Uncertainty Quantification in Measuring Ore Mass
Flow Rate with Data-Driven Soft Sensors

Francisco José dos Santos Diniz*, Saulo N. Matost*, J6 UeyamaT, Leandro S. Marcolino¥,
Eduardo José da Silva Luz?, Gustavo Pessin’

* Programa de P6s-Graduagdo em Instrumentacéo, Controle e Automagio de Processos de Mineragio (PROFICAM),
Universidade Federal de Ouro Preto e Instituto Tecnoldgico Vale, Ouro Preto — MG, Brazil

fnstituto de Ciéncias Mateméticas e de Computacdo (ICMC), Universidade de Sao Paulo, Sdo Carlos — SP, Brazil

1School of Computing and Communications, Lancaster University, Lancaster — United Kingdom
§ Dep de Computacdo, Universidade Federal de Ouro Preto, Ouro Preto — MG, Brazil
9 Laboratério de Robdética, Controle e Instrumentagdo, Instituto Tecnoldgico Vale, Ouro Preto — MG, Brazil
francisco.diniz@aluno.itv.org, {saulo.matos, joueyama} @usp.br,l.marcolino@lancaster.ac.uk,
eduluz@ufop.edu.br, gustavo.pessin@itv.org

Abstract—In the context of Industry 4.0, there is a growing
need for reliable information. Understanding uncertainties in
models and data can improve decision-making, safety, and
efficiency in the mining sector, especially where machine learning-
based soft sensors are utilized. This is particularly relevant
in ore transport, where machine learning-based soft sensors
estimate the mass flow rate of transported ore. However, these
applications often utilize traditional machine-learning techniques
to make single-output predictions, limiting their utility. Therefore,
this study seeks to advance the performance of such sensors
by quantifying the prediction’s uncertainties. As a result, the
electrical current from a conveyor belt was used to develop
a model utilizing feature selection, engineering, and the Light
Gradient Boosting Machine (LightGBM) algorithm, producing
interval predictions. Four methods of uncertainty quantification
were evaluated: T-Student, Bootstrap, Split Conformal Prediction
(SCP), and Full Conformal Prediction (FCP). The results show
that LightGBM, together with feature engineering and selection,
decreased the soft sensor error compared to the previous study.
The Bootstrap and FCP methods provided effective prediction
intervals, achieving the intended coverage with minimal interval
widths, suggesting their superior ability to balance accuracy and
adaptability.

Index Terms—Data-driven Soft Sensors, Mass Flow Rate,
Uncertainty Quantification, Conformal Prediction, Mineral In-
dustry.

I. INTRODUCTION

With the advent of Industry 4.0, there has been an increas-
ing demand for high-confidence information across various
sectors, and the mining industry is no exception. Machine
learning (ML) provides a promising approach to increase
efficiency, improving decision-making and cost-effectiveness
by streamlining various stages of the ore production chain,
from extraction and processing to logistics and transportation,
as already evidenced by Bertolini et al. [[1]. ML has been em-
ployed to enhance instrument capabilities, from classification
and regression tasks to auto-calibration and auto-diagnostics.
Several studies have significantly contributed to this scenario,
particularly in applying ML to mining processes. Leveraging
these contributions, ML offers effective solutions for develop-
ing soft sensors. One promising area is ore transport, where

ML can be leveraged to create data-driven approaches for
evaluating the mass flow rate of the ore when conveyor belts
transport it.

Conveyor belts are widely used to transport bulk material
in the mining industry due to their cost-effectiveness. They
are responsible for transporting the ore from one beneficiation
process to another [2[]. Therefore, evaluating mass flow is
essential for operational control, preventing conveyor belt
overload [J3].

Traditionally, the mass flow rate is measured through belt
scales, which are widely used to weigh materials on conveyor
belts. They are costly and often limited in the quantity of
equipment installed in a mining plant. This shortage can
negatively impact automatic control strategies because often
there is a dead time between the actuator and the mass flow
rate sensor due to their distance apart. When this dead time
is large, the effectiveness of feedback controllers, such as
the Proportional Integral Derivative (PID), is reduced [4],
[5]. These limitations emphasize the need for soft sensors
to enhance efficiency and lower costs while reducing capital
expenditure.

