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Abstract. Instance space analysis extends the algorithm selection frame-
work by enabling the visualisation of problem instances via dimension-
ality reduction (DR). The lower dimensional projection can also be used
as input to predict algorithm performance, or to perform algorithm se-
lection. In this paper we consider two supervised DR methods – partial
least squares (PLS) and linear discriminant analysis (LDA) – both as vi-
sualisation tools and for the purpose of constructing classification models
for algorithm selection. Multinomial logistic regression models are used
for the classification problem. We compare PLS and LDA to DR meth-
ods previously used in this context on three combinatorial optimisation
problems, and show that these methods are as competitive.

Keywords: supervised dimensionality reduction, algorithm selection,
classification, combinatorial optimisation.

1 Introduction

In the algorithm selection problem (ASP), we consider a problem space, P,
that contains a set of instances of a problem in an application domain; and an
algorithm space, A, which consists of k algorithms to solve the instances in P.
The aim is to predict which algorithm in A will achieve the best performance y
for a given problem instance x ∈ P. Exhaustive testing may be computationally
infeasible to identify the most suitable algorithm for each instance x ∈ P. So
instead we try to understand the relationship between a description of problem
instances and algorithm performance. Under the ASP framework proposed in [1]
we use the following components to formulate a supervised learning problem:

– the feature matrix F ∈ Rm×n contains the values of m features that describe
each of the n = |P| problem instances;

– the performance matrix Y ∈ Rk×n contains the performance metric value
for each of the k algorithms in solving each of the n problem instances;

– the best algorithm label Ybest ∈ {1, 2, . . . ,K}n is a vector which reports the
index of the best performing algorithm for each x ∈ P. Note that, as we will
explain in Section 3, K need not be equal to |A|.
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Instance space analysis (ISA) [2] is a methodology that extends the ASP
framework by (among other things) enabling the visualisation of problem in-
stances. Elements of the ISA methodology have been applied to several combi-
natorial optimisation problems [3,4,5]. In ISA, the problem space is visualised
via dimensionality reduction (DR) of the feature space. Principal component
analysis (PCA) is a common DR technique which aims to find a projection of
Fwhich captures the maximum data variability, or equivalently minimise the
reconstruction error. While PCA is widely used [4], the directions of maximum
variance in Fmay not necessarily be useful to explain the variability in Y ,
which is ultimately what we are most interested in. Supervised dimensional-
ity reduction methods take into account the performance space when seeking
to project the feature space to a lower dimension subspace.

The authors of [6] proposed PILOT, a method for supervised DR for ISA.
PILOT is primarily used for visualisation. However, the lower dimensional pro-
jection of F can also be used as input to predict algorithm performance, or
to perform algorithm selection. DR is particularly useful for training prediction
models when (i) the number of problem instances is less than number of features,
(ii) there exist irrelevant or strongly correlated features (columns of F ). DR also
allows for reduced model complexity with less loss of information compared to
feature selection (although this comes at a cost in terms of interpretability).

In this paper we consider two other supervised DR methods and compare
them to PILOT and PCA on three combinatorial optimisation problems. To the
best of our knowledge these methods have not been previously considered in
the DR for ISA literature, although they are very well known in statistics and
machine learning. Our aim is to evaluate these methods both as visualisation
tools and for the purpose of constructing classification models.

2 Dimensionality reduction

DR methods aim to represent a dataset of n observations, F ∈ Rm×n, in a
lower dimensional space Z ∈ Rd×n where d < m, such that Z retains the most
important properties of the original data matrix F. In linear DR methods, the
matrix Z is given by,

Z = AF,

where A ∈ Rd×m is called the transformation matrix . In words, each new com-
ponent (row of Z) is a linear combination of the original features in F. When
d ⩽ 3, Z is useful for visualising the problem space.

PCA is the most commonly used DR method. PCA finds a projection of F
that maximises the variance of the projected data (or equivalently minimises the
reconstruction error) subject to the constraint that projection vectors (rows of
A) are mutually orthogonal. The solution to this problem is given by setting
the d rows of A equal to the d eigenvectors of the covariance matrix of F that
correspond to the largest eigenvalues. As an unsupervised DR method, PCA does
not take into account information from the response, Y. Consequently, there is
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no guarantee that the directions of greatest variation in input data will be useful
to explain variability in Y.

