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Abstract

Developing sixth generation (6G) wireless communication necessitates low-power

consumption, high-reliability, and massive-connectivity. One of the most promis-

ing solutions to address these requirements is aerial base station (ABS) based

communication systems that employ both in-the-air (aerial) and on-the-ground

(terrestrial) components. ABSs enhance line of sight (LoS) connections, fulfilling

escalating quality of service (QoS) demands. Nevertheless, integrating aerial and

terrestrial networks into future three dimensional (3D) networks introduces emerging

requirements for resource allocation and new functional challenges, such as latency,

reliability, energy consumption, and QoS. Motivated by the above observations, this

thesis investigates the challenges of intelligent resource optimization in integrated

aerial terrestrial networks.

An integrated aerial and terrestrial network is initially examined to design a

bisection-based low-complexity adaptation (BLCA) algorithm for optimal resource

allocation. A joint optimization problem that involves sub-carrier (SC) assignment,

blocklength, and power allocation (PA) subject to delay, reliability, and QoS

constraints is investigated to enhance system performance in a finite blocklength

(FBL) regime. The proposed solution includes sub-carrier allocation based on

matching theory, optimal blocklength allocation using the bisection algorithm, and

a two-step projected gradient descent power distribution by optimizing the power

budget on each sub-carrier. Case studies on flexible blocklength and PA are also

examined under the next generation of multiple access techniques.
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The second part integrates digital twin (DT) technology with mobile edge

computing (MEC) to facilitate mobile offloading in an integrated aerial-terrestrial

network. An advanced bisection sampling-based stochastic solution enhancement

(BSSE) algorithm is specifically tailored to jointly optimize transmit power, central

processing unit (CPU) frequency, and the task offloading policy to minimize the

system’s energy-time cost against benchmarks. The proposed solution includes a

one-climb policy to narrow the search space, a closed-form solution for calculating

the optimal CPU frequency and transmit power for given offloading decisions, and

an inequality condition formulated to manage dependent tasks efficiently. The

scalability of the proposed scheme is also analyzed.

In the final part, machine learning techniques are adopted to improve the system

performance in an integrated aerial-terrestrial wireless network. The proposed

solution employs unsupervised learning techniques for the grouping of internet of

things smart devices (ISDs), Q-learning (a type of reinforcement learning) for the

intelligent ABS placement, and deep learning for power allocation. A closed-form

expression is also derived for PA among multiplexed devices based on their QoS

requirements. Numerical results indicate that the proposed scheme significantly

outperforms existing benchmark schemes.

This thesis presents valuable insights into innovative, sustainable, and energy-

efficient resource optimization in integrated aerial-terrestrial future-generation

networks, setting the stage for further advancements in resource allocation to

enhance reliability, QoS, and latency.
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Chapter 1. Introduction

1.1 Motivations

The emergence of advanced wireless infrastructure has transformed the way

information is generated, disseminated, received, and perceived [1]. The capacity is

expected to increase by up to 1000 times to support the growing number of wireless

users and internet of things (IoTs) devices [2] (see Fig. 1.1).
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Figure 1.1: Estimation of Global Traffic From 2020 to 2030 (source: [3], Fig. 9).

Therefore, a few novel communication paradigms are needed to address three key

connectivity types that align with the new technical requirements, i.e., enhanced

mobile broadband (eMBB) to provide high throughput to demanding clients,

massive machine-type communication (mMTC) to support low-cost, low-power IoT

devices, and ultra-reliable low-latency communication (URLLC) to support mission-

critical IoT devices, such as the tactile internet and autonomous vehicles, which

require stringent quality of service (QoS) requirements to achieve a delay of less

than one millisecond and reliability more significant than 99.9999%.

The rapid evolution of IoTs has also facilitated the cost-effective connection

of billions of wireless users, introducing a new era of connectivity. However, the
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1.1. Motivations

limited battery life and computational power of IoT devices have emerged as a

significant barrier, particularly in supporting computationally intensive applications

within future generation networks [4]. These limitations are primarily attributed

to concerns about production costs and stringent size restrictions. Therefore,

advances in various technologies are required to meet the increasing demand for

wireless users and the continuously evolving requirements for system capacity, energy

consumption, and massive connectivity (see Fig. 1.2).

1G

1980 1990 2000 2010 2020 2030

2G

3G

4G

5G

6G

Local voice calls
Global voice calls

Mobile internet

Mobile broadband

uRLLC

Integrated aerial 

terrestrial Networks

Artificial intelligence

eMBB

Figure 1.2: Past, Present, and Future of Mobile Networks (source: [5], Fig. 1).

Given the scarcity of radio spectrum, it is crucial to explore how it can be utilized

most efficiently [6]. It is well-known that the radio channel is broadcast in nature,

which can lead to inevitable interference between different users’ transmissions.

Therefore, there is a strong need for multiple access schemes to coordinate these

transmissions. The existing literature demonstrates that multiple access schemes

play a significant role in the design of next-generation cellular networks. Non-

orthogonal multiple access (NOMA) is a promising technology in cellular networks

and beyond to address the problem of scarcity of shared spectrum resources [7].

In contrast to orthogonal multiple access (OMA), NOMA with finite blocklength

(FBL) follows the exact mechanism as typical NOMA, particularly superposition
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Figure 1.3: Two Devices-based OMA Transmission in the Downlink.
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Figure 1.4: Two Devices-based NOMA Transmission in the Downlink.

coding at the transmitter and successive interference cancellation (SIC) at the

receiver [8]. It permits devices to share the same time-frequency resources, enhancing

the network’s energy and spectral efficiency. However, the traditional Shannon

formula does not approximate the maximum achievable rate when considering short-

packet communication. This thesis exploits the intrinsic attributes of power domain

NOMA to accommodate maximum IoT devices without compromising the sum rate,

referred to as NOMA for simplicity (see Figs. 1.3 and 1.4).

The mode of communication is as critical as the associated technologies. For

example, terrestrial infrastructure is commonly at risk of being destroyed by natural

disasters. During 2019, at least one type of disaster affected approximately 27% of

the world’s road and railway systems [9]. Therefore, timely warnings and relief

operations can actively control these damages, which require effective management.

One promising solution is to use emerging future-generation communication and

control systems. Future generation networks envision seamless connectivity of both

ground and aerial users. However, practical implementation of future-generation
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networks faces significant challenges, including high data rates, massive connectivity,

and high energy demands.
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Figure 1.5: ABS-aided Future-Generation Mobile Networks.

Aerial base stations (ABSs) have recently emerged as highly adaptable airborne

wireless technology due to ease of mobility and to ensure massive connectivity with

minimal human intervention (see Fig. 1.5). They provide high data rates and

a wide range of services, including monitoring the Internet of agricultural things,

surveillance during natural disasters, and data offloading in different hotspots [10].

Furthermore, ABSs can also act as mobile base stations and extend their services to

support growing traffic without geographical limitations. These features make ABS

an excellent possible solution in hot-spot areas.

To meet the growing demand of an ever-increasing number of mobile users,

efficient use of radio spectrum and provision of massive connectivity with high-

reliability, low-latency, and other QoS requirements are essential. However, the

subsequent challenge lies in the computing capability of IoT devices, which have

small on-chip computing units with low-performance [11]. These drawbacks
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fundamentally hinder the support of computation-based applications in future-

generation networks. To this end, mobile edge computing (MEC) came as an

emerging and cost-effective paradigm that leverages computational and storage

capabilities to support wireless devices with limited resources.

Task offloading is the most significant feature of MEC, which enables resource-

constrained IoT devices to offload their computation-intensive tasks to high-

performance edge servers, either binary or partially. Each task is processed locally

or offloaded to the edge server in binary offloading. In contrast, each task is

partitioned and executed locally and on the edge server [12]. This thesis focuses

primarily on binary offloading within the context of FBL, which is frequently used

in IoT systems to process tasks that cannot be partitioned. This approach is

instrumental in satisfying the increasing quality of service demands in edge networks,

particularly in the context of resource allocation [13]. Furthermore, ABS-assisted

communication can be effectively combined with mobile edge computing (ABS-

MEC) to enable promising solutions to overcome challenges, such as offering support

for time-sensitive applications and computation-intensive services, encompassing a

broad spectrum of IoT applications, i.e., from security to actuation and monitoring

IoT systems.

Using the new capabilities of future-generation networks under the strict

requirements of URLLC links, another innovative technology that has recently

gained substantial prominence is a digital twin (DT) [14]. This technology creates

a virtual replica of physical systems, enabling the simulation of optimal solutions

prior to real-time implementation. Its application significantly improves system

performance while minimizing downtime [15]. The integration of URLLC with other

emerging technologies, including MEC and DT, is also crucial in accommodating

a wide range of mobile applications, covering Industry 4.0, future smart cities,

and intelligent communication systems [16]. However, its practical implementation

raises intriguing and challenging concerns due to the complex relationship between

reliability and end-to-end delay in next-generation wireless networks [17].
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The major challenges in future-generation networks powered by intelligent edge

include resource allocation, adaptive learning, intelligent decision-making, privacy,

low latency in terms of communication and computation, and limited computing

power. Machine learning is a key enabler to perform better parameter estimation

and efficient decision-making. Therefore, there is a strong need to design sub-

optimal algorithms with performance guarantees (i.e., low-complexity solutions)

by utilizing virtual platforms to simulate high-computing, machine learning-based

training and to facilitate active interaction between the physical and virtual worlds.

These techniques significantly impact algorithmic solutions, providing optimal radio

resource management in URLLC edge networks to improve the performance and

reliability of communication systems [18]. This thesis advocates a novel set of

guidelines for future-generation networks.

This thesis aims to design optimal resource allocation policies for integrated

aerial-terrestrial edge networks, investigating the correlation and interdependency of

tasks executed by different IoT devices. In addition, various unsupervised techniques

based on machine learning are employed to enhance system performance. The re-

search addresses new and technical challenges in future-generation wireless networks,

including energy efficiency, reliability, latency, and other QoS requirements. In

particular, this thesis uses users, IoT devices, and ISDs interchangeably. In addition,

unmanned aerial vehicles (UAVs) and ABSs are used interchangeably.

1.2 Contributions and Structure of the Thesis

This thesis provides optimal resource allocation solutions through innovative,

sustainable, and energy-efficient resource scheduling in integrated non-terrestrial

network systems for 6G. Our approach aims to enhance QoS and latency aspects,

offering significant improvements over existing state-of-the-art methods, particu-

larly: 1) by using a traditional heuristic approach, a low-complexity, connectivity-

aware optimal resource allocation policy is developed for integrated aerial-terrestrial
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networks; 2) task dependencies among IoT devices in the context of DT-aided

edge computing for URLLC are examined to optimize task offloading and resource

allocation; and 3) machine learning-based strategies are adopted for optimal resource

allocation and intelligent UAV positioning to support scattered communities and

enhance network invulnerability cooperatively.

In Chapter 2, the underlying literature related to system design for FBL regimes

is examined. Initially, a background knowledge of UAV-assisted communication,

including OMA and NOMA, is introduced. Subsequently, the concept of DTs in

conjunction with mobile edge computing is explained. The chapter then discusses

existing studies on intelligent UAV positioning and optimal resource allocation,

providing readers with a comprehensive understanding of the research background.

In Chapter 3, a low-complexity, connectivity-aware optimal resource allocation

policy is developed using traditional heuristic approaches to enhance network

performance. The strong coupling between optimization variables poses a challenge,

mainly when grouping IoT devices in multi-carrier transmission. Consequently, we

decided to investigate the development of a resource allocation strategy specifically

for multi-carrier communication. It involves a fast network formation where

integrated aerial terrestrial networks1 can be used to ensure the connectivity of

the IoT device in a signal dead zone. The primary contributions of this part of the

thesis are summarized below.

• A problem in an integrated aerial terrestrial network that involves mixed-

integer non-linear programming is investigated. To address this issue, the

problem of maximizing the sum-rate is reframed by utilizing its decomposition

property and jointly optimizing the channel allocation, power allocation (PA),

and blocklength allocation for both OMA and NOMA systems.

1It refers to the integration and convergence of communication systems that employ both in

the air (aerial) on the ground (terrestrial). This concept helps to establish a unified network

infrastructure that inherits the capabilities of aerial platforms such as ABSs and airborne systems

with conventional terrestrial communication systems.
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• An alternating optimization method is later utilized to present an iterative

bisection-based low-complexity adaption (BLCA) algorithm to optimize the

resource allocation problem subject to delay, reliability, and QoS constraints.

The problem formulated is solved in three steps. Firstly, the matching theory

is employed to allocate sub-carriers and select the best cooperative ABSs.

Secondly, the optimal blocklength is computed using the bisection algorithm.

Finally, dynamic and geometric programming is applied to perform power

distribution by optimizing the power budget on each sub-carrier with a two-

tier projected gradient descent-based algorithm.

• In the end, the optimality of the BLCA algorithm is evaluated against a

high complexity benchmark scheme, namely Lagrangian duality and dynamic

programming (LDDP), which employs Lagrangian dual to relax the individual

power constraint [19]. Monte Carlo simulations are conducted to compare

the performance of the proposed algorithmic solution against the LDDP

scheme. Moreover, two benchmark algorithms are also implemented for

comparative analysis, where the worst sub-carrier is prevented from being

assigned to a transmitting node [20,21]. The proposed algorithmic solution is

also analyzed against random and fixed blocklength approaches using legacy

OMA and NOMA with different PA schemes. The results show that the

proposed algorithmic solution significantly achieves a near-optimal solution

and outperforms the LDDP scheme.

In Chapter 4, the interdependence of tasks executed by different IoT devices is

analyzed [22]- [23]. This interdependence significantly influences decisions related

to the offloading and allocation of resources in an integrated aerial-terrestrial edge

network [24–26]. For example, a device might need to offload its tasks to an ABS-

assisted edge server that another device urgently needs. Due to this strong coupling

and the combinatorial nature of the problem, identifying an optimal solution is

challenging. This chapter presents a pioneering examination of the dependency of

tasks between devices within the context of DT-aided edge computing for URLLC
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to optimize task offloading and resource allocation. The key contributions of this

part are summarized as follows:

• A mixed-integer non-linear programming (MINLP) problem is formalized

within a DT-enabled integrated aerial-terrestrial network, novelly considering

task interdependencies. Due to its inherently combinatorial link with task-

offloading decisions and strong correlation with resource allocation, this

problem poses significant computational challenges. Therefore, an enhanced

bisection sampling-based stochastic solution enhancement (BSSE) algorithm

is introduced to minimize the system’s energy-time cost iteratively, offering a

solution that closely matches the performance of the most effective existing

scheme.

• To efficiently narrow the search space, a ‘one-climb policy’ is opted, where

a device offloads its data to the edge server at the optimum time only

once. The proposed algorithm is designed to jointly optimize transmit

power, central processing unit (CPU) frequency, and task offload policy, thus

minimizing the weighted sum of energy consumption and execution time of

the devices. Later, a closed-form solution is derived to calculate the optimal

CPU frequency and transmit power for given offloading decisions. Then, an

inequality condition is formulated to manage dependent tasks efficiently. The

proposed algorithm commences with a random task offloading configuration

and iteratively updates it to reduce the system’s energy-time cost.

• The scalability of the proposed model is analyzed by varying the number of IoT

devices with the sequential number of tasks, i.e., from a simplified two-device

framework to multiple devices, incorporating different intermediate tasks. The

trade-off between the system’s energy-time cost is also analyzed to validate the

effectiveness of our approach.

• Although the proposed algorithm can manage a diverse range of tasks, the

computational complexity of our proposed approach is significantly lower than
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the benchmark schemes. The proposed BSSE approach is also compared

with three sophisticated benchmark schemes: the bisection algorithm [22], the

Gibbs sampling algorithm based on a one-climb policy [22], and the exhaustive

search algorithm. A comparative analysis with the bisection algorithm reveals

that our approach reduces the total energy-time cost by 15.35% to 33.12%

when the weighting parameter ∂λk2 increases from 0.1 to 0.3, respectively.

In Chapter 5, it is observed that the existing literature on UAV communication

either focuses on stationary UAVs hovering above hotspot centers or optimizes

UAV trajectories without considering reliability, delay, and QoS constraints to

maximize system throughput [27]. Neglecting kinematic constraints, intelligent

UAV positioning, and static propulsion are critical factors in maintaining user

connectivity during malicious attacks [28]. This chapter introduces a novel NOMA-

DeepFusion-PA approach for optimal resource allocation and UAV deployment to

maximize the achievable rate. Consequently, a collaborative system assisted by

drones is designed to support scattered communities and cooperatively enhance

network invulnerability. The key features include machine learning-based intelligent

UAV placement and optimal resource allocation to reduce co-channel interference

with improved system performance. The major contributions of our work are:

• A connectivity-aware aerial-terrestrial edge network is considered, where a

UAV hovers at the optimal position to provide on-demand services. Later,

an optimization problem is formulated by employing unsupervised learning-

based ISD grouping, reinforcement learning-based intelligent UAV placement,

and DeepFusion-based PA that integrates the deep-learning based PA in

conjunction with fractional transmit PA (FTPA) to provide an additional layer

of optimization to ensure power efficiency and fairness among sub-carriers to

improve overall system performance.

• Due to the inherent non-convexity, the problem is decoupled into sub-problems

and solved iteratively to obtain optimal solutions. In contrast to [29]- [30],
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a data-driven approach is proposed that integrates the elbow method with

the F-test method to determine the optimal number of clusters for a given

channel condition, thus avoiding arbitrary selections. Afterward, the k-

means clustering algorithm is utilized to group devices into clusters. Unlike

in [29], the proposed data-driven approach offers superior control over the

number of devices per sub-carrier and more efficient bandwidth utilization. A

mathematical definition is also derived to calculate the value of the F-test for

a given number of clusters.

• To address the ample search space, a Q-learning based strategy is utilized

to maximize the utility function by adjusting the UAV position relative to

the location of ISDs. The goal is to extend the coverage area for each UAV

while maintaining fairness among the ISDs. Subsequently, a successive convex

approximation-based iterative algorithm is proposed to address non-convexity

in the rate function within the ensuing sub-problem.

• The effectiveness of the proposed scheme is validated through numerical

results. Simulation results demonstrate a significant improvement in the

system’s achievable rate for different transmit powers, that is, the sum rate for

NOMA-DeepFusion-PA [Optimal UAV position] can be increased by 28.5762%

than NOMA with fixed PA method, namely: NOMA-FPA [Optimal UAV

position] [31], and 38.3119% higher than legacy OMA [32].

1.3 Structure of the Thesis

The remainder of the thesis is organized as follows. Chapter 1 outlines the

motivations for the study. Chapter 2 presents the background knowledge, including

a brief review of the literature. Chapter 3 provides a detailed discussion of

energy-aware resource allocation using greedy approaches. Chapter 4 focuses on

optimal resource allocation based on task dependency through the one-climb policy.

Subsequently, Chapter 5 explores optimal resource allocation based on connectivity
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employing unsupervised learning techniques. Finally, Chapter 6 concludes the thesis,

addressing its limitations and proposing directions for future research.
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NOMA is an emerging paradigm in cellular networks and beyond applications

to address the problem of scarcity in shared spectrum resources. It helps maintain

high link quality ubiquitously and increases spectral efficiency by exploiting available

resources more efficiently. The details are given below.

The performance of multi-carrier NOMA (MC-NOMA) systems mainly depends

on two interacted factors, i.e., power control and sub-carrier allocation. The authors

in [33] demonstrate that in real-time LTE cellular systems, MC-NOMA outperforms

OFDMA in network-level performance, for example, in both wide-band and sub-

band scheduling, including high and low mobility scenarios. Moreover, the authors

proposed a predefined user grouping and fixed PA to minimize complexity. Different

optimization methods are commonly used to achieve optimal PA. However, these

methods restrict the algorithm’s performance because they can assist at most two

users on each sub-carrier.

Considering the low-latency requirements for future generation networks, a joint

sub-carrier and PA algorithm is proposed to maximize the sum rate for the downlink

MC-NOMA problem [34], consisting of a three-step resource allocation framework.

The proposed algorithm operates in three phases: 1) the problem is relaxed by

allowing each user to access all sub-carriers, 2) greedy sub-carrier allocation is

performed based on the power vector from the previous step, and 3) to improve

system performance, the power control scheme from the first step is re-implemented

with the updated sub-carrier allocation from the second step. One centralized and

two distributed PA methods are examined. The proposed algorithm performs almost

as LDDP and outperforms standard power-controlled OMA schemes.

A distinctive technique to improve the weighted sum rate (WSR) is proposed in a

power-constrained environment [35]. To this end, two basic building blocks are intro-

duced: single carrier power control (SCPC) and single carrier user selection (SCUS).

Additionally, based on these building blocks and a joint sub-carrier and PA (JSPA)

scheme, a method is proposed that achieves near-optimal WSR and user fairness

through a proper resource allocation policy. This work further exploits enhanced
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versions of SCPC and SCUS, featuring low and practical computational complexity

[36]. These pre-computations improve the performance of JSPA and are named

gradient descent-dependent heuristics (GRAD-JASPA). Subsequently, a pseudo-

polynomial-time approximation scheme (OPT-JSPA) and a fully polynomial-time

approximation scheme (FPTAS) are proposed. The proposed schemes provide

a theoretical performance guarantee with manageable computational complexity,

although their performance lies within a specific threshold value.

The link layer rate is investigated for a two-user NOMA in an FBL regime,

focusing on short packet communication [37]. This research uses the effective

capacity framework to analyze the performance of the two-user NOMA network

considering the overall reliability, including the probability of transmission error

and the probability of violation of queue delay. The study is then extended to

multi-user NOMA networks, noting that NOMA users with different channel state

information (CSI) achieve better effective capacity. The impact of SNR, delay

exponent, and transmission error probability on effective capacity is also analyzed.

Simulations validate that a high delay exponent results in a latency violation

probability that cannot be improved beyond a certain point due to the significant

impact of transmission error probability.

Research in [38] focuses on downlinking NOMA systems using the FBL regime

to enhance resource allocation. An efficient PA algorithm is proposed, and its

performance is compared against a fixed PA algorithm. The results validate

the efficacy of the proposed algorithm in terms of resource block usage and

energy efficiency. The authors in [39] focus on factory automation scenarios

to optimize blocklength and PA by minimizing the decoding error probability

(DEP) while maintaining reliability, delay, and total energy constraints. Four

downlink transmission schemes are considered: OMA, NOMA, relay-assisted,

and cooperative NOMA. The study concludes that relay-assisted transmission

significantly outperforms OMA, while NOMA is effective with limited blocklength.

Moreover, relay-assisted transmission outperforms cooperative NOMA due to its
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larger feasible region.

In industrial IoT networks, low latency and high reliability are crucial factors.

There is a strong need to address the heterogeneous requirements of different

applications operating on the same channel, such as transmission capacity, reliability,

and energy efficiency. To address these issues within limited spectrum resources,

a NOMA-based on-demand transmission (NDT) technique is proposed [40]. The

proposed method achieves a higher sum data rate and transmission reliability by

exploiting the relationship between the SIC decoding order and the application

priority, thereby minimizing the complexity of the solution. It is done by isolating

the compact coupling of channel allocation, power control, and NOMA clustering.

The results validate the effectiveness of the proposed technique compared to existing

methods.

Multi-access mobile edge computing (ME-MEC) is visualized as a critical

approach to enable the delay-sensitive and computation-intensive tasks for the future

generation of industrial IoT. Therefore, NOMA-assisted ME-MEC is exploited in

static and dynamic channel scenarios for offloading computational tasks; e.g., an IoT

device can unload its workload (specific part) to edge-computing servers via NOMA.

