that, both T̃ i

A and T̃ i
RGB will

be fed into the feed forward layer FFN separately, and added
with feature prompts (P̃ i

RGB , P̃ i
A) and (T̃ i

RGB , T̃ i
A) together

to obtain the output (T i
RGB , T i

A) of the i-th layer,

T i
A = LN(FFN(T̃ i

A)) + T̃ i
A + P i

RGB , (10)

T i
RGB = LN(FFN(T̃ i

RGB)) + T̃ i
RGB + P i

A, (11)

(P i
RGB , P

i
A) = Pi

2(T̃
i
RGB , T̃

i
A), (12)

The structure of our MCP is illustrated in Fig. 3, which
is designed to perceive information from two modalities and
provide bi-directional cross-modal prompts for the task envi-
ronment. Each MCP layer consists of two sub-blocks, each
comprising three layers of projection: down-projection, mid-
projection, and up-projection. Each projection layer adopts
a grouped convolutional structure, which is simple yet ex-
hibits strong representational capability while simultaneously
reducing parameter count and enhancing computational speed.
Tokens from each modality sequentially pass through these
layers, generating modality-complementary prompts. These
prompts are then added to corresponding encoder of the other
modality for bi-directional cross-modal prompting.

Gated Perception Module (GPM). When the MCP is
provided with cross-modal tokens through the dual-stream
encoder, the cross-prompting adapter comprehensively learns
features from different modalities. Subsequently, the frozen
encoder produces features of various scales at each stage. Our
designed GPM is seamlessly connected to the output layer
of each stage, thereby playing a crucial role in the decision-
making of cross-modal representations for the cross-prompting
adapter.

Although the prompt generated by MCP enable the encoder
to represent features from different modalities, it still contains
a substantial amount of redundant and noisy information.
These pieces of information may introduce interference to
the crucial cross-modal interaction signals, maintaining the
dominance of the original information from each modality on
the final segmentation results, which is a challenge that exist-
ing modality fusion methods have not effectively addressed.
To endow the cross-prompting adapter with the capability
to selectively filter out redundant information and activate
pertinent cross-modality signals, we introduce the GPM.

As shown in Fig. 4, we assign a GPM to receive bi-
directional adaption information (TRGB and TA) jointly gen-
erated by MCP and frozen encoder. In order to enable the
cross-prompting adapter to perceive various modalities of the
surrounding environment and formulate corresponding fusion
strategies, GPM constructs a memory vector and a forget gate
to regulate the influx of noise and mismatched information.
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Fig. 4. Structure of the proposed Gated Perception Modul (GPM)

GPM consists of five primary stages: (i) projecting multi-
modal tokens into lower-dimensional latent embeddings; (ii)
computation of the perception matrix for cross fusion and
remember vector; (iii) calculation of the forget vector; (iv)
generation of the cross-modal merged feature; (v) projecting
to original dimension. Specifically, TRGB and TA are firstly
transformed with the 1×1 convolutional layer and linear layer.
Then, they are fed into the perception function F to calculate
the perception matrix m. Here, F signifies a simple yet
effective cross-attention operation, while m represents the
attention score map. Using this matrix, a modal fusion strategy
is applied to derive the remember vector Vr, forget vector Vf ,
and merged vector Vm,

VRGB = Linear(conv(TRGB)), (13)

VA = Linear(conv(TA)), (14)

Vr = F(VRGB , VA) (15)

Vf = σ(Linear(Vr)), (16)

Vm = Vr ⊙ Vf + VRGB , (17)

where ⊙ represents element-wise dot production. In Equa-
tion 16, we keep the raw feature VRGB to prevent the
forget gate from excessively filtering out valuable information.
Finally, we obtain complementary cross-modal features by:

TRGB−A = conv(Vm) (18)

LoRA in frozen encoder. First, let’s briefly recap the
design of low-rank adaptation (LoRA). LoRA is a method for
efficiently fine-tuning pre-trained models, leveraging a low-
rank approach to modify supplementary model weights. As
opposed to full fine-tuning, this approach significantly reduces
the overall parameter count, and alleviates training costs.

