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Unpaired 3D Shape-to-Shape Translation via
Gradient-Guided Triplane Diffusion

Wenxiao Zhang, Hossein Rahmani, Jun Liu*

Abstract—Unpaired shape-to-shape translation refers to the task of transforming the geometry and semantics of an input shape into a
new shape domain without paired training data. Previous methods utilize GAN-based architectures to perform shape translation,
employing adversarial training to transform the source shape encoding into the target domain in the low-dimensional latent feature
space. However, these methods encounter difficulties in generating diverse and high-quality results, as they often suffer from issues
such as “mode collapse”. This leads to limited generation diversity and makes it challenging to find an accurate latent code that
adequately represents the input shape. In this paper, we achieve unpaired shape-to-shape translation via a triplane diffusion model, in
which we factorize 3D objects into triplane representations and conduct a diffusion process on these representations to accomplish
shape domain transformation. We observe that by adding an appropriate amount of noise to an input object during the forward diffusion
process, domain-specific shape structures are smoothed out while the overall structure is still preserved. Subsequently, we
progressively remove the noise via an unconditional diffusion model trained on the target shape domain in the reverse diffusion
process. This allows us to obtain a denoised output that retains the structural similarities of the source input while aligning with the
distribution of the target shape domain. During this process, we propose two gradient-based guidance mechanisms to guide the
translation process to guarantee more faithful results during the denoising process. We conduct extensive experiments on different
shape domains, and the experimental results demonstrate that our method achieves superior shape fidelity with high quality compared
to current state-of-the-art baselines.

Index Terms—Shape Translation, Shape Modeling, Diffusion Model.

✦

1 INTRODUCTION

S HAPE-to-shape translation is a frequently encountered funda-
mental task in computer graphics and geometric modeling.

It involves transforming one shape into another, preserving its
structure or topology variation, particularly in the context of
3D modeling and animation. However, acquiring paired data for
3D modeling tasks poses a significant challenge. As geometric
deep learning gains attention in the graphics community, it be-
comes pertinent to explore whether learning-based approaches can
achieve shape transformations without relying on direct correspon-
dences between shapes in the source and target domains.

The problem of unpaired domain translation in 2D images has
garnered considerable attention from researchers in computer vi-
sion and computer graphics. Early successful models like [1] have
employed cycle-consistency loss to enable bidirectional translation
between two domains. Building on this work, subsequent models
such as STARGAN [2], SEAN [3], U-GAT-IT [4], and CUT
[5] have been proposed to enhance the quality and diversity of
generated images. However, these techniques primarily focus on
transferring stylistic image features and have not proven effective
for 3D shape transformation.

P2P-NET [6] was the first proposed method to learn general-
purpose shape transformations on point clouds through point
displacements, but it requires paired shapes from two domains
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Fig. 1: We propose an unpaired 3D shape-to-shape translation
method through a gradient-guided triplane diffusion model. The
input source object is first factorized into triplane representation.
We add noise to source triplanes with the forward diffusion pro-
cess, where domain-specific shape structures will be progressively
smooth out while the overall shape structure will be preserved. We
then denoise these noisy triplanes via a diffusion model trained
on the target domain with our designed gradient-based guidances.
Consequently, the denoised output exhibits similarity to the source
object in terms of overall structure, while conforming to the
distribution of objects in the target domain.

for training. More recently, advancements have been made in
learning-based methods for unpaired shape translation. Yin et al.
introduced LOGAN [7], a shape translation network that employs
a generative adversarial network operating in the latent space.
LOGAN enforces cross-domain translation through an adversarial
loss and ensures the preservation of shape features for natural
shape transformations using a feature preservation loss. However,
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Fig. 2: Illustration of the “mode collapse” issue of previous
translation methods with Table → Chair examples. LOGAN [7]
and UNIST [8] fail to generate an ideal chair that accurately
represents the input chair. In contrast, our method successfully
achieves faithful results that closely resemble the input shape.

LOGAN has limitations in handling high-resolution point clouds,
often resulting in low-quality 3D translations. To overcome this
challenge, UNIST [8] was developed, incorporating position-
aware latent grids and implicit representations to generate higher-
quality results. It is based on autoencoding implicit fields and
trained using a similar adversarial loss function as LOGAN.

While LOGAN and UNIST have made progress in unpaired
shape translation, there are still challenges that hinder translation
quality. First, both LOGAN and UNIST rely on GAN-like archi-
tectures with adversarial training. Adversarial training is used to
model the high-dimensional shape space and map it to a low-
dimensional latent space, but it is prone to issues such as “mode
collapse”. This occurs when the discriminator becomes too good
at distinguishing between real and fake samples, causing the
generator to produce limited or low-quality samples, failing to
explore the entire data distribution. Consequently, the generator
fails to find a latent code that faithfully represents the input shape.
We illustrate the “mode collapse” issue in Figure 2 where we show
a comparison between our method and the previous method in
Table → Chair translation. Second, LOGAN and UNIST convert
the input shape into low-dimensional latent representations, such
as latent vectors or latent grids, which struggle to capture rich
shape patterns and often result in blurry outputs. For example,
LOGAN transfers the input object into a global latent vector
followed by a point cloud generator. UNIST utilizes a latent grid
representation to better capture spatial features during translation,
but the resolution of the latent grid is still limited in capturing
detailed shape information.

In this paper, we propose a novel unpaired shape-to-shape
translation method via a gradient-guided triplane diffusion model.
We factorize the input source object into an effective triplane
representation [9], and conduct a shape translation via a diffusion
process. The main idea behind our method is illustrated in Figure
1. Our observation is that by adding appropriate noise during the
forward diffusion process, domain-specific shape structures are
gradually smoothed out while the overall structure of the input
shape is still preserved. Subsequently, we progressively remove
the noise via an unconditional diffusion model trained on target
shape domain data with gradient-based guidances. This allows us
to obtain a denoised output that retains the structural similarities of
the source input while aligning with the distribution of the target

shape domain.
In comparison to previous shape translation methods such

as LOGAN and UNIST, our method offers several advantages.
Firstly, instead of relying on a discriminator network for feedback,
our method is based on a diffusion model that operates progres-
sively, enabling the exploration of the entire data distribution and
the generation of diverse samples. Secondly, instead of converting
the input shape into latent vector or latent grid representations, our
approach utilizes triplane representations, which can effectively
and efficiently capture 3D-aware shape structures. Furthermore,
since triplane representations share a similar data format with 2D
images, thus we could incorporate the pre-existing 2D diffusion
techniques when conducting the diffusion process for triplane
representations.