At this end, a distributed procedure is proposed for optimal offloading solutions by

jointly optimizing the problems, including computation resource allocation, multi-

task computational offloading, and NOMA-dependent transmission by utilizing the

minimum energy of the IoT device. In addition, a deep reinforcement learning-based

online algorithm is proposed to meet the time-varying channel power gains between

IoT devices and edge computing servers. Numerical results show the efficacy of the

proposed work compared to conventional orthogonal multi-access-based offloading

schemes.

In future-generation industrial IoT networks, intelligent transportation is a

critical focus in the internet of vehicles (IoV). System delay and communication

security are prominent concerns. The work in [41] proposes a two-layer NOMA-

dependent pervasive edge computing (PEC) resource allocation framework to
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address these issues and enhance the system’s performance. The problem is

formulated as a PA problem, considering imperfect CSI, queuing models, and

vehicle speed. In addition, a Frank-Wolfe procedure is suggested to achieve optimal

transmission power. Comparative analysis demonstrates the superiority of the

proposed framework over conventional OFDMA counterparts.

In the leading study of [42], the potential of intelligent reflecting surfaces (IRS)-

based UAV is investigated. It is tested in real-world settings, including constrained

QoS requirements. However, the proposed method is unsuitable for need-based

networks in disaster response and mission-critical applications (where the existing

infrastructure may be severely damaged or unavailable). Hence, a small malfunction

or failure in reflective elements can significantly impact overall network performance

and reliability.

The author in [43] proposes a low-complexity algorithm to position the UAV

and plan an efficient route for data collection, resulting in improved performance

subject to delay. The researchers observed that the placement of ABSs is complex

and requires attention. Therefore, the authors in [44] developed a framework that

uses Markov chain and Gibbs sampling. The study is extended to use clustering to

deploy ABSs and user association using NOMA. However, the number of covered

users served by a single ABS is limited [45].

Considering these factors, it is better to rely on more traditional and reliable

communication technologies to better align with the requirements and objectives of a

need-based network. Motivated by the benefits of ABS and NOMA, their integration

is analyzed and investigated. In [46], opportunistic channel gain disparities against

each IoT device are identified, and the positions of ABSs are optimized, which

becomes more challenging when power limitations constrain the problem. To

maximize the minimum rate, [47] investigates aerial jamming and PA to improve

security and reliability in ABS-assisted NOMA communication. Furthermore, in the

latter work, a relay selection strategy is explored to optimize the PA of ABSs and

to maximize energy efficiency under the NOMA scheme [48].
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The emergence of short packets with FBL is a crucial enabler to support emerging

technologies such as intelligent transportation systems and virtual reality [49].

Advanced wireless networks require reliable and efficient transmission, so studying

communication systems in the FBL regime becomes crucial. However, the maximum

achievable rate cannot be approximated using the Shannon capacity formula, which

requires an alternative solution [50]. Previous work highlights inherent problems

such as channel estimation errors and SIC and introduces additional challenges

such as the spatial distribution of ABS, which poses security concerns, and flexible

mobility, which complicates the channel [51]. Therefore, there is a strong need to

explore the potential applications of integrated aerial-terrestrial communication in

the FBL regime utilizing next-generation multiple access techniques 1.

To meet the increasing requirements of URLLC, NOMA is being investigated

in the FBL regime with reliability constraints [52]. Due to the benefits of FBL,

efficient bandwidth allocation schemes that consider delay constraints have also been

developed. However, using multiple hops adds complexity to resource allocation and

decision-making processes. In [53], the authors optimize the amount of information

transmitted from the control station of an ABS-aided system by simultaneously

optimizing blocklength and transmit power. This work is extended to optimize ABS

placement and transmission power to reduce DEP jointly [54].

The research is then expanded to an optimal resource allocation technique for

heterogeneous communication links that use both OMA and NOMA [55]. However,

it should be noted that the proposed approach is limited to throughput maximization

and does not provide a closed-form expression. Hence, developing a low-complexity

and connectivity-aware optimal resource allocation policy is crucial for enhancing

network performance. However, the strong coupling between optimization variables

poses a challenge, especially when grouping IoT devices in multi-carrier transmission.

1It refers to innovative strategies that surpass conventional approaches. In the context of 5G and

beyond, these techniques explore novel methodologies, i.e., NOMA to optimize resource allocation,

resulting in improved URLLC characterized by higher data rates, reduced latency, and enhanced

connectivity.
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To address the high data traffic load, researchers perform a joint optimization of

content placement, co-channel link, maintenance of QoS requirements, and spectrum

allocation to enhance energy efficiency in aerial-terrestrial vehicular networks [56].

Innovative user clustering, joint power optimization, and placement of UAVs are

applied to maximize energy efficiency in a full duplex NOMA system [57]. Joint

optimization of UAV trajectory, beamforming, power, and time allocation to

maximize throughput subject to minimum average user rate [58].

The authors in [59] strive to improve the system’s minimum achievable rate

by jointly optimizing the user association, transmit power, and UAV trajectory.

Reference [60] classified the devices according to channel quality and strategic

deployment of multiple UAVs with minimal energy usage. The study in [61] aims to

optimize transmit power by scheduling ISDs, bandwidth allocation, power control,

and UAV deployment while maintaining URLLC constraints. In [62], a UAV-assisted

heterogeneous fisher-sidecar composite fading channel model is proposed to improve

the capacity and energy efficiency of the system. The objective in [63] is to minimize

congestion at the macro base station (MBS) by maintaining a stable transmission

rate with minimum delay. In a study [64], a three-layer iterative algorithm is

proposed to optimize the scheduling of UAV tasks, transmit power, and 3D flight

parameters to improve performance. An innovative method to improve the efficacy

of the URLLC system is proposed in [65], with the aim of maximizing the end-to-end

achievable rate by jointly optimizing the UAV trajectory and blocklength allocation

in a multi-user UAV relay system.

Traditional wireless networks are not suitable for providing sustainable com-

munication links in critical situations such as disasters, wildfires, and emergencies.

Therefore, the author in [9] proposes a connectivity-aware network aided by DTs

to ensure reliable and real-time system communication. The author focuses on two

objectives: maximizing the data rate for users within scattered communities and

minimizing the transmitted power of the UAV. To address the limited resources of

UAVs, the author utilizes the DT virtual space to train a reinforcement learning
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model. The proposed model is evaluated on the basis of the physical and virtual

trajectory and normalized reward. The results validate that the proposed solution

provides a nearly optimal approach for the deployment of autonomous UAVs,

reducing the energy-time cost of the network.

The concept of DTs is further explored in the context of offloading to UAV-aided

edge servers. In [66], the authors address the problem of minimizing end-to-end delay

using DT-aided offloading to MEC, supported by UAVs within URLLC links. To

achieve this, the inner approximation is combined with alternative optimization,

simultaneously optimizing the edge servers and IoT devices’ offloading policies,

transmit power, and processing rate. The performance of the proposed model is

evaluated on the basis of worst-case end-to-end latency and total computational

resources.

The authors in [67] extended the study of DTs to the metaverse and proposed

a powerful computing platform employing MEC-based URLLC. They exploit the

concept of task caching and task offloading to a nearby edge server, ensuring high-

reliability and low-latency for future-generation networks within the metaverse.

The performance of the proposed model is evaluated based on system reliability

and latency by jointly optimizing the edge policies, the offloading factors, and

the computing and communication environment. The results validate that the

implemented scheme effectively enhances QoS using edge caching policies and

bandwidth allocation mechanisms.

Machine learning and the fifth-generation (5G) paradigm open possibilities for

extending industrial IoT. However, limited resources and immense data present

significant hurdles, increasing transmission overhead and compromising privacy. To

improve the quality of industrial IoT, a federated learning-based DT edge network

(DITEN) is proposed in [68]. The proposed architecture integrates DTs with edge

computing to optimize industrial IoT. Additionally, the scheme reduces transmission

overhead and protects data privacy. It updates the model asynchronously, thereby

reducing communication and computation costs. A deep neural network (DNN)
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selects the best strategies for assigning optimal resources. The results demonstrate

the efficacy of the implemented technique in terms of communication efficiency and

energy cost.

Edge systems in industrial IoT devices face high latency issues, affecting URLLC

systems’ productivity [69]. Therefore, Dang et al. propose a mechanism to minimize

system latency by jointly optimizing edge policies, offloading factors, and computing

and communication variables. Therefore, an alternating optimization scheme with

an inner convex approximation is utilized to develop an iterative algorithm that

reduces system delay. Numerical results validate the efficacy of the proposed

solution.

Considering the DT as a powerful computing platform, the problem of minimiz-

ing delay during computational offloading for industrial IoT is addressed in [24]. The

proposed work optimizes resource allocation for the entire system by using the DT

to model the computing capabilities of the edge server. The authors consider local

processing time, transmission time, and edge processing time, subject to computing

resources, to jointly optimize transmit power, processing rates of users and the edge

server, offloading decisions, and user association. The current model also employs

an alternating optimization approach with an inner approximation scheme to reduce

latency compared to benchmarks.

Research in [70] states that UAV-based aerial communication significantly

provides seamless connectivity to the IoVs. However, the IoVs system is vulnerable

to various resource allocation challenges due to its dynamic nature. Therefore, the

authors propose a two-stage, incentives-based mechanism for on-demand resource

allocation using dynamic DTs, ultimately ensuring efficient resource allocation. The

fundamental benefit of this scheme is its parallel processing on multiple roadside

units, which minimizes computational burdens on the UAVs. The proposed model

simultaneously increases fairness among the vehicles and improves the system’s

energy efficiency.
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In [71], the authors highlight the significant role of edge collaboration in

enhancing the performance of edge computing systems. Specifically, they integrate

emerging DT technology with mobile edge servers to efficiently perform intelligent

task offloading. Initially, the best MEC is selected by leveraging the capabilities of a

DT-aided decentralized blockchain mechanism and CSI. Subsequently, the Markov

decision process is adopted for task offloading to the selected edge server. The results

validate that DT technology enables mobile users to efficiently minimize power-time

costs instead of directly executing high-complexity machine learning algorithms.

Authors in reference [72] state that the sixth-generation (6G) system envisions

wireless communication systems with high connectivity and computational effi-

ciency. However, it also highlights the limitations of MEC, as the environment

of edge systems is unpredictable and complicated due to user mobility. Later work

presents a new version of DT technology functioning in two folds: the DT of the

edge server estimates the edge server state. At the same time, the system’s DT

handles training data to make offloading decisions. Specifically, the migration cost

of mobile users is minimized, resulting in reduced offloading latency. The efficacy of

the proposed model is validated against performance metrics, including offloading

latency, failure rate, and migration rate.

The authors of [73] extended the idea of users’ mobility and the unpredictable

MEC environment, proposing an intelligent task offloading scheme in UAV-enabled

MEC with the support of DTs. They perform a joint optimization of UAV trajectory,

user association, and resource allocation to efficiently reduce the energy consumption

of the entire MEC system. Results validate the effectiveness of the proposed scheme

compared to benchmarks.

It is commonly observed that many distributed machine learning models enhance

model training by using parallel architectures. In these models, the gradient

computation is distributed across sub-samples. However, the fundamental issues

with this approach are data privacy and locality. Consequently, there is a strong

need to preserve the features’ data locality and confidentiality.
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The authors in paper [74] have proposed the concept of ephemeral edge

computing. The proposed technique leverages multiple neighboring nodes for task

computation instead of relying on a single edge node. It performs device-to-device

communication for computational task offloading rather than offloading tasks to

the base station connected to the server. Additionally, the scheme makes on-the-fly

decisions to elect one of the neighboring nodes to which the task should be allocated.

The significant advantages of the scheme are the minimization of communication

latency and the maximization of the number of computed tasks. Simulations and

results demonstrate that the technique is nearly optimal compared to the offline

solution.

Later research noticed that the training data is both large in quantity and

privacy-sensitive in edge learning. Therefore, uploading data from various devices

to an edge server for centralized model training raises data privacy concerns and

incurs exorbitant communication and computation costs. These concerns prompted

the development of an innovative edge-based learning framework called federated

learning [75]. The authors use a distributed learning mechanism in this technique

and update the model accordingly. Experiments show that the proposed approach

reduces communication costs by 10-100 times compared to synchronized stochastic

gradient descent. However, the above rate-driven classical techniques fail to

accommodate actual learning tasks.

An asynchronous stochastic gradient descent (SGD) is proposed to learn from

distributed attributes mutually [76]. A parameter server system primarily inspires

this method. The main advantage of the proposed algorithm is that it avoids sharing

the primary attributes. Comparative analysis shows that the proposed algorithm has

enhanced application recommendations in the Tencent Application. However, the

efficacy of the proposed SGD depends on user items and features from other apps.

Managing the order sequence for each party’s sample data remains challenging.

It is commonly observed that the performance of an intelligent transportation

system mainly relies on the connection between vehicles with minimal delays and
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errors. Therefore, it is essential to design an approach that can achieve high

reliability and minimal delay. To this end, a federated learning-based scheme is

proposed to jointly optimize power and resource allocation to meet these QoS

requirements [77]. Results show that the proposed methodology outperforms the

centralized solution, with a 70% reduction in data exchange and a 60% reduction in

vehicular users with longer queue lengths.

An active learning-based approach is essential for designing information-aware,

low-latency, and reliable networks to manage the dynamically changing nature of

vehicular networks, such as interference and wireless channels [78]. Therefore, there

is a need to actively learn the network dynamics to allocate power and resources

efficiently. The proposed scheme achieves the desired results through an online

decentralized strategy. The solution is mainly composed of the following steps:

observe the recent information age, update the dataset, actively learn the scalability

of the network using Gaussian process regression (GPR), and allocate resources by

minimizing the objective. Numerical results validate the efficacy of the proposed

technique compared to counterparts.

A federated learning-based scheme is proposed in [79]. This model operates in

three stages: first, it locally trains the federated learning model; then, it applies

the model globally; and finally, it transfers the model back to the users for updates.

The main focus of this strategy is ”efficient user selection” to minimize the federated

learning loss function. It includes optimizing each user’s transmit power and resource

allocation, considering the impact of transmission errors and constrained bandwidth.

Results show that the proposed algorithm successfully minimizes the federated

learning loss function by 10-16% compared to benchmarks.

A multi-agent deep Q-learning network with a grouping mechanism is developed

in [80] to support massive URLLC by minimizing delay in an FBL regime,

formulating the problem subject to the adopted blocklength, transmission time

interval, and bandwidth allocation. In reference [81], an unsupervised trajectory

optimization is proposed by implementing a sequential deep reinforcement learning
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model to minimize the system’s energy consumption.

A lower-bound methodology for maximizing data rate using massive multiple

input multiple outputs (MIMO) is proposed for uplink URLLC, as detailed in

[82]. This optimization is achieved by jointly fine-tuning the payload and pilot

transmission strategies for zero-facing and maximum ratio combining designs.

Reference [83] addresses the challenge of resource optimization in URLLC, employing

a game theoretic approach to enhance the offloading factor within a multi-agent

edge network [84]. A distributed solution to optimize the average response time for

computational offloading is presented in [85]. The study is extended to a distributed

framework that solves the NP-hard energy efficiency problem, leveraging parallel

processing [86].

Channel characteristics are also crucial in the next generation of wireless

networks. It is not always recommended to completely offload computational tasks

to the edge server because it may lead the network towards a low offloading data

rate due to the possibility of deep fading [87]. An illustrative example is an adaptive

search algorithm, which minimizes EC through joint optimization of offloading

factors, resource allocation, and user association [88]. Similarly, the authors in [89]

investigate resource allocation and task offloading from an economic perspective to

enhance computing efficiency. The research in [90] focuses on developing optimal

binary offloading policies for single-user tasks, later extended to multi-user scenarios

in subsequent studies [91]. This concept is further applied to multiple independent

tasks in the system where a single user offloads its task to different edge servers [92],

and multiple users offload their tasks to a single edge server [93].

2.1 Summary

The literature highlights key findings and gaps in aerial terrestrial wireless commu-

nication systems. For example, unlike orthogonal schemes, NOMA is an emerging

technology with significant potential to improve spectral efficiency and enable
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massive connectivity in next-generation wireless networks. A key challenge in

radio resource management for NOMA systems is the joint optimization of power

control and subcarrier allocation. It is essential to carefully optimize the transmit

power levels to manage intra-carrier interference caused by superposed signals

and to maximize achievable data rates. In addition, the allocation of subcarriers

for each transmission must also be optimized. Similarly, it is observed that

the interdependence of tasks executed by different IoT devices greatly influences

decisions related to offloading and resource allocation. Therefore, identifying an

optimal solution is challenging, and researchers have yet to address these task

dependencies between devices for optimal task offloading and resource allocation.

Most existing studies on UAV communication focus primarily on stationary UAVs

hovering above hotspot centers or optimizing UAV trajectories, often overlooking

critical reliability, delay, and QoS constraints. It should be noted that most of

the solutions in the literature are heuristic-based, lacking theoretical performance

guarantees. In this context, sub-optimal algorithms with performance guarantees

could significantly impact the design of radio resource management schemes. Hence,

identifying such algorithms remains an open challenge.

This thesis systematically addresses these challenges by providing optimal

solutions to each of the problems identified above. The following sections present

detailed analyses and methodologies.
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3.1. Introduction

3.1 Introduction

Unlike conventional multimedia streaming services, URLLC3 services transmit con-

trol commands and sensing information in brief packets from source to destination.

Delivering these packets quickly and reliably imposes heterogeneous requirements on

both latency and reliability. In highly dynamic UAV-based communication, the swift

information flow required by demand-based networks imposes strict requirements

on these constraints above. Subsequent research suggests that a single URLLC link

cannot address these challenges. Therefore, integrated aerial-terrestrial4 URLLC

networks are needed to enable the trade-off flexibility required to improve reliability

and shorter delay.

UAV-based communication is widely acknowledged for its role in supporting

integrated aerial-terrestrial URLLC. UAVs offer superior LoS connection compared

to conventional terrestrial communication systems, where even a minor failure

can significantly impact overall network performance. Hence, relying on reliable

communication technologies is beneficial for better alignment with the requirements

and goals of demand-based networks. Alternatively, UAVs can operate as physical

platforms for user devices, enabling them to access networks that require URLLC

services. Traditional infrastructure does not adequately account for air-to-ground,

ground-to-air, and air-to-air communications. These limitations result in greater

delays, which presents major challenges to UAV communication.

The emergence of short packets with FBL is a key enabler to support emerging

technologies such as intelligent transportation systems. Future-generation wireless

networks require reliable and efficient transmission, so studying communication

3It refers to support applications that require extremely high reliability and low latency, where

delays and failures can have severe consequences. It aims to provide reliability levels of 99.999%

or higher and latency as low as 1 millisecond or less.
4It refers to the integration and convergence of communication systems that employ both in

the air (aerial) on the ground (terrestrial). This concept helps to establish a unified network

infrastructure that inherits the capabilities of aerial platforms such as ABSs and airborne systems

with conventional terrestrial communication systems.
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systems in the FBL regime becomes important. For URLLC, minimizing latency

is crucial, so using smaller blocklengths can be beneficial to ensure minimum delay

and high reliability. In this chapter, we decided to investigate the development of an

optimal resource allocation strategy for URLLC systems, which involves fast network

formation where integrated aerial terrestrial networks can be used to ensure IoT

device connectivity in a signal dead zone. A low-complexity and connectivity-aware

optimal resource allocation policy is designed to solve the mixed-integer non-linear

programming problem. It jointly optimizes channel allocation, PA, and blocklength

allocation for both OMA and NOMA systems. The proposed algorithm optimizes

resource allocation that is subject to delay, reliability, and QoS constraints.

The rest of this chapter is organized as follows. Section 3.2 presents the case

of interest and a mathematical framework for the proposed work. Section 3.3

formulates the problem, and Section 3.4 presents the proposed solution. Section

3.5 provides the simulation results with in-depth analysis. Finally, this chapter is

concluded in Section 3.6.

3.2 System Model

In this section, the conceptual architecture of an integrated aerial terrestrial multi-

hop downlink network is introduced first. Later, the DEP for the NOMA phase is

presented.

3.2.1 Architecture of the Aerial Terrestrial Network

Fig. 3.1 illustrates the conceptual architecture of an integrated aerial terrestrial

multi-hop downlink network. The architecture consists of a single MBS that utilizes

next-generation multiple access schemes to establish communication with multiple

IoT devices. The system comprises a set of ABSs denoted by u ∈ U = {1, 2, ..., |U|}.

This set U is further categorized into two subsets based on different QoS: the

cooperative ABS set and the serving ABS set denoted by Uu and Uh, respectively.
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Figure 3.1: Considered Multi-hop Scenario: Uh = {x, y}, where (x, y) ∈ Uh, Uu =

{p, q}, where (p, q) ∈ Uu, |I| IoT Devices are Grouped into L Communities Located

within the Coverage of Serving ABSs, andM = {a, b}, where (a, b) ∈ M Located

within the Coverage of MBS.

The cooperative ABSs5 act as relay nodes to facilitate the successful transmission

of messages to the ith IoT device. The set of Uh is represented by uh ∈ Uh =

{x, y, ..., |Uh|} and the set of Uu is expressed as uu ∈ Uu = {p, q, ..., |Uu|}. The IoT

devices within the MBS coverage are denoted by the set m ∈ M = {a, b, ..., |M|}

and IoT devices within the coverage of each serving ABS are represented by the set

i ∈ I = {u(1)k , u
(2)
k , ..., |I|}. It is important to note that all IoT devices are positioned

on the ground and can be served directly from MBS or through ABS using multi-hop

communication.

In a demand-based network, it is reasonable to consider that it is resource-

constrained and has limited bandwidth. We divide the total bandwidth (W) into

|C| orthogonal sub-carriers, denoted by c ∈ C = {1, 2, ..., |C|}, i.e.,
∑
c∈C

wc = W .

In addition, all devices (IoT devices and ABSs) are grouped into L communities.

The set L is expressed as l ∈ L = {1, 2, ..., |Lc|}, where c ∈ C and Lc denote

the maximum number of devices that can be served on the given sub-carrier c. If

5We assume all cooperative ABSs are situated within the coverage of MBS, and the most optimal

cooperative ABSs among them will be elected as relay nodes.
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Lc = 1, it means incorporating the novel concepts of the orthogonal scheme, while

1 < Lc ≤ |S| means the incorporation of the NOMA scheme. Hence, we define two

sets, n ∈ N = {c|c ∈ C, Lc = 1} and k ∈ K = {c|c ∈ C, 1 < Lc ≤ |S|} containing

the indexes of the OMA sub-carriers and NOMA sub-carriers, respectively. The

notation |S| presents the threshold value for the maximum number of devices on a

sub-carrier.

Assume the set Uk and Un containing the indexes of the devices assigned to

NOMA sub-carrier (k ∈ K) and OMA sub-carrier (n ∈ N ). We define a set Uk,[uk] =

{∪ i, ∥huu,[i]∥2≥ ∥huu,[uk]∥2, i, uk ∈ Uk} that contains the indexes of the IoT devices

that impose interference on the IoT device uk allocated to the sub-carrier k within

the same community, where huu,[i] denotes the channel of the ith IoT device served

by the ABS uu. The priority to provide fairness between each IoT device is given

by
∑

uk∈Uk

ωk,[uk] = 1. The SIC decoding order is also important for the power domain

NOMA. This work considers the optimal decoding error, where we decode the signals

of the IoT device from the highest to the lowest normalized noise power [94]. If

the decoding order on the given sub-carrier is πk : {Uk,[uk], uk ∈ Uk}. For i ∈

{1, 2, ..., |Uk|}, πk(i) gives the location of the ith decoded device on the kth sub-

carrier while π−1
k (i) gives its decoding order. The IoT device πk(i) first decodes

the signals from the IoT devices πk(1) to πk(i− 1) and before decoding the needed

signal, subtracts them from the overlaid signal. The intervention of the IoT devices

πk (̄i) for ī > i is considered noise.