The LoRA strategy in CPAL is illustrated in Fig. 5.
Considering that the prompts from MCP for each layer of
the encoder are already sufficiently informative, and the last
stage contains higher-level semantic information, providing
more substantial assistance to the decoder. Therefore, we
exclusively apply LoRA to the core DCNv3 block of the final
stage. In DCNv3, the offset layer determines the displacement
of convolutional kernels across the input feature map. By
adjusting these offsets, deformable convolution can capture
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Fig. 5. Low Rank Adaptation (LoRA) in DCNv3

more flexible features, which is crucial for handling deformed
objects, varying viewpoints, and complex backgrounds. The
mask layer generates weights for each sampling position,
which are used to weight the contributions of the sampling
points. By adjusting the weights of individual sampling points,
the mask layer further enhances the model’s selectivity towards
features, providing greater flexibility when processing diverse
features. Therefore, LoRA fine-tuning is applied to these two
most crucial components. Specifically, For the frozen weight
matrix Wmask ∈ Rd×k of mask layer, LoRA constrains the
update during fine-tuning by representing the parameter update
with a low-rank decomposition:

Wmask +∆Wmask = Wmask +BmaskAmask, (19)

where Bmask and Amask are learnable LoRA parameters,
Bmask ∈ Rd×r, Amask ∈ Rr×k, and the rank r ⩽ min(d,
k). In a similar vein, the treatment of the offset layer follows
the same approach:

Woffset +∆Woffset = Woffset +BoffsetAoffset, (20)

In this way, we activate deeper-level features on top of
cross-modal prompts, fully leveraging the frozen large-scale
foundation model and exploring information from different
modalities.

IV. EXPERIMENTS

A. Datasets

Following the common experiment settings of multi-modal
semantic segmentation methods, we conduct extensive exper-
iments on five widely used datasets, including RGB-depth,
RGB-thermal and RGB-event.

NYU Depth V2 dataset [51] consists of 1449 RGB-depth
images with the size 480×640. These images are divided into
795 training images and 654 testing images, with annotations
available for 40 semantic categories.

SUN-RGBD dataset [52] comprises 10335 RGB-depth
images across 37 classes. For our experiment, we adhere to
the same training/test split as outlined in [52].

FMB dataset [53] presents a novel and formidable collec-
tion comprising 1500 pairs of meticulously calibrated RGB-
thermal image pairs. Within this dataset, the training set
encompasses 1220 image pairs, and the test set comprises 280
pairs. Notably, the dataset covers a diverse array of challenging
scenes, including those with the Tyndall effect, rain, fog, and
intense light.

PST900 dataset [14] provides 894 RGB-thermal images
captured at a resolution of 720×1280 in cave and subterranean
environments for the DARPA Subterranean Challenge. This
dataset includes annotated segmentation labels for five classes,
encompassing one background class (unlabeled) and four
object classes.

DDD17 dataset [16], [54] incorporates more than 12
hours of DAVIS sensor recordings, each with a resolution of
260×346 pixels, capturing diverse scenarios of both highway
and city driving.

B. Implementation Details

We conducted all experiments on a single NVIDIA 3090
GPU with a global batch size of 2 and iteration of 40k. The
AdamW optimizer [84] with a weight decay of 0.05 is adopted.
The initial learning rate is set to 2×10−5 and decayed follow-
ing the polynomial decay schedule with a power of 1.0. The
fixed parameters in our model are initialized by the pre-trained
foundation. Additionally, we utilize the same loss function as
[50]. Some recent works [37], [56], [58], [67], [69] employ
multi-scale inference strategy for data augmentation. While in
our work, to showcase the effectiveness of CPAL, we only
adopt the single scale test. Following existing methods, we
report the popular mean intersection over union (mIoU), pixel
accuracy (pAcc) and mean accuracy (mAcc) as the primary
evaluation metrics to measure the segmentation performance.
Additionally, we selected two common decoders, namely Uper
Head [85] and a more lightweight Hamburger Head [86], to
serve as our decoder heads, resulting in our model CPAL-L
and CPAL-T, respectively.