To address this concern, many researchers have developed
soft sensors to evaluate mass flow rate without relying di-
rectly on belt scales [3], [4], [6]. However, these approaches
rely on lightweight ML algorithms, as industrial automation
algorithms need to be embedded in Programmable Logic
Controllers, which often cannot meet the demands of more
complex strategies [7]]. Hence, traditional ML often has dif-
ficulty effectively modeling complex processes inherent in
industrial settings. Furthermore, none of the applications take
into account the uncertainties inherent in their predictions.
In many estimation or prediction tasks, machine learning
(ML) models provide a single output value, often overlooking
the associated error distribution. This oversight can result
in reduced reliability and limit the models’ applicability in
dynamic environments.

Uncertainty quantification (UQ) provides a way to assess
and communicate these uncertainties, which are not naturally



considered by most ML models. Following the perspective of
Zaffran et al. [8]], we argue that incorporating UQ can lead to
a safer and more robust decision-making process by making
uncertainty explicitly part of the model’s output. According
to Nemani et al., [9], UQ serves as a crucial safety layer, en-
abling more informed decision-making by facilitating effective
risk assessment and management. Furthermore, quantifying
uncertainty in soft sensors is crucial for detecting performance
deterioration caused by uncertainty in process conditions and
for enhancing their robustness [[10]. This process ensures that
the sensors remain reliable and effective, even in dynamic
and uncertain environments, by enabling adaptive strategies
to mitigate variability and improve predictive accuracy.

In response to the need for enhanced predictive models
and to quantify their output uncertainty, this study aims to
extend the contributions of Pereira et al. [4]], who developed a
mass flow rate soft sensor on a conveyor belt. We compared
the Light Gradient Boosting Machine (LightGBM) [11] with
traditional machine learning algorithms previously used by
Pereira et al. [4]. We also explored an alternative approach
to feature selection and engineering to improve the model’s
predictions. LightGBM utilizes a gradient-boosting framework
and incorporates decision tree algorithms optimized for speed
and resource efficiency [11]]. Hence, implementing the Light-
GBM algorithm along with feature selection and engineering
could significantly enhance the accuracy of the soft sensor
compared to the developed by Pereira et al. [4].

Moreover, we quantified and compared the uncertainties
in predictions generated by the LightGBM algorithm using
various approaches. Specifically, we evaluated four methods
for generating prediction intervals for uncertainty quantifi-
cation: T-Student intervals, Bootstrap Prediction Intervals,
Split Conformal Prediction (SCP), and Full Conformal Pre-
diction (FCP). Additionally, we assessed each method with
random selection and sliding window backtesting to enhance
the robustness of the intervals and provide more reliable
and adaptive predictions in complex industrial operations.
Our findings indicated that the Bootstrap and FCP methods
produced effective prediction intervals, achieving the desired
coverage with minimal interval widths. This suggests that these
methods are superior in balancing accuracy and adaptability.

This article is structured as follows: Section 2 (Background)
introduces key concepts on T-Student, bootstrapped prediction
intervals, and Conformal Prediction (CP). Section 3 (Related
Works) reviews relevant research. Section 4 (Experimental
Setup) describes the data and experimental configuration.
Section 5 (Methodology) details the machine learning models
and uncertainty quantification methods. Section 6 (Results
and Analysis) examines model performance and prediction
intervals. Finally, Section 7 (Conclusion) summarizes key
findings and suggests future research directions.

II. BACKGROUND

A. T-Student and Bootstrapped Prediction Intervals

According to Hyndman and Athanasopoulos [12], a pre-
diction interval (PI) provides an interval within which we

expect the future value y, to lie with a specified probability
and, generally, can be written as: @t+h\t + ¢op; where a
prediction, g ps, is associated with 6, which is an estimate
of the standard deviation of the h-step forecast distribution.
The multiplier ¢ depends on the desired coverage probability.
Hyndman and Athanasopoulos [12f], add that, on occasions
where a normal distribution for forecast errors, e;, is an un-
reasonable assumption, bootstrapped prediction intervals can
be computed by calculating the «v/2 and 1 — /2 percentiles
at each forecasting horizon, by knowing that: y; = .1 +e;.
We can simulate the next observation of a time series using:
Yi+1 = Ypt1)¢ + €415 where gy q); is the one-step forecast
and e;y; is the unknown future error. Assuming future errors
will be similar to past errors, we can replace e;4; by sampling
from the collection of errors we have seen in the past (i.e., the
residuals).