It is assumed that the subcarriers belonging to the set N can serve at-most

single cooperative ABS or IoT devices (within the MBS coverage). Still, one sub-

carrier can serve multiple links simultaneously, i.e., the link between MBS and the

IoT device and between cooperative to serving ABS. However, each transmission

link can be assigned to only one sub-carrier between MBS and IoT devices (within

its coverage) and the link between MBS and cooperative ABSs. The sub-carriers

belonging to the set K can be used by a maximum of one serving ABS, and that sub-

carrier can only be allocated among |S| IoT devices within the community, where
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s ∈ S = {2, 3, ..., |S|}. A matrix of size (|Uh|+|M|) × N is defined to describe

the sub-carrier allocation indicator for MBS to cooperative ABSs and MBS to IoT

devices within its vicinity. It is denoted by ψ =
[
ψnmbs,j

]
. For j ≤ |Uh|, ψnmbs,j = 1

means that a subcarrier n is assigned to uthh cooperative ABS, otherwise ψnmbs,j = 0.

Whereas, for j > |Uh|, ψnmbs,j = 1 means that a sub-carrier n is assigned to an IoT

device m, otherwise ψnmbs,j = 0. We define a matrix of size |Uu|×K to describe the

sub-carrier allocation indicator to serve ABS to IoT devices within its vicinity, shown

by φ =
[
φkuu,[uk]

]
. Therefore, φkuu,[uk] = 1 means that a sub-carrier k is assigned to

the IoT device uk, otherwise φ
k
uu,[uk]

= 0.

The physical locations of MBS, mth IoT device, uthh cooperative ABS, uthu

serving ABS, and uthk IoT device are indicated as (x = 0, y = 0, z = 0),

(xm, ym, zm), (xuh , yuh , zuh), (xuu , yuu , zuu) and (xuk , yuk , zuk), respectively6. We

have used different channel models due to the different channel characteristics in

the LoS and non-LoS (N-LoS) probabilities for air-to-ground, ground-to-ground,

and ground-to-air propagation models [95]. The distance between MBS and the

cooperative ABS uthh and the distance between MBS and the mth IoT device

are calculated as dmbs,uh =
√
(x− xuh)2 + (y − yuh)2 + (z − zuh)2 and dmbs,m =√

(x− xm)2 + (y − ym)2 + (z − zm)2, respectively. The pathloss for the given link is

given by lmbs,m = 55.9+38 log(dmbs,m)+(24.5+1.5f/925) log(f), where f represents

the carrier frequency. The distance between uh
th cooperative ABS and uu

th serving

ABS is given as duh,uu =
√

(xuh − xuu)2 + (yuh − yuu)2 + (zuh − zuu)2, where d−αmbs
uh,uu

represents pathloss, where αmbs represents the pathloss exponent.

The probability of LoS between the IoT device uk and the ABS uu is

given as pLoSuu,[uk]
= 1

1+a exp
(
−b [( 180π )

(
sin−1(

zuu
duu,uk

)

)
−a]

) , where duu,uk is the dis-

tance between the given IoT device and serving ABS, calculated as duu,uk =√
(xuu − xuk)2 + (yuu − yuk)2 + (zuu − zuk)2, and a and b are the constant values

6ABSs have diverse applications beyond communication. However, the current work focuses

primarily on aspects that do not facilitate device-to-device communication. ABSs predetermine

the locations of IoT devices, whereas pilot signals are used to determine the CSI.
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depending on environmental factors. The probability of establishing a non-LoS link

is pN-LoS
uu,[uk]

= 1− pLoSuu,[uk]
. The pathloss between the IoT device uk and the ABS uu for

the connection of LoS and N-LoS is given by lLoSuu,[uk]
= lfsp + 20 log10 (duu,uk) + ηLoS,

and lN-LoS
uu,[uk]

= lfsp + 20 log10 (duu,uk) + ηN-LoS, respectively. The free space pathloss is

given as lfsp = 20 log10(f) + 20 log10
(
4π
c
)
, where c represents the speed of light, ηLoS

and ηN-LoS presents the attenuation due to LoS and N-LoS connection, respectively.

Thus, the average pathloss is given by plavguu,[uk]
= pLoSuu,[uk]

lLoSuu,[uk]
+ pN-LoS

uu,[uk]
lN-LoS
uu,[uk]

[95].

Let hnmbs,uh
be the channel between MBS and cooperative ABS uh. It is computed

as hnmbs,uh
=

gn
mbs,uh

[(x−xuh )2+(y−yuh )2+(z−zuh )2]
, where gnmbs,uh

is the channel power gain on

the given sub-carrier. The signal-to-noise ratio (SNR) at the uthh cooperative ABS

on the given sub-carrier is computed as ϱnmbs,uh
=

ψn
mbs,uh

pn
mbs,uh

∥hn
mbs,uh

∥2

δ2
, where δ2

is the noise spectral density, and pnmbs,uh
shows the power allocated to the given

cooperative ABS. The achievable rate for the given link is computed by normalizing

over the sub-carriers bandwidth wn [69].

rnmbs,uh
= log2

(
1 + ϱnmbs,uh

)
−

√
V n
mbs,uh

bmbs,uh

Q−1(ϵmbs,uh)

ln 2
, (3.1)

where, bmbs,uh is the adopted blocklength, and Q is the Gaussian Q-function, i.e.,

Q(x) = 1
2π

∫∞
x

exp(− t2

2
) dt [10]. The DEP for the link between MBS and cooperative

ABS uh is approximately ϵmbs,uh ≈ Q
(
f(ϱmin

mbs,uh
, ruhmin, bmbs,uh)

)
, ∀ uh ∈ Uh, where

ϱmin
mbs,uh

is the minimum SNR received in all sub-carriers allocated for the link between

MBS and cooperative ABS uh and r
uh
min is the minimum achievable rate. The overall

DEP for this hop is given by ϵmbs,uh ,∀uh ∈ Uh. The channel dispersion for the

given link is computed by V n
mbs,uh

= 1− (1 + ϱnmbs,uh
)−2. The sum-rate for the given

cooperative ABS is computed as rmbs,uh =
∑
n∈N

ψnmbs,uh
rnmbs,uh

, ∀ uh ∈ Uh.

Let hnmbs,m be the channel between the MBS and the mth IoT device, which is

defined as hnmbs,m =
gn
mbs,m
lmbs,m

, where gnmbs,m is the channel power gain. The received

signal to interference plus noise ratio (SINR) at the mth device is calculated as

ϱnmbs,m =
ψn
mbs,m

pn
mbs,m

∥hn
mbs,m

∥2

δ2+Inuh,m
. where pnmbs,m denotes the transmitted power for the

mth device, and Inuh,m is the interference power caused by the re-used link between
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cooperative to serving ABSs. It is defined as Inuh,m = pnuh,uuh
n
uh,m

, where pnuh,uu is

the allocated power for the link between cooperative to serving ABS and hnuh,m is

the channel between uthh cooperative ABS and the mth IoT device. It is given by

hnuh,m = gnuh,ml
−αmbs
uh,m

, where gnuh,m is the channel gain and l−αmbs
uh,m

is the pathloss for

the following channel with pathloss exponent αmbs. The achievable rate for the given

link is calculated by normalizing over the sub-carrier’s bandwidth wn.

rnmbs,m = log2
(
1 + ϱnmbs,m

)
−

√
V n
mbs,m

bmbs,m

Q−1(ϵmbs,m)

ln 2
, (3.2)

where, bmbs,m is the adopted blocklength. The DEP for the link between MBS and

the IoT devicem is approximated as ϵmbs,m ≈ Q
(
f(ϱmin

mbs,m, r
m
min, bmbs,m)

)
, ∀ m ∈M,

where ϱmin
mbs,m is the minimum received SNR for all subcarriers assigned for the link

between MBS and the IoT device m and rmmin is the minimum achievable rate. The

overall DEP for this hop is given by ϵmbs,m,∀m ∈ M. The channel dispersion for

the given link is computed by V n
mbs,m = 1 − (1 + ϱnmbs,m)

−2. The sum-rate for the

given IoT device is computed as rmbs,m =
∑
n∈N

ψnmbs,mr
n
mbs,m, ∀ m ∈M.

Let hnuh,uu be the channel between cooperative ABS uh and serving ABS uu,

which is given by hnuh,uu = gnuh,uud
−αmbs
uh,uu

, where gnuh,uu represents the channel gain.

The SINR is calculated as ϱnuh,uu =
ψn
uh,uu

pnuh,uu
∥hnuh,uu

∥2

δ2+Inuh,uu
at the uthu serving ABS. The

interference power caused by the IoT devices in the set M is defined as Inuh,uu =∑
m∈M

pnmbs,mh
n
mbs,uu

, where hnmbs,uu
represents the channel between MBS and ABS uu.

It is calculated as hnmbs,uu
= gnmbs,uu

× l−αmbs
mbs,uu

, where the terms gnmbs,uu
and l−αmbs

mbs,uu

represent the gain and the pathloss between MBS and the given ABS, respectively.

The achievable rate for the given link is calculated as [69]

rnuh,uu = log2
(
1 + ϱnuh,uu

)
−

√
V n
uh,uu

buh,uu

Q−1(ϵuh,uu)

ln 2
, (3.3)

where, buh,uu is the allocated blocklength. ϵuh,uu ≈ Q(f(ϱmin
uh,uu

, ruumin, buh,uu)), ∀ uu ∈

Uu is the DEP for the link between cooperative ABS uh and serving ABS uu,

where ϱmin
uh,uu

is the minimum received SNR across all allocated sub-carriers for the

link between cooperative ABS uh and serving ABS uu and ruumin is the minimum
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achievable rate. The total DEP for the link between MBS and the serving ABS uu

is given by ϵ2 ≈ ϵmbs,uh + (1 − ϵmbs,uh).ϵuh,uu ,∀uu ∈ Uu. The channel dispersion

at the given link is calculated as V n
uh,uu

=
(
1− (1 + ϱnuh,uu)

−2
)
. The sum-rate

for the link between cooperative ABS uh and serving ABS uu is calculated as

ruh,uu =
∑
n∈N

ψnuh,uur
n
uh,uu

, ∀ uu ∈ Uu.

Let huu,[uk] is the channel between serving ABS uu and the IoT device uk. It

is defined as huu,[uk] =
gk
uu,[uk]

pl
avg
uu,[uk]

, where gkuu,[uk] is the channel gain for the given

sub-carrier, and plavguu,[uk]
is the average pathloss. The SINR computed on the uthk

IoT device is expressed as ϱkuu,[uk] =
φk
uu,[uk]

pk
uu,[uk]

∥huu,[uk]∥2

δ2+Ik
uu,[uk]

, where pkuu,[uk] is the

transmitted power. The interference power caused by other IoT devices is given

by Ikuu,[uk] =
∑

uk∈Uk,uk ̸=uk
gkuu,[uk]p

k
uu,[uk]

. The rate for the IoT device uk is computed

by normalizing over the given sub-carrier’s bandwidth wk.

rkuu,uk = ω[uk] log2(1 + ϱkuu,[uk])−

√√√√V k
uu,[uk]

blk,[uk]

Q−1(ϵuu,[uk])

ln 2
, (3.4)

where, ω[uk] represents the priority of the given IoT device, and blk,[uk]
denotes

the blocklength allocated to lth community served by kth sub-carrier. The channel

dispersion for the given link is computed as V k
uu,[uk]

= (1−(1+ϱkuu,[uk])
−2). The sum-

rate for the given IoT device is computed as ruu,[uk] =
∑
k∈K

φkuu,[uk]r
k
uu,uk

, ∀ uk ∈ Uk.

The energy efficiency of the system is defined as the ratio of the achievable rate of

the system to the total power consumed by the system, including flexible transmit

power and circuit power (CP) [96].

3.2.2 Decoding Error Probability for the NOMA Phase

Considering NOMA |S|= 2 in Fig. 3.2, where two IoT devices namely: u
(1)
k and u

(2)
k

are allocated to the sub-carrier k within the same community within the coverage

of serving ABS uu. The device u
(1)
k is considered as a stronger user and device

u
(2)
k is considered weaker user. IoT device u

(1)
k as a stronger device can perform

SIC and first decodes the message of IoT device u
(2)
k while treating its message as

interference. If this is successful, then it decodes its message. Therefore, the total
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 MBS

uh uu

OMA

uk
(2)ε

uu

uhmbs,
ε

uuuh,

ε

uk
(1)ε

uu

b uuuh,

Figure 3.2: Systematic Diagram depicting Blocklength and DEPs for the Considered

Scenario Setting.

DEP of u
(1)
k depends on the DEP of previous transmission links and successful SIC

at u
(1)
k . Whereas the IoT device u

(2)
k directly decodes its signal while treating the

message of IoT device u
(1)
k as noise. Therefore, the total DEP of u

(2)
k only depends

on the DEP of previous transmission phases. The DEP for detecting the data of

IoT device u
(2)
k at IoT device u

(1)
k is approximated as

ϵuu
[u(1)k ,u

(2)
k ]
≈ Q

(
f

(
ϱmin

[u(1)k ,u
(2)
k ]
, r

[uk]
min, blk,[uk]

))
, (3.5)

where r
[uk]
min is the minimum achievable rate of the IoT device. The mini-

mum received SINR across all the allocated sub-carriers for the IoT device

u
(1)
k related to detecting data of IoT device u

(2)
k is computed as ϱmin

[u(1)k ,u
(2)
k ]

=

min

(
ϱ1
[u(1)k ,u

(2)
k ]
, ϱ2
[u(1)k ,u

(2)
k ]
, ..., ϱ

|Uk|

[u(1)k ,u
(2)
k ]

)
, where SIC is applied at the receiver end

and ϱk
[u(1)k ,u

(2)
k ]

=

pk

uu,

[
u
(2)
k

]
∥∥∥∥∥∥huu,

[
u
(1)
k

]
∥∥∥∥∥∥
2

pk
uu,

[
u
(1)
k

]×
∥∥∥∥∥∥huu,

[
u
(1)
k

]
∥∥∥∥∥∥
2
+δ2

,∀k ∈ K. The DEP for detecting the data

of IoT device u
(1)
k at the IoT device u

(1)
k is given by

ϵuu
[u(1)k ,u

(1)
k ]
≈ Q

(
f

(
ϱmin

[u(1)k ,u
(1)
k ]
, r
[uk]
min , blk,[uk]

))
, (3.6)

where, ϱmin

[u(1)k ,u
(1)
k ]

is the minimum received SNR across all allocated sub-carrier for

the IoT device u
(1)
k related to detecting the data of IoT device u

(1)
k , and ϱk

[u(1)k ,u
(1)
k ]

=
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pk

uu,

[
u
(1)
k

]
∥∥∥∥∥∥huu,

[
u
(1)
k

]
∥∥∥∥∥∥
2

δ2
. Similarly, the DEP for detecting the data of IoT device u

(2)
k at

IoT device u
(2)
k is given by

ϵuu
[u(2)k ,u

(2)
k ]
≈ Q

(
f

(
ϱmin

[u(2)k ,u
(2)
k ]
, r
[uk]
min , blk,[uk]

))
, (3.7)

where, ϱmin

[u(2)k ,u
(2)
k ]

is the minimum received SNR across all allocated sub-carriers for

the IoT device u
(2)
k related to detecting the data of IoT device u

(2)
k , and ϱk

[u(2)k ,u
(2)
k ]

=

pk

uu,

[
u
(2)
k

]
∥∥∥∥∥∥huu,

[
u
(2)
k

]
∥∥∥∥∥∥
2

pk
uu,

[
u
(1)
k

]×
∥∥∥∥∥∥huu,

[
u
(2)
k

]
∥∥∥∥∥∥
2
+δ2

after employing successful SIC. The overall DEPs for both

IoT devices from MBS are given by

ϵuu
[u(1)k ]

= ϵ2 + (1− ϵ2).
(
ϵuu
[u(1)k ,u

(2)
k ]

+

(
1− ϵuu

[u(1)k ,u
(2)
k ]

)
.ϵuu
[u(1)k ,u

(1)
k ]

)
, (3.8)

ϵuu
[u(2)k ]

= ϵ2 + (1− ϵ2).ϵuu[u(2)k ,u
(2)
k ]
. (3.9)

3.3 Problem Formulation

This work aims to optimize the sub-carrier allocation, blocklength allocation,

and PA to maximize the minimum feasible rates while ensuring that the delay,

reliability, and QoS constraints are met. The proposed optimization problem does

not consider the transmission link between the MBS and IoT device m ∈ M,

as it only focuses on maximizing the minimum rate across each hop involved

in transmitting information from the MBS to the IoT device uk ∈ Uk 7.

The notation b = {bmbs,uh , bmbs,m, buh,uu , blk,[uk]
,∀uh ∈ Uh,∀m ∈ M,∀uu ∈

7Thereby,

b0︷ ︸︸ ︷∑
m∈M

bmbs,m,

b1︷ ︸︸ ︷∑
uh∈Uh

bmbs,uh
,

b2︷ ︸︸ ︷∑
uu∈Uu

buh,uu
,

b3︷ ︸︸ ︷∑
l∈L

blk,[uk]
, where the notations b0, b1, b2, and

b3 denote the sum of the blocklengths of IoT devices belonging to set M, cooperative ABSs in

set Uh, serving ABSs in set Uu, and IoT devices in community l assigned to sub-carrier set K,

respectively. It is important to note that all devices within the same community share the same

blocklength.
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Uu,∀l ∈ L} represent the variable of blocklengths, ϕ = {ψnmbs,j, φ
k
uu,[uk]

, ∀j ∈

{(|Uh|+|M|) × N} ∀k ∈ {|(Uu) |×K}} represent the variable of sub-carrier as-

sociations, and the variable for allocated transmit powers is notated as p =

{P n
mbs,m, p

n
mbs,uh

, pnmbs,m, p
n
uh,uu

, pkuu,[uk],∀m ∈ M ∀uk ∈ Uk ∀uh ∈ Uh ∀uu ∈ Uu}. The

term Dmax denotes the maximum tolerable delay, Tblock represents the duration of

the time required to convey one unit of blocklength, ∝kuu,uk is an association-based

binary variable, where ∝kuu,uk= 1 means that the IoT device uk is served by the

ABS uu on the given sub-carrier k, otherwise 0. The optimization problem can be

formulated as follows.

max
p,b,ϕ

min
(
rnmbs,uh

, rnuh,uu , r
k
uu,uk

)
subject to

C1 :
∑
j∈M

ψnmbs,j ≤ 1,
∑
j∈Uh

ψnmbs,j ≤ 1,
∑
k∈K

φkuu,[uk] ≤ |S|,

C2 : max
(
bmbs,m,

(
bmbs,uh + buh,uu + blk,[uk]

))
≤Mmax,

where,Mmax = (Dmax/Tblock) ,

and
(
bmbs,m, bmbs,uh , buh,uu , blk,[uk]

)
∈ Z+,

C3 : (x
2
uh

+ y2uh) ≤ r2max,

C4 : 0 < pmbs,m ≤ pmin
mbs,m, 0 < pmbs,uh ≤ pmin

mbs,uh
,

0 < puh,uu ≤ pmin
uh,uu

,,∀m ∈M,∀uh ∈ Uh,∀uu ∈ Uu,

C5 : 0 ≤
∑
uk∈Uk

∝kuu,uk p
k
uu,[uk]

≤ p̄k,∀k ∈ K,

C6 :
(
ϵmbs,m, ϵmbs,uh , ϵuh,uu , ϵ

uu
uk

)
≤ ϵthreshold,

C7 : rmbs,m ≥ rmmin, rmbs,uh ≥ ruhmin, ruh,uu ≥ ruumin,

ruu,[uk] ≥ r
[uk]
min,∀m ∈M,∀uh ∈ Uh ∀uu ∈ Uu ∀uk ∈ Uk,

C8 :
(gkuu,[uk]pkuu,[uk]

Ikuu,[uk]

)
≥ h̄, ∀uk ∈ Uk∀k ∈ K,

C9 : ∥huu,[i]∥
2 ≥ ∥huu,[uk]∥

2, i, uk ∈ Uk.

(3.10)

The constraints in (3.10) are defined as follows.
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• Constraint C1 assures the maximum number of devices multiplexed on each

sub-channel.

• Constraint C2 restricts the blocklength and satisfies the end-to-end transmis-

sion delay for a single communication link.

• Constraint C3 ensures that given cooperative ABSs lie within the radius of the

MBS, denoted as rmax.

• The constraint C4 encompasses the minimum power requirements for various

entities. Specifically, it represents the minimum power required by the IoT

device m to meet the minimum rate requirement rmmin, the minimum power

required by cooperative ABS uh to meet the minimum rate requirement ruhmin,

and the minimum power required for the link between cooperative ABS uh

and serving ABS uu to meet the minimum rate requirement ruumin.

• Constraint C5 ensures that the power allocated to all the IoT devices within

the same community should not be more than the total power p̄k allocated to

the given sub-carrier for that community.

• The restriction C6 guarantees that the DEP of each user (i.e., IoT devices and

ABSs) should not violate their threshold ϵthreshold.

• Constraint C7 ensures that each device’s achievable rate should be more than

or equal to its minimum rate requirement.

• Constraint C8 − C9 ensures that the SIC decoding is done successfully.

The objective function is a mixed-integer non-linear programming problem;

therefore, it cannot be solved in polynomial time [94]. It results from the non-

convexity of the non-convex normal approximation and the combinatorial constraint

C2. The problem (3.10) can be solved by combining a penalty technique with

monotonic optimization at a high computational cost [97]. Alternatively, it can

be resolved by leveraging the problem’s decomposition property. Therefore, a
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common relaxation strategy is used to divide the maximization problem into two

sub-problems [95]. The proposed solution is clearly explained in the following

section.

3.4 Proposed Solution

3.4.1 Sub-carrier Allocation and Selection of Cooperative

Aerial Base Stations within the Coverage of Macro

Base Station

To obtain the subsequent iterative solution of sub-carrier allocation, i.e., (ϕ)i+1, the

problem (3.10) is solved with fixed values of
(
b(i),p(i)

)
.

max
ϕ

min (rnmbs,uh
, rnuh,uu , r

k
uu,uk

)

subject to C1 − C3 and C6 − C7.
(3.11)

3.4.1.1 Sub-carrier Allocation using Stable Matching

A traditional way to compute the best solution to the above sub-problem is to

exhaustively search for every potential combination of sub-carriers and IoT devices.

However, it is time-consuming and computationally expensive. Alternatively, it can

be reformulated using matching theory with a low-complexity algorithm. The basic

concepts are given below.

Definition 1 (Two Way Matching): The problem (3.11) is a two-way matching

problem because a maximum of one IoT device should be allocated to sub-carrier

from its priority order based on their rate8 values. For better understanding,

preference order introduced for given IoT device m with any two sub-carriers (in its

preference order) j, j′ ∈ (|Uh|+|M|) × N, j, j′ > |Uh|, the two matchings τ and τ
′

8This rate is calculated based on initial PA, which is to be optimized later to achieve better

rates.
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are defined as

(j, τ) ≻m (j
′
, τ

′
)⇔ rnmbs,m(τ) > rnmbs,m(τ

′
), (3.12)

which implies that if mth IoT device achieves a higher rate than sub-carrier j′, then

device m prioritizes sub-carrier j in τ against sub-carrier j′ in τ
′
. The terms swap

matching and swap blocking pair are introduced and defined below to demonstrate

the impact of externalities (peer effects).

Definition 2 (Swap Matching): Considering two IoT devices (m,m′) and two

sub-carriers (j, j′), the current matching state is denoted as τ(m) = j and τ(m′) = j′.