C. Comparison with State-of-the-arts

Results on RGB-depth Datasets. We conduct a compara-
tive analysis between our CPAL and 22 contemporary RGB-
depth semantic segmentation methods using NYUDepthv2
dataset [51] and SUN-RGBD dataset [52]. As indicated in
Table I, our method, even with single-scale inference, outper-
forms previous state-of-the-art methods by a large margin. The
most recent fine-tuning method GoPT [24] utilizes a frozen
pre-trained model to extract RGB features, fine-tunes non-
RGB branches, and employs non-RGB modalities to prompt
the RGB modality, overlooking the pre-trained model’s capa-
bility to extract features from the non-RGB modality. Dformer
[67] initially undergoes pre-training on RGB-D datasets, fol-
lowed by a comprehensive full fine-tuning process, which ap-
pears to be intricate. In contrast, our approach directly utilizes
a pre-trained RGB-based model, incorporating a lightweight
cross-prompting adapter with LoRA that seamlessly embeds
cross-modal prompts from both RGB and depth modality. By
incorporating the adapter’s modality perception along with
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TABLE I
RESULTS ON NYU DEPTH V2 [51] AND SUN-RGBD [52]. THE TOP THREE RESULTS IN EACH COLUMN ARE HIGHLIGHTED IN RED, BLUE AND GREEN,

♠ REPRESENTS THE METHOD OF FINE-TUNING PRE-TRAINED MODEL.

Model Publication NYUDepthv2 SUN-RGBD Parameters
Input size pAcc(%) mIoU(%) Input size pAcc(%) mIoU(%) Trainable Inference

ACNet [55] 2019-ICIP 480× 640 — 48.3 530× 730 — 48.1 116.6M 116.6M
SA-Gate [56] 2020-ECCV 480× 640 77.9 52.4 530× 730 82.5 49.4 110.9M 116.6M
CEN [57] 2020-NeurIPS 480× 640 77.7 52.5 530× 730 83.5 51.1 133.9M 133.9M
SGNet [58] 2021-TIP 480× 640 76.8 51.1 530× 730 82.0 48.6 64.7M 64.7M
ShapeConv [21] 2021-ICCV 480× 640 76.4 51.3 530× 730 82.2 48.6 86.8M 86.8M
ESANet [59] 2021-ICRA 480× 640 – 50.3 480× 640 – 48.2 31.2M 31.2M
FRNet [60] 2022-JSTSP 480× 640 – 53.6 530× 730 – 51.8 85.5M 85.5M
PGDENet [61] 2022-TMM 480× 640 – 53.7 530× 730 – 51.0 100.7M 100.7M
EMSANet [62] 2022-IJCNN 480× 640 – 51.0 – – – 46.9M 46.9M
TokenFusion [63] 2022-CVPR 480× 640 79.0 54.2 530× 730 84.7 53.0 45.9M 45.9M
MultiMAE [64] 2022-ECCV 640× 640 – 56.0 640× 640 – 51.1 95.2M 95.2M
Omnivore [34] 2022-CVPR 480× 640 – 54.0 – – – 95.7M 95.7M
NAS [65] 2023-ACMMM – 79.4 55.1 – 82.9 50.3 48.9M 48.9M
PDCNet [66] 2023-TCSVT 480× 480 78.4 53.5 480× 480 83.3 49.6 – –
CMX [37] 2023-TITS 480× 640 80.1 56.9 530× 730 83.8 52.4 181.1M 181.1M
CMNext [38] 2023-CVPR 480× 640 – 56.9 530× 730 – 51.9 119.6M 119.6M
DFormer [67] 2024-ICLR 480× 640 – 57.2 530× 730 – 52.5 39.0M 39.0M
OmniVec [68] 2024-WACV 480× 640 – 60.8 – – – 95.7M 95.7M
GeminiFusion [69] 2024-ICML 480× 640 – 60.9 530× 730 – 52.5 – –
Sigma [39] 2024-arXiv 480× 640 – 57.0 480× 640 – 52.4 69.8M 69.8M

DPLNet♠ [25] 2023-arXiv 480× 640 – 59.3 530× 730 – 52.8 7.15M 88.6M
GoPT♠ [24] 2024-AAAI 480× 640 80.1 54.3 530× 730 85.5 52.3 0.97M 112.6M
CPAL-T♠(Ours) 2024 480× 640 84.6 66.2 530× 730 85.9 56.4 6.2M 1.1B
CPAL-L♠(Ours) 2024 480× 640 84.5 65.8 530× 730 86.3 58.2 51.2M 1.1B
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Fig. 6. Qualitative visual comparisons between our method (CPAL-L) and the state-of-the-art networks on the NYU Depth V2 test set.
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RGB Thermal HAPNet Ours GT

Fig. 7. Visual comparisons between our CPAL-L and the state-of-the-art method (HAPNet) on the PST900 dataset. Please zoom-in for the best view.