We next describe three supervised DR methods that take into account the
performance space when seeking lower dimensional projections.

2.1 PILOT

The algorithm for projecting instances with linearly observable trends (PILOT)
aims to find a projection space that simultaneously captures the linear relation-
ships between each of the features and the performance of each algorithm across
the instance space [2]. This is a low dimensional subspace of the input space that
is useful to minimise the reconstruction error for both the feature vectors and
the response.

Specifically, PILOT seeks a transformation matrix Ar ∈ Rd×m, and two
linear functions represented as Br ∈ Rm×d and Cr ∈ Rk×d to solve the following
problem,

min
Ar,Br,Cr

∥F−BrZ∥2F + ∥Y −CrZ∥2F , (1)

where Z = ArF. (2)

The matrix Ar is given by [6],

Ar = V⊤X̄F⊤(FF⊤)
−1

,

where X̄ = [F;Y] ∈ R(m+k)×n, and V ∈ R(m+k)×d contains the first d eigenvec-
tors of X̄X̄⊤. PILOT is primarily used for visualisation, so by default d = 2.

2.2 Partial least squares

The objective of partial least squares (PLS) regression is to recursively find a pair
of directions w and c to project F and Y, respectively, such that the covariance
between these one-dimensional vectors, w⊤F and c⊤Y is maximised [7]. For
PLS the rows of F and Y are first standardised.

max
w1,c1

w⊤
1 F(c

⊤
1 Y)⊤, s.t. ∥w1∥2 = 1, ∥c1∥2 = 1.

Subsequent pairs of projection vectors (ci,wi), i > 1 are found sequentially by
solving the same optimisation problem after F and Y are deflated. The termi-
nation criterion is either that the required number of dimensions is reached,
or F⊤Y = 0. PLS can also be used for classification in mind by transforming
Ybest to dummy variables and then fitting the projection. This is sometimes
referred to as PLS discriminant analysis [8].
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2.3 Linear discriminant analysis

Linear discriminant analysis (LDA) is both a method for classification and su-
pervised DR. Its objective is to maximise the separability among known classes
in the data. Let Nk and x̄k be the number of instances and class means for class
k. Fisher’s criterion is to identify the projection matrix that solves the following
problem:

ALDA = argmax
A

det(A⊤SbA)

det(A⊤SwA)
,

where

Sb =

K∑
k=1

Nk(x̄k − x̄)(x̄k − x̄)⊤, Sw =

K∑
k=1

∑
x∈Ki

(x− x̄k)(x− x̄k)
⊤.

Sb is the between-class scatter matrix and Sw is the common, within-class, covari-
ance matrix. The optimal projection maximises the variance of the across-class
means and minimises the within-class variance. ALDA is composed of the eigen-
vectors of S−1

w Sb, of which there are at most K − 1. Therefore when using LDA,
F can be reduced to at most K − 1 dimensions.

3 Comparison of methods

We consider three combinatorial optimisation problems: the travelling salesman
problem (TSP); the vehicle routing problem (VRP) and the knapsack problem.

The travelling salesman problem (TSP) aims to find the cyclic tour with
minimum cost which visits each of N nodes in the problem instance exactly once.
We use 2143 problem instances and 87 features from the datasets generated by
[9]. The performance matrix Y is the median cost of the tour found after a fixed
time for two metaheuristic algorithms. Ybest has three classes – one for when
either algorithm is the best, and a third when they perform nearly the same.
There are three datasets based on different termination criteria. In tsp60 and
tsp1800 the termination criterion is a time budget of 60 seconds and 1800 sec-
onds, respectively. In tspWin performance is measured at the point at which the
first algorithm terminates. We consider all three datasets as relative algorithm
performance greatly varies depending on the choice of termination criterion.