A swap matching will be performed between (m,m′) and (j, j′) if m prefers sub-

carrier j′ over its current match and sub-carrier j′ prefers m over its current match.

The swap matching operation is defined as follows:

τm
′

m =
{
τ\{(m, j), (m′, j′)}∪{(m, j′), (m′, j)}

}
, (3.13)

where τm
′

m represents the updated matching state, indicating that IoT device m is

now matched with sub-carrier j′, and vice versa. Therefore, the swap-blocking pair

is defined as follows.

Definition 3 (Swap Blocking Pair): From the given matching state τ(m) = j,

τ(m′) = j′, an IoT pair of devices (m,m′) is a swap pair if there exists

1. ∀ q ∈ {m,m′, j, j′}, τm′
m (q) ≥q τ(q),

2. ∃ q ∈ {m,m′, j, j′}, τm′
m (q) ≻q τ(q),

where q shows the involved player (either sub-carrier or IoT device). It means that

swap matching τm
′

m is approved, and both IoT devices (m,m′) can switch their

sub-carriers in τ by following these two conditions: 1) rate should not reduce

after swapping and 2) the rate of the at least one IoT device increases. The

process continues until the swap-blocking pair does not exist, resulting in a globally

converged solution. However, if the optimal matching is {(m, j), (m′, j′)} and the

current matching is {(m, j′), (m′, j)}, then the solution may not converge and stick

to a local optimum. The same procedure is adopted for the sub-carrier allocation

to each cooperative ABS.
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3.4.1.2 Selection of the Best Cooperative Aerial Base Stations

The selection of the best cooperative ABS from the set Uh (to relay the information

to neighbor serving ABS) is based on the maximum achievable rate, which is given

by

uopth = arg max
uh∈Uh

rmbs,uh . (3.14)

3.4.2 Sub-carrier Allocation and Selection of IoT Devices

within the Coverage of Serving Aerial Base Station

Dynamic programming is utilized to compute the sub-carrier allocation and selection

of IoT devices under multiplexing constraint C1, power constraint C5, and SIC

constraints C8 − C9. The idea is to recursively compute three auxiliary vectors to

keep the record of the current value of power, optimal solution, and backtracking,

i.e., V,Q and T, respectively. Assuming p̄k as fixed power budget for the sub-

carrier k, if s ∈ S = {1, 2, ..., |S|}, uk ∈ Uk = {1, 2, ..., |Uk|} and f ≥ uk, the term

V [s, uk, f ] is computed as an optimal power value after satisfying the constraints as

mentioned earlier. The recurrence relation is given by V [s, uk, f ] = max(va, vb, vc),

where (va, vb, vc) represents PAs. These are defined as follows.

va = V [s, uk, f ]

vb =


V [s− 1, uk − 1, uk − 1] + Ā− B̄,

if 0 < popt < Q[s− 1, uk − 1, uk − 1]

0, otherwise

vc = V [s, uk − 1, f ].

(3.15)

The variables Ā =
∑
f∈uk

rkuu,f (p
opt) and B̄ =

∑
f∈uk

rkuu,f (0). The pseudocode for

computing the optimal power popt within the range of [0, p̄k] is provided in Algorithm

(3.1). The algorithm first assigns the variables s and t with the values of πk(uk)

and πk(uk − 1), respectively. Then it checks whether uk = 1 or if the value of ω[s]

is greater than or equal to ω[t]. If either condition is true, it returns the value of
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Algorithm 3.1 Computing Optimal Power on [0, p̄k]

1: Input: uk, πk, (g
k
uu,[uk]

)uk∈Uk
, p̄k

2: Output: popt

3: s← πk (uk), t← πk (uk − 1)

4: if uk = 1 or ω[s] ≥ ω[t] then

5: return p̄k

6: else

7: return max
(
0,min (

ω[t]g
k
uu,[s]

−ω[s]g
k
uu,[t]

ω[s]−ω[t]
, p̄k)

)
8: end if

p̄k as the optimal power (line 4). Otherwise, the optimal power is computed using

the formula specified in line 7. Algorithm (3.1) performs a fixed number of basic

operations; therefore, its complexity is O(1).

3.4.3 Joint Blocklength and Power Optimization

For clarity, the sub-problem (3.11) can be explicitly articulated by sub-problems

(3.16) and (3.17), which implies that the PA and blocklength allocation are done

solely. To obtain the next best value of b(i+1), we first solve the sub-problem (3.16)

with fixed values of
(
ϕ(i+1),p(i)

)
.

max
b

min (rnmbs,uh
, rnuh,uu , r

k
uu,uk

)

subject to C1 − C9.
(3.16)

Concerning blocklength constraint C2, the bisection-based optimal value of block-

length is computed to minimize the complexity of the proposed solution. We assume

bklb = 1, bkub = Mmax − B, where B is a fixed value calculated as B = b1 + b2.

Subsequently, the optimal value of blocklength blk,[uk]
is computed, defined as

bopt = arg max
{⌊bkmid⌋,⌈b

k
mid⌉}

(
rkuu,uk

)
, which is upper bounded by a threshold value ξ̄. We

set the initial value of bkmid =
(bkub+b

k
lb)

2
and then update the value of bkub = bkmid

if rkuu,uk (bopt) |bopt=bkmid
> ξ̄. Otherwise, it is considered as bklb = bkmid. This
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process continues until bkub − bklb > σ̄ is achieved. The complexity of these steps

is O(log2(Mmax/σ̄)), where σ̄ = 0.01. Subsequent analysis reveals that the worst-

case computing complexity of the exhaustive search method is O(K3), which is

significantly higher compared to our proposed steps.

Afterwards, the problem (3.17) is solved with the fixed values of
(
ϕ(i+1), b(i+1)

)
to determine the next best value of p(i+1).

max
p

min (rnmbs,uh
, rnuh,uu , r

k
uu,uk

)

subject to C1 − C9.
(3.17)

To solve the above-mentioned sub-problem, the minimum power required by the

given device ϑ on the given sub-carrier n is computed to achieve its minimum rate

requirement under constraints C4 and C7, where ϑ ∈ {m,uh} like that in [98]. We

define the overall minimum power required to the given device as pmin
mbs,ϑ =

∑
n∈N

pmin,n
mbs,ϑ.

We compute the minimum power on sub-carrier n as below.

pmin,n
mbs,ϑ =

(
µϑ −

1

gnmbs,ϑ

)+

,∀ n ∈ N , ϑ ∈ {m,uh}, (3.18)

∑
n∈{n∈N |pmin,n

mbs,ϑ>0}
wn log2

(
µϑg

n
mbs,ϑ

)
= rϑmin, ϑ ∈ {m,uh}, (3.19)

where (x)+ represents max(x, 0), µ and µϑ are the intermediate variables. The

optimal powers for the device, such as IoT device m and cooperative AB uh on a

given sub-carrier, can be computed using the water-filling algorithm [98].

pnmbs,ϑ = pmin,n
mbs,ϑ +

(
µ− 1

gnmbs,ϑ

− pmin,n
mbs,ϑ

)+

, ϑ ∈ {m,uh}, (3.20)

∑
ϑ∈↓

∑
n∈{n∈N |pnmbs,ϑ>p

min,n
mbs,ϑ}

(
µ− 1

gnmbs,ϑ

− pmin,n
mbs,ϑ

)
= Pmbs −

∑
ϑ∈↓

∑
n∈N

pmin,n
mbs,ϑ, (3.21)

where, Pmbs is the sum of all the powers allocated to the given sub-carriers defined as∑
n∈N

ψnmbs,ϑp
n
mbs,ϑ = Pmbs, where ψ

n
mbs,ϑ is a binary indicator for sub-carrier allocation.

So ψnmbs,ϑ = 1 if the given sub-carrier is allocated to the device ϑ; otherwise ψnmbs,ϑ =

0. This work guarantees adherence to the minimum QoS criteria, ensuring that

45



Chapter 3. Energy Aware Optimal Resource Allocation Using Greedy Approaches

every communication link satisfies its specific minimum rate requirement. Therefore,

the received SINR of the IoT device m from the MBS should be greater than or

equivalent to its minimum SINR threshold ϱmin,n
mbs,m for the following link. It is given

by (
ψnmbs,mp

n
mbs,mh

n
mbs,m

δ2 + pnuh,uuh
n
uh,m

)
≥ ϱmin,n

mbs,m. (3.22)

Hence, the total achievable rate of the IoT devicem computed across all the allocated

sub-carriers should be greater than or equal to rmmin. The maximum power allocated

to the cooperative to the serving ABS communication link must also be restricted to

achieve the minimum QoS criteria for the IoT devices within the coverage of MBS.

Hence, the power allocated to the link between the cooperative to the serving ABS

should be subject to the following constraints.

pmin,n
uh,uu

≤ pnuh,uu ≤

(
pnmbs,mh

n
mbs,m

ϱmin,n
mbs,mh

n
uh,m

− δ2

hnuh,m

)
≤ pmax

uu , (3.23)

The allocated power for the link between the given cooperative and serving ABS

should also meet its minimum QoS requirement, as given below. ψnmbs,mp
min,n
uh,uu

gnuh,uud
−αmbs
uh,uu

δ2 +
∑
m∈M

ψnmbs,mp
n
mbs,mh

n
uu,m

 ≥ ϱmin,n
uh,uu

, (3.24)

pmin,n
uh,uu

≤

(
δ2 +

∑
m∈M

ψnmbs,mp
n
mbs,mh

n
uu,m

)
ϱmin,n
uh,uu

gnuh,uud
−αmbs
uh,uu

, (3.25)

where ϱn,optuh,uu
can be computed by setting pnuh,uu = pn,optuh,uu

.

pn,optuh,uu
=



0, if pmin,n
uh,uu

> pnuh,uu

pnuh,uu , if pmin,n
uh,uu

< pnuh,uu

pmax
uu , if pmax

uu ∈ [pmin,n
uh,uu

, pnuh,uu ]

min
(
pnuh,uu ,max

(
pmax
uu , pmin,n

uh,uu

))
,Otherwise.

(3.26)

Thus, the total achievable rate for the link between cooperative ABS and serving

ABS computed across all the allocated sub-carriers should be greater than or equal
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to ruumin. Basically, the idea is to divide the minimum rate requirement for each

device across all the allocated sub-carriers to ensure that the total power allocated

across all the allocated sub-carriers to the given device should result in a rate better

than the minimum rate requirement for that device 9. The overall minimum power

required for the following link is given below.

pmin
uh,uu

=
∑
n∈N

pmin,n
uh,uu

. (3.27)

Relevant to the constraint C5, we distribute the power to the given number of

IoT devices within the serving ABS allocated to sub-carrier k within the same

community. It is worth mentioning that the sum of the powers allocated to each IoT

device within a community assigned to a sub-carrier k must be less than or equal to

p̄k. It is given by

p̄k ≥
∑
uk∈Uk

∝kuu,uk p
k
uu,[uk]

,∀ k ∈ K and ∀ uu ∈ Uu. (3.28)

The feasible set containing the feasible powers for these devices is given as

R =

{
P̄ :

∑
k∈K

p̄k ≤ pmax
uu and 0 ≤ p̄k ≤ pk,∀ k ∈ K

}
. (3.29)

The set R can also be expressed as Cartesian’s product of all the user’s feasible

sets, and pk represents the power limit to the given sub-carrier. We determine the

optimal value on line 4 employing a for loop for each IoT device. If the constraint

C5 is satisfied, then pkuu,uk[uk] = popt. Otherwise, the algorithm backtracks and finds

the highest index i such that pkuu,uk[i] ≥ popt.

In this way, the optimal vector containing the power values for each IoT device

can be retrieved, i.e., pkuu,[i+1], ..., p
k
uu,[uk]

← popt in line 10. Consequently, the

complexity of the algorithm is O(S2). However, if the optimal power is calculated

for D different power budgets, the complexity will be O(S2 +DS).

9We consider the sub-carrier allocated to the device with the lowest SINR to calculate the

minimum power requirement per sub-carrier for that device.
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Algorithm 3.2 Power Distribution on given IoT Devices

1: Input: (Uk)uk∈Uk
, (Uk)uk∈Uk

, (gkuu,[uk])uk∈Uk
, p̄k

2: Output: pkuu,[1], p
k
uu,[2]

, ..., pkuu,[Uk]

3: for uk ∈ |Uk| do

4: popt ← OptimalPower(uk, uk, wc, g
k
uu,[uk]

, p̄k)

5: i← (uk − 1)

6: while i ≥ 1 pkuu,[i] < popt do

7: popt ← OptimalPower(i, uk, wc, g
k
uu,[uk]

, p̄k)

8: i← (i− 1)

9: end while

10: pkuu,[i+1], ..., p
k
uu,[uk]

← popt

11: end for

3.4.4 Bisection-based Low-Complexity Adaption Algorithm

Algorithm (3.3) is designed to perform sub-carrier allocation utilizing matching

theory with fixed values of power and blocklength in line 5. The best cooperative

ABSs are selected based on the derived results in line 6. A bisection search is

conducted within the specified range to determine the optimal blocklengths for the

subsequent iteration, as indicated in line 7. Subsequently, the available power is

distributed using water-filling while adhering to the power constraints C4 and C5 to

meet the minimum QoS requirements, as stated in line 9.

In line 10, the power is allocated to the links between cooperative ABSs and

serving ABSs using equations (3.22) to (3.26). The power distribution is achieved

by optimizing the power budget on each sub-carrier through dynamic and geometric

programming. This process involves a two-tier projected gradient descent-based

algorithm that distributes the power among the devices. The algorithm iterates for

each sub-carrier to optimize the power budget until the condition ∥P̄ ′ − P̄ ∥22≤ λ is

satisfied, as described in lines 11-19. The term λ corresponds to the error tolerance

for the termination condition, whose value is chosen from reference paper [36].
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Algorithm 3.3 Proposed BLCA Algorithm

1: Input: σ,(Uk)uk∈Uk
,(N )n∈N ,(K)k∈K,λ, |S|, pmax

uu , recursive index i = 1, highest

amount of iterations possible tmax, and randomly choose feasible values pc, ϕ
(0),

b(0) and p(0).

2: Output: p∗, b∗,ϕ∗

3: Suppose the starting point P̄ = 0

4: while Convergence or i > tmax do

5: Solve (3.11) for fixed
(
b(i),p(i)

)
to find (ϕ)i+1

6: Selection of best cooperative ABSs (3.14)

7: Solve (3.16) using bisection-based algorithmic steps

8: Solve (3.17) for fixed
(
ϕ(i+1), b(i+1)

)
to find p(i+1)

9: Power distribution using water-filling (3.18− 3.21)

10: PA for cooperative to the serving ABS communication link (3.22− 3.26)

11: Power distribution to IoT devices on the sub-carrier k within the same

community (3.28− 3.29)

12: while ∥P̄ ′ − P̄ ∥22≤ λ do

13: P̄ ′ ← P̄ saving previous power vector

14: ∆ = ∆
∑

uk∈Uk

rkuu,uk(p̄
k) and update step size σ

15: P̄ = Projection of P̄ + (σ∆ on R)

16: end while

17: for k ∈ K do

18: Allocate power to the IoT device uk by algorithm (3.2)

19: end for

20: Compute rates using (3.1), (3.3) and (3.4)

21: Set i : i+ 1

22: end while
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The search direction in line 14 is calculated using the exact gradient method,

and the step size is determined by backtracking using the exact line search method.

In line 16, the projection of P̄ onto the feasible set R is calculated, as presented

in [99]. The power distribution among the devices within a sub-carrier is performed

from line 17 to line 19, while the rates are computed in line 20. The algorithm stops

when the difference between iterations is small enough, indicating convergence or

the algorithm repeats until the maximum number of iterations i > tmax are reached.

The proposed algorithm converges within O(log2(1/λ)) iterations.

3.5 Results and Discussion

A comparative analysis is conducted to evaluate the BLCA (blocklength-constrained

algorithm). Three PA use cases are also analyzed: minimum PA, where each IoT

device satisfies its minimum rate, and dynamic PA, where low-priority IoT devices

first fulfill their minimum rate requirements compared to high-priority IoT devices.

The remaining power is then optimally distributed among the high-priority IoT

devices.

3.5.1 Simulations Setup

We configured the MBS to transmit at a power of 40 watts with a coverage radius

of 500 meters [100]. Within this setup, we deployed a total ofM = 5 IoT devices at

a minimum distance of 30 meters, Uh = 5 cooperative ABSs at a minimum distance

of 350 meters, and Uu = 2 serving ABSs at a minimum distance of 80 meters [101].

The serving ABSs are filled with Iq = 9 and Iq = 11 IoT devices, respectively.

The circular coverage area of the serving ABSs has a radius of 50 meters, and

their maximum transmit power is limited to 1 watt [102]. The cooperative ABS

is approximately 100 meters from the serving ABS. We consider a maximum of

C = 20 sub-carriers. Unless specifically stated otherwise, we assume the following

parameter values: the threshold for DEP is ϵthreshold = 10−5, the path loss exponent
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Parameters Values

Altitude of the serving ABS and cooperative ABS

(zuu , zuh) [10]

(50, 50) Meters

Coefficients for LoS and N-LoS (ηLoS, ηN−LoS) (1dB, 20dB)

Density and height of building (a, b) [103] (12, 0.135)

Error tolerance λ 10−4

Minimum rate requirement for each device rmin [102] 2 bits/s/Hz

Number of cooperative and serving ABSs (Uh,Uu) [101] (5, 2)

Number of IoT devices within the coverage of

cooperative ABS p and q (Ip, Iq)

(9,11)

Number of sub-carriers and IoT devices within the

coverage of MBS (C,M) [94]

(20, 5)

Noise power density [10] -174 dBm/Hz

Power of the serving ABS pmax
uu [102] 1 Watt

Power of the MBS Pmbs [100] 40 Watts

Pathloss exponent (αmbs) [95] 2

Radius of the MBS rmax [10] 500 Meters

Time needed to convey one unit of blocklength Tblock [10] 0.01 Millisecond

Transmission delay Dmax [10] 1 Millisecond

Table 3.1: Simulation Parameters.

is αmbs = 2, the speed of light is c = 3× 108 meters per second, the circuit power is

10 watts, and the noise power density is δ2 = −174 dBm/Hz [10]. The altitude of

both serving and cooperative ABSs is set to zuu = 50 meters and zuh = 50 meters,

respectively [95]. The attenuation for the LoS and N-LoS connection is assumed to

be 1 dB and 20 dB, respectively. The channel parameters, including the density and

height of the building, are a = 12 and b = 0.135, respectively [103]. The minimum

rate requirement for each link is set as rmin = rmmin = ruhmin = ruumin = r
[uk]
min = 2
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Figure 3.3: Sum-rate versus Mmax with Optimal Blocklength and Power Allocation,

where b1 = k × b2, b2 = 3, Mmax = k × 10, and k = {3, 4, ..., 9}.

bits/s/Hz [102]. We use the radio propagation channel model provided in [101]. For

simplicity, we assume that the sum of the blocklengths of each communication link

within each hop is equal to the blocklength of individual links. We compare our

proposed scheme, BLCA (Blocklength constrained algorithm), under two multiple

access techniques, i.e., OMA and NOMA, which are named BLCA-OMA and BLCA-

NOMA, respectively. Additionally, this work investigates them under two distinct

scenarios of FBL, i.e., fixed-blocklength and random-blocklength approaches. In

the fixed blocklength approach, we select a fixed value of bopt ∈ [1, 2, ..., (Mmax −

B)]. In the random blocklength approach, we randomly select a value of bopt ∈

[1, 2, ..., (Mmax −B)]. The simulation parameters are summarized in Table 3.1.

3.5.2 Performance Comparison

In Fig. 3.3, the impact of heterogeneous delay on the time required to transmit

a unit blocklength on the system sum-rate is analyzed. This work compares the
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Figure 3.4: Sum-rate versus Mmax using Matching-based Sub-carrier Allocation and

Optimal Blocklength Allocation with different Power Allocation Strategies, where

b1 = k × b2, b2 = 3, Mmax = k × 10, and k = {1, 2, ..., 10}.

proposed BLCA algorithm with two baseline resource allocation schemes, namely

random matching [20] and WSA matching [21]. The achievable rate is observed to

increase with an increase inMmax because it depends on the maximum transmission

delay. In addition, the proposed scheme demonstrates superior performance over

the benchmark schemes, and the performance gap between the proposed scheme

and the WSA matching and random matching schemes widens as the value of Mmax

increases. The enhanced throughput in the proposed scheme can be attributed to the

significant improvement in both channel qualities and achievable SNR per sub-carrier

achieved through stable matching. In contrast, the random matching approach [20]

involves devices randomly selecting sub-carriers, which can result in sub-carrier

assignments with inferior channel qualities. Similarly, the WSA scheme [21] may

assign sub-carriers to devices with lower channel qualities. The effectiveness of the

proposed scheme is evaluated using two different multiplexing techniques: OMA
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Sub-carrier Allocation against LDDP [19], where Mmax = 100.

with (|S| = 1) and NOMA with (|S| = 2). The superior performance of the NOMA

scheme can be attributed to its fundamental principles, such as superposition coding

at the transmitter (multiplexing two IoT devices per sub-carrier) and SIC at the

receiver (demultiplexing based on power levels). The simulation results demonstrate

that the system sum-rate is relatively low when Mmax is set to 30. However, it

gradually increases to 169.59 bits/s/Hz, representing a 3.21% improvement (for

BLCA-NOMA), after which it remains relatively constant.

Fig. 3.4 illustrates the trade-off between heterogeneous delays over blocklength

and different PA techniques for OMA and NOMA systems. The following

observations can be made: 1) the system throughput increases with an increase in

the value of Mmax for all PA approaches, and 2) the proposed scheme outperforms

both other PA techniques (OMA and NOMA with minimum power and dynamic

PA) for both OMA and NOMA systems. The effectiveness of the NOMA system

is significantly higher than that of the OMA system. This increase in effectiveness
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Figure 3.6: Complexity of the BLCA Scheme and LDDP [19] with Stable Matching-

based Sub-carrier Allocation, Considering the basic Number of Operations, where

Mmax = 100.

can be attributed to superposition coding at the transmitting node and SIC at the

receiving node in conventional NOMA. The results indicate that the sum-rate for

NOMA with optimal power is 4.58% higher than that for legacy OMA with optimal

power and 2.68% higher than that for NOMA with dynamic PA.

The impact of an increasing number of IoT devices on the sum-rate is analyzed

in Fig. 3.5. The proposed BLCA algorithm is compared with the near-optimal

high-complexity benchmark scheme, LDDP [19]. Both schemes are simulated by

varying the number of IoT devices in the vicinity of each serving ABS from 5 to 30

due to high computational run-time. As expected, the following observations are

made: throughput increases with increased IoT devices, and greater participation of

devices further elevates system throughput. The throughput gain of NOMA (with

two and three IoT devices multiplexed per sub-carrier) is greater than that of OMA

(with one IoT device per sub-carrier). There is a constant gap between NOMA
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Figure 3.7: Sum-rate versus the ratio of Blocklengths with Stable Matching based

Sub-carrier Allocation and Optimal Power Allocation, where b1 = k × b2, b2 = 3,

and Mmax = 100.

with |S|=2 and |S|=3. Furthermore, the performance gain of BLCA and LDDP is

almost the same for any number of IoT devices, indicating that the proposed BLCA

algorithm is near-optimal. It should be noted that the proposed BLCA algorithm

runs in seconds on a computer with specifications such as a core i5, 8th generation

for I ≤ 30. In contrast, LDDP [19] requires 1600 times more operations for I=20

and |S|=2 (as shown in Fig. 3.6), validating its low computational cost10 toward an

optimal solution.