TABLE II
OVERALL PERFORMANCE ON FMB [53].

Model Publication mAcc(%) mIoU(%) Parameters
Trainable Inference

DIDFuse [70] 2020-IJCAI 73.0 50.6 – –
GMNet [71] 2021-TIP 64.4 49.2 149.8M 149.8M
FEANet [72] 2021-IROS 64.5 46.8 255.2M 255.2M
ReCoNet [73] 2022-ECCV 71.4 50.9 – –
U2Fusion [74] 2022-TPAMI 70.1 47.9 – –
TarDAL [75] 2022-CVPR 74.8 48.1 – –
LASNet [76] 2023-TCSVT 56.9 42.5 93.6M 93.6M
EGFNet [77] 2023-AAAI 63.0 47.3 201.3M 201.3M
SegMiF [53] 2023-ICCV 74.5 54.8 – –

CPAL-T(Ours) 2024 74.6 64.2 6.2M 1.1B
CPAL-L(Ours) 2024 76.2 64.6 51.2M 1.1B

cross-modal prompts, our method efficiently harnesses the
latent potential of the frozen large-scale foundational model,
streamlining the training pipeline. In terms of the mIoU,
CPAL-L outperforms the second-ranked method by 4.9% on
NYUDepthv2, and by 5.7% on SUN-RGBD, respectively.
Moreover, surprisingly, our CPAL-T model achieved superior
performance on the NYUDepthv2 dataset with fewer training
parameters. Qualitative visual comparisons with state-of-the-
art networks on the NYU Depth V2 dataset are illustrated in
Fig. 6.

Results on RGB-thermal Datasets. For RGB-T semantic
segmentation, we conduct experiments on PST900 [14] and
FMB [53]. The quantitative performance of CPAL and the
compared methods on the FMB dataset is reported in Table
II. CPAL-L outperforms previous SOTA algorithms by a
substantial margin, surpassing the SegMiF [53] by 8.48%
mIoU. This notable performance differential underscores the
effectiveness of CPAL in leveraging thermal information,
showcasing its adaptability in challenging scenarios, such as
night-time conditions. Table III compares our CPAL with 15
SOTA RGB-thermal semantic segmentation models on the

PST900. Our method and HAPNet [83] both achieve a tie for
first place with an mIoU of 89.0%. As can be seen from the
visualization results in Fig. 7, our model does a better job of
handling details and has superior segmentation performance.
Furthermore, our approach significantly outperforms the recent
fine-tuning method GoPT [24], demonstrating its superior
ability to address the shortcomings of previous technique.

Results on RGB-E Datasets. We compare our methods
with cutting-edge event-based semantic segmentation methods,
including Spiking-Deeplab/FCN [87], Ev-SegNet [16], ESS
[36], Evdistill [18], SSAM [88], CMX [37] and CMNeXt
[38], as shown in Table IV. It is noteworthy that we just
utilize event images derived from raw event data rather than
event stream, our CPAL-L achieves remarkable 77.42% mIoU,
surpassing the second-best model CMNeXt [88] by 4.75%.
In addition, the dataset collected are grayscale images rather
than RGB images. This indicates that, despite the absence of
color information, our CPAL fine-tuning process has enabled
the pre-trained RGB-based model to exhibit generalization
capabilities even on grayscale images.

D. Generalization to Other Multi-modal Task

To validate the generalization capability of our approach,
we conducted experiments on a multi-spectral video object
segmentation benchmark MVseg [91] and four RGB-D salient
object detection benchmarks NJU2K [97], NLPR [98], DES
[99] and SIP [100].

Multi-spectral Video Object Segmentation. We employed
the same experimental setup as described in subsection B.
The results, as depicted in Table V, demonstrate that although
we did not utilize temporal information from consecutive
frames and only performed semantic segmentation on indi-
vidual images, our fine-tuning method achieved remarkable
performance, surpassing the second-best result by 2.29% in
mIoU.
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TABLE III
QUANTITATIVE COMPARISONS ON PST900 [14] DATASET, RESULTS ARE REPORTED IN PERCENTAGE (%). THE TOP THREE RESULTS IN EACH COLUMN

ARE HIGHLIGHTED IN RED, BLUE AND GREEN, ♠ REPRESENTS THE METHOD OF FINE-TUNING PRE-TRAINED MODEL.