B. Conformal Prediction (CP)

Conformal Prediction, introduced by Vovk et al. [13[|-[15]],
creates prediction intervals that inherently take uncertainty into
account instead of delivering a single result. This approach
has gained traction for uncertainty quantification in machine
learning models [16]. According to Angelopoulos and Bates
[17], CP is versatile and applicable regardless of whether the
underlying problem involves discrete or continuous outputs
and whether it is a classification or regression task.

Formally, suppose (X;,Y:)i=1,..n and (Xies;, Yeest) are i.i.d.
with a regression model that outputs predictions Fieiqhtest and
we reserve number n_cal of fresh i.i.d. pairs of data unseen
during training, (X;,Y;)i=1,....n_cal, fOr use as calibration data.
Using the regressor model and the calibration data, we seek
to construct a prediction set of possible labels C'(Xes, ) that
satisfy the validity property:

1

1 —a <P(yesitn € C(Xeests 1)) <1 —a+ m-

ey

Where: (Xeest, Yiest+r) 1S @ recent test point from the same
distribution for each horizon h, and « € [0, 1] is the error rate
chosen by the user, while n_cal represents the number of data
points used to calculate the non-conformity scores. Thus, the
probability that the forecast set contains the correct value for
each step horizon is almost exactly 1 — «; this is the principle
of the marginal coverage property, by Vovk et al. [13[]-[15].

Still according to Angelopoulos and Bates [17], the
steps for performing conformal prediction are: 1 -
Identification of a heuristic notion of uncertainty using
the pre-trained model on time series; 2 - Definition of the
score function to cumulate the calibrations scores: here
is use the absolute error: s; = |y+ — Jrest + h[t]|; many
other score functions can be used depending on the specific
characteristics and requirements of the problem; 3 - Compute ¢
as the L%J -th quantile of the calibration scores.
4 - Using the ql_lantile to form forecast sets for new examples
in multiple horizons: C (X, h) = [gtest+h|tesl + (j].

The above condition is just a special case of CP, called Split
Conformal Prediction (SCP), presented by Papadopoulos et al.



and Lei et al. respectively, [[18]], [[19], which uses a calibration
set to reduce the computational cost during the process of
generating prediction intervals. The original CP proposal by
Vovk et al. [[13]]-[15]], called Full Conformal Prediction (FCP),
uses the entire training set to accumulate prediction residuals,
which is more computationally expensive.

III. RELATED WORKS

Soft sensing refers to approaches and algorithms that may
estimate processes’ variables based on available measurements
and knowledge [20]. It can be defined through the use of
mathematical or statistical models, along with sensors, ana-
Iytical devices, instruments, and actuators that generate new
real-time or near-real-time information, which can predict
certain aspects of a process [20], [21]. Soft sensing approaches
can be classified into three categories: model-driven, grey-
box methods, and data-driven. Model-driven approaches rely
on mathematical models representing the underlying process,
while data-driven methods utilize historical data to develop
the soft sensor. Gray-box approaches combine elements of
both, leveraging theoretical models alongside empirical data
for enhanced accuracy.

Several studies have implemented model-driven/gray box
soft sensors to measure the mass flow rate of bulk materials
transported by conveyor belts. For instance, Moraes et al. [5]]
used a model-driven approach to predict a delayed mass flow
rate measurement employing a Smith predictor. On a gray-box
approach, Hulthén [22]] presented a mathematical model that
utilizes the power draw of a conveyor belt and its geometric
properties to estimate the mass flow rate. This model has also
been employed by Itdvuo et al. [23] to measure the mass flow
of multiple conveyor belts within a crushing circuit, thereby
validating mass balance.

Heinzl et al. [24]], [25] employed the power draw of a
conveyor belt as input for a linear regression model to estimate
the mass flow rate. It was tested in a virtual environment to
validate the model’s accuracy and compared with measure-
ments obtained from a belt scale. Similarly, Viyrynen et al.
[6]] also developed a soft sensor that uses a power transducer
and the belt’s geometry to estimate the mass flow rate.