To facilitate the translation process during reverse triplane
diffusion, we introduce two gradient-based guidance mechanisms.
Firstly, we introduce a structure preservation guidance that pro-
motes the retention of the overall structure of the source input
during denoising. Secondly, we propose a classifier guidance that
encourages the denoised object to closely conform to the target
domain object distribution.

Though our method could draw inspiration from 2D diffu-
sion techniques [10], [11] for translation, directly treating the
triplane representations as 2D images and directly applying these
2D techniques is non-trivial and presents significant challenges.
The main difficulty arises from the fact that triplane images
are fundamentally different from natural 2D images, as they
are represented as separate planes from different axes. Simply
concatenating the triplane feature maps from different axes can
result in suboptimal performance, as it neglects the inherent
spatial relationships among these feature maps. To overcome this
challenge, we design a cross-plane convolutional layer that we
have incorporated into the existing 2D diffusion model. This
proposed cross-plane convolution layer is designed to enhance the
transmission of information between different planes, ensuring an
effective diffusion process.

Thorough evaluations of our approach demonstrate that our
method is capable of producing more faithful shapes compared
to other methods, while preserving the fundamental geometric
structures of the original input shape.

The main contributions of our work can be summarized as:

• In contrast to previous GAN-based methods for 3D shape-
to-shape translation, our approach introduces a novel
paradigm that utilizes a triplane diffusion model on tri-
plane representations to achieve progressive 3D shape
translation, generating high-quality transformed shapes
with high fidelity and better original structure preservation.

• We introduce two gradient-based guidance mechanisms
that capture structural features and domain-specific sig-
nals, respectively. These mechanisms aim to encourage the
translated shape to retain the original geometric structure
and enhance its alignment with the distribution of data in
the target domain.

• Through extensive experiments, we demonstrate that our
method achieves state-of-the-art performance in shape-
to-shape translation across various shape domains. Our
approach is capable of transforming shapes with high
quality and fidelity, showcasing its effectiveness in shape
translation tasks.
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Fig. 3: Method overview. Given the source and target objects datasets, we factorize them into triplane representations. Before we perform
shape translation, we use the triplane representations of target objects to train a diffusion model D, and train a time-independent binary
classifier C on the entire triplane representations which classifies whether an object is from the source domain or target domain.
Denoting the triplane image of the input object as f0, we map the input triplane image f0 to the target domain by running the forward
process followed by the reverse process with the diffusion model D. We propose two guidance mechanisms that are applied in each
step of the denoising process. One is a structure preservation guidance to guarantee structure preservation. For another guidance, we
leverage the pre-trained classifier C as a classifier guidance to ensure the object could be completely translated into the target domain.

2 RELATED WORK

The problem of shape-to-shape translation is a significant concern
in the realm of visual data processing, and there exists a vast
body of literature dedicated to this topic. In traditional shape
translation, the primary objective is to deform the source shapes
into target shapes while maintaining the original structure or
topology variation with corresponding parts. In this work, we are
specifically focused on developing learning-based approaches for
3D cross-domain shape transforms. We provide a comprehensive
review of relevant methods from the fields of graphics and vision
that are most pertinent to our research.
Image Style Translation. The style translation of images to other
images can be accomplished in a paired or unpaired supervision
manner. Pix2pix [12] is a typical paired approach that involves
using a conditional GAN with a reconstruction loss. In contrast,
unpaired translation is more challenging and more applicable in
real-world scenarios. [13] introduce the first unsupervised I2I
translation method, and [14] introduces the multimodal unsu-
pervised I2I translation. Most unpaired methods are based on
GAN and rely on cycle consistency, including CycleGAN [1],
DualGAN [15], U-GAT-IT [4], and the recent UVCGAN [16].
This class of algorithms requires two generator networks that
translate images in opposite directions. ACLGAN [17] attempts
to relax the cycle-consistency constraint and replace it with a
weaker adversarial one. CUT [5] takes an alternative route and
uses a contrastive loss to maximize the information between the

source and the translated images. More recently, multiple works
have attempted to employ diffusion models for unpaired image-to-
image translation. For instance, ILVR [18] achieves an unpaired
image translation by modifying the standard Gaussian denoising
process. SDEdit [10] uses a source image perturbed by Gaussian
noise as a seed image and runs the standard diffusion process
on top of it. EGSDE [10] introduces a special energy function
to guide the denoising process. However, all these GAN-based
or diffusion-based methods focus on transferring stylistic image
features and have not been successful in transforming the shapes
of contents.

Shape Translation. Learning-based shape-to-shape translation
has been first studied by P2P-Net [6], which operates on point
clouds via point displacements with paired supervision. Following
P2P-Net, LOGAN [7] is the first deep model proposed for general-
purpose, unpaired shape-to-shape translation. LOGAN is based on
CycleGAN, which encodes shapes from both input domains into a
common latent space and performs shape translations in that space.
[19] propose a similar cycle-gan-based point cloud transformation
method with a novel autoencoder and loss function for preserving
shape characteristics. Inspired by LOGAN, UNIST [8] is another
unpaired shape-to-shape translation work. Differing from LO-
GAN, UNIST employs implicit representations that can generate
topology-varying shape translations instead of point clouds, and
use position-aware latent grids rather than holistic latent codes
that only encode global features. UNIST also uses a similar
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set of GAN-based losses as LOGAN, such as adversarial loss,
and cycle-consistency loss. The majority of GAN-based shape-to-
shape translation is that they suffer from the mode collapse issue,
which means that they may fail to find a latent representation that
faithfully represents the input shape due to the limited sampling
diversity.
Diffusion Models on 3D generation. In recent years, diffusion
models have emerged as an effective method for learning a data
distribution that can be easily sampled from. [20] introduced these
models for generating images, and since then, several works [21],
[22] have simplified and accelerated the approach.