Methods Publication Background Hand-Drill Backpack Fire-Extinguisher Survivor mAcc(%) mIoU(%) Parameters

Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Trainable Inference

MFNet [13] 2017-IROS - 98.6 - 41.1 - 64.2 - 60.4 - 20.7 - 57.0 8.4M 8.4M
PSTNet [14] 2020-ICRA - 98.9 - 53.6 - 69.2 - 70.1 - 50.0 - 68.3 105.8M 105.8M
EGFNet [77] 2022-AAAI 99.5 99.3 98.0 64.7 94.2 83.05 95.2 71.3 83.3 74.3 94.0 78.5 201.3M 201.3M
MTANet [78] 2022-TIV - 99.3 - 62.1 - 87.5 - 65.0 - 79.1 - 78.6 121.9M 121.9M
MFFENet [79] 2022-TIP - 99.4 - 72.50 - 81.0 - 66.4 - 75.6 - 79.0 – –
GMNet [71] 2021-TIP 99.8 99.4 90.3 85.2 89.0 83.8 88.3 73.8 80.9 78.4 89.6 84.1 149.8M 149.8M
DSGBINet [80] 2022-TCSVT 99.7 99.4 94.5 75.0 88.7 85.1 94.8 79.3 81.4 75.6 91.8 82.9 – –
LASNet [76] 2023-TCSVT 99.8 99.5 91.8 82.8 90.8 86.5 92.4 77.8 83.4 75.5 91.6 84.4 – –
CAINet [19] 2023-TMM 99.7 99.5 95.9 80.3 96.1 88.0 88.4 77.2 91.4 78.7 94.3 84.7 12.16M 12.16M
FDCNet [81] 2023-TCSVT 99.7 99.2 82.5 70.4 77.5 72.2 91.8 71.5 78.4 72.4 85.96 77.1 – –
SGFNet [82] 2023-TCSVT 99.8 99.4 94.0 76.7 90.4 85.4 89.4 75.6 82.7 76.7 91.2 82.8 – –
EAEFNet [15] 2023-RAL 99.8 99.5 93.0 83.9 91.0 87.7 92.2 80.4 79.3 75.6 91.1 85.4 – –
HAPNet [83] 2024-arXiv 99.8 99.6 95.5 89.3 95.1 92.0 93.9 81.3 85.6 82.4 94.0 89.0 – –

DPLNet♠ [25] 2023-arXiv – – – – – – – – – – – 86.7 7.15M 88.6M
GoPT♠ [24] 2024-AAAI – – – – – – – – – – – 81.5 0.97M 112.6M
CPAL-T (Ours) ♠ 2024 99.8 99.6 93.9 85.1 91.2 88.7 90.1 81.9 84.8 81.3 92.0 87.3 6.2M 1.1B
CPAL-L (Ours) ♠ 2024 99.8 99.6 94.2 87.2 93.6 90.8 93.7 83.1 89.3 84.1 94.1 89.0 51.2M 1.1B

TABLE IV
RESULTS ON THE DDD17 [16], [54] DATASET. E DENOTES EVENTS, G

DENOTES GRAYSCALE IMAGES.

Model Type Input mIoU(%) Parameters
Trainable Inference

Evdistill [18] ANN E 58.02 – 5.8M
ESS [36] ANN E 61.37 – 6.7M
Ev-SegNet [16] ANN E 54.81 29.1M 29.1M
Spiking-DeepLab [87] SNN E 33.7 4.1M 4.1M
Spiking-FCN [87] SNN E 34.2 13.6M 13.6M
SSAM [88] SNN E 53.15 8.6M 8.6M

ESS [36] ANN E+G 60.43 – 6.7M
HALSIE [89] ANN+SNN E+G 60.66 1.8M 1.8M
EDCNet-S2D [90] ANN E+G 61.99 17.0M 17.0M
Ev-SegNet [16] ANN E+G 68.36 29.1M 29.1M
SSAM [88] SNN E+G 72.57 8.6M 8.6M
CMX [37] ANN E+G 71.88 181.1M 181.1M
CMNeXt [38] ANN E+G 72.67 119.6M 119.6M