Effective model-driven/grey box approaches require previ-
ous process knowledge or solid domain application under-
standing. This may limit certain contexts, making it beneficial
to develop data-driven approaches to address this issue [26].
Sobreira et al. [3] proposed a data-driven soft sensor to
estimate the mass flow of ore on a conveyor belt without
a belt scale. Virtual sensors were created using a conveyor
belt’s current, torque, and motor speed data, supplemented by
iron ore flow measurements from a belt scale installed on a
different conveyor. The authors assessed three distinct machine
learning models: REPTree, Random Forest, and MS5P. Pereira
et al. [4] also focused on developing a data-driven soft sensor
integrated into a control system for an industrial mineral pro-
cessing circuit. The study evaluated various machine-learning
techniques, such as decision trees, multilayer perceptrons, and
linear regression.

While these studies demonstrate machine learning tech-
niques to estimate mass flow rate using soft sensors, they
do not address uncertainty quantification. Hence, this study
aims to build upon the dataset developed by Pereira et al.
[4]], extending its contributions by applying the LightGBM
algorithm in conjunction with an alternative approach to
feature engineering and selection. Furthermore, the study seeks
to quantify the uncertainties associated with the predictions
generated by the machine learning model, enhancing both its
predictive accuracy and reliability. Table [] summarizes the
related works, focusing on soft sensor development.

TABLE I: Related works on estimating the mass flow rate of
bulk materials transported by conveyor belts.

Work Model-driven Gray-box Data-driven uQ
Moraes et al. [5 o O O O
Hulthén [22 O ([ O O
Itivuo et al. [23] O o O O
Viyrynen et al. 6 @) [ ] @) O
Heinzl et al. [24], [25] O [ ] O O
Sobreira et al. [3] O O [ J O
Pereira et al. [4] O O o O
Our work O O [ J [ ]

IV. EXPERIMENTAL SETUP

Fig. [1] illustrates the domain of this work, a processing
circuit used by a copper plant in Vale S.A., a mining company
in Brazil. The circuit outlines the configuration for crushing
and transporting material from the mine to the processing
plant. In this setup, the initially extracted material is sent to a
crusher, which reduces its size. The crushed material is then
stored in a silo, from which a variable-speed feeder extracts it.
The extraction rate is controlled by the speed of the feeder. The
material is subsequently transported via three conveyor belts
to a yard, where an ore pile is formed. From this pile, the ore
undergoes further treatment. Since the belt scale is installed
at CB-02, which is significantly distanced from the CB-01
conveyor belt, automatic control strategies are jeopardized due
to the dead time between measuring the mass flow rate and the
actuator (feeder). Therefore, a soft sensor is needed to estimate
the mass flow rate, helping to minimize this delay.

1 Mine
Crusher
L2
!
silo
! 1
a1 ol Plant
Feeder o;o_¢ €B-03 5
CB-01 S5 sz

Belt scale Ore pile

Fig. 1: Crushing and transportation diagram [4].

We used the same dataset presented by Pereira et al. [4]]
originated from the crushing and transportation circuit. The
dataset is from a day of operation and comprises the current
(A) of the conveyor belt CB-01 and the mass flow rate (t/h)
from the belt scale installed on CB-02. Both measurements
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were gathered with a time interval of 1 s and were synchro-
nized due to the temporal displacement between the sensors’
measurements.

V. METHODOLOGY
A. Machine learning models

We compared the previously tested by Pereira et al. [4]]
machine-learning techniques, decision trees (DT), multilayer
perception (MLP), and linear regression (LR) with LightGBM.
We employed a repeated random hold-out technique for train-
ing and testing to evaluate each model. In each iteration, 80%
of the dataset was randomly selected for training, while the
remaining 20% was used for testing. This process was repeated
20 times, with different training and testing splits in each
iteration. We used the Mean Absolute Error (MAE) metric
to measure model performance and quantify disparities.

Firstly, we used for the model input the average and
standard deviation over ten conveyor belt motor electrical
current samples, as made by Pereira et al. [4]. We processed
the electrical current data to analyze the models’ response
to different inputs by generating new input features such as
means, lags, differences, and standard deviations. To prevent
redundancy and overload, we used a correlation-based method
to eliminate features with correlations above 0.9, retaining
those most correlated with the target variable.