Diffusion models have also been applied to 3D fields. Early
works of 3D diffusion models deal with point cloud data [23],
[24]. Due to the high freedom degree of regressed coordinates,
it is always difficult to obtain clean manifold surfaces via post-
processing. Alternatively, researchers turn to neural field represen-
tations which are generally more suitable than point clouds for 3D
shape generation. NeuralWavelet [25] employs the wavelet trans-
form to encode shapes into the frequency domain. Subsequently,
diffusion models are trained on the frequency coefficients to
generate shapes. Additionally, recent concurrent works [26], [27],
[28], [29], [30], [31], [32] have explored latent diffusion models
for SDF (Signed Distance Field) and occupancy generation. These
approaches involve training an SDF autoencoder to establish a
latent space similar to latent-GAN. Subsequently, a diffusion
model is trained to generate the latent code, which can then be
transformed into an SDF by using a pre-trained decoder. Some
other works focus on leveraging 2D diffusion for 3D generation
[33], [34], [35], [36], [37], such as using multi-view 2D images
by considering the view consistency. NFD [38] extracts triplane
feature representations for 3D objects and treats the triplanes as
2D images, which enables the direct application of existing 2D
diffusion architecture to 3D generation.
Triplane Representation. The triplane representation is a hybrid
explicit–implicit network architecture for neural fields that are
particularly efficient to evaluate, which is first proposed in [39].
This representation uses three 2D feature planes to represent
features from different dimensions, and a multilayer perceptron-
based decoder for interpreting features sampled from the planes.
A 3D coordinate is queried by projecting it onto each of the axis-
aligned planes, querying and aggregating the respective features,
and decoding the required resulting feature for downstream tasks.
Triplane representation is proven for its effectiveness in several
downstream tasks, such as 3D-aware image synthesis [9], 3D
generation [38], [40], [41], [42], [43], [44], and nerf-related
works [45], [46], [47]. Instead of directly training the diffusion
model on popular 3D data formats, such as point clouds or SDF
voxels, our method leverages a diffusion model trained on triplane
representations to generate high-quality 3D presentations.

3 PRELIMINARY OF DIFFUSION MODEL

In this section, we present a concise introduction to the theo-
retical foundations of Denoising Diffusion Probabilistic Models
(DDPM), as our method relies on the diffusion process. DDPM
is built upon the concept of modeling the temporal diffusion
of noise and employing a denoising function to eliminate the
noise from observed data. For instance, in the context of image
generation, DDPM learns to generate high-quality images by
iteratively denoising a sequence of noisy images. First, it defines

a diffusion process for generating noisy images xt given a clean
image x0:

q (xt | xt−1) := N
(

xt;
√
1− βtxt−1, βtI

)
, (1)

where βt is a scheduler that determines the level of noise added at
each iteration. The forward process gradually introduces Gaussian
noise to the initial image x0 through a series of T time steps,
yielding a sequence of noisy images x1, x2, · · · , xT . For 2D image
diffusion, noise is added to individual pixels within images.

The reverse process of the diffusion model is parameterized
by a neural network, typically a convolutional network, which
estimates the mean µθ(xt, t) and variance Σθ(xt, t) with learn-
able parameter θ. These parameters are optimized to progressively
eliminate the noise from the initial image xT through iterative
denoising. The denoising process can be defined as follows:

pθ (xt−1 | xt) := N
(
xt−1;µθ (xt, t) , σ2

t (xt, t) I
)
. (2)

The DDPM model is optimized by calculating the vari-
ational bound of the negative log-likelihood, specifically
E [− log pθ (x0)]. The noise prediction network ϵθ (xt, t) can be
optimized by function:

L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ (xt, t)∥2

]
. (3)

After the optimization, we are able to sample from the learned
Gaussian transitions pθ (xt−1 | xt) by:

xt−1 = µθ (xt, t) +Σ
1/2
θ (xt, t) ϵ, ϵ ∼ N (0, I). (4)

By iteratively conducting forward and backward passes, DDPM
can effectively learn to generate high-quality images that exhibit
both similarity to the training data and consistency with the
diffusion process.

4 METHOD

We present an overview of our method in Figure 3. Our ap-
proach begins by decomposing each individual object into triplane
representations. Subsequently, a 2D DDPM diffusion model D
is trained on target shape domain data using the corresponding
triplane representations. Finally, we perform a guided shape trans-
lation using the pre-trained triplane diffusion model D.

This section is organized as follows to present our method: In
Section 4.1, we elaborate on the procedure of obtaining triplane
feature representations for 3D objects and how we train a 2D
diffusion model on the obtained triplane representations. Follow-
ing that, Section 4.2 provides a comprehensive explanation of our
shape translation method, which leverages the triplane diffusion
process. Finally, in Section 4.3, we describe our proposed guid-
ance mechanisms and how they facilitate the translation process.

4.1 Triplane Diffusion
Learning triplane representations on occupancy fields. In our
approach, the original 3D objects are represented implicitly using
occupancy fields [48], which have been introduced as continuous
and expressive 3D scene representations. For any 3D location p ∈
R3 on an object, an occupancy function OF(·) : R3 → {0, 1} will
output a binary value indicating whether a 3D location p is inside
or outside an object. We utilize a trainable Multilayer Perceptron
(MLP) to parameterize the occupancy function OF(·).

Since we cannot directly apply a diffusion process to the
implicit occupancy fields, which are not in a discrete data format,
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we involve a factorization step to convert them into triplane
representations. Triplane is an explicit-implicit representation first
proposed in EG3D [9], striking a desirable balance between
efficiency and quality in multi-view-consistent image generation.
Triplane can be viewed as a collection of 2D feature maps
fxz, fxy, fyz ∈ RH×W×C that represent a 3D object. Each 2D
plane has a resolution of H ×W and C channels. To obtain a 3D
coordinate triplane feature Tri(p) for a given 3D location p ∈ R3,
we project it onto the axis-aligned planes (x− y, x− z, and y− z
planes) and sum the respective features:

Tri(p) = fxy(px,y) + fyz(py,z) + fxz(px,z). (5)

The occupancy function OF(·) is represented by a lightweight
multilayer perceptron (MLPϕ) with trainable parameters ϕ. This
MLP decodes the resulting triplane feature to determine the final
occupancy value at the given 3D location p:

OF(p) = MLPϕ (Tri(p)) . (6)

To obtain the triplane representation for each object, we
follow a similar process as in NFD [38], where we consider
the triplane feature maps fxz, fxy, fyz as learnable parameters.
We optimize both the triplane feature maps fxz, fxy, fyz and the
MLPϕ simultaneously. The training objective is a straightforward
L2 reconstruction loss between the predicted occupancy values
OF

(
p(i)
j

)
and the ground-truth occupancy values O

(i)
j for each

3D location. Here, p(i)
j represents the j-th point of the i-th object:

Lrecon =
I∑
i

J∑
j

∥∥∥OF
(
p
(i)
j

)
−O

(i)
j

∥∥∥
2
. (7)

Thus we can jointly optimize ϕ along with the triplane feature
maps for each object in the training dataset:{

ϕ, f (i)xy , f
(i)
xz , f

(i)
yz

}
= argmin{

ϕ,f
(i)
xy ,f

(i)
xz ,f

(i)
yz

}Lrecon. (8)

The training process for obtaining triplane representations is
depicted in Figure 4. Initially, the triplane feature maps and the
occupancy function OF(·) are jointly optimized to capture the
occupancy field of a subset of the training dataset. Subsequently,
we fix the pre-trained decoder MLPϕ and extract the triplane
representations for the remaining objects in the training dataset.
Training Triplane-aware diffusion model. Once we have ob-
tained the respective triplane representations for each object, we
proceed to train a diffusion model on triplane representations using
available existing 2D diffusion architectures.