The capacitated vehicle routing problem (CVRP) aims to find the
optimal routes for a fleet of vehicles with fixed maximum capacity to visit a depot
and a set of nodes each with a fixed demand. We use the performance data for
eight algorithms published in [10] for 100 problem instances. The performance of
each algorithm is measured by the mean total distance of the solution found after
a fixed time. For some problem instances, there are ties for best performance; in
those cases, we set the best class label as the winning algorithm which was first
developed. This leads to there being five unique labels in Ybest. To characterise
these problem instances, we use 119 features, some of which we constructed and
most of which are found in [11].
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The 0-1 knapsack problem involves deciding which items of known size and
profit to select from a finite set of items to fill a knapsack with a fixed capacity
constraint, so as to maximise profit. We use the dataset from the Melbourne
algorithm test instance library with data analytics (MATILDA) [12] generated
in [5]. The dataset contains 4000 problem instances, characterised by 44 features,
21 of which are transformations of the original features. The performance matrix
Y contains the time to obtain and verify the optimal solution for each problem
instance for three algorithms.

Table 1 summarises the information about the feature and performance
spaces for each problem. Note that the number of unique classes K in Ybest ,
need not equal |A| if there exist ties in the performance metrics. For each dataset,
the training and test data are stratified using these class labels Ybest . The pro-
portion of instances in each class are also included in Table 1.

Table 1. Summary of datasets

n m |A| K Class Proportions

tsp60 2143 87 2 3 (0.45, 0.35, 0.20)
tsp1800 2143 87 2 3 (0.43, 0.48, 0.08)
tspWin 2143 87 2 3 (0.27, 0.36, 0.37)
vrp 100 119 5 5 (0.52, 0.20, 0.13, 0.10, 0.05)
knapsack 4000 44 3 3 (0.64, 0.23, 0.13)

For each of the DR methods described in Section 2, the transformation ma-
trix is fitted on the training data. Then the full dataset is projected to the
lower dimensional subspace. Three variants of PLS are fitted: PLS using Y ,
relative PLS using the performance of each algorithm relative to the best Yrel,
and PLS-DA using the dummy encoding of Ybest . Each of these variants use
representations of the performance matrix which are more directly suited to dif-
ferent tasks – Y for performance prediction (regression), Yrel for performance
comparison (regression) and Ybest for algorithm selection (classification).

The analytic solution to PILOT is used as it is time-consuming to solve
the problem numerically for greater than two dimensions (as it was designed to
be used). A step was added to the algorithm which removes features that are
linearly dependent in order for the problem to be solvable analytically. When it
is not possible to do so PILOT is not included in the analysis.

To perform algorithm selection, the following models are trained to predict
Ybest . The baseline models are a näıve classifier which always predicts the most
frequent class for all problem instances, and a multinomial logistic regression
model using the constructed features. For each DR method, a multinomial lo-
gistic regression model is fit given Z. The number of components used to fit
each of these models was determined by cross-validation. For PCA, PILOT and
LDA, the number of components which led to the best logistic regression model
in terms of accuracy, precision and recall was selected. For the PLS variants,
the number of components which minimised the root mean squared error of the
predictions from the projection model was selected.
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To evaluate each of the classification models, the following metrics are used.
Accuracy is the proportion of instances which were correctly classified across
all classes. Weighted precision is average of the per-class ratio of correctly clas-
sified instances to all instances predicted to be in that class, weighted by the
proportion of instances actually in the class. Recall is the average of the fraction
of correctly classified instances in each class. We also considered the relative
regret of the misclassified instances. This is the percentage difference between
the performance for the predicted algorithm and the actual best algorithm for a
given instance.

To evaluate the visualisations, we use the neighbourhood hit [13]. This is
the average proportion of the k neighbours of each point with the same class
label as that point. Neighbourhood hit in effect measures how separable the
data is in the projected subspace. We calculated this on first two dimensions of
the projected coordinates for each DR method.

4 Results

4.1 TSP

We first evaluate the projections’ usefulness for visualisations. The 2D visuali-
sations of all the problem instances in the different projection spaces for each
dataset are included in the supplementary materials and code for the analysis
is available3. Fig. 1 shows that for all of the projections, the more neighbours
considered, the lower the neighbourhood hit rate. For these datasets, all the
projections except LDA have similar trends how the neighbourhood hit rate de-
creases. For LDA, the rate of decrease is much slower, to the extent that there
are more common neighbours when k = 25 (which is approximately 5% of the
dataset) than with the other projections which have a higher hit rate for fewer
neighbours. For tsp60, all PLS projections perform the best, with a high 57.9%
hit rate for the nearest neighbour, and a low of 52.4% for the nearest 25 neigh-
bours. Similarly for tsp1800, PLS and PLS-DA performed better than the other
projections.