Fig. 3.7 shows the impact of the ratio of blocklengths, k = (b1/b2), on the

achievable system sum-rate. The results demonstrate that an increased blocklength

ratio corresponds to a higher system throughput. This effect is because the degree of

freedom to transmit data packets depends mainly on the blocklength. Consequently,

10We compute the computational complexity of each algorithm by assessing the number of basic

operations (including additions, multiplications, and comparisons) performed.
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Figure 3.8: Sum-rate versus Altitudes using Stable Matching based Sub-carrier

Allocation and Optimal Power Allocation, where b1 = 13, b2 = 13, zuu = 50,

zuh = {50, 100, ..., 250} and Mmax = 100.

greater blocklength values lead to enhanced system sum rates. The proposed BLCA

algorithm employing an optimal blocklength consistently yields better results than

scenarios involving fixed or random blocklengths, emphasizing the importance of

efficient blocklength allocation to maximize performance. When combining the

advantages of the NOMA scheme with optimal blocklength, it emerges as the optimal

choice, surpassing NOMA with fixed or random blocklengths. Hence, the NOMA

scheme outperforms OMA due to its efficient utilization of spectrum resources,

thereby accommodating multiple devices within resource constraints. It is important

to note that NOMA with optimal blocklength surpasses OMA with an optimal

blocklength. Similarly, NOMA with fixed or random blocklengths outperforms their

respective OMA counterparts in their corresponding scenarios. The results validate

that the throughput of BLCA-NOMA with optimal blocklength is 3.63% higher than

that of BLCA-OMA with optimal blocklength, in all scenarios.
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Figure 3.9: Spectral Efficiency versus Circuit Power using Stable Matching based

Sub-carrier Allocation and Optimal Power Allocation, where b1 = 13, b2 = 13, and

Mmax = 100.

Fig. 3.8 investigates the impact of ratio of altitudes, i.e., H = (zuh/zuu)

on the achievable system sum-rate. Our assumption posits that the cooperative

ABSs are strategically positioned at higher altitudes than the serving ABSs. In

particular, the achievable rate of the proposed scheme decreases as the altitude

increases due to higher channel fading and increased LoS interference. Regardless

of the considered blocklength scenario, whether optimal, random, or fixed, the

NOMA scheme consistently outperforms OMA. In all cases, the NOMA curve

maintains a higher position than the OMA curve. In addition, the scheme

employing an optimal blocklength consistently yields better results when compared

to scenarios involving fixed or random blocklengths. NOMA with fixed or random

blocklengths outperforms their respective OMA counterparts within their respective

scenarios. The simulation results solidify that the sum-rate for BLCA-NOMA,

employing optimal blocklength allocation, exceeds that of BLCA-OMA with optimal
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blocklength allocation by a margin of 9.09%. Notably, the curve for NOMA with a

fixed blocklength allocation is lower than that for NOMA with a random blocklength

allocation. This difference arises from choosing a higher random blocklength value

than the fixed blocklength. Monte-Carlo simulations are also conducted to compute

the best possible solution. To validate our plotted curves, this work includes an

upper-bound solution curve (computed using the exhaustive search method, also

known as the brute force method). This curve demonstrates the proximity of our

proposed solution to the optimal one.

Fig. 3.9 evaluates the current energy efficiency values of the proposed solution

by analyzing the total energy efficiency of the system against CP. In our evaluation,

this work emphasizes the distinction between the BLCA scheme under two distinct

multiple-access techniques: OMA and NOMA. This work evaluates the efficacy of

our proposed algorithm in varying blocklength scenarios. The simulation and results

illustrate that increasing the value of CP results in a decrease in the total energy

efficiency of the system. It is important to note that NOMA with an optimal

blocklength surpasses OMA with an optimal blocklength within their respective

scenarios. Similarly, NOMA with fixed or random blocklengths outperforms

their respective OMA counterparts in their corresponding scenarios. Comparative

analysis shows that the proposed BLCA-NOMA achieves a 5.25% (resp. BLCA-

OMA 3.39%) improvement in energy efficiency for NOMA with random blocklength

and a 1.12% improvement for NOMA with fixed blocklength (resp. OMA 0.87%).

The fundamental reason behind this minimal increase is selecting a fixed blocklength

value closer to its optimal value.

3.6 Summary

This study explores a mixed-integer non-linear programming problem for optimizing

joint resource allocation in an integrated aerial-terrestrial wireless network to

maximize the system sum-rate. A novel BLCA (blocklength constrained) algorithm
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is proposed, which utilizes alternating optimization and a two-step projected

gradient descent-based strategy to optimize the resource allocation policy while

considering delay, reliability, and QoS constraints through dynamic and geometric

programming. This work compares the proposed algorithm with benchmark

algorithms that avoid allocating the worst sub-carrier to transmitting devices using

various techniques. The study concludes that NOMA with optimal blocklength

surpasses OMA with optimal blocklength, and NOMA with fixed or random

blocklengths outperforms their respective OMA counterparts in their corresponding

scenarios. Simulation results demonstrate the efficacy of the proposed algorithm,

which requires 1600 times less computational cost than baseline approaches. The

next chapter investigates the correlation between IoT devices using the concept of

digital twins. For simplicity, only the OMA system is analyzed.
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Chapter 4

Task Dependency Aware Optimal

Resource Allocation Using

One-climb Policy

1

1This complete chapter was also presented in IEEE Transactions on Green Communications

and Networking 2024, Print ISSN: 2473-2400, Online ISSN: 2473-2400, Digital Object Identifier:

10.1109/TGCN.2024.3425442.
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4.1 Introduction

The rapid evolution of IoTs has facilitated the cost-effective connection of billions of

wireless devices, introducing a new era of connectivity [104]. However, the limited

battery life and computational power of IoT devices have emerged as a significant

barrier, particularly in supporting computationally intensive applications within

future-generation wireless networks. These limitations are primarily attributed to

concerns about production costs and stringent size restrictions [105]. MEC has

attracted significant attention to address these challenges and support wireless

devices with low computing power [106].

Task offloading is MEC’s most significant feature, enabling resource-constrained

IoT devices to offload their computation-intensive tasks to high-performance edge

servers, either binary or partially [107]. Each task is processed locally or offloaded

to the edge server in binary offloading. In contrast, each task is partitioned and

executed locally and on the edge server. Our research focuses primarily on binary

offloading within the context of FBL, which is frequently used in IoT systems to

process tasks that cannot be partitioned. This approach is instrumental in satisfying

the increasing quality of service demands in edge networks, particularly in the

context of resource allocation.

Tasks executed by different IoT devices are usually correlated. This correlation

significantly influences decisions related to offloading and resource allocation.

Identifying an optimal solution is challenging, as mentioned in the literature review.

This chapter examines task dependency among devices for the first time within

the context of DT-aided edge computing. We formalize a mixed-integer non-linear

programming problem in a DT-enabled aerial-terrestrial network [66]. The proposed

algorithm jointly optimizes transmit power, CPU frequency, and the task offloading

policy, subject to delay and QoS constraints, thus minimizing the energy-time cost

of the devices. The model is also extended from a simplified two-device framework

to multiple devices, incorporating intermediate tasks.

The remainder of this chapter is organized as follows. Section 4.2 describes the
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Figure 4.1: DT-enabled Integrated Aerial-Terrestrial Edge Network denoting a Two-

device Framework with an Intermediate Task Node mt

proposed system model. Section 4.3 provides the problem formulation. Section 4.4

explains the proposed solution, later extended to a multi-device scenario in Section

4.5. The simulation results are given in Section 4.6. Finally, this chapter is concluded

in Section 4.7.

4.2 System Model

First, the architecture of DT in an edge network is presented. Next, the architecture

of MEC based on URLLC is explained. Afterwards, the task offloading model is

introduced. Finally, the DT, communication, computational, latency, and energy

consumption models are briefly explained.

4.2.1 Architecture of Digital Twin Edge Network

Fig. 4.1 illustrates a DT-enabled edge computing network including two layers.

The physical layer includes IoT devices and ABSs acting as access points (capable

of working as edge servers, i.e., executing back-haul processing to mitigate the

constraints of limited storage and computing resources). The devices are connected
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via URLLC links to ensure stringent high-reliability and low-latency communication

requirements in mission-critical applications. Each access point is assumed to

be integrated with a multi-processor architecture with a fixed service rate. This

configuration allows every access point to process a predetermined number of tasks

simultaneously. The DT layer is a virtual replica of the physical layer, facilitating

real-time monitoring of the physical system’s operations.

4.2.2 Architecture of Mobile Edge Computing based on

Ultra-reliable low-latency communication

This architecture considers a set of ABSs denoted by a ∈ A = {a1, a2, ..., |A|}.

Each ABS serves a distinct non-overlapping region within its coverage area. It is

assumed that each ABS has completed its deployment and networking planning

beforehand. Within these coverage areas, This work considers different numbers of

IoT devices represented by the set k ∈ K = {k1, k2, ..., kj, ..., |K|}. A binary variable

is introduced to represent the connection between the device and ABS, i.e.,

πk,a =


1, if there is an association between the (a)-th

ABS and the (k)-th IoT device

0, otherwise

(4.1)

For easy understanding, the number of IoT devices within each serving ABS is

limited to two, i.e., IoT devices k1 and k2, exhibiting limited mobility. Later,

we extend the proposed model to accommodate multi-user scenarios in Section

(4.5). The sequential order of tasks to be performed by each respective device

is denoted by the set l ∈ L = {l0, l1, l2, ..., |L|, |L|+1} and the set m ∈ M =

{m0,m1,m2, ..., |M|, |M|+1}. Two auxiliary nodes, l0 and m0, are allocated as the

starting points for the tasks assigned to each IoT device. Meanwhile, additional two

nodes |L|+1 and |M|+1 are designated as termination points for the tasks assigned

to each IoT device k1 and k2, respectively. This chapter assumes a framework of

task dependency among IoT devices, where the intermediary task t ∈ {t1, t2, ..., |M|}
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of IoT device k2 requires the output from the final task of device k1. All tasks must

be started and completed on the same device, e.g., the IoT device must execute two

additional tasks locally. However, the remaining |L + M| tasks may be processed

locally or remotely.

It is reasonable to consider that the network under consideration is resource-

constrained with limited bandwidth (W). The bandwidth is equally distributed

among orthogonal sub-carriers, represented by the set s ∈ S = {s1, s2, ..., |S|}, where

W =
∑
s∈S

ws. A binary variable for sub-carrier allocation is defined, where ϕs,k = 1

indicates successful sub-carrier allocation; otherwise, ϕs,k = 0. In numerous power-

efficient IoT structures, the rate required to offload the task is often minimal and

generally necessitates only a narrow bandwidth; e.g., a narrow-band IoT system

utilizing a 10 MHz bandwidth can accommodate over fifty IoT devices through

orthogonal transmission. Consequently, every device is assigned an orthogonal sub-

carrier, having equal bandwidth. Our assumption to offload the task to an edge

server only once minimizes the probability of offloading all the data simultaneously.

4.2.3 Task Offloading Model in Edge Network

This work represent the task i originating from the kth device as a tuple Ti,k =

(δi,k, αi,k, βi,k), where i ∈ (l,m) and k ∈ (k1, k2). In this context, δi,k specifies the

computing resource requirement (cycles) necessary to execute the task, αi,k indicates

the input size of the task, and βi,k represents the output size of the task (bits).

The computing resource requirement for auxiliary nodes corresponding to each IoT

device is zero. Additionally for the given device k1, the input of task l is equal to

the output of the preceding task l − 1, i.e., αl,k1 = βl−1,k1 . For IoT device k2, it is

assumed that

αm,k2 =

βm−1,k2 + β|L|,k1 if m = t,

βm−1,k2 Otherwise.

(4.2)

It is important to mention that the initial node is characterized by an input value

of αi,k = 0, and the final node by an output value of βi,k = 0,∀k ∈ K. To determine
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the feasibility of task offloading, This chapter introduces a computational offloading

decision variable, where φi,k = 1 means task i is processed at the edge; otherwise,

φi,k = 0. Our analysis operates under non-causal channel information, implying that

the access point has full access to the CSI while downloading or offloading tasks.

These assumptions are critical in optimal offloading decisions.

4.2.4 Digital Twin Model

The DT of the ABS-assisted MEC within the URLLC edge network is articulated

as follows [69].

DT = {(K, K̃), (A, Ã)}. (4.3)

The replica of the physical system is defined as K̃ and Ã. The following equation

represents the DT for the kth device.

DTi,k =
(
f lo
i,k, f̂

lo
i,k

)
. (4.4)

The actual processing rate of the DT layer replicates the behavior of the physical IoT

device is denoted by f lo
i,k. Any deviation from the performance of the corresponding

physical device is given by f̂ lo
i,k [67]. The DT model for the ath ABS is articulated

as follows.

DTa =
(
f es
a , f̂

es
a

)
. (4.5)

The actual processing rate at which the physical ABS distributes the computing

power of the edge server is denoted by f es
a , and any deviation from the performance

of the corresponding physical device is indicated by f̂ es
a . It helps to minimize the

processing latency gap at the DT layer by facilitating the adjustment of computing

resource allocation. After gathering real-time data from the physical system, the

digital services within the DT layer perform visualization and analysis to streamline

and optimize decision-making, thereby enhancing system performance.
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4.2.5 Communication Model

When device k offloads its task i to the access point a, the SINR is determined

by the expression ϱes,si,k =
(
πk,aϕs,kφi,kp

s
i,k∥h

s
i,k∥

2

σ̄2+σi,k

)
, where psi,k denotes the transmission

power required for offloading task i by device k at sub-carrier s, σ̄2 represents

the spectral noise density, and σi,k indicates the interference power caused by

neighboring IoT devices. The wireless channel between the kth device and ath

ABS on the given sub-carrier is represented by hsi,k and can be modelled as

hsi,k =
√
gsi,kh̃

s
i,k, where h̃

s
i,k describes the small-scale fading with zero mean and

uniform variance and gsi,k = PLa,k+η
LoSρLoSa,k +ηN-LoSρN-LoS

a,k is the large-scale channel

co-efficient, where ρLoS and ρN-LoS are the additional loss for the LoS and N-LoS

respectively. The pathloss between the given ABS and the IoT device is calculated

by PLa,k = 10 log
(

4πfcda,k
c

)2
, where da,k is the Euclidean distance between the ABS

a and (a, k)-th IoT device, fc is the carrier frequency, and c is the speed of light.

The probability of LoS is computed by ρLoSa,k = 1

1+a exp
[
−b
(
arctan

(
ha
da,k

)
−v
)] at height

ha, and fixed environmental factors b and v. The probability of N-LoS is given by

ρN-LoS
a,k = 1− ρLoSa,k [24]. If the device k offloads the task i to the edge server, then the

uplink data rate is given by

res,si,k = ws log2
(
1 + ϱes,si,k

)
− ws

√
vsi,k
bi,k

Q−1(ϵi,k)

ln 2
,

where, i ∈ {l,m}, k ∈ {k1, k2}.

(4.6)

The bandwidth allocated to the given sub-carrier s is denoted by ws, the channel

dispersion is calculated using vsi,k = 1−
(
1 + ϱes,si,k

)−2
, and the blocklength is denoted

by the variable bi,k. The Gaussian Q-function is defined asQ(x) = 1
2π

∫∞
x

exp(− t2

2
) dt

[10]. The transmission time required to offload the task i from the device k to the

access point is expressed as ηes,si,k =
βi−1,k

res,si,k

,where i ∈ {l,m}, k ∈ {k1, k2}. Assuming

that task i for device k is downloaded from the access point, the signal-to-noise ratio

(SNR) is given by ϱdl,si,k =
(
πk,aϕs,kφi,kpa∥hsi,k∥

2

σ̄2+σi,k

)
, where pa denotes the transmission

power of the access point. The downlink data rate of task i for device k from the
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edge server is given by

rdl,si,k = ws log2

(
1 + ϱdl,si,k

)
− ws

√
vsi,k
bi,k

Q−1(ϵi,k)

ln 2
,

where, i ∈ {l,m}, k ∈ {k1, k2}.

(4.7)

The channel dispersion for this link is calculated by vsi,k = 1 − (1 + ϱdl,si,k )
−2, and

the time required for downlink transmission is calculated as ηdl,si,k =
βi−1,k

rdl,si,k

,where i ∈

{l,m}, k ∈ {k1, k2}.

4.2.6 Computational Model

4.2.6.1 Local Computing

The time required for the local computation of the task i on device k using the

actual processing rate is expressed as [69].

ηlo,si,k =
δi,k
f lo
i,k

, i ∈ {l,m}, k ∈ {k1, k2}. (4.8)

Assuming the deviation between the physical value and its DT representation is

predetermined [69], the latency gap for task i on device k is given by

∆ηlo,si,k =
δi,kf̂

lo
k

f lo
k

(
f lo
i,k − f̂ lo

i,k

) , i ∈ {l,m}, k ∈ {k1, k2}. (4.9)

Consequently, the total local computation time for task i on device k is computed

as

ηlc,si,k = ηlo,si,k +∆ηlo,si,k , i ∈ {l,m}, k ∈ {k1, k2}. (4.10)

4.2.6.2 Edge Computing

The anticipated execution time for task i on device k when processed at the edge

server is given by

η̃es,si,k =
δi,k
f es
i,k

, i ∈ {l,m}, k ∈ {k1, k2}, (4.11)
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where f es
i,k denotes the fixed frequency of the CPU at the edge server. The latency

gap between the real value and its DT is given by

∆ηes,si,k =
δi,kf̂

es
i,k

f es
i,k

(
f es
i,k − f̂ es

i,k

) , i ∈ {l,m}, k ∈ {k1, k2}. (4.12)

4.2.7 Latency Model

The end-to-end latency within the network is given by

ηtot,si,k = ηlc,si,k + ηes,si,k +

ηec,si,k︷ ︸︸ ︷
η̃es,si,k +∆ηes,si,k . (4.13)

4.2.8 Energy Consumption Model

The local EC required for the computing task i is calculated as follows [22].

ξlo,si,k = µ
(δi,k)

3(
ηlo,si,k

)2 ≈ µδi,k

(
f lo
i,k − f̂ lo

i,k

)2
,

where, i ∈ {l,m}, k ∈ {k1, k2},

(4.14)

where µ represents the switched capacitance coefficient of the IoT device [69]. Let

me define f(x) = σ2
(
2(

x
ws
) − 1

)
, we get using (4.6) as

psi,k =
1

∥hsi,k∥2
f

(
βi−1,k

ηes,si,k

)
, i ∈ {l,m}, k ∈ {k1, k2}. (4.15)

Equation (15) shows the transmit power depends on the channel conditions and

the data requirements. For example, an increase in the distance leads to a higher

pathloss; therefore, it requires more transmission power to offload tasks effectively

or to maintain a constant level of received signal power. The transmission energy

required to offload task i at the access point is computed as

ξes,si,k = psi,kη
es,s
i,k =

ηes,si,k

∥hsi,k∥2f
(
βi−1,k

ηes,si,k

)
where, i ∈ {l,m}, k ∈ {k1, k2}.

(4.16)

The total EC is computed as

ξtot,si,k = ξlo,si,k + ξes,si,k . (4.17)
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4.2.9 Task Dependency Use Cases

Task dependency can be one of the four cases.

• Case I: When both IoT devices k1 and k2 offload tasks |L| and t on edge,

i.e., φ|L|,k1 = 1 and φt,k2 = 1, then it is not necessary to offload the task or

download the task.

• Case II: When device k1 offloads task |L| on the edge and device k2 computes

task t locally, i.e., φ|L|,k1 = 1 and φt,k2 = 0, the resulting data from task |L|

are transmitted to the IoT device k2 after completion of its computational

processing at the edge node.

• Case III: When devices k2 offload task t at the edge and device k1 computes

task |L| locally, i.e., φt,k2 = 1 and φ|L|,k1 = 0, the IoT device k1 needs to offload

the results before calculating task t at the edge node.

• Case IV: When both IoT devices k1 and k2 execute tasks |L| and t locally,

that is, φ|L|,k1 = 0 and φt,k2 = 0, device k1 first offloads its output to the

edge, then the edge forwards it information to IoT device k2. Therefore, the

offloading transmission time is calculated as ηes,s|L|+1,k1
=

β|L|,k1
res,s
|L|+1,k1

, where res,s|L|+1,k1

denotes the corresponding offloading data rate. The offloading EC is given

by ξes,s|L|+1,k1
=
(
ps|L|+1,k1

× ηes,s|L|+1,k1

)
, where ps|L|+1,k1

represents the offloading

transmission power. The downlink transmission time is computed as ηdl,st′,k2
=

β|L|,k1
rdl,st,k2

, where rdl,st,k2
is the corresponding downlink rate.

4.3 Problem Formulation

The computational time required by IoT device k1 involves local processing time at

the edge server, which is given by

λtcomk1
=

|L|∑
l=1

[ local︷ ︸︸ ︷
(1− φl,k1)η

lo,s
l,k1

+

edge︷ ︸︸ ︷
φl,k1 η̃

es,s
l,k1

]
. (4.18)
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The total computational delay for IoT device k1 on offloading or downloading the

task to/from the edge server is given by

λtransk1
=

|L|+1∑
l=1

[ offloading︷ ︸︸ ︷
φl,k1(1− φl−1,k1)η

es,s
l,k1

+

downloading︷ ︸︸ ︷
(1− φl,k1)φl−1,k1η

dl,s
l,k1

]
. (4.19)

The transmission delay is zero when both tasks are processed on the same IoT

device, i.e., φl−1,k1 = φl,k1 . In contrast, a delay occurs during the offloading process if

φl−1,k1 = 0 and φl,k1 = 1. Similarly, there is a delay in downloading when φl−1,k1 = 1

and φl,k1 = 0. Therefore, the total execution time for the device k1 is calculated as

λtotk1 = λtcomk1
+ λtransk1

. The total EC of the IoT device k1 is the cumulative sum of

the EC of the tasks |L| and the EC required to offload the output of the final result

if executed locally. The total EC is expressed as follows.

ξk1 =

EC of the |L| tasks︷ ︸︸ ︷
|L|∑
l=1

[
(1− φl,k1)ξ

lo,s
l,k1

+ φl,k1(1− φl−1,k1)ξ
es,s
l,k1

]
+

EC while offloading final result, if φ|L|,k1=0︷ ︸︸ ︷
(1− φ|L|,k1)ξ

es,s
|L|+1,k1

.

(4.20)

It should be mentioned that the energy required to perform a given task, indicated

by ξes,sl,k1
occurs only when φl,k1 = 1 and φl−1,k1 = 0. Similarly, the total EC for the

IoT device k2 is calculated as follows.

ξk2 =

|M|∑
m=1

[
(1− φm,k2)ξ

lo,s
m,k2

+ φm,k2(1− φm−1,k2)ξ
es,s
m,k2

]
. (4.21)

For the execution time of the IoT device k2, the waiting time is to reach the final

output of the IoT device k1 to the IoT device k2. It consists of the total execution

time to compute |L| computational tasks from the IoT device k1 and the transmission

time to offload the final output of the device k1 (refer to Fig. 4.1) is given in (4.22).
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ξholdk1
=

Total amount of time for |L| tasks︷ ︸︸ ︷
|L|∑
l=1

[
(1− φl,k1)η

lo,s
l,k1

+ φl,k1(η̃
es,s
l,k1

+ ηes,sl,k1
) + φl−1,k1η

dl,s
l,k1
− φl−1,k1φl,k1(η

dl,s
l,k1

+ ηes,sl,k1
)
]

+

Transmission time of the output of |L| tasks by IoT device k1︷ ︸︸ ︷
(1− φ|L|,k1)η

es,s
|L|+1,k1

+ (1− φt,k2)η
dl,s
t′,k2

.