A direct way to conduct diffusion on triplane is to con-
catenate fxz, fxy, fyz ∈ RH×W×C into f = [fxz, fxy, fyz] ∈
RH×W×3C , resulting in a concatenated triplane feature map f
that can be treated as a 2D image with 3C channels (Figure 5 (a)),
which is similar to the way in NFD [38]. Then we could directly
apply the existing 2D diffusion model to it.

However, simply concatenating the feature maps from differ-
ent axes can lead to poor performance [44], [49], as it ignores
the intrinsic spatial relationships among these feature maps. To
address this issue, we have developed a cross-plane convolutional
layer and inserted it into the current 2D diffusion model.

The designed cross-plane convolution layer is depicted in
Figure 5 (b). Here, we denoise each triplane feature map separately
but concatenate axis-related information from the other planes

Triplane Representations 
(Learnable)

𝐅x𝑦

𝐅𝑦𝑧
𝐅𝑥𝑧

MLP
Decoder

(Learnable)

Subset  of training data

predicted 
occupancy {0, 1}

GT occupancy value

L2 Loss

Jointly optimize

Triplane Representations 
(Learnable)

𝐅x𝑦

𝐅𝑦𝑧
𝐅𝑥𝑧

MLP
Decoder

(Pre-trained)

All training data

predicted 
occupancy {0, 1}

GT occupancy value

L2 Loss

Optimize

…

…

1st Stage

2nd Stage

Fig. 4: Triplane obtaining. In the first stage, the triplane represen-
tations and the MLP decoder are jointly optimized with a subset
of the training data to guarantee that the output occupancy values
from the triplane representations are correctly predicted. In the
second stage, we fixed the pre-trained MLP decoder, and extract
the triplane representations of all the objects in the training dataset.

through an axis-aligned aggregation process. We show the axis-
aligned aggregation operation in Figure 5 (c). Specifically, we
exact and concatenate the axis-related features of other planes,
by performing average pooling across the feature maps along the
shared axis. Though each of the three planes is denoised respec-
tively, the 2D convolution used in the cross-plane convolution
layer shares the same weights.

We choose the diffusion architecture from [50] as our baseline,
but replace all the 2D convolutional layers in the UNet autoen-
coder, which are part of the diffusion model, with our specially
designed cross-plane convolutional layers.

Building upon the preliminary of the diffusion model dis-
cussed in Section 3, we can train an unconditional DDPM model
using the normalized triplane feature maps. We denote a triplane
image as f , analogous to a natural 2D image x. The diffusion
model is trained on triplane maps f0,...,T ∈ RN×N×3C , where f0
represents a clean triplane image from the training dataset, and fT
corresponds to a completely noisy triplane image sampled from a
Gaussian distribution. The training objective aims to minimize the
mean-squared error loss, as described in Equation 3, between the
predicted noise ϵθ (ft, t) and the actual noise ϵ present in ft.

Before we feed the triplanes into the diffusion model, we
normalize each channel using the mean and variance of the entire
triplane dataset. This normalization ensures that each channel has
a zero mean and a standard deviation of 0.5. In NFD [38], each
channel value of the triplane image is clipped to ensure it remains
within a certain standard deviation of the mean. However, in our
experiments, we observed that there are extreme pixel channel
values in the triplane feature image. Instead of directly clipping
these extreme values, which may disrupt the object shape struc-
ture, we employ a median filter to smooth these extreme values
by considering neighboring pixel values within the corresponding
channel.

4.2 Progressive Triplane Diffusion Translation
In this section, we describe our approach for conducting shape-
to-shape translation using a diffusion process on triplane feature
maps.
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Fig. 5: (a) NFD [38] directly concatenating the triplane feature maps and feeding it to the 2D diffusion model. (b) Our designed
cross-plane convolution layer. (c) Illustration of the axis-aligned feature aggregation operation.

We depict the method pipeline in Figure 3, where we begin
with factorizing both the source and target object dataset into tri-
plane representations following the aforementioned rules. During
the training stage, we exclusively use the triplane maps of target
objects to train a diffusion model D. Additionally, we train a time-
independent binary classifier C on the entire dataset, which serves
as classifier guidance for the diffusion process described in Section
4.3.

In the inference stage, given a source input object, we per-
form a progressive shape translation via a forward and backward
diffusion process. In the forward diffusion process, we gradually
add noise to the input triplane feature image f0. We perform N
forward steps, where the obtained triplane sequences are denoted
as f0, f1, · · · , fN . N is a hyper-parameter that controls the level
of noise added to the input triplane feature image. In the reverse
process, we progressively remove noise for N steps to get the
denoised triplane sequence yN−1, yN−2, · · · , y0 using the diffu-
sion model D which is trained on the target object triplanes. Our
motivation stems from the expectation that the generated triplane
image y0 would exhibit a bias towards the distribution of the target
object, as the diffusion model D is trained on the target shape
domain data. Also, y0 could preserve the source input structure as
it is denoised from fN which contains the fundamental structure
information of f0.

Although we find this process can successfully transfer the
source shape to the target distribution, the selection of the optimal
diffusion step N is critical and involves a trade-off. A small value
of N may lead to an incomplete translation from the source shape
to the target shape distribution due to insufficient diffusion steps.
Conversely, a large value of N may cause the loss of the original
input structure, resulting in an output that significantly deviates
from the source input.

To better transfer the shape of the source object to the target
object while maintaining its overall geometric structure, we in-
corporate two gradient-based guidance mechanisms to enhance
the shape-to-shape translation during the denoising translation
process. These mechanisms are designed to provide additional
support and improve the effectiveness of the translation process.

4.3 Gradient-based Translation Guidance Mechanisms
Structure preservation guidance. To get better fidelity of the
shape translation results, a key consideration is to preserve the
original structure or topology of the source object during the
translation.