Next we evaluate all DR methods for classification. These performance met-
rics are reported in Table 2. Based on this, the set of features is better suited for
predictions for tspWin. All three TSP datasets have the same F , but different
Y and Ybest . Because PCA is unsupervised, the projections are the same for all
datasets, however the predictions on tspWin require more than twice as many
components than are needed for tsp60, and this number increases further for
tsp1800. While there is no single standout across the metrics, LDA can be con-
sidered the best DR method for tsp60 and tspWin when considering the number
of components needed. The relative PLS models have inferior performance for
all three of these datasets. For both algorithms in all of the datasets, the val-
ues of Yrel are predominantly very close to zero, which resulted in the relative
PLS projection being uninformative. PILOT requires more components than the

3 https://github.com/danotice/Sup-DR-for-ASP

https://github.com/danotice/Sup-DR-for-ASP
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other supervised DR techniques, but it does achieve better performance than the
model with all features in two out of the three datasets.

There is no objective way to define “good” performance in absolute terms for
the algorithms in this data because of the nature of the performance metric, so
the relative performance is considered. Across all three datasets, both algorithms
almost always find solutions within one percent of each other. Considering the
relative regret of the misclassified instances, all the models (excluding the näıve
classifier) have a similar distribution. The relative regret shows that when given
enough time to run, both algorithms will achieve the same performance. The
median relative regret for tsp1800 – which had a maximum time budget of 1800
seconds – was on average 0.007%, while the median for tsp60 was on average
0.012%. All of the models misclassify 1 or 2 instances with abnormally large
relative regret, which skew the means. The relative regret being so small for
most instances gives an indication that without an absolute threshold (such as
difference from the known optimal solution), we cannot reasonably try to predict
“good” performance for the algorithms.
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Fig. 1. Neighbourhood hit rate of actual class labels for TSP datasets

4.2 VRP

For the vrp dataset, LDA appears to separate the classes well as seen in the
visualisation of the problem space in Fig. 2. The average neighbourhood hit rate
for up to 8 neighbours for LDA is above 80%, and less than 60% for all the
other methods. However, looking at Fig. 2 the training data are projected to
very separate clusters, but the test data are not separated as well.

Considering the classification models, PCA has similar performance to the
model with all the features. The PLS variants however both achieve better per-
formance, using far fewer components. Notably, the PLS projection using the
relative performance improves the predictions made by PLS, and has the best
evaluation metrics overall. PLS-DA, while notably worse in terms of recall, is
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Table 2. Prediction model evaluation metrics for test data

rel PLS
Näıve All PCA PILOT PLS PLS DA LDA

tsp60

Components - 86 22 20 15 2 7 2
Accuracy 44.99 56.18 56.41 55.01 52.68 46.15 53.85 55.24
Precision 75.25 56.75 56.64 55.17 52.70 46.98 53.76 56.09
Recall 33.33 55.43 56.73 54.72 52.63 38.92 53.84 54.26

tsp1800

Components - 86 63 74 22 1 7 1
Accuracy 48.25 59.91 59.91 61.77 59.21 57.11 59.21 56.64
Precision 75.03 59.26 59.50 61.25 56.53 60.90 58.32 51.89
Recall 33.33 46.94 47.70 48.24 43.36 40.78 43.50 40.77

tspWin

Components - 86 42 50 9 8 20 2
Accuracy 36.83 62.47 63.40 63.64 62.24 60.84 62.94 62.47
Precision 76.73 58.78 59.80 60.27 56.56 54.01 58.50 59.51
Recall 33.33 58.88 59.72 60.07 57.73 56.30 58.94 59.09

vrp

Components - 117 50 - 9 7 1 4
Accuracy 50.00 65.00 65.00 - 65.00 80.00 70.00 60.00
Precision 75.00 79.00 71.86 - 66.39 86.00 78.33 70.15
Recall 20.00 69.00 72.00 - 67.33 76.33 43.33 67.00

knapsack

Components - 44 39 31 41 22 24 2
Accuracy 63.62 73.88 73.88 73.00 73.62 72.25 72.75 72.62
Precision 76.86 72.41 72.41 71.55 72.12 70.10 71.26 71.26
Recall 33.33 62.14 62.14 61.79 61.64 58.65 61.44 56.98

comparable to the relative PLS projection in terms of the other performance met-
rics, achieving 70% accuracy and 78% weighted precision, while using a single
component. Overall, this dataset benefits the most from the use of the supervised
DR methods, most likely because of its small size.