(4.22)

The time required for IoT device k2, until the output of the task |t|−1 is ready is

expressed in (4.23).

ξholdk2
=

Total execution time for first |t|−1 tasks︷ ︸︸ ︷
|t|−1∑
m=1

[
(1− φm,k2)η

lo,s
m,k2

+ φm,k2(η̃
es,s
m,k2

+ ηes,sm,k2
)

+ φm−1,k2η
dl,s
m,k2
− φm−1,k2φm,k2(η

dl,s
m,k2

+ ηes,sm,k2
)
]

+

Trans. time to offload task |t|, i.e., φt−1,k2
=0, φt,k2

=1

or to download output for |t|−1 task to device k2, i.e., φt−1,k2
=1, φt,k2

=0︷ ︸︸ ︷
φt,k2η

es,s
t,k2

+ φt−1,k2η
dl,s
t,k2
− φt−1,k2φt,k2(η

dl,s
t,k2

+ ηes,st,k2
)

(4.23)

Using (4.22) and (4.23), the total time required before the tth task of device k2

is ready to execute is given by ξhold = max{ξholdk1
, ξholdk2

}. The total execution time of

device k2 is formulated by adding ξhold and the time required to complete the tasks

from t to |M| is given in (4.24).

ξk2 = ξhold +

|M|∑
m=t

[
(1− φm,k2)η

lo,s
m,k2

+ φm,k2(η̃
es,s
m,k2

)
]

+

|M|+1∑
m=t+1

[
φm,k2η

es,s
m,k2

+ φm−1,k2η
dl,s
m,k2
− φm−1,k2φm,k2(η

dl,s
m,k2

+ ηes,sm,k2
)
]
.

(4.24)

This study aims to reduce the energy-time cost for URLLC edge networks. Such a

reduction is achieved by optimizing the offloading policy and allocating the resources,

e.g., transmission power, to offload the task and CPU frequency. Let 0 ≤ ∂ξk1 ≤ 1

72



4.3. Problem Formulation

and 0 ≤ ∂λk1 ≤ 1 be the weighting factors for the EC and the execution time of the

given device k1. In this context, if ∂ξk1 + ∂λk1 = 1 then ∂ξk1 = 1 − ∂λk1 . Following

real-time requirements, each IoT device can select weights (higher or lower) to fulfill

user-oriented needs. So, the energy-time cost for the device k1 is given by ζk1 =

∂ξk1ξk1 + ∂λk1λ
tot
k1
. Let 0 ≤ ∂ξk2 ≤ 1 and 0 ≤ ∂λk2 ≤ 1 be the weighting factors for the

EC and the execution time of the given device k2. In this context, if ∂ξk2+∂
λ
k2

= 1 then

∂ξk2 = 1−∂λk2 . The energy-time cost for the device k2 is given by ζk2 = ∂ξk2ξk2+∂
λ
k2
λtotk2 .

We assume φφφ
∆
={φi,k}∀i,k, p

∆
={pi,k}∀i,k, and fff

∆
={f lo

i,k}∀i,k as the set constraints of the

computational offloading decision, transmit power, and CPU frequency, respectively.

Therefore, the problem is formulated below.

(P1) min
φ,p,fφ,p,fφ,p,f

∑
k∈K

ζk

s.t. C1 : pi,k ≤ pmax,∀i, k,

C2 : f
lo
i,k ≤ f lo

max,∀i, k,

C3 : f
es
i,k ≤ f es

max,∀i, k,

C4 :
∑
k∈K

πk,a ≤ χmax,∀i, k,

C5 : λ
tot
k ≤ λmax

k ,∀k,

C6 : ξk ≤ ξmax
k , ∀k,

C7 : r
dl,s
i,k ≥ rmin,∀i, k,

C8 : φi,k ∈ (0, 1),∀i, k,

C9 : 0 ≤ i ≤ tk, 1 ≤ k ≤ 2.

(4.25)

The constraints are described as follows: constraint C1 denotes the upper limit

of transmission power, denoted by pmax. The restriction C2 limits the maximum

CPU frequency of the specified device to f lo
max. The restriction C3 restricts the

computational resources to f es
max. The constraint C4 restricts the number of IoT

devices that each edge server can serve at χmax. The constraint C5 sets the maximum

latency threshold at λmax
k . The constraint C6 specifies the maximum energy

threshold as ξmax
k . The constraint C7 establishes the minimum rate requirement,

represented as rmin. The constraint C8 characterizes the computational offloading

decision. The constraint C9 specifies the number of tasks executed on the kth device.
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4.4 Proposed Solution

The problem outlined is a MINLP combinatory optimization problem, which is

computationally intractable. It is due to the combinatorial nature of binary variable

φφφ and strong coupling with other continuous optimization variables, e.g., transmit

power and CPU frequency. This problem is challenging to solve directly using an

exhaustive search, especially in a dense network. It is important to note that there

is a direct relationship between CPU frequency and local computational time, as

indicated in (4.8). Similarly, there is a direct relationship between power and

transmission time while offloading, as indicated in (4.15). Therefore, optimizing

the problem concerning the power and CPU frequency is equivalent to optimizing it

over the time allocation variables, i.e., {ηlo,si,k }, {η
es,s
i,k }, respectively. This inequality

implies that if it is understandable how the time allocation variables can be

optimized, we can infer the optimal power and CPU frequency, simplifying the

original problem. By introducing a temporary variable ξt = max{ξholdk1
+ ξholdk2

}, we

equivalently transform (4.25) to

(P2) min
φφφ,{ηlo,si,k },{ηes,si,k },ξt

∑
k∈K

ζk

s.t. C1 − C9,

C10 : ξt ≥ ξholdk1
, ξt ≥ ξholdk2

,

C11 : η
lo,s
i,k ≥

δi,k

f lomax
,

C12 : η
es,s
i,k ≥

βi−1,k

res,si,k

,

where psi,k = pmax.

(4.26)

Constraint C10 establishes an upper bound for ξt. This equation implies that if

the optimal solution
{
φφφ∗, {ηlo,si,k }∗, {η

es,s
i,k }∗

}
of (4.26), then we can easily compute

power and CPU frequency in (4.25). The problem (4.26) is non-convex due to the

combinatorial nature of binary variable φφφ. For given φφφ, the remaining optimization

over
(
{ηlo,si,k }, {η

es,s
i,k }, ξt

)
becomes a convex problem.
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4.4.1 Optimal Transmit Power and Local CPU Frequency

for given φφφ

We solve the above problem for the given offloading decisions to compute a closed-

form solution of optimal transmit power and local CPU frequency. We approximate

the objective function as an unbounded optimization problem by utilizing the

concept of partial Lagrangian subject to constraint C10.

Lp

(
{ηlo,si,k }, {η

es,s
i,k }, ξt, µk1 , µk2

)
=

ζk1 + ζk2 + µk1(ξ
hold
k1
− ξt) + µk2(ξ

hold
k2
− ξt),

(4.27)

µk1 ≥ 0 and µk2 ≥ 0 are the Lagrange multipliers computed to satisfy all remaining

constraints. If µopt
k1

and µopt
k2

represent the optimal values for Lagrangian’s multiplier,

we derive the analytical expressions to compute the optimal power and CPU

frequencies for both IoT devices as in [22]. To analyze device k1, the derivative

of (4.27) with respect to ηlo,si,k1
is computed as follows.

L
′

p =
∂Lp

∂ηlo,si,k1

,∀i, k, (4.28)

∂Lp

∂ηlo,si,k1

= ∂λk1 −
2µ∂ξk1(δi,k1)

3

(ηlo,si,k1
)3

+ µk1 ,∀i, k, (4.29)

where the above derivation indicates that it is a non-decreasing function for ηlo,si,k1
∈[

δi,k1
f lomax

,+∞
)
. Hence, if the first derivative is positive, then we have f lo,opt

i,k1
= f lo

max.

Otherwise,

µk1 + ∂λk1 =
2µ∂ξk1(δi,k1)

3

(ηlo,si,k1
)3

,∀i, (4.30)

(ηlo,si,k1
)3 =

2µ∂ξk1(δi,k1)
3

µk1 + ∂λk1
, ∀i, (4.31)

ηlo,si,k1
= δi,k1

(
2µ∂ξk1

µk1 + ∂λk1

) 1
3

,∀i. (4.32)

f lo,opt
i,k1

⇒ δi,k1

ηlo,si,k1

=

(
µopt
k1

+ ∂λk1
2µ∂ξk1

) 1
3

,∀i. (4.33)
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The optimal CPU frequencies are equivalent to the frequencies computed as follows.

If (φi,k)∀i,k = 0 and i ∈ l then

f lo,opt
i,k1

= min

 3

√√√√µopt
k1

+ ∂λk1
2µ∂ξk1

, f lo
max

 , (4.34)

for IoT device k1. If i ∈ {1, 2, ..., |t|−1} then

f lo,opt
i,k2

= min

 3

√√√√ µopt
k2

2µ∂ξk2
, f lo

max

 , (4.35)

for IoT device k2. Otherwise, for i ∈ {|t|, ..., |M|}, we have

f lo,opt
i,k2

= min

(
3

√
∂λk2

2µ∂ξk2
, f lo

max

)
. (4.36)

Hence, we have the following observations:

• The optimal CPU frequencies for all similar tasks are identical. Specifically

for device k1, i ∈ {1, 2, ..., |L|}. For device k2, the relevant tasks are either

i ∈ {1, 2, ..., |t|−1} or i ∈ {|t|, ..., |M|}, regardless of channel conditions.

• When the value of ∂λk1 or µopt
k1

is higher, the optimal strategy shifts towards

accelerating local computations. Conversely, if ∂ξk1 is higher, the optimal

strategy shifts involve conserving energy with a lower optimal CPU frequency.

• The value of µopt
k2

does not affect the optimal CPU frequency for tasks where i ∈

{|t|, ..., |M|}. Otherwise, the optimal CPU frequency increases proportionally

with the value of the Lagrange multiplier.

The optimal power for IoT device k1 is calculated by computing the derivative

of the problem (4.27) with respect to ηes,si,k1
, when i ≤ |M|, which is given by

∂L
′
p

∂ηes,si,k1

= ∂λk1 + ∂ξk1

[
1

∥hsi,k1∥2
f

(
βi−1,k1

ηes,si,k1

)
+

ηes,si,k1

∥hsi,k1∥2
f ′

(
βi−1,k1

ηes,si,k1

)]
+ µk1 , (4.37)

∂L
′
p

∂ηes,si,k1

= ∂λk1 + ∂ξk1

[
σ̄2

∥hsi,k1∥2
2

(
βi−1,k1
wsη

es,s
i,k1

)(
1− βi−1,k1

wsη
es,s
i,k1

ln 2

)
− σ̄2

∥hsi,k1∥2

]
+ µk1 . (4.38)
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It is worth mentioning that the above function is an increasing function. To check

the curvature, the second order derivative for the problem (4.27) concerning ηes,si,k1
is

given by

∂L
′′
p

∂(ηes,si,k1
)2

= ∂ξk1

[
σ̄2

∥hsi,k1∥2
(βi−1,k1)

2

(ws)2(η
es,s
i,k1

)3
2

(
βi−1,k1
wsη

es,s
i,k1

)
(ln 2)2

]
+ µk1 > 0, (4.39)

which shows that the function is concave-up and non-decreasing for ηes,si,k1
∈[

βi−1,k1

res,si,k1

,+∞
)
, where where psi,k1 = pmax. Therefore, we have

∂L
′
p

∂ηes,si,k1

∈
[
βi−1,k1

res,si,k1

, ∂λk1 +

µk1

]
if

∂L
′
p

∂ηes,si,k1

> 0, when psi,k1 = pmax. The optimal transmit powers are equivalent

to the powers computed below. If (φi,k)∀i,k = 1, the optimal power for device k1 is

given in (4.40).

if i ∈ {1, ..., |L|}, ps,opti,k1
=



pmax, ∥hsi,k1∥
2 < υthresholdi,k1

,

σ̄2

∥hsi,k1∥
2

[
ψ1

ω(ψ1e−1)
− 1
]
,

ψ1 =

[
∥hsi,k1∥

2(∂λk1
+µ

opt
k1

)

∂ξk1
σ̄2

]
− 1, otherwise.

if i = |L|+1, ps,opti,k1
=



pmax, ∥hsi,k1∥
2 < υthresholdi,k1

,

σ̄2

∥hsi,k1∥
2

[
ψ2

ω(ψ2e−1)
− 1
]
,

ψ2 =

[
∥hsi,k1∥

2µ
opt
k1

∂ξk1
σ̄2

]
− 1, otherwise.

(4.40)

where ω(ψ1) and ω(ψ2) denote special inverse functions. These functions are defined

as the inverse of the given function y = f(x) = xex, where x is expressed as x = ω(y).

The computation of threshold values is performed as follows. For i ∈ {1, ..., |L|}:

υthresholdi,k1
=

σ̄2

pmax

[
ν1

ω(−ν1e−ν1)
− 1

]
, where ν1 = 1 +

(
∂λk1 + µopt

k1

∂ξk1pmax

)
. (4.41)

For i = |L|+1:

υthresholdi,k1
=

σ̄2

pmax

[ ν2
ω(−ν2e−ν2)

− 1
]
, where ν2 = 1 +

(
µopt
k1

∂ξk1pmax

)
. (4.42)

We compute the optimal power for the IoT device k2 in (4.43).
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

if i ∈ {1, ..., |t|}, ps,opti,k2
=



pmax, ∥hsi,k2∥
2 < υthresholdi,k2

,

ps,opti,k2
= σ̄2

∥hsi,k2∥
2

[
ψ3

ω(ψ3e−1)
− 1
]
,

ψ3 =

[
∥hsi,k2∥

2µ
opt
k2

∂ξk2
σ̄2

]
− 1, otherwise.

if i = {|t|+1, ..., |M|}, ps,opti,k2
=



pmax, ∥hsi,k2∥
2 < υthresholdi,k2

ps,opti,k2
= σ̄2

∥hsi,k2∥
2

[
ψ4

ω(ψ4e−1)
− 1
]
,

ψ4 =

[
∥hsi,k2∥

2∂λk2
∂ξk2

σ̄2

]
− 1, otherwise,

(4.43)

where ω(ψ3) and ω(ψ4) represent special functions, as defined above. We

compute the threshold values as follows. For i ∈ {1, ..., |t|}:

υthresholdi,k2
=

σ̄2

pmax

[
ν3

ω(−ν3e−ν3)
− 1

]
, where ν3 = 1 +

(
µopt
k2

∂ξk2pmax

)
. (4.44)

For i = {|t|+1, ..., |M|}:

υthresholdi,k2
=

σ̄2

pmax

[
ν4

ω(−ν4e−ν4)
− 1

]
, where ν4 = 1 +

(
∂λk2

∂ξk2pmax

)
. (4.45)

Hence, we have the following observations:

• The channel gain ∥hsi,k1∥
2 is inversely proportional to the optimal transmit

power when ∥hsi,k1∥
2 > υthresholdi,k1

.

• The transmission power has been set to the maximum power, i.e., ps,opti,k1
= pmax

when ∥hsi,k1∥
2 < υthresholdi,k1

.

• When the maximum transmit power pmax increases, it leads to a decrease in

the squared magnitude of the channel gain hsi,k1 , indicating that the device is

adapting to meet the conditions of a weaker channel.
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Algorithm 4.1 Bisection Method to Compute Optimal Power and Local Frequency

1: Input: φφφ, precision factor ϵ = 0.001.

2: Output: Optimal fff and ppp

3: Initialize ℘
′

ub ← ∂λk2 , ℘
′

lb ← 0

4: if
(
ξholdk1

− ξholdk2

)
|℘′=℘

′
lb
< 0 then

5: Set ℘′ = ℘
′

lb, µk1 = ℘′, µk2 = ∂λk2 − ℘
′

6: Compute fff using (4.33) and (4.36), and ppp using (4.40) and (4.43)

7: else

8: while
(
ξholdk1

− ξholdk2

)
< ϵ do

9: ℘′ =
(
℘

′

ub + ℘
′

lb

)
/2

10: Set µk1 = ℘′, µk2 = ∂λk2 − ℘
′

11: Compute fff using (4.33) and (4.36), and ppp using (4.40) and (4.43)

12: if
(
ξholdk1

− ξholdk2

)
< 0 then

13: Set ℘
′

ub ← ℘′

14: else

15: Set ℘
′

lb ← ℘′

16: end if

17: end while

18: end if

4.4.2 Bisection Method for given φφφ to Obtain Optimal

Power p and Frequency f

We can state that ξholdk1
≤ ξholdk2

and µopt
k2

hold at the optimum of (4.26). It

can be proved through contradiction. Assume that {ηlo,si,k , η̃
es,s
i,k } are the optimal

solutions with ξholdk1
> ξholdk2

. According to Karush Kuhn Tucker (KKT) conditions

µkopt1
(ξholdk1

− ξt) = 0, and µkopt2
(ξholdk2

− ξt) = 0. Given that µopt
k1

> 0 and µopt
k2

= 0,

it follows from Eq. (4.33) and (4.40) that the optimal CPU frequency f lo,opt
i,k1

and

ps,opti,k1
are finite. This implies that {(ηlo,si,k1

)∗, (η̃es,si,k1
)∗} are also finite for each task,

resulting in finite ξholdk1
. However, when µopt

k2
= 0, we will have the optimal value
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(ηlo,si,k2
)∗ ⇒ ∞, i.e., for i ∈ {1, 2, 3, .., |t|−1} from f lo,opt

i,k2
. Similarly, it follows from

Eq. (4.43) the optimal value (η̃es,si,k2
)∗ ⇒ ∞, i.e., for i ∈ {1, 2, 3, .., |t|}, resulting

in infinite ξholdk1
. This contradicts our initial assumption of ξholdk1

> ξholdk2
. Hence, we

have ξholdk1
≤ ξholdk2

, and max(ξholdk1
, ξholdk2

) = ξholdk2
. Therefore, the optimization problem

(4.28) is simplified as follows.

(P3) min
φ,p,fφ,p,fφ,p,f

∑
k∈K

ζk

s.t. C1 − C9

C13 : ξ
hold
k1
≤ ξholdk2

.

(4.46)

Similarly, the Lagrangian for the problem defined in Eq. (4.46) subject to constraint

C13 is given by

Lp2 (p, f , ℘′) = ζk1 + ζk2 + ℘′(ξholdk1
− ξholdk2

), (4.47)

whereas ℘′ ≥ 0 represents the Lagrange multiplier that satisfies all remaining

constraints. Various iterative solutions can be applied to solve Eq. (4.47), but

we apply the KKT conditions [22]. The details are omitted here. Algorithm (4.1)

presents the bisection search method to compute optimal power and frequency. This

algorithm accepts the matrix φφφ and a precision factor ϵ as input and produces

the optimal values of fff and ppp as outputs. In line 3, the upper and lower bounds

are initialized. Then, the constrained inequality C13 is checked, and the values

for Lagrange multipliers are updated at line 5. The initial values for frequency

and power are computed in line 6. The loop then iterates until the condition(
ξholdk1

− ξholdk2

)
< ϵ is satisfied, as outlined in lines 8-17. The value ℘

′
is updated

on line 9 during this iteration. Line 11 involves computing the optimal frequency

and power. Importantly, from lines 12 to 16, if the difference ξholdk1
and ξholdk2

< 0

results in a negative value, the algorithm updates the upper bound of the variable,

designated as ℘
′

ub. In contrast, the algorithm converges towards the lower bound

variable, ℘
′

lb. The overall complexity of the Algorithm (4.1) is O(L+M).
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Algorithm 4.2 Proposed BSSE Algorithm

1: Input: Maximum iterations (imax), Number of task of each device (tk)∀k∈{k1,k2}.

2: Output: Matrix φφφ

3: Set t← 0, ζk1 ←∞, and ζk2 ←∞

4: We initialize φφφ randomly either with the value 0 or 1

5: while Convergence or t < imax do

6: Set i← 0

7: while i < tk1 do

8: Set flag ← True

9: j ← 0

10: while j < tk2 do

11: if flag == False then

12: break

13: end if

14: φ
′ ← φφφ

15: Update (φφφ, i, j)← Swap φφφ[i, k1] and φφφ[j, k2]

16: Compute fff and ppp using Algorithm (4.1)

17: if
(
ζnewk1

+ ζnewk2

)
≤ (ζk1 + ζk2) then

18: Set ζk1 ← ζnewk1

19: Set ζk2 ← ζnewk2

20: flag ← False

21: else

22: φφφ← φ
′

23: end if

24: Set j ← j + 1

25: end while

26: Set i← i+ 1

27: end while

28: Set t← t+ 1

29: end while
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4.4.3 Optimize Offloading Decision φφφ using given p and f

The optimal offloading scheme adheres to the one climb policy [22], implying that

there will be at most one instance where φi,k = 1 and φi−1,k = 0. The proposed

algorithmic solution is given in Algorithm (4.2). Initially, we set the maximum

iteration count to zero and the energy-time cost for both IoT devices to infinity,

denoted as ζk1 = ζk2 = ∞ in line 3. Afterward, the proposed algorithm initiates

with a random offloading scheme and progressively refines it toward minimizing the

overall energy-time cost, as detailed in lines 5 to 29. The process includes swapping

φφφ[i, k1] and φφφ[j, k2] within the matrix φφφ and updating the tuple (φφφ, i, j) at lines 14

and 15. Line 16 invokes the bisection algorithm, which computes optimal frequency

and power using equations (4.33), (4.36), (4.40), and (4.43), respectively. The results

of the bisection search are then evaluated and compared with previously optimized

energy-time cost values, as shown in lines 17-23. If
(
ζnewk1

+ ζnewk2

)
≤ (ζk1 + ζk2) is

true, then ζk1 ← ζnewk1
and ζk2 ← ζnewk2

; otherwise, the matrix φφφ reverts to φ
′
. This

process iterates until the solution converges at optimized values.

4.4.4 Complexity Analysis

The first benchmark is the naive search algorithm corresponding to the complexity

of O
(
16L+M

)
, since it considers each possible case for both devices with L and

M tasks, i.e., 24 binary decisions. This algorithm becomes increasingly inefficient

with a more significant number of tasks, especially when |L|≈ 10 and |M|≈ 10.

To mitigate this, we effectively narrow the search space for both devices, that is,(
(L+1)L

2
+ 1
)(

(M+1)M
2

+ 1
)
. This includes the scenario in which the device cannot

offload data during execution. This approach yields an optimal offloading scheme

with a complexity of O
(
L2M2

)
. However, its efficiency diminishes for large values,

precisely when |L|> 100 and |M|> 100. Upon examining the pseudocode provided,

it becomes evident that the overall complexity of the BSSE algorithm is O (LM),

significantly lower than the benchmarks.
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Figure 4.2: Task Dependent Computational Model Incorporating Outputs from

Multiple Devices.

4.5 Multi-Device Scenario

In Fig. 4.2, we extend the proposed model to support multiple devices. In this

scenario, the inputs for an intermediate task t on IoT device k2 require the final

task outputs from all other |K|−1 devices. For example, for the IoT device k2, we

define αt,k2 = β|t|−1,k2 +
∑

k∈K,kj ̸=k2
βJkj ,kj , where Jkj denotes the sequential number

of tasks that must be executed on the device kj. The first terms on the right side

of the equation represent the output of the previous task |t|−1. Meanwhile, the

summation term adds the output of the final tasks of all other devices (excluding

k2), which are required for the intermediate task t. The waiting time for the output

of the Jkj -th task to reach the IoT device k2 is calculated in (4.48).