Feature selection was further refined using the model’s
variable importance. After training, importance scores were
normalized to sum to 100%, and variables were ranked in
descending order. Using the Pareto principle (80/20), we
selected the top contributors to model performance. The final
input features were lag_60s, lag_30s, diff _1s, mean_10s, and
diff_10s.

B. Uncertainty quantification

To further enhance the predictions’ reliability, we con-
structed a sequence of prediction intervals with a confidence
level of 1 — «. For the results presented here, we consider
the value of a equal to 0.05. The data was partitioned into
training and testing sets according to a fixed proportion: the
initial 90% was allocated to training, and 10% was reserved for
testing purposes. Only for the SCP method, we use 80%-10%-
10% (train, calibration, and test, respectively). Additionally,
we implemented a Sliding Window-based methodology, to
train the model with different window sizes (100, 150, 190,
250, 360, and 720 samples). This approach enables continuous
evaluation of the model with new data over time, simulating
a scenario where the model is consistently updated and tested
with fresh information while maintaining the proportions of
the training, calibration, and test sets.

The Regression Coverage Score (RCS) and Regression
Mean Width Score (RMWS) were used to evaluate the un-
certainty of predictions. RCS quantifies the proportion of true
outcomes that fall within the prediction intervals generated by
the model, indicating how effectively these intervals capture
the actual values. Meanwhile, the RMWS, calculates the mean
width of these prediction intervals, providing insight into the

model’s uncertainty in its predictions. A smaller range suggests
greater confidence, as long as the coverage remains adequate
for the projected confidence level as explained by Khosravi et
al. [27].

The Regression Coverage Score (RCS) is defined as RC'S =
LS 1(9 < y; < 9;"), and the Regression Mean Width
Score (RMWS) is given by RMWS = L3S0 (g% — glov).
Where n is the number of samples; y; is the true value for the
i-th sample; 91 and §;° are the lower and upper bounds of
the prediction intervals, respectively, for the i-th sample. The
code and dataset developed for this study are publicly available
on GitHub. The repository includes two implementations: one
using a Sliding Window approach and another with a Random
selection of data.

VI. RESULTS AND ANALYSIS
A. Machine learning models

When using the current mean and standard deviation of ten
samples (inputs from Pereira et al.), the LightGBM model
demonstrated remarkable improvements over other ML models
for MAE, scoring on average 43.09 t/h against 52.05, 51.35,
52.09 (t/h) from DT, MLP, and LR, respectively.

Using the features proposed in this study, all models
demonstrated superior performance compared to the Pereira
et al. inputs. The LightGBM model after applying feature
engineering and selection techniques, achieved a 19.75% re-
duction in error. These results highlight the effectiveness of the
feature engineering and selection method in enhancing sensor
accuracy.

Moreover, the LightGBM model demonstrates notable im-
provements over the previous machine learning models re-
garding the MAE. It obtained around 17% improvement
over the others when the same inputs are considered. These
results show the effectiveness of LightGBM in delivering more
accurate predictions across various techniques. Table [[I| shows
the average MAE obtained in each model.

TABLE II: Average MAE Comparison Across Algorithms and
Feature inputs.

Suggested inputs Average MAE (t/h)

LightGBM DT MLP LR
Pereita et al. 43.09 5205 5135 52.09
This study 34.58 41.11  41.01 4175

B. The Predictions Intervals

When using the sliding window (SW) approach to estimate
prediction intervals, evaluation metrics are calculated at each
step of the SW. In Fig. |2 is possible to see the values of
the MAE metric for different window sizes. The smaller the
window size, the greater the variability of the errors associated
with the prediction. This is because, at some points, the models
cannot fit well with the true data, and the space of one window
or another may occupy a partition of greater error between the
predicted values and the actual values.
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Fig. 2: LightGBM with SW in differents sizes.

Moving on to the metrics associated with the quality of the
intervals, we can take the SW190 size window as an example.
The results can be effectively summarized and presented in
the box plots shown in Fig. [3] For most steps of the SW190
application, coverage remained within the range of 90% to
100%. However, we also observed some steps where coverage
fell significantly below the projected level. These deviations
are likely associated with instances where prediction errors are
higher, as greater prediction errors reduce the probability of
achieving effective coverage. Furthermore, another important
aspect observed during the experiments is that as the window
size decreases, there is a greater tendency for steps to appear
where the coverage is lower than expected. Regarding Aver-
age Width, the Bootstrap PI and FCP methods demonstrated
greater stability, with smaller intervals around 164 t/h. The
SCP method exhibited slightly more variability in interval
width, ranging from 170 to 200 t/h. The T-Stundent’s method
showed stability but with larger intervals of around 184 t/h.