We introduce a structure preservation guidance that regularizes
the diffusion process to better preserve the original structure of
the source input. In particular, we introduce a structural feature

filter Filter(·) : RH×W×3C → RH×W×3C , which is a low-
pass filter inspired by [10], [18]. The low-pass filter performs
a traditional low-pass filtering operation, which is a fixed, non-
learnable process. Intuitively, this low-pass filter will retain the
overall geometric structures of a triplane image, which is illus-
trated in Figure 6. Building upon it, we compute the squared
L2 distance between the filtered triplane feature maps from the
denoised sample yt and the noisy sample ft as follows:

Lstr = ∥Filter(yt)− Filter (ft)∥22 . (9)

We regard the current triplane yt as learnable parameters, and
optimize it by backpropagating the gradients according to Lstr .
We update yt according to the gradients:

yt ← yt − ηstr∇ytLstr(yt, t), (10)

where ηstr is the updating rate.
Intuitively, minimizing the loss defined in Equation 9 en-

courages the transferred triplane image yt to retain its structural
features, thereby enhancing its faithfulness to the source object.

In [10], similar guidance mechanisms are employed in each
reverse step [N, .., 0] of the denoising process to preserve the
object outline in image style translation tasks. In contrast, we only
apply the structure preservation guidance in the reverse steps from
[N, .., S]. This is motivated by the fact that the Filter(·) will
incorporate more domain-specific structures as the triplane image
becomes clearer during the denoising process. For instance, when
translating from an armchair to an armless chair, the armrest struc-
ture of the armchair captured by Filter(ft) becomes increasingly
clear during denoising. However, this domain-specific structure is
not desirable to preserve in shape-to-shape translation tasks, as
demonstrated in the ablation study in Section 6.5.

To this end, we soften the structural guidance by limiting
its application to denoising steps [N, .., S], where S is a hyper-
parameter that controls the strength of the structural guidance.
Classifier Guidance. Another form of guidance that we intro-
duce is classifier guidance. This type of guidance is designed to
encourage the denoised triplane feature map to become closer to
the distribution of the target domain during the reverse process.

We involve a time-dependent binary classifier, represented as
C(f , t) : RH×W×3C × R → R ∈ {0, 1}, which determines if a
noisy triplane image f belongs to the source or target domain. This
classifier is trained on both the source and target domain objects
using noisy object triplane sequences (f0, · · · , ft, y0, · · · , yt)
generated during the forward diffusion process, where the clas-
sifier loss is denoted as Lcls(f, t). After we have finished the clas-
sifier training, we leverage this pre-trained classifier to optimize
the current triplane yt by treating it as learnable parameters and
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𝐟t

𝐲t

Low-pass filter

Low-pass filter

L2 Loss

gradient 
backpropagation

Fig. 6: Illustration of the proposed gradient-based structure preser-
vation guidance. To preserve the overall structure of ft, we employ
a low-pass filter to extract the structural information from both
the triplane image ft and the translated triplane image yt. Subse-
quently, we update yt by minimizing the discrepancy between the
filtered triplane maps to align the structural characteristics of the
translated shape with those of the input shape.

backpropagating the gradients based on Lcls, where yt is assigned
the label of 1, indicating it belongs to the target domain. We could
update yt according to the gradients:

yt ← yt − ηcls∇ytLcls(yt, t), (11)

where ηcls is the updating rate. In our implementation, we utilize
the same classifier architecture proposed in [50].

In summary, for every reverse time step t, we refer to the yt
with two guidances applied as ygt , which is represented as:

ygt = yt − ηcls∇ytLcls(yt, t)− ηstr∇ytLstr(yt, t). (12)

With our proposed guidance mechanisms, we can provide
additional support to enhance the fidelity and quality of the
translation results.

Equation 12 is applied only once in each time step and we
adjust the hyperparameter ηcls and ηstr to control the effect of
these two guidances. This is the same as applying it for more than
one iteration steps to control the effects of the two guidances.

5 IMPLEMENTATION AND TRAINING DETAILS

3D object pre-processing. To prepare the 3D objects in the
dataset, we employ a series of pre-processing steps. Initially, we
utilize ManifoldPlus [51] to convert the objects into watertight
meshes. Subsequently, we leverage the approach described in
[48] to calculate occupancy values for arbitrary 3D coordinates.
We involve a sampling strategy to sample 500K query points,
where 250K query points are uniformly and randomly distributed
throughout the volume, and the other 250K query points are
sampled near the surface of the watertight mesh.
Triplane representation obtaining. We follow the pipeline
in [38], where we used a triplane feature map of dimension
128×128×32×3 for each object. The triplane feature maps are ini-
tialized with Gaussian noise having a mean of zero and a standard
deviation of 0.1. The occupancy function OF(·) is implemented
using an MLP layer, consisting of a Fourier feature mapping layer

with a scale factor of 1, followed by three fully connected layers
of dimension 128, each employing ReLU activation functions.

The training methodology for triplanes and MLP comprises
two stages. In the first stage, we jointly train them on a subset
of the data, while in the second stage, we focus on learning
the triplane feature maps in the dataset while keeping the MLP
frozen. For the initial stage, we select 200 shapes and train with
a batch size of 1 object per iteration, incorporating all 500K
occupancy value points per object. This stage is trained for 200
epochs using a learning rate of 1e-3 on a single A5000 GPU. The
training process for a single diffusion model takes approximately
3 hours to complete. In the subsequent stage, the shared MLP
is frozen, and we individually train the triplane feature maps
for each object in the dataset. During this stage, we train the
triplane representations for 30 epochs with a learning rate of
1e-3. The learned triplane feature maps serve as pseudo-ground
truth images for the subsequent triplane diffusion model training.
Notably, triplane diffusion models are trained separately on each
shape domain.
Triplane diffusion training. For the training of the diffusion
models, we adopt a similar setup as described in [38], utilizing
the implementation of the 2D DDPM diffusion model presented
in [50]. Unless explicitly mentioned, we use the same set of
hyperparameters as the class-specific LSUN model outlined in
[50]. In the cross-plane convolution layer, we use the same 2D
convolution layer in the original 2D diffusion model, so there are
no extra learnable parameters.

The training of all diffusion models consists of 200K steps
with a learning rate of 1e-4. Before we train the diffusion model,
we perform a normalization step on the triplane maps. Specifically,
we center the feature channels around zero means and clip the
standard deviation of each channel within 16. Subsequently, we
rescale each channel to fit within the range of [-1, 1]. Finally,
we apply a Gaussian filter to smooth out any extreme channel
values using neighboring pixel channel values. We use 4 A5000
GPUs with batch size 32 for training the diffusion model. The
training process takes approximately 4 days when utilizing a
dataset consisting of 2,500 objects.
Triplane Classifier training. For training the Triplane Classifier,
we adopt the architecture and training rules presented in [50]. The
distinction is that we use an input image channel size of 96 instead
of 3.
Hyper-parameters. In our default experimental setting, we set the
diffusion step N = 500 and S = 250. The gradient weight ηstr
and ηcls is set 1 and 0.2 respectively. The total time step of the
diffusion model is 103.