ξhold|kj | =

Total amount of time for Jkj task︷ ︸︸ ︷
Jkj∑
j=1

[
(1− φj,kj)η

lo,s
j,kj

+ φj,kj(η̃
es,s
j,kj

+ ηes,sj,kj
) + φj−1,kjη

dl,s
j,kj
− φj−1,kjφj,kj(η

dl,s
j,kj

+ ηes,sj,kj
)
]

+

Transmission time of the output of |J| tasks by IoT device kj︷ ︸︸ ︷(
1− φJkj ,kj

)
ηes,sJkj+1,kj

+ (1− φt,k2)
βJkj ,kj

rdl,st,k2

.

(4.48)

The waiting time needed before the joint task can be executed is determined

by the total waiting time ξhold = max{ξholdk1
, ξholdk2

, ..., ξhold|kj | , ..., ξ
hold
|K| }. Therefore, the
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problem (4.26) is reformulated as follows.

(P4) min
φφφ,{ηlo,si,kj

},{ηes,si,kj
},ξt

∑
k∈K

ζk

subject to

C1 − C9

C10 : ξt ≥ ξholdk1
, ξt ≥ ξholdk2

, . . . , ξt ≥ ξholdkj
, . . . , ξt ≥ ξhold|K| ,

C11 : η
lo,s
i,kj
≥

δi,kj

f lo
i,kj
− f̂ lo

i,kj

,

where f lo
i,kj

= f lo,max
i,kj

,

C12 : η
es,s
i,kj
≥
βi−1,kj

res,si,kj

,

where psi,kj = pmax.

(4.49)

We assume that the edge server is equipped with cr processor cores, where each core

is exclusively assigned to the execution of an individual task operating at a constant

frequency of f es
max. Therefore, if Jmax represents the upper limit on the number of

tasks that can be processed simultaneously on the edge server, the total count of

cores must be adequate to meet this requirement, for example, Jmax ≤ cr.

4.6 Simulation and Results

4.6.1 Simulations Parameters

Regarding communication considerations, the IoT devices are uniformly distributed

within the ABS coverage area, which includes a radius ranging from 10 to 30

meters. The computing requirements for the corresponding IoT devices are

represented by the values {δi,k1} = [65.5, 40.3, 96.6] (Mcycles) and {δi,k2} =

[70.8, 95.3, 86.4, 18.6, 158.6] (Mcycles). The total power budget for the MEC-enabled

ABS under consideration is set at (pa)a∈A = 1 W. The maximum transmit power of

each IoT device is capped at pmax = 200 mW. It is assumed that the input of the

fourth task at IoT device k2 depends on the final output of the task from the other
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Parameters Values

Blocklength value (bi,k)k∈{k1,K2} [10] 100

Computing workload for device k1 {δi,k1} [22] [65.5,40.3,96.6]

(Mcycles)

Computing workload for device k2 {δi,k2} [22] [70.8,95.3,86.4,

18.6,158.6]

(Mcycles)

Distances of the respective devices(dk1 , dk2) (15, 15) Meters

Deviation between real value of edge server speed f̂ es
i,k

[22]

2 %

Edge server speed f es
max [22] 1010 Cycles/s

Error probability ϵi,k [10] 10−5

Intermediate task t [22] 4

Maximum delay requirement λmax
k [69] 2 Seconds

Maximum EC requirement ξmax
k [69] 1 Joule

Minimum data rate requirement rmin [69] 2 Bits/s/Hz

Maximum IoT devices served by each edge server χmax

[69]

6

Noise power (for simplicity) σ2 [22] 10−10 W

Output data size for device k1 {αi,k1} [22] [1500,1000,1600,

1000, 0] Kbytes

Output data size for device k2 {αi,k2} [22] [2000,1500,1000,

[1400,1000],1500,

1000, 0] Kbytes

Peak computational frequency of device f lo
max [69] 108 Cycles/s

Peak transmit power of each IoT device pmax 200 mW

Tasks for device (k1 and k2) (L,M) [22] (3, 5)

Table 4.1: Simulation Parameters.
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IoT devices. Assuming f es
i,k > f lo

max, the maximum computational frequency for each

IoT device and the processing speed of each edge server are established at f lo
max = 108

Cycles/s and f es
max = 1010 Cycles/s, respectively. The FBL is set at 100, and the

computing efficiency parameter for each device is defined as µ = 10−26 [22]. The

noise spectral density is specified as σ2 = 10−10 Watts to compare the proposed

scheme with a benchmark. For further analysis, it can be assumed that −174

dBm/Hz. The proportion of the anticipated processing rate is a pre-configured value,

and its selection is based on established computing models and standard practices

in wireless networking [66]. The URLLC decoding error probability is defined as

ϵi,k = 10−5. The maximum EC is limited to ξmax
k = 0.5 Joule. The experimental

scenario is simulated using a single ABS A = 1 along with multiple IoT devices

K = {1, 2} unless explicitly stated otherwise. The analytical assessment considers a

maximum latency of 1 millisecond. The minimum time required to transmit a unit

blocklength is 0.01 milliseconds, as indicated in [10]. The altitude of the serving ABs

is fixed at 50 meters. The pathloss models used are detailed in [66]. The details of

the simulation parameters are provided in Table 4.1.

4.6.2 Performance Comparison

In Fig. 4.3, we study the correlation between devices. Specifically, we analyze the

trade-off between total execution time and energy for each IoT device by varying the

∂λk2 . For given ∂λk1 , an increase in ∂λk2 results in increased EC while simultaneously

resulting reducing the total execution time. This trade-off is also observable for IoT

device k1. The trade-off curve for IoT device k1 converges to a critical point at

∂λk1 = 0.4. This convergence indicates that beyond this value, the optimal execution

time and energy of IoT device k1 remains constant despite increases in ∂λk2 . The

underlying rationale behind this phenomenon can be attributed to the fact that

with an increase in ∂λk1 , the device k1 operates in a dual capacity, i.e., assisting IoT

device k2 while concurrently minimizing its processing delay.

In Fig. 4.4, we illustrate the correlation between the devices and analyze the
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Figure 4.3: The Trade-off between the Total Execution Time and Energy for each

IoT Device when ∂λk2 varies, where dk1 = dk2 = 15 Meters.

proposed scenario in depth. Specifically, the effect of the intermediate task t on the

computational delay is explored. We observe that the waiting time for device k1

increases with an increase in t when ∂λk1 is kept small, i.e., ∂λk1 = 0.05 or 0.3. In

contrast, the waiting time for device k2 decreases. This is because device k1 needs

to complete all three tasks to meet the finish time for the first t tasks of device

k2, especially for smaller values of t, i.e., when t = 1 or 2. Meanwhile, device k2

only needs to slow down its computations to get the final output from device k1.

Generally, this results in larger λtotk1 and smaller λtotk2 with increasing t. When ∂λk1 is

further increased, i.e., ∂λk1 = 0.5, computations for both devices become independent

and are optimized separately, instead of minimizing its computational delay to meet

the stringent requirements of t task at device k2. Therefore, there is no change in

the computational delay for both devices when t increases from 1 to 5.

Recall that in IoT device k, the weight are related by the formula ∂ξk = 1 − ∂λk .

The system’s energy-time cost objective value, varying with ∂λk2 is analyzed in Fig.
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Figure 4.4: Impact of Intermediate Task t on the Computational Delay, when

(L,M, t) = (3, 5, t).

4.5. We employ two benchmarks against our proposed scheme to ensure a fair

comparison. Our proposed BSSE algorithm is a modified version of the bisection

algorithm, as referenced in [22]. It follows the same steps as defined in [22],

except for line 3 in Algorithm (4.2), which is used to set the offloading factor to a

random offloading scheme, and then update it to minimize the total energy-time cost

objective. As anticipated, an increase in ∂λk2 leads to a higher energy-time cost of the

system. Compared to the baseline algorithm in [22], our proposed BSSE algorithm is

more efficient in terms of the energy-time cost of the system. The solutions obtained

from the benchmark algorithm and those generated by the proposed BSSE algorithm

have a significant difference. Furthermore, both the benchmark and the proposed

algorithms satisfy the one-climb policy, i.e., (0 followed by 1) can appear only once.

This finding underscores the potential of the proposed BSSE algorithm as a highly

advantageous alternative to the benchmark algorithms, particularly in identifying

the optimal offloading scheme in the counterparts.
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Figure 4.5: Energy-time Cost of Benchmark and Proposed Algorithms, when A = 2,

K = 2 and dk1 = dk2 = 15 Meters.

In Fig. 4.6, we illustrate the impact of the increasing value of dk1 on the overall

energy-time cost of the system, where the distance of IoT device k2 is fixed at

dk2 = 10 meters. The values of {δi,k1} and {δi,k2} are uniformly distributed between

10 and 200 Mcycles. The average performance of twenty independent iterations

has been computed to plot this figure. It can be seen that the overall energy-time

cost value increases with the distance of IoT device k2 for all four schemes. As

mentioned in Section 4.2.9, this increase is attributed to the system’s reliance on

local computing. In this case, the IoT device k1 needs to offload the output of the

final task to the edge server, forwarding this information to IoT device k2, resulting

in a higher energy-time cost. Numerically, the energy-time cost of the proposed

BSSE is slightly higher than the brute-force algorithm, though the difference is not

substantial. Moreover, the effectiveness of the proposed BSSE algorithm surpasses

that of both bisection algorithm [22] and Gibbs sampling algorithm [22], i.e., around

89.39% to 138.96% lower and around 33.61% to 45.28% lower, respectively. This
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Figure 4.6: Overall Energy-time Cost versus Value of d1, when d2 = 10 Meters.

highlights the benefits of employing a strategy that optimizes resource allocation

and offloading decisions for both IoT devices.

In Fig. 4.7, we further study the impact of different case studies (task

dependency models) on system performance, considering various topological call

graphs (|L|, |M |, |t|). Each IoT device is limited to a distance of 10 meters, where

pk1 = pk2 = 0.2 W, ∂λk1 = 0, and ∂λk2 = 0.5. We initially examined scenarios

that involve three and four tasks on each device, with task four on device k2

requiring the final output from device k1. Subsequently, we varied the number

of tasks and the position of the intermediate node to observe how this inter-device

dependency influences the overall energy-time cost of the network at the optimal

configuration. It is observed that the proposed BSSE algorithm achieves a lower

computational cost than the bisection algorithm and performs comparably to the

brute-force algorithm. The effectiveness of the proposed algorithm can also be

seen from its stable increase in the energy-time cost value. Specifically, when we

extend the call graph, the brute-force algorithm shows an exponential increase in the
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Figure 4.7: Energy-time Cost for Increasing value of (|L|, |M |, |t|) in Three

Algorithms.

complexity growth. In contrast, the bisection algorithm solves it in polynomial time

but with a higher energy-time cost of the system. However, the BSSE algorithm

maintains lower fluctuations and stable increases. For example, with the call graph

(|L|, |M|, |t|) = (3, 5, 4), the optimal solution computed by the bisection algorithm

involves 4095 calls, resulting in φl,k1 = {0 1 1} and φm,k2 = {1 1 0 1 1} with an

energy-time cost of ζk1 + ζk2 = 0.13. In contrast, the proposed BSSE algorithm

requires only five calls to the bisection algorithm to find a near-optimal solution,

with φl,k1 = {1 0 1} and φm,k2 = {0 0 1 1 1}, resulting in an energy-time cost of

ζk1 + ζk2 = 0.28. Hence, the proposed algorithm is less computationally intensive

and achieves a 41.67% lower energy-time cost objective value than the benchmark

bisection algorithm [22].

In Fig. 4.8, we extend the analysis of the overall energy-time cost of the

proposed task dependency model to a multi-user case for all three schemes. The

IoT devices are uniformly distributed at distances ranging from 10 to 30 meters.
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Figure 4.8: Proposed Task Dependency Model for a Multi-device Case Study with

k = 4.

We assume the following computational requirements {δi,k3} = [50.5, 45.3, 86.6]

(Mcycles) and {αi,k3} = [1400, 1200, 1500, 1300] (Mcycles) for IoT device 3, {δi,k4} =

[65.5, 50.3, 75.6] (Mcycles) and {αi,k4} = [1500, 1400, 1000, 1500] (Mcycles) for IoT

device 4, {δi,k5} = [55.5, 42.3, 90.6] (Mcycles) and {αi,k5} = [1600, 1500, 1300, 1700]

(Mcycles) for IoT device 5, and {δi,k6} = [58.5, 47.3, 82.6] (Mcycles) and {αi,k6} =

[1200, 1300, 1600, 1600] (Mcycles) for IoT device 6. The input required for the fourth

task on the IoT device k2 requires the final output of the task of all other devices

|K|−1. It should be noted that the BSSE algorithm exhibits superior performance

compared to the baseline algorithm, as referenced in [22]. More precisely, the total

energy-time cost metric of the system shows a curve rise, increasing from 0.7758

to 2.4160 when we increase the number of IoT devices from 2 to 6. This observed

pattern depicts the intensified interdependence of tasks between devices, which yields

more substantial system performance improvements.
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4.7 Summary

This study examines how task dependencies between IoT devices affect task

offloading and resource allocation decisions. It does so by digitizing real-time

edge networks and integrating aerial terrestrial networks. The presented problem

is characterized as a mixed-integer non-linear programming problem. It becomes

computationally intractable because of its inherently combinatorial link with task-

offloading decisions and strong correlation with resource allocation. We propose a

joint optimization approach that optimizes transmit power, CPU frequency, and

task offloading policy to minimize energy-time cost. Our proposed scheme can

accommodate various tasks, sometimes exceeding one hundred. The energy-time

cost of the system closely approximates that of the brute-force algorithm that

delivers the optimal solution. A notable discovery is that our proposed BSSE

algorithm demonstrates approximately equal energy-time cost for both devices,

that is, ζk1 ∼ ζk2 , then brute force algorithm where ζk1 > ζk2 . This similarity is

advantageous, as it ensures equitable energy-time costs for IoT devices, regardless

of their task loads, leading to significant cost savings for devices handling more

tasks. Furthermore, the BSSE algorithm achieves convergence in just five iterations

using the bisection method, a marked improvement over the requirement of the

brute force algorithm of 4096 iterations. Our simulation results corroborate the

effectiveness of the proposed algorithm compared to benchmark approaches. The

next chapter investigates the potential of machine learning techniques for optimal

resource allocation in both the OMA and NOMA systems.
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1This chapter is submitted to IEEE Transactions on Green Communications and Networking,

a leading journal in the wireless communication domain.
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5.1 Introduction

ISD network plays a vital role in daily life, including intelligent transportation,

agricultural monitoring, and disaster management [108]- [109]. ISDs primarily rely

on terrestrial base stations to manage small-scale communication with inadequate

mobility. Consequently, the efficacy of the network is compromised when the target

coverage area is affected by natural disasters [110]. Under these circumstances,

UAVs have become highly adaptable wireless airborne technology, offering a

promising solution to this problem with minimal mobility, human intervention, and

infrastructure costs in different hot spots [111].

A clear LoS channel makes UAVs an ideal candidate for UAV-assisted ISD

networks, leading to improved QoS for every device and offering high data rates and a

broad spectrum of services during natural disasters. It should be noted that existing

literature on UAV communication either focuses on stationary UAVs hovering

above the hotspot center or optimizes the UAV trajectory without considering

the reliability, delay, and QoS constraints to maximize the system’s throughput.

Ignoring kinematic constraints, intelligent UAV positioning, and static propulsion

pose significant challenges to UAV communication in maintaining user connectivity

during malicious attacks.

This chapter introduces a novel approach to optimal resource allocation and UAV

deployment to maximize the achievable rate for URLLC (requiring extremely high

reliability and low latency). A collaborative system designed with UAVs is examined

to support scattered communities and enhance network invulnerability coopera-

tively. The key features involve machine learning-based intelligent UAV placement

and optimal resource allocation to reduce co-channel interference and improve

system performance. An optimization solution employing unsupervised learning-

based ISD grouping, reinforcement learning-based intelligent UAV placement, and

DeepFusion-based PA (integrating deep learning-based PA with FTPA to provide an

additional layer of optimization) is proposed. This approach ensures power efficiency

and fairness among sub-carriers, improving overall system performance.
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Figure 5.1: Scenario of NOMA-based Multi-UAV Aerial Terrestrial Network.

The remainder of this chapter is organized as follows. Section 5.2 presents the

system model of the proposed work. Section 5.3 formulates the resource optimization

problem. In Section 5.4, the initial problem is decoupled into sub-problems to

provide optimal solutions. Section 5.5 presents the simulation results. Finally, this

chapter is concluded in Section 5.6.

5.2 System Model

Fig. 5.1 shows a single-cell aerial terrestrial downlink cellular network comprising

two layers. The ground layer contains an MBS, stationary ISDs, and cellular users

(CUs). The second layer contains multiple ABSs with limited computing resources

and battery capacity.
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5.2.1 Multi-ABS Aerial Terrestrial Network Architecture

Let ISDs be randomly deployed within certain regions of the ground in the time

slot t. CUs are also randomly distributed within the MBS coverage. We define the

set of ISDs as i ∈ I = {1, 2, ..., |I|} and the set of CUs as j ∈ J = {1, 2, ..., |J |},

respectively. It is further assumed that the ABSs have the CSI of all the ISDs in

advance by the MBS using pilot signals. Since ISDs cannot communicate directly

with the MBS, ABSs are deployed to hover at fixed strategic locations to transmit

the data from MBS to ISDs. The set of ABSs is designated as k ∈ K = {1, 2, ..., |K|},

where each ABS serves a group of non-overlapping ISDs. It is important to note

that the ISDs under the same ABS k are denoted by Ik. Therefore,

⋃
k∈K

Ik = I, Ik1
⋂
Ik2 = ∅, ∀ k ∈ (k1, k2), k1 ̸= k2. (5.1)

The transmission bandwidth of the network is divided into N orthogonal sub-

carriers, designated by the set n ∈ N = {1, 2, ..., |N |}. We reserve the sub-carrier

percentage depending on the traffic demand to accommodate the CUs and ABSs.

It is worth mentioning that each ABS subsystem uses |N | orthogonal sub-carriers.

Therefore, there will be no inter-cell interference. Meanwhile, the ISD using the

same sub-carrier within a single ABS subsystem results in intra-cell interference.

We assume that each sub-carrier can be allocated to a maximum γn number of

ISDs. However, each ABS subsystem can assign one ISD to no more than χmax

sub-carriers. A big community requires more sub-carriers; however, the growth rate

(log2(e)/(1 + Ik)) declines with an increase in community size, as given in Fig. 5.2.

Therefore, each ABS subsystem serves a limited number of IoT devices.

5.2.2 Channel Model

We assume that the channels among the devices are independent and suffer Rayleigh

fading. We define the following three models.
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Figure 5.2: Growth Rate.

5.2.2.1 Ground-to-Ground Channel Model

In the ground-to-ground communication model, the MBS communicates with

the CUs within its coverage area. The channel gain of the CU j over the

sub-carrier n is given by gnmbs,j =

(
β0|hmbs,j |
d2
mbs,j

)
, where β0 is the channel power

gain at the reference distance of one meter and hmbs,j is the coefficient of

fading. The squared distance between MBS and CU j is given by d2mbs,j =[
(Xmbs −Xj)

2 + (Ymbs − Yj)2 + (Zmbs − Zj)2
]
, where X, Y and Z are the coordinates

x, y, and z of MBS and CU, respectively. For CU j, the pathloss is defined by

PLmbs,j = −55.9 + 38 log(dmbs,j) + (24.5 + 1.5f/925) log(f). (5.2)

5.2.2.2 Ground-to-Air Channel Model

The MBS communicates with ABS within its coverage area in the ground-to-air

communication model. The channel gain of the link between MBS and ABS

k over the sub-carrier n is given by gnmbs,k =

(
β0|hmbs,k|
d2
mbs,k

)
, where hmbs,k is the
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fading coefficient. The squared distance between MBS and ABS k is given by

d2mbs,k =
[
(Xmbs −Xk)

2 + (Ymbs − Yk)2 + (Zmbs − Zk)2
]
, where X, Y, and Z are the

coordinates x, y, and z of MBS and ABS, respectively. The pathloss for the following

model is the same as for the ABS-to-Ground communication model given below.

5.2.2.3 Air-to-Ground Channel Model

In the air-to-ground communication model, the ABS communicates with the ISD

within its coverage area. The channel gain of ISD i over the sub-carrier n is

given by gnk,i =
(
β0|hk,i|
d2k,i

)
, where hk,i is the fading coefficient. We computed the

squared distance between ABS and ISD i using the following equation d2k,i =[
(Xk −Xi)

2 + (Yk − Yi)2 + (Zk − Zi)2
]
, where X, Y, and Z are the coordinates x, y,

and z of MBS and ISD, respectively. According to [108], the pathloss for LoS and

N-LoS for the given communication link is given by

PLLoS,k = LFS,k + 20 log(dk,i) + ηLoS, (5.3)

PLN-LoS,k = LFS,k + 20 log(dk,i) + ηN-LoS, (5.4)

where LFS,k = 20 log(f)+20 log(4π
c
) is the free space pathloss, c is the speed of light,

and f is the carrier frequency. The additional attenuation factors due to LoS and

N-LoS are ηLoS and ηN-LoS, respectively. The probability of LoS is given by

PLoS,k =
1

1 + a exp (−b ((θi)− a))
, (5.5)

where, θi = sin−1( Zk

dk,i
) is the angle of elevation, a and b are parameters that reflect

the density of buildings in the urban environment. The average pathloss is given by

PLavg,k = PLoS,kPLLoS,k + (1− PLoS,k)PLN-LoS,k, (5.6)

where, PN-LoS,k = 1− PLoS,k is the probability of N-LoS.

5.2.3 NOMA-based Transmission Model

We consider a downlink multi-carrier NOMA system in which multiple ISDS can

be assigned to a unique orthogonal sub-carrier to improve spectral efficiency [112]-
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[113]. Unlike NOMA, OMA allocates a unique orthogonal sub-carrier to each ISD

(introduced as a benchmark scheme).

5.2.3.1 NOMA-based Transmission

If γn is the maximum number of ISDs allocated to the sub-carrier n, then the

corresponding received signal at the given ISD i is given by

ynk,i =
∑
i∈γn

√
pnk,ig

n
k,ix

n
k,i +N0. (5.7)

Where, xnk,i is the information single transmitted to ISD i with transmitted power

pnk,i and N0 ≈ CN (0, σ2) is the Additive White Gaussian Noise (AWGN), having zero

mean and a variance of σ2. The transmit power of either ABS or ISD is practically

non-negative and limited. A feasible set of PAs to various ISDs served by ABSs,

i.e., P =
[
pnk,i

]
K×I×N

should be subject to

p ∈ P
{[
pnk,i

]
K×I×N

∣∣∣∣0 ≤ pnk,i ≤ pmax
k,i ,∀i ∈ I,∀k ∈ K

}
;
∑
n∈N

∑
i∈Ik,n

pnk,i ≤ P k
max,∀k ∈ K.

(5.8)

Since NOMA allows multiple ISDs to share the same sub-carrier simultaneously,

interference occurs. The total interference experienced by ISD i of sub-carrier n is

given by

τ̃nk,i =
∑

l∈γn, l ̸=i

pnk,lg
n
k,l. (5.9)

In power domain NOMA (PD-NOMA), superposition coding is performed at the

transmitter and match filtering successive interference cancellation (MF-SIC) at the

receiver to detect overlapping signals [114]. It is worth mentioning that the decoding

order significantly impacts the performance of the MF-SIC process. Conventionally,

the decoding order of SIC is defined as the permutation over the active ISDS. Our

decoding order consists of decoding the signals from the best to the worst channel

conditions. If qn ∈ Qn = {1, 2, ..., |Q|} is the set of decoding sequences over the given
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sub-carrier, then qn(i) returns the decoding index2 of the device i. In contrast, the

decoding order of the device i is given by q−1
n (i).