= 8

g

g 07

06
05
04

° o °

8 o [}
°

8

o

o

RMWS (t/h)

o™ W | m

r—
S
3

.et

9
8

T-Student  Full Conformal Bootstrap Split Conformal

T-Student  Full Conformal Bootstrap Split Conformal

Fig. 3: (Left) Regression Coverage Score and (Right) Regres-
sion Mean Width Score with SW Size 190.

The most favorable results in terms of coverage were
achieved without the SW and through random data selection.
Fig. [ illustrates the distribution of results using box-plot
representations for coverage and the mean width score in
this case. The Mean Width values for the random selection
were similar to those found using SW190, except for the SCP
method, which, with randomness, can stabilize its results more
efficiently, ranging from around 165 to 170 t/h. However, the
approach without the SW generates prediction intervals with
a static width, meaning the interval size remains constant over
time. This characteristic may limit the approach’s applicability
in complex and dynamic industrial scenarios, where adaptabil-
ity to changing conditions is often required.

In addition, we applied the Shapiro-Wilk test to verify the
normality of the metric results. Since not all results presented

a normal distribution, we used the Kruskal-Wallis test to
determine the existence of significant differences between the
groups. We followed with the Dunn test to identify which
specific groups presented substantial differences, using the
Bonferroni adjustment to avoid false positives. For the imple-
mentation with SW190, the results in terms of Coverage can
be considered the same for all methods. In terms of Width,
a similarity was identified between the Full Conformal and
Bootstrap methods, which presented similar width intervals
and were smaller than the other methods. Considering the
analysis with random data selection, about Coverage, it was
identified that the only methods that did not present a consid-
erable difference were Full and Split Conformal. To Average
Width, besides Full and Split, it was impossible to identify a
significant difference between Bootstrap and Full Conformal.

All methods achieved coverage close to the target level of
95%. The main difference between them was the average width
of the intervals required to achieve this level of coverage. In
this sense, the most efficient method is the one that achieves
the projected coverage level with the smallest average interval
width, as indicated in the study of Khosravi et al. [27].
Therefore, Bootstrap stands out, followed by Full Conformal,
which offers narrower intervals than Split Conformal. The T-
Student managed to provide slightly higher coverage than the
target level; however, this came at the cost of significantly
wider coverage intervals compared to other methods. The final
result of this model is presented in Fig. [5] where the Mass Flow
Rate (t/h) predicted by LightGBM with Bootstrap Predictive
Intervals is illustrated.
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Fig. 4: (Left) Regression Coverage Score and (Right) Regres-
sion Mean Width Score with Random Selection.

VII. CONCLUSION

In this paper, we improved the performance of a mass
flow rate soft sensor through LightGBM and feature engi-
neering and selection techniques and explored the application
of uncertainty quantification in the predictive system. Four
methods for constructing prediction intervals are examined:
T-Student, Bootstrap, SCP, and FCP. The Bootstrap and FCP
methods provided effective prediction intervals, balancing ac-
curacy, and adaptability. These results indicate that applying
techniques to a crushing and transportation mining circuit
could enhance information robustness and increase decision-
making efficiency.Furthermore, the predicted ranges allow the
projection of different scenarios, with a confidence level of
1—«, with probabilistic guarantees adapted to the needs of the
requesting area. This way, the interval estimate can generate
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Fig. 5: Mass Flow Rate (t/h) by LightGBM with Bootstrap Predictive Intervals.

analyses for different scenarios with pessimistic, realistic, and
optimistic perspectives.

As future research directions, we plan to evaluate other
methods of UQ available in the literature, including those
based on CP and other approaches, to compare the results
with those obtained in this study. We also intend to embed
the techniques suggested in this study into the industry’s pro-
grammable logic controller (PLC). The suggested algorithms
have low computational complexity, ensuring they can be
embedded into PLCs on Structured Text program language.
These would facilitate process monitoring and automation by
using the predictions to feed automatic control structures.
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