CPAL-T(Ours) ANN E+G 76.39 6.2M 1.1B
CPAL-L(Ours) ANN E+G 77.42 51.2M 1.1B

RGB-D Salient Object Detection. In order to evaluate
the model’s robustness to domain shift, we fine-tune and
test CPAL-T on four popular RGB-D salient object detection
datasets. The finetuning dataset consists of 2,195 samples,
where 1,485 are from NJU2K-train [97] and the other 700
samples are from NLPR-train [98]. Our model is evaluated
on four datasets, i.e., DES [99], NLPR-test [98], NJU2K-test
[97], and SIP [100]. For performance evaluation, we adopt four
golden metrics of this task, i.e., Structure-measure (S) [106],
mean absolute error (M) [107], max F-measure (F) [108], and
max E-measure (E) [109]. To adapt the semantic segmentation
model for salient object detection tasks, we adopt the same
experimental configuration as DPLNet [25] and set the output
channel of the decoder head to 1. As shown in Table VI,
our method ranks first across most metrics, demonstrating its
transferability and ability to handle domain shifts.

TABLE V
VIDEO OBJECT SEGMENTATION RESULTS ON THE MVSEG [91] DATASET .

Model
Parameters

mIoU(%)
Trainable Inference

CCNet [92] – – 51.70
OCRNet [93] – – 52.38
STM [94] – – 52.51
LMANet [95] – – 52.73
MFNet [13] 8.4M 8.4M 51.63
RTFNet [96] 337.1M 337.1M 52.77
EGFNet [77] 201.3M 201.3M 53.44
MVNet [91] 88.4M 88.4M 54.52

CPAL-T(Ours) 6.2M 1.1B 55.39
CPAL-L(Ours) 51.2M 1.1B 56.81

E. Ablation Study

To verify the effectiveness of our CPAL, we employ our
CPAL-L model to conduct a detailed ablation study across
three modalities, i.e., RGB-T, RGB-D, and RGB-E, corre-
sponding to the FMB, SUN-RGBD, and DDD17 datasets.

1) Component Analysis: Our CPAL is composed of cross-
prompting adapter (MCP + GPM) and low rank adaptation
(LoRA). To better understand the impact and contribution
of each component, We take out these three components
from CPAL respectively. As shown in Table VII, (1) denotes
RGB-based foundation without thermal branch, (2) denotes
the model that adapts the RGB-based model to RGB-thermal
segmentation by MCP, incorporating additive feature fusion
at each stage. Compared with (2), the enhancement observed
in (2) demonstrates the efficacy of cross-modal prompts. (3)
indicates the dual-stream model with GPM. (4) represents the
method for fine-tuning the RGB foundation through LoRA.
(5) denotes that LoRA is inserted into the fourth stage for
fine-tuning, based on (2). (6) denotes the model with LoRA
removed. In comparison with (2), there is an increase of 1.41%

Page 9 of 14 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 8, AUGUST 2021 10

TABLE VI
RESULTS AND COMPARISON ON RGB-D SOD BENCHMARKS. ↑/↓ INDICATES THAT A LARGER/SMALLER VALUE IS BETTER.

Model
NJU2K [97] NLPR [98] DES [99] SIP [100]

S ↑ E ↑ F ↑ M ↓ S ↑ E ↑ F ↑ M ↓ S ↑ E ↑ F ↑ M ↓ S ↑ E ↑ F ↑ M ↓

CMWNet [101] .903 .912 .880 .046 .917 .951 .872 .029 .933 .967 .899 .022 .868 .907 .851 .062
cmWS [102] .900 .914 .886 .044 .915 .945 .870 .027 - - - - - - - -

SSF [103] .898 .912 .885 .043 .913 .949 .875 .026 .903 .946 .882 .026 - - - -
BBSNet [104] .912 .919 .893 .040 .920 .945 .870 .027 .906 .941 .866 .029 .871 .909 .850 .057
LSNet [105] .911 .922 .900 .037 .918 .956 .885 .024 .925 .970 .910 .020 .886 .927 .884 .048
DPLNet [25] .920 .944 .904 .035 .933 .962 .897 .020 .940 .978 .921 .017 .890 .932 .888 .045

CPAL-T (Ours) .922 .942 .931 .033 .932 .954 .933 .023 .947 .973 .949 .014 .905 .928 .923 .039

TABLE VII
COMPONENT ANALYSIS ON FMB/SUN-RGBD/DDD17 DATASET.