Also, recall that performance data is available for eight algorithms, although
only five of them are contenders for the best in this dataset. Including the per-
formance of the other three algorithms in Yworsened the performance of PLS
and relative PLS, as they were accounting for variance that was irrelevant for
the classification problem. The other methods were unaffected by this as PCA
is unsupervised, and LDA and PLS-DA use Ybest .

There are many ties in algorithm performance in vrp, which makes it reason-
able to set a small relative threshold for “good” performance of the algorithms.
Based on the distribution of the relative regret shown in Fig. 3, setting this
threshold to greater than 0.3% would be inappropriate as all of the classification
models are able to make predictions with a lower margin of error.
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4.3 Knapsack

The dense problem space for the knapsack dataset makes seeing any class separa-
bility difficult in Fig. 4. Based on the neighbourhood hit rates in Fig. 5 however,
LDA is the best, having the largest clusters of instances with the same class.
While PCA and PILOT projections are quite similar (but mirrored), there is
greater separation of some of the clusters along the axis of the first component,
which is reflected in the neighbourhood hit rate.

Considering the classification models, we see in Table 2 that both PCA and
PLS require almost as many components as there are features for the best predic-
tions. With PCA in particular, using this many components leads to predictions
nearly identical to those made by the model with all the features - resulting in
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the evaluation metrics we considered to all be equal. PILOT and the PLS vari-
ants produce predictions of similar quality using fewer components. Once again
LDA, despite the strict limit on the maximum number of components remains
competitive.

The performance metric for this dataset is a measure of time, and it varies
greatly between algorithms for each problem instance. As this is a measure that
is not instance specific, we consider both the relative regret and the absolute
regret in seconds. Table 3 shows the number of misclassified instances from the
test data and the total absolute regret for each model. While all have multiple
outliers, we see that the other models have a total absolute regret which is
orders of magnitude greater than that of LDA, despite having fewer misclassified
instances.

Table 3. Total absolute regret for each classification model for knapsack

rel PLS
Näıve All PCA PILOT PLS PLS DA LDA

No.
misclassified 291 209 209 216 211 222 218 219
No. outliers 46 29 29 35 29 33 34 23
Total regret 0.228 94.868 94.870 139.879 94.870 90.239 139.865 0.233

5 Conclusion

In this paper we considered PCA and a number of supervised dimensionality
reduction techniques for visualisation and algorithm selection. While perform-
ing DR on the feature space reduces the interpretability of the classification
model used for algorithm selection, it does alleviate the need for elegant feature
construction and selection.

In the ISA literature PCA and PILOT are used for visualisation, but not
classification. In this paper we found that PCA generally required considerably
more components than the supervised DR methods to achieve comparable clas-
sification performance. Moreover, the two-dimensional visualisations do not cap-
ture the class structure as well as supervised DR methods can. PILOT required
more components than other supervised DR methods generally, while having
performance similar to PCA.

LDA and PLS are not new techniques, but to the best of our knowledge they
have not been previously applied in this context. LDA was notable as it was
just as competitive as the other projections but used far fewer components. In
terms of the visualisation, it best showed the separability of the classes for all
the datasets measured in terms of neighbourhood hit.

Using fewer components, PLS and PLS-DA were always able to achieve pre-
diction performance comparable to the logistic regression model with all features.
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The PLS-DA projections were better for the predictions than the PLS regression
input. This is not an unexpected result as PLS-DA is directly connected to the
classification (rather than the regression) problem. A more notable result was
that the relative PLS projections were better than the usual PLS projections for
the VRP and knapsack data. Using the relative performance led to a projection
better suited comparison of the algorithm performance as opposed to prediction,
which is a more difficult task.
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