6 EXPERIMENTS

6.1 Datasets

We conduct 3D shape-to-shape translation experiments leveraging
the objects in ShapeNet [52] dataset. Specifically, we perform
Armchair ↔ Armless chair, Chair ↔ Table, and Tall table ↔
Short table translation, and compare our method with existing
unpaired shape-to-shape translation network LOGAN and UNIST.
We use the same training setting with LOGAN and UNIST,
containing 1,710/2,857 training objects for armchair/armless chair,
4,786/5,993 training objects for chair/table, 2,500/2,500 for tall
table/short table, and about 500 testing objects for each category.
We use Marching Cubes [53] to obtain a mesh from the occupancy
fields, sampled at 2563 resolution which is the same as that used
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Armchair -> Armless chair

Input UNIST Ours Input UNIST Ours

Armless chair -> Armchair 

Chair -> Table Table -> Chair
Input UNIST Ours Input UNIST Ours

Input UNIST Ours Input UNIST Ours

Tall Table -> Short TableShort Table -> Tall Table

LOGAN LOGAN

LOGANLOGAN

LOGAN LOGAN

Fig. 7: Qualitative shape-to-shape translation comparison with LOGAN [7] and UNIST [8]. We conduct the comparison on Armchair
↔ Armless chair, Chair↔ Table, and Tall table↔ Short table translation tasks.

in UNIST to ensure a fair comparison. For LOGAN, we use their
official implementation in which results contain 2,048 points.

6.2 Evaluation Metrics.
For quantitative evaluations, the shape-to-shape translation is an
ill-posed problem, where a correct translation can be highly varied.
In the original unpaired shape translation setting in LOGAN [7],
there are no one-to-one mapping relationships between the source
and target domain objects for both the training dataset and testing
dataset. Therefore, we adopt the following measures for quan-
titative evaluation: 1) One-side CD, which we follow LOGAN
and UNISIT to compute the one-sided Chamfer Distance (CD)
from the input object to the output object, where we uniformly
sample 2,048 points from the meshes from both our and UNIST
results. This measures how well the original structure in the input
is preserved; 2) Minimal Matching Distance (MMD), which is the
Chamfer Distance (CD) between the output and a target object

from the target domain training dataset which is closest to the
output object in terms of CD. This measures how much the
output resembles a typical target domain object. We also uniformly
sample 2,048 points from the output meshes and the target domain
objects for this evaluation.

6.3 Qualitative Comparison
Figure 7 illustrates the qualitative results obtained from our
proposed methods compared to other baselines. It is evident that
our method produces meshes of higher quality, demonstrating
greater fidelity to the input shape. While UNIST is capable
of generating transformed shapes with smooth surfaces, some
results are not completely transformed into the target domain. For
example, the armrest partly remains in the Armchair → Armless
chair translation. Additionally, both UNIST and LOGAN exhibit
a more pronounced issue of mode collapse. As exemplified by the
translated shapes in Short table→ Tall table, UNIST and LOGAN
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9

fail to accurately represent the original input shapes. In contrast,
our results are more faithful to the original input objects.

6.4 Quantitative Comparison

We present the quantitative results using the one-side Chamfer
Distance (CD) measurement in Table 1. Similar to LOGAN and
UNIST, we only perform this measurement for the Armchair ↔
Armless chair translation. In cases such as Table↔ Chair and Tall
table↔ Short table translations, it is required to not only modify
the geometry of the input shape, but also change its semantics.
Therefore, the one-side CD metric cannot accurately assess the
quality of structure preservation.

It could be observed that our method achieves the lowest
one-side CD, indicating that our method could well preserve the
original input structure. This observation is also supported by the
qualitative results in Figure 7, where our results exhibit a higher
similarity in terms of overall structure and semantics to the original
input. We also evaluate the performance of our method without
the structure preservation guidance (w/o spg), and we observe
a significant improvement in one-side CD when the guidance is
applied. We have also evaluated the impact of the classification
guidance (denoted as w/o cls) on the one-sided CD. However,
we found that classification guidance exerts a minor influence on
this metric. This is primarily because it chiefly governs category
translation, which has minimal effect on structure preservation.

Armchair→Armless Chair Armless Chair→Armchair

LOGAN 0.0249 0.0273

UNIST 0.0234 0.0235

Ours w/o spg 0.0253 0.0231

Ours w/o cls 0.0183 0.0161

Ours w/o cls&spg 0.0261 0.0233

Ours 0.0181 0.0158

TABLE 1: Quantitative comparison results on one-side CD.

Input S=0 S=0.1N

S=0.3N S=0.4N S=0.5N

S=0.2N

S=0.7N

Fig. 8: Evaluation of structure preservation guidance. We show the
visual results with different ending step S. The N is set to 500 for
all the results.

The results with MMD measurement are shown in Table 2. Our
method achieves the lowest MMD in most cases, demonstrating
our results are well translated to the target domain. Furthermore,
we evaluate the results of our method without the classifier guid-
ance (w/o cls), and the comparison demonstrates the advantages

Input N=100 N=200 N=300

N=400 N=500 N=600 N=700

Fig. 9: Visual results with different diffusion steps N . The S in
structure preservation guidance is set to 0.5N for all the results.

of the proposed classifier guidance in facilitating the translation
process towards the target distribution, as indicated by lower
MMD achieved when using the classifier guidance. Additionally,
we have also tested the impact of structure preservation guidance
(denoted as w/o spg) on the MMD metric. Similarly, the structure
preservation guidance has a modest impact on this metric. This can
be attributed to the fact that even if the structure is not preserved,
the translated shapes still fall within the target domain.

6.5 Abliation Study

Evaluation of the diffusion step N . The evaluation of the
diffusion step parameter N is crucial as it significantly impacts
the quality of the translation results. As mentioned in Section
4.2, choosing an appropriate value for N is essential to ensure
a complete and accurate translation from the source shape to the
target shape distribution. If N is set to a small value, the translation
may be incomplete, and the resulting shape may not fully align
with the target domain. However, if a large N is chosen, excessive
noise will be added during the diffusion process, leading to the
loss of the original input structure.