Model MCP GPM LoRA
mIoU(%)

RGB-T RGB-D RGB-E

(1) 58.86 52.91 72.39
(2) ✓ 62.52 56.68 75.94
(3) ✓ 61.49 53.16 74.58
(4) ✓ 59.12 54.33 74.19
(5) ✓ ✓ 63.10 57.31 77.31
(6) ✓ ✓ 63.92 58.02 77.39

FFT ✓ ✓ ✓ 63.12 58.14 76.98
CPAL ✓ ✓ ✓ 64.69 58.23 77.42

mIoU in (6), highlighting the crucial role played by the GPM
within cross-prompting adapter in modality perception and
decision-making. After that, the final model (CPAL) achieves
64.69% mIoU, indicating that leveraging the cross-prompting
adapter allows LoRA to activate deeper and higher-level
information. Additionally, we employed the full fine-tuning
(FFT) method, training all parameters. The results indicated
that the large number of parameters in the LVFM constrained
the effectiveness of FFT, thereby validating the correctness
of our CPAL. We observe that the improvement brought by
LoRA here is relatively small compared with MCP and GPM.
The possible reason is that MCP and GPM have already fully
tapped the potential of the foundation model, leaving limited
room for further improvement, which is then exploited by
LoRA.

2) The Effectiveness of Multi-modal Cross Prompter (MCP):
To evaluate the effectiveness of MCP and modality com-
plementarity, we present the foundational results with only
RGB/Thermal input and three variants of MCP in Table
VIII. Models a⃝, b⃝, and c⃝ correspond to (a), (b), and
(c) in Fig. 8, respectively. c⃝ represents the cross-prompting
strategy employed in our model. Results from using only
RGB or thermal modalities reveal the inadequacy of single-
modal information. Besides, using a single modality to prompt
another modality proves to be ineffective. This approach fails
to account for the dynamic relationships between different
modalities. Additionally, methods that use a pre-trained model
to extract features from only one modality do not fully
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Fig. 8. Different variants of multi-modal cross prompter for dual-stream
encoder framework.

TABLE VIII
RESULTS OF DIFFERENT MULTI-MODAL CROSS PROMPTER (MCP)
VARIANTS IN FMB/SUN-RGBD/DDD17 DATASET. ◀ DENOTES A

VARIANT OF THE MCP FOR UNIDIRECTIONAL PROMPT FROM RGB TO X
MODALITY (THERMAL/DEPTH/EVENT), WHILE ▶ DENOTES A VARIANT OF

THE MCP FOR UNIDIRECTIONAL PROMPT FROM X MODALITY TO RGB
MODALITY, AND ◀▶ REPRESENTS OUR CROSS-PROMPTING METHOD.

Model MCP GPM LoRA
mIoU(%)

RGB-T RGB-D RGB-E

RGB-only 58.86 52.91 72.39
X-only 54.23 47.61 63.87

a⃝ RGB+X ◀ ✓ ✓ 63.57 56.12 73.61
b⃝ RGB+X ▶ ✓ ✓ 64.03 57.89 76.88
c⃝ RGB+X ◀▶ ✓ ✓ 64.69 58.23 77.42

d⃝ RGB+RGB ◀▶ ✓ ✓ 58.87 52.73 72.27
e⃝ X+X ◀▶ ✓ ✓ 54.19 47.61 63.91

exploit the potential of the pre-trained model. In contrast,
our proposed cross-prompting strategy applies the pre-trained
model to both modality branches, effectively leveraging com-
plementary information between modalities.

3) Inserting Stages of CPAL Block: We experimentally
investigate the effect of inserting stages of each component
block in CPAL and summarize the results in Table IX, which
shows the parameter quantities of each module and mIoU
scores on the FMB dataset. The results from both MCP and
GPM indicate that as the number of inserted stages increases,
the mIoU rises. In contrast, the results from LoRA demonstrate
that embedding only into the fourth stage not only reduces
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TABLE IX
ABLATION ON THE NUMBER OF EACH COMPONENT BLOCK.

Stage MCP GPM LoRA
Param mIoU Param mIoU Param mIoU

4 0.15M 63.39% 2.62M 63.56% 0.34M 64.69%
3-4 0.56M 64.42% 3.28M 63.92% 1.28M 64.53%
2-4 0.60M 64.51% 3.48M 64.21% 1.36M 64.42%
1-4 0.62M 64.69% 3.62M 64.69% 1.41M 64.67%

TABLE X
AN ABLATION STUDY (%) ON DIFFERENT FOUNDATIONS.

Foundation ViT-B ViT-L ViT-H MiT-B5 Internimage(Ours)

Base Result 58.09 58.12 58.85 57.65 58.86
Final Result 62.65 62.73 62.98 61.10 64.69

TABLE XI
AN ABLATION STUDY (%) ON DIFFERENT ADAPTION METHODS.

Adapter Series Adapter [110] Parallel Adapter [111] LoRA(Ours)

Result 64.21 64.13 64.69

TABLE XII
AN ABLATION STUDY (%) ON DIFFERENT PROMPT-TUNING METHODS.

Method VPT [48] Prefix Tuning [112] Cross-Prompt Tuning(Ours)

Result 63.31 63.35 64.69

parameter count but also yields optimal performance. This
validates the notion that the high-level semantic information
in the last stage of the encoder is the most beneficial.

4) Different Foundation and Fine-tuning Method: To fur-
ther validate the effectiveness of our method, we conducted
ablation experiments on the foundation, adapter, and prompt
tuning methods using the FMB dataset, as shown in Table X,
Table XI and Table XII. The results validate the effectiveness
of our method. Table XI presents a comparison of three adapter
methods. The Series Adapter [110] sequentially integrates
additional adapter layers after the original encoder layers,
facilitating fine-tuning while preserving the original param-
eters. In contrast, the Parallel Adapter [111] connects multiple
adapter modules in parallel to the original layers, enabling
independent feature extraction and aggregation. Additionally,
LoRA utilizes low-rank factorization of weight matrices, al-
lowing for efficient fine-tuning by updating only a limited
number of low-rank parameters, making it more suitable for
resource-constrained scenarios compared to other methods.

5) Visualization Results: To further investigate the role of
CPAL in modality complementarity, we visualiz the segmen-
tation results and feature maps, as depicted in Fig. 9 and
10 respectively. Specifically, we select two pairs of RGB-
thermal images in low-light environment and visualize the
feature maps. We compare the feature maps of the RGB-
only foundation with those augmented by CPAL. The results
indicate that the latter’s feature maps, integrating both RGB
and thermal information, exhibit clearer contours and richer
textures.

F. Discussion on Limitations

In this paper, we have successfully explored the potential
of LVFM in multi-modal semantic segmentation, achieving

(a) RGB 

Modal

(b) Non-RGB 

Modal

(c) Foundation

Results

(d) CPAL

Results

(e) Ground

Truth

Fig. 9. Visualization results of foundation and our CPAL-L. From top to
bottom: FMB, PST900, NYU Depth V2, SUN-RGBD and DDD17 semantic
segmentation.

(a) RGB (d) Feature Map of 

CPAL

(c) Feature Map of 

Foundation

(b) Thermal

Fig. 10. Visualization of the features of foundation and our CPAL-L.

state-of-the-art performance. Furthermore, our method requires
at least 6.26M trainable parameters which is only 0.58% of
the amount of parameters (1.12B) in LVFM, demonstrating
its a parameter-efficient fine-tuning approach. However, due
to the adoption of a large foundation model, our approach has
a relatively large number of parameters for inference and a
longer inference time compared to previous methods, which
may not be as favorable for edge computing or applications
requiring high inference speeds. Our future work will focus on
adopting techniques such as knowledge distillation to lighten
the model while maintaining its performance.

V. CONCLUSION

In this work, we introduce large-scale pre-trained RGB
model into multi-modal dense prediction tasks and propose
a novel general multi-modal parameter efficient fine-tuning
paradigm: CPAL. CPAL integrates LoRA tuning and bi-
directional cross-prompt tuning, tailored for enhanced adap-
tation to multi-modal tasks. This approach fully leverages
the potential of pre-trained LVFM in both RGB and non-
RGB branches, as well as the complementary information
between modalities. Extensive experimentation validates the
effectiveness and generalization of our approach. We expect
this work can attract more attention to prompt tuning of LVFM
for multi-modal semantic segmentation.
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