In Figure 9, we present visual results of our method with dif-
ferent values of N for the Armchair→ Armless chair translation
task. It can be observed that when N is set to a small value
(e.g., 200), the generated result still retains some characteristics
of an armchair, such as the presence of an armrest. However, as
N increases to 500, the translated result becomes more plausible,
preserving the original structure while successfully transforming
the armchair into a chair without an armrest. The results gradually
lose their connection to the input object when N is big than 500,
indicating the loss of original information due to excessive noise
addition.
Structure preservation guidance evaluation. We conducted an
evaluation of our proposed structure preservation guidance using
different hyperparameter values for S. The structure preservation
guidance is applied during the reverse denoising steps from
[N, ..., S], where S controls the extent of applying the guidance.
When S is equal to N , it indicates that no structure preservation
guidance is applied. Conversely, when S is set to 0, the structure
preservation guidance is applied in every denoising step.

In Figure 8, we present visual results for different values of S
while keeping N fixed at 500. It can be observed that the domain-
specific structures, such as the armrest, are preserved when S is
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10

Armchair→Armless Chair Armless Chair→Armchair Chair→Table Table→Chair Tall Table→Short Table Short Table→Tall Table

LOGAN 0.0125 0.0132 0.0081 0.0151 0.0161 0.0133

UNIST 0.0138 0.0135 0.0069 0.0168 0.0132 0.0108

Ours w/o cls 0.0112 0.0120 0.0070 0.0145 0.0140 0.0123

Ours w/o spg 0.0102 0.0115 0.0063 0.0142 0.0135 0.0127

Ours w/o cls&spg 0.0113 0.0122 0.0071 0.0148 0.0141 0.0123

Ours 0.0100 0.0113 0.0062 0.0142 0.0129 0.0126

TABLE 2: Quantitative comparison results measured by Minimal Matching Distance (MMD).

smaller than 0.4 ×N . However, if S is set to a value larger than
0.5×N , the original structure cannot be well preserved. The best
visual results are obtained when S is set to 0.5 times N , indicating
that this value strikes a good balance between preserving the
original structure and achieving successful shape translation.

Additionally, we also include the quantitative results about the
diffusion step, the S in structure preservation in terms of MMD
and CD in Figure 10. We report the average one-side CD on
Armchair↔ Armless chair translation, and average MMD on all
translation categories.

Fig. 10: Quantitative evaluation of the hyperparameter N and S.
The results are multiplied by 104.

Classifier guidance evaluation. Figure 11 showcases the evalu-
ation results of our proposed classifier guidance. The comparison
reveals the advantages conferred by the classifier guidance in
facilitating the translation process. In the absence of the classifier
guidance (w/o cls guidance), we can observe that the armrest is
still partially present in the translated results.
Cross-plane Convolution Evaluation Table 3 shows an evalu-
ation of the design cross-plane convolution, where we compare
the results between using the cross-plane convolution and using
the original convolution with concatenated triplanes. We could
observe that the performance drops much when without using the
cross-plane convolution layer.

One-side CD MMD

w/o cross-plane conv 0.0226 0.0122

w/ cross-plane conv 0.0170 0.0112

TABLE 3: Quantitative comparison of using and without using
cross-plane convolution layer. The results display the average one-
side CD for the Armchair ↔ Armless chair translation task, as
well as the average MMD across all translation tasks.

Diffusion on Point Cloud vs on Triplanes. In our implemen-
tation, we employ a triplane factorization approach to represent
3D objects, enabling us to perform forward and backward diffu-
sion using a 2D diffusion model for shape-to-shape translation.

Input w/ cls guidancew/o cls guidance

Armchair -> Armless chair

Input w/ cls guidancew/o cls guidance

Armless chair -> Armchair

Fig. 11: Results comparison when denoising with proposed clas-
sifier guidance (w/ cls guidance) and without classifier guidance
(w/o cls guidance).

However, it is also possible to directly apply the diffusion process
on the point cloud representation using existing point diffusion
models [23], [24]. Specifically, instead of factorizing objects into
triplane maps, we could utilize the point cloud representation
and apply the same principles as our method with a point cloud
diffusion model. We use the diffusion model implementation in
PVD [24] as the backbone for point cloud diffusion. During the
denoising process, we also involve a similar classifier guidance,
where the classifier is a PointNet directly operating on the point
cloud instead of triplanes for binary classification. Similar to
LOGAN, we represent each 3D shape using 2,048 points in our
experiments. We compare the results generated by conducting
diffusion processes on triplane and on point cloud representations,
respectively.

Figure 12 visualize the denoising process on triplane maps
versus point clouds. It reveals that while the results obtained
through point cloud diffusion can undergo successful transforma-
tion into the target domain, they tend to exhibit higher noise levels
and cannot well preserve the structure of the input. In contrast,
the shapes generated through triplane diffusion exhibit smoother
surfaces and better fidelity to the input object. We also give a
quantitative comparison in Table 4, where we show the average
one-side CD on Armchair ↔ Armless chair translation, and
average MMD on all translation categories. We could observe that
by employing the diffusion process on triplane representations,
we achieve lower one-side Chamfer Distance (CD) and Minimal
Matching Distance (MMD) in comparison to point clouds.
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11

Fig. 12: The translation process comparison of our method with the diffusion process implemented on triplane and point cloud.

Diffusion on One-side CD MMD

Point cloud 0.0251 0.0126

Triplane 0.0170 0.0112

TABLE 4: Quantitative comparison of conducting our diffusion
translation on triplane maps versus point clouds.

6.6 User Study
We also conducted a user study to evaluate the results generated by
LOGAN, UNIST, and our method. The study utilized a question-
naire that incorporated a visual results comparison, akin to Figure
7 in our paper. The questionnaire was designed to address two
key areas: 1) For each set of translation samples, participants were
asked to determine which translation result was most reasonable
and faithful to the original shape (Translation Quality). 2) At
the end of the questionnaire, participants were asked to identify
which method achieved the greatest diversity in translated shapes
(Diversity). We included 30 shape translation comparisons in
the questionnaire with 50 participants. The statistics from the
questionnaire are presented in Table 5. We observed that the
majority of users perceive our results as being of higher quality
and exhibiting greater diversity.

Methods Translation Quality Diversity

LOGAN 5.7% 2%

UNIST 16.2% 12%

Ours 78.1% 86%

TABLE 5: User study results on the translation quality and
generation diversity.

6.7 Application on unpaired deformation transfer
In this experiment, we aim to further assess the generality of
our shape transformation network on the task of unpaired de-
formation transfer [54]. To accomplish this, we utilize training
datasets provided in [54] consisting of animals and humans 3D
meshes. Specifically, we employ the horse ↔ camel and cat ↔
lion datasets, each containing approximately 380 objects in their
respective training sets. Additionally, we explore the Thin man
↔ Fat man translation, which involves 495 objects. Compared to
previous experiments on ShapeNet, these datasets are significantly
smaller, thus the trained diffusion model is not as effective as those

in previous experiments. To this end, we first retrieve a triplane
image in the training set that has the lowest mean squared error
(MSE) to the triplane image of the input object. Subsequently, we
perform a linear interpolation between these two triplane maps
and use the resulting interpolated triplane image as the input for
the diffusion model. We show the translation results in Figure 13.
It shows that our method is able to keep the original skeleton
with pose preserving, but also achieves a proper shape style
transformation.

Cat -> Lion

Lion -> Cat

Horse -> Camel 

Camel -> Horse

Fat -> Thin Thin -> Fat

Fig. 13: Application on unpaired deformation transfer.

7 LIMITATIONS

As discussed in the ablation study section, we determined that the
optimal value for the diffusion step parameter N is 500, based on
the average performance across various input categories. However,
we acknowledge that the ideal value of N may vary depending on

Page 39 of 46

For Peer Review Only

Transactions on Visualization and Computer Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

the specific characteristics of the input shapes. For instance, when
the input point could contains more complex armrest structures
typically require larger diffusion steps N compared to those with
narrower or simpler armrests. This is because it needs additional
diffusion steps to blur the complex domain-specific structures.

8 CONCLUSION AND FUTURE WORK

In this paper, we present a novel gradient-guided triplane diffusion
architecture for unpaired 3D shape-to-shape translation. Unlike
previous methods that rely on latent features and adversarial
training to transform source shape encoding into the target shape,
our approach utilizes a diffusion process with proposed gradient-
based guidances on triplane representations. This progressive
shape transformation approach could effectively alleviate the
mode collapse issue. Experimental results demonstrate that our
method outperforms state-of-the-art methods across various shape-
to-shape translation tasks.

In terms of future research, we envision two potential direc-
tions. First, as we mentioned in the limitation section, we aim
to explore the possibility of designing a mechanism to determine
the best diffuson step N automatically for different input objects.
This would alleviate the burden of manual parameter tuning and
enhance the adaptability of our approach. Second, we employ a
simple low-pass filter to extract the overall input shape structure
in the proposed structure preservation guidance. We are interested
in investigating more sophisticated structure extraction techniques.
For instance, incorporating disentangled representation learning
methods [55], [56], [57] may enable us to extract more precise
domain-independent structures, thereby further improving the fi-
delity of our shape-to-shape translation.
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1

SUPPLEMENTARY MATERIAL

1 MORE VISUAL RESULTS

We add more diverse results in the testing dataset in Figure 3.
Instead of only the typical square chair or table with four legs,
we show results of diverse types of chairs and tables. We could
observe that our method achieves better quality than UNIST and
LOGAN. Also, due to the claimed mode collapse issue, the overall
diversity of LOGAN and UNIST is limited.

We have also included additional results from other ShapeNet
categories to further illustrate the effectiveness of our proposed
method. To establish a shape translation between two categories,
these categories should share similar structures or topologies. For
instance, a plane ↔ bed translation is not feasible due to their
significantly different geometric structures. Based on this prin-
ciple, we have included additional translations between Bed ↔
Table, Bed ↔ Chair, and Sofa ↔ Table to further demonstrate the
effectiveness of our proposed method. These results are displayed
in Figure 4.

Addtionally, we add the comparison between our method with
LOGAN on dyna and animal datasets in Figure 5. As LOGAN
does not release its pretrained model on these datasets, we use the
visual examples shown in their paper on arxiv for comparison.

2 FRÉCHET INCEPTION DISTANCE EVALUATION

We also add the Fréchet Inception Distance (FID) comparison
with your kind suggestion. In the case of 2D data generation
problems, FID usually adopts pre-trained inception V3 models [1]
to utilize their feature spaces for evaluation. In our point cloud
case, we follow the setting in [2] to calculate FID. As a reference
model for FID, we used the classification module of PointNet [3].
we first trained a classification module for 40 epochs to attain
an accuracy of 97% for classification tasks. We then extracted
a 1024-dimensional feature vector from the output of the layer
before max-pooling layer to calculate the mean and covariance.
Specifically, we calculate the 2-Wasserstein distance between real
and fake Gaussian measures in the feature spaces extracted by the
pretrained PointNet as follows:

FID(P,Q) = mP−m2
Q2

2
+Tr

(
ΣP +ΣQ − 2 (ΣPΣQ)

1
2

)
, (1)

where mP and ΣP are the mean vector and covariance matrix
of the points calculated from real point clouds of the trianing data
{x}, respectively, and mQ,ΣQ are the mean vector and covariance
matrix calculated from generated point clouds {x′}, respectively,
where x ∼ P and x′ = G(z) ∼ Q. Shapes from all baselines
are sampled to 2048 points before passed into the pre-trained
PointNet.

We report the FID of LOGAN, UNIST, and our method in
Table 1. We could observe that our method achieves lower FID
compared to the other baselines in all categories translation, indi-
cating that our method could generate more diverse shapes which
alleviates the mode collapse problem in GAN-based methods like
LOGAN and UNIST.

3 EFFECT OF TRIPLANE RESOLUTION

During the revision, a reviewer point out that the qualitative visual
results do not appear to be smooth when zoomed in, and there
are numerous small bumps on the surface that should ideally
be smooth. We also notice these cases where small bumps are

Methods FID ↓
LOGAN 2.35
UNIST 2.26Chair ↔ Table

Ours 2.13
LOGAN 2.06
UNIST 2.21Armchair ↔ Armless Chair

Ours 2.03
LOGAN 1.96
UNIST 1.93Tall Chair ↔ Short Chair
Ours 1.86

TABLE 1: Quantitative comparison in terms of the proposed FID.

happened. We look into this and find the bumps are related to the
triplane resolution. In our cases with limited GPU resources (a
single A5000), we train triplane of size 128×128. We show the
comparison in Figure 1.

Fig. 1: Reconstructed shapes from triplane representations of
different resolutions.

4 COMPARISON WITH RETRIEVED SHAPE

To investigate whether our method merely translates the source
shape to shapes already present in the target domain training
dataset or whether it generates novel shapes, we visualized the
shapes in the training set that were most similar to the trans-
ferred shapes, as determined by the Minimum Mean Discrepancy
(MMD). As can be seen below, these shapes do exhibit structural
similarities to some extent. However, they are not identical, indi-
cating that our method is capable of generating novel shapes rather
than simply replicating existing ones in the target domain.

Fig. 2: Illustration of the most similar shape in the training set to
the transferred shape.
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