Multiplexing in PD-NOMA depends on the ability of SIC. It can be achieved for

any given device if its incoming signal’s strength over residual interference is above

or equal to δ, i.e., we have: (
pnk,ig

n
k,i

τnk,i

)
≥ δ, (5.10)

δ ≥ 1, where:

τnk,i =

In
k,i∑

l=q−1
n (i)+1

pnk,lg
n
k,l, (5.11)

where Ink,i = {∪ d | d ∈ Ik,n, gnk,i ≥ gnk,d} is a set containing ISDs that have inferior

channel conditions against ISD i and Ik,n = {∪ i | device i is allocated sub-carrier n,∀i ∈

I,∀n ∈ N} is the set of ISDs that occupy the same subcarrier n within the serving

ABS k. The interference is completely removed if the SIC constraint in (5.10) is

successful.

5.2.4 URLLC-based Downlink Transmission Rate

The signal to noise (SNR) at device f on the given sub-carrier n is computed by

γnmbs,f =

(
φnmbs,fp

n
mbs,fg

n
mbs,f

N0

)
,∀f ∈ (j, k), (5.12)

where, pnmbs,f is the transmitted power of the givcn device f ,φnmbs,f is the binary

indicator, i.e., if device f is allocated to sub-carrier n within the coverage of MBS

then φnmbs,f = 1; otherwise 0. For the given sub-carrier, the achievable rate is

determined by

rnmbs,f = wn log2
(
1 + γnmbs,f

)
− wn

√
∂nmbs,f

m1

Q−1(ϵ)

ln 2
, (5.13)

where, wn is the bandwidth of the given sub-carrier, ϵ is the DEP, m1 is the

blocklength [66], ∂nmbs,f is the channel dispersion on the given sub-carrier, and Q−1

2In the decoding set Qn, if qn(1) = 5 (showing that the device 1 is the fifth to be decoded),

then q−1
n (5) = 1
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is the inverse of the Gaussian Q-function [108]. The SINR for decoding the signal of

the device i on the given sub-carrier n transmitted by ABS k ∈ K is computed by

γnk,i =

(
φnk,ip

n
k,ig

n
k,i

τnk,i +N0

)
, (5.14)

where, φnk,i is the binary indicator, i.e., if the device i is assigned to sub-carrier n

within the serving ABS k then φnk,i = 1; otherwise 0. A feasible set of sub-carrier

allocations to various ISDs served by ABSs, i.e., φ =
[
φnk,i

]
K×I×N

should satisfy

φ ∈ φ

{[
φnk,i

]
K×I×N

∣∣∣∣∣∑
n∈N

φnk,i ≤ χmax,∀k ∈ K,

∀i ∈ I;φnk,i ∈ {0, 1},∀i ∈ I,∀k ∈ K,∀n ∈ N .

(5.15)

The achievable rate on the given sub-carrier in URLLC is computed as [66]:

rnk,i = wn log2
(
1 + γnk,i

)
− wn

√
∂nk,i
m2

Q−1(ϵ)

ln 2
, (5.16)

where, m2 is the blocklength for this hop, ∂nk,i is the channel dispersion on the given

sub-carrier. The total achievable rate for the given device within the serving ABS

k is denoted by rk,i =
∑
n∈N

φnk,ir
n
k,i. The total data rate on the given sub-carrier

is computed by γnk =
∑

i∈Ik,n
γnk,i. The total achievable rate of a single subsystem is

computed by γk =
∑
n∈N

∑
i∈Ik,n

γnk,i. The sum-rate of the network is given by

χRate =
∑
k∈K

∑
n∈N

∑
i∈Ik,n

φnk,ir
n
k,i. (5.17)

5.3 Problem Formulation

This work aims to maximize the utility function by optimizing the ABS location, sub-

carrier allocation, and transmit power while ensuring reliability and QoS constraints.

The proposed optimization problem overlooks the connection between the MBS and

the CUs, focusing solely on each link that transmits data from the MBS to ISDs

within the coverage of serving UAVs. The notation (xk)∀k∈K = (Xk, Yk, Zk) is the
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location of the serving ABS k, and (xi)∀i∈Ik = (Xi, Yi, Zi) the location of the ISDs

i within the coverage of serving ABS. We denote the set of locations for all ISDs

within the given serving ABS by X = {∪ xi,∀i ∈ Ik}. The formulation of the

optimization problem is as follows.

max
p,φ,xΓ30059

χRate

s.t. C1 :
∑
n∈N

γnk,i = γk,i,∀i ∈ I, ∀k ∈ K,

C ′
2 :
∑
n∈N

∑
i∈Ik,n

pnk,i ≤ Pmax
k ,∀k ∈ K,

C ′′
2 :

∑
i∈Ik,n

pnk,i ≤ Pn,∀n ∈ N ,

C3 :
∑
n∈N

φnk,i ≤ χmax,∀k ∈ K, ∀i ∈ I,

C4 :
∑
i∈I

φnk,i ≤ γn,∀k ∈ K,∀n ∈ N ,

C5 : Xk
2 + Yk

2 + Zk
2 ≤ r2max, ∀k ∈ K,

C6 :

(
pnk,ig

n
k,i

τnk,i

)
≥ δ, ∀k ∈ K,∀i ∈ I,∀n ∈ N ,

C7 :
∑
n∈N

φnk,ir
n
k,i = γmin,∀i ∈ I,∀k ∈ K.

(5.18)

The constraints are described as follows: constraint C1 maintains the QoS of

each device. The constraint C ′
2 represents the maximum transmit power Pmax

k

budget in the ABS, and C ′′
2 denotes the power limit of Pmax

n for each sub-carrier.

The constraint C3 shows that each ISD occupies maximum χmax sub-carriers. The

restriction C4 ensures that each sub-carrier can be allocated to a maximum γn

number of devices. The restriction C5 ensures that the position of the ABS is within

the radius of the MBS rmax. The constraint C6 ensures that the SIC decoding is

performed successfully at the receiver end. The restriction C7 limits the minimum

rate requirement to γmin.

We define our objective function as a mixed-integer non-convex programming

problem. Consequently, finding a solution in polynomial time is impractical due to
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the non-affine nature of the constraint C2 and the binary nature of φnk,i. The problem

can be addressed by combining the penalty approach with a monotonic optimization

technique, incurring a substantial computational cost. Alternatively, it can be

addressed by a standard relaxation mechanism. Therefore, we decouple the initial

problem into sub-problems to get the sub-optimal solution: 1) machine-learning-

based ISD grouping and reinforcement learning-based intelligent UAV placement,

2) joint optimization of sub-carrier allocation and PA.

5.4 Proposed Solution

5.4.1 Unsupervised Learning-based Internet of Things Smart

Device Grouping

The maximum achievable rate governs Sub-carrier allocation in the cellular coverage

area. For the sub-carrier allocation/ISD grouping within the UAV coverage, the

following sub-problem is derived from the original problem (5.18) by treating power

as constant.

max
φ,xΓ30059

χRate

s.t. C1 :
∑
n∈N

γnk,i = γk,i, ∀i ∈ I,∀k ∈ K,

C2 :
∑
n∈N

φnk,i ≤ χmax,∀k ∈ K,∀i ∈ I,

C3 :
∑
i∈I

φnk,i ≤ γn,∀k ∈ K,∀n ∈ N ,

C4 : Xk
2 + Yk

2 + Zk
2 ≤ r2max,∀k ∈ K,

C5 :

(
pnk,ig

n
k,i

τnk,i

)
≥ δ, ∀k ∈ K,∀i ∈ I,∀n ∈ N ,

C6 :
∑
n∈N

φnk,ir
n
k,i = γmin,∀i ∈ I,∀k ∈ K.

(5.19)

PD-NOMA improves the spectral efficiency of communication systems, which

demultiplexes multiple devices that share the same sub-carrier, differentiated by
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Figure 5.3: A Framework using Dual Criteria for Selecting the Optimal Number of

Clusters.

their respective received power levels [114]. Its effectiveness mainly depends on the

receiver’s ability to distinguish these allocated power levels, which also depends

on how the devices are grouped for multiplexing. While grouping the devices,

machine-learning algorithms substantially decrease the computational complexity

of the subsystem and enhance the probability of achieving an optimal solution

compared to non-machine learning algorithms.

The Integration of K-means clustering has been proven to be a highly effective

unsupervised technique for grouping users. It partitions data into multiple clusters,

where it is necessary to specify the preferred/optimal number of clusters. Therefore,

identifying the optimal number of clusters is a crucial aspect of this process [115].

Traditionally, the number should be relatively small compared to the data size

intended for clustering. However, the authors in [116] used a basic version of

the elbow method [117] to identify the optimal number of clusters, using K-means

to determine the average internal cluster distance for the specified clusters. Our
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proposed algorithm uses k-means alongside a dual criterion selection framework

that integrates the elbow method with the F-test method [118] to determine the

optimal number of clusters against each sub-carrier. The F-test method determines

the optimal number of clusters using (5.20). It calculates the proportion of diversity

between clusters in relation to the total diversity within and between clusters.

Fk,n(Ck) =∑Ck

c=1 Ik,c(ḡk,c,n − ḡk,n)
2/(Ck − 1)∑Ck

c=1

∑Ik,c
d=1

(
gk,c(d),n − ḡk,c,n

)2
/(Ik − Ck) +

∑Ck

c=1 Ik,c(ḡk,c,n − ḡk,n)
2/(Ck − 1)

,

(5.20)

where, ḡk,n =
∑I

i g
n
k,i/Ik indicates the mean channel gain gnk,i, ∀n ∈ N , across all

ISDs within ABS k, ḡk,c,n =
∑Ik,c

d=1 gk,c(d),n/Ik,c represents the mean of channel gain

gnk,i,∀n ∈ N , across all ISDs belonging to the cluster c within the ABS k, denoted

by the set Ik,c.

Fig. 5.3 presents the graphical representation of the F-test method while

employing K-means with a Ck number of clusters as input. It shows that the F-

statistic rises with an increase in the number of clusters, i.e., the similarity within

the channel gains of each cluster and the difference between channel gains of distinct

clusters both increase. The curve exhibits a visually evident elbow shape between

clusters 4 and 7, indicating that the optimal value likely falls within this range.

Therefore, selecting Ck = 6 as an optimal value of clusters with an F-value of 97%

appears to be a rational choice for Ck. The proposed framework is adaptable to

numerous other requirements and constraints, such as adding more devices during

an emergency. After calculating the optimal value of Ck, the sub-carrier allocation

for each ISD is performed based on the normalized channel gain to remain fair

with all ISDs. Therefore, the number of ISDs assigned to the given sub-carrier is

Ik,n = Ck,∀n ∈ N . The two-step ISD grouping is shown in Fig. 5.4, where Ck = 2.

To improve the throughput of ISDs with lower channel gain, these are paired with

ISDs having higher channel gains within the same NOMA cluster. Meanwhile, the
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ISD 1 ISD 2 ISD 3 ISD 4 ISD 5 ISD 6 ISD 7 ISD 8 ISD 9 ISD 10 ISD 11 ISD 12

Figure 5.4: Illustration of 2-ISD NOMA Grouping for 12 Active ISDs in a Region.

device with the second highest channel gain is paired with the second lowest channel

gain device in a separate NOMA cluster, and this pairing sequence is continued. The

pseudo-code for ISD grouping and sub-carrier allocation is given in Algorithm (5.1).

5.4.2 Reinforcement Learning-based Aerial Base Station

Placement

Adjusting the geographical positions of ABSs inherently forms an optimization

problem with the aim of maximizing the objective function. This optimization

can be approached from the following two perspectives: achievable data rate or

transmit power of the ABS. In the current study, our focus is on achievable data

rates. Consequently, the optimization problem is formulated as follows.

γk (X , xk) = η
∑
n∈N

∑
i∈Ik,n

rk,i (X , xk) + (1− η) min
i∈Ik,n

{
rk,i (X , xk)

}
(5.21)

xoptk argmax
xk

γk (X , xk) ,

subject to Xk
2 + Yk

2 + Zk
2 ≤ r2max,∀k ∈ K,

(5.22)

where η is the weighting factor. If η ≈ 1, the achievable rate is prioritized; otherwise,

the minimum rate is prioritized. It is important to mention that the traditional way

to explore the large search space makes it difficult to optimize the position of the

ABS. Because of limited resources at the ABS, it is assumed that the MBS can enable

computation-intensive training for Q-learning beforehand and find an optimal policy
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Algorithm 5.1 Machine learning-based ISD Grouping/Sub-carrier Allocation

1: Input: (I)i∈I , (N )n∈N , (gnk,i)i∈I,n∈N

2: Output: µµµ,ϕϕϕ,IIIk,n
3: Initialize the matrix µµµ = 0 to keep track of allocated devices per sub-carrier

4: Set Gn
k,i = gnk,i/

(
ḡi =

∑
n∈N gnk,i/|Ik|

)
,∀k ∈ K,∀i ∈ Ik,∀n ∈ N

5: Step 1: ISD grouping and computing the optimal number of clusters

6: for k = 1 : K do

7: for n = 1 : N do

8: for i = 2 : Ik − 1 do

9: Employ k-means for clustering gggnk,i =[gnk,1, g
n
k,2, . . . , g

n
k,Ik ] into i clusters

10: Compute F-Statistics for current number of clusters using (5.20) and save

its values for each i

11: end for

12: Select optimal number of clusters Ck using F-Statistics and Elbow method

13: Set ISDs per sub-carrier equivalent to an optimal cluster’s value, i.e., Ik,n =

Ck

14: end for

15: end for

16: Step 2: Allocating sub-carriers per ISD

17: Set ϕi = ⌊
∑

n∈N Ik,n/Ik⌋,∀i ∈ Ik
18: Step 3: Sub-carrier allocation

19: for k = 1 : K do

20: for n = 1 : N do

21: Employ k-means for making Ik,n clusters based on GGGn
k,i =

[Gn
k,1, G

n
k,2, . . . , G

n
k,Ik ]

22: Associate the device with lower channel gain with a higher and configure

the corresponding (ϕnk,i)∀i∈Ik,n , if allocated sub-carriers are below ϕi

23: end for

24: end for
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to maximize the cumulative reward. Afterward, this information is shared with the

ABS using pilot signals to minimize frequent movements and data exchanges in the

training process [9]. Basic concepts are given below.

Algorithm 5.2 Mapping Function F(y)
1: Input: Achievable data rate (γk),Number of states (Ns)

2: Output: Mapping function F(y)

3: Initialize the number of states

4: ϑ = Zeros(1, Ns− 1)

5: if y < ϑ(1) then

6: ns = 0

7: else if y ≥ ϑ(Ns− 1) then

8: ns = Ns

9: else

10: for i ∈ len(ϑ)− 1 do

11: if y>= ϑ(i) && y < ϑ(i+ 1) then

12: ns = i

13: end if

14: end for

15: end if

5.4.2.1 Agent

The ABS k is designated as an agent in the current scenario. The agent determines

its action based on the observation when modifying the Q-value in (5.24).

5.4.2.2 States (s ∈ S)

We define the number of states by using a value mapping function (refer to Algorithm

(5.2) using predefined thresholds, i.e., {ϑi = i ∈ 1, 2, ..., |Ns − 1|}, where ϑi <

ϑi′ if i < i′.
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5.4.2.3 Actions (ψ ∈ ⊖)

We consider an action ψ as a horizontal move within an action space ⊖, comprising

eight moves of uniform step size, where an angle of 45◦ differentiates each direction.

Considering the Q-function in (5.24), one of the actions is performed in each iteration

depending on the defined action rule.

ψ =


argmax

ψ∈⊖
Q(s, ψ), with probability 1− ϵ,

random step in ⊖, with probability ϵ,where ϵ ∈ (0, 1) .

(5.23)

5.4.2.4 Observations

The observations include positions (X , xk) and the received signal strength indicator

[9].

5.4.2.5 Rewards (r)

We define the reward function in (5.18) to encourage ABS to move toward the

optimal position during the hit-and-trial process. The agent learns with time to get

a higher reward by selecting an action ψ in each iteration.

5.4.2.6 Environment

The environment serves as a platform in which the agent learns and makes decisions.

It processes the agent’s actions as inputs, generating observations and rewards as

output. The agent’s objective is to navigate the spectrum of potential states, execute

actions, secure rewards, and iteratively refine the value of the Q function using

the Bellman equation (5.24) to incorporate newly acquired information. Through

comprehensive exploration and continuous learning, the Q-value gradually aligns

with the optimal value from the perspective of long-term rewards. Initially, the

methodology sets Q(s0, ψ0) random. Subsequently, an ϵ-greedy strategy balances

exploration and exploitation during the learning phase. It is important to mention
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Algorithm 5.3 Q-Learning based ABS Placement in a Virtual Space

1: Input: X , xk, ϑi, N0, α, β, ϵ0,Mitr, η, decay rate τ = 0.9999

2: Output: xoptk

3: Initialize Q(s, ψ),∀s ∈ S, ∀ψ ∈ ⊖ using initial or previously learned values

4: Initialize the state s (s ∈ S) and action a (ψ ∈ ⊖) based on initial or previous

values

5: Find current location of ABS and ISDs X , xk
6: Calculate the distance (dk,i)∀i∈Ik between the given ABS and devices using X , xk
7: Calculate achievable rate for all ISDs using (5.16) based on current (dk,i)∀i∈Ik

8: s′ = Mapping Function F(y) depending on (dk,i)∀i∈Ik

9: r = η
∑
n∈N

∑
i∈Ik,n

rk,i (X , xk) + (1− η)mini∈Ik,n {rk,i (X , xk)}

10: Q(s, ψ)⇐ (1− α)Q(s, ψ) + α [r + βmaxψ′ Q(s′, ψ′)]

11: ϵ = ϵ0

12: for t = 1 :Mitr do

13: Select action ψ′ using epsilon-greedy policy (5.23)

14: Compute new location xoptk based on recent action ψ′

15: Compute distance (d
′

k,i)∀i∈Ik between the UAV and ISDs using X , xoptk

16: Calculate achievable rate rk,i for all ISDs using (5.16) based on current

(d′k,i)∀i∈Ik

17: s′ = Mapping Function F(y) depending on (d
′

k,i)∀i∈Ik

18: Compute r with updated distance values using step 9

19: Compute updated Q-values using step 10

20: dk,i = (d
′

k,i)∀i∈Ik

21: ψ = ψ′, s = s′

22: ϵ← τϵ

23: end for

111



Chapter 5. Connectivity Aware Optimal Resource Allocation Using Unsupervised
Learning

that ϵ should decline with time, i.e., ϵ← τϵ,where τ ∈ (0, 1).

Q(st, ψt)⇐ (1− α)Q(st, ψt) + α
[
rt + βmax

ψ
Q(st+1, ψ)

]
, (5.24)

where, β is the discount factor, α is the learning rate, and t is the iteration count.

The pseudo-code for ABS placement is given in Algorithm (5.3).

5.4.3 Power Allocation

The water-filling algorithm calculates the optimal power levels for each device within

the MBS coverage [32]. A deep learning algorithm is implemented to allocate

power among the sub-carriers within the UAV coverage area. Afterward, power

is distributed among multiplexed users while QoS constraints are ensured. The

details are as follows.

5.4.3.1 Power Allocation among Sub-carriers

max χRate

s.t. C1 :
∑
n∈N

Pn ≤ Pmax
k ,

(5.25)

where Pn denotes the power allocated to the sub-carrier. Constraint C1 shows

that the cumulative sum of all the sub-carrier’s power is the total power of the

given ABS. Today, many researchers are using deep learning algorithms to allocate

resources. The deep neural network is the most promising solution for allocating

power between sub-carriers. Assuming the ISD grouping/sub-carrier allocation, the

maximum channel gain among each ISD on the given sub-carrier is selected for a

more balanced and fair PA.

We design a deep neural network with one input/output and two hidden layers

(as shown in Fig. 5.5). Compared with traditional deep neural networks, the channel

gain matrix is adopted as an input to train the model. The size of the input layer

is set to be equivalent to the number of sub-carriers. Assuming a neural network

with fifteen neurons in the first hidden layer and ten neurons in the second hidden
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Figure 5.5: Deep Neural Network Infrastructure For Proposed Work.

layer, the network is trained to minimize the loss function, resulting in PA for the

sub-carriers as the output, i,e., Pn = τnP
max
k , where, Pn denotes a power vector of

Pn for each N . Afterward, the fractional transmit (FT) PA provides an additional

layer of optimization that ensures power efficiency and fairness among sub-carriers.

The sigmoid function is utilized as an activation function, i.e., y = 1/(1 + e−x) with

input x and output y. A softmax layer is connected to normalize the powers in the

final production, defined as softmax(y)n = τn = eyn∑
t∈N

eyt
, where yn is the power of the

given sub-carrier and
∑
n∈N

τn = 1. Using AdaGrad optimizer, weights, and biases

are updated, while backpropagation minimizes the loss function. Given the primary

objective to maximize the sum-rate, the loss function is formulated as the reciprocal

of the sum-rate.

5.4.3.2 Power Allocation between ISDs

Once the power is allocated to each sub-carrier, it is distributed among the NOMA

pairs. We assume that the ISD set on the given sub-carrier is Ik,n = {i1, i2}, and

the channel condition of ISD i1 is better than the channel condition of ISD i2, i.e.,

gnk,i1 ≥ gnk,i2 . According to the SIC detection order, ISD i2 will directly demodulate

its signal by treating the signal of ISD i1 as interference noise. Therefore, the data
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rate for ISD i2 is given by

rnk,i1 = wn log2

(
1 +

φnk,i1p
n
k,i1
gnk,i1

N0

)
− wn

√
∂nk,i1
B

Q−1(ϵ)

ln 2
, (5.26)

where ∂nk,i1 is the channel dispersion for the ISD i1. The ISD i1 must first perform

SIC and decode its signal. The corresponding achievable data rate is given by

rnk,i2 = wn log2

(
1 +

φnk,i2p
n
k,i2
gnk,i2

pnk,i1g
n
k,i2

+N0

)
− wn

√
∂nk,i2
B

Q−1(ϵ)

ln 2
, (5.27)

where ∂nk,i2 is the channel dispersion of ISD i2. Assuming that the PA coefficient of

the device 1 is ζ1 and the PA coefficient of device 2 is ζ2 = (1− ζ1), then pnk,i1 = ζ1Pn

and pnk,i2 = ζ2Pn, where ζ2 > ζ1. Then the total transmission rate for the given sub-

carrier is γnk (ζ1, ζ2) =
∑

i∈Ik,n
γnk,i,∀i ∈ {i1, i2}. Therefore,

γnk (ζ1, ζ2) =

[
wn log2

(
1 +

φnk,i1ζ1Png
n
k,i1

N0

)
− wn

√
∂nk,i1
B

Q−1(ϵ)

ln 2

]
+[

wn log2

(
1 +

φnk,i2ζ2Png
n
k,i2

ζ1Pngnk,i2 +N0

)
− wn

√
∂nk,i2
B

Q−1(ϵ)

ln 2

]
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wn log2
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+N0

ζ1Pngnk,i2 +N0

)
− wn

√
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Q−1(ϵ)

ln 2
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wn log2
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+N0
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√
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ln 2

]
.

(5.28)

Considering latter part of the (5.28), We set f(ζ1, ζ2) =
(
ζ1Pngnk,i1

+N0

ζ1Pngnk,i2
+N0

)
. By taking

the first derivative, we observe that f ′(ζ1, ζ2) > 0, where

f ′(ζ1, ζ2) =

(
gnk,i1 − g

n
k,i2

)
PnN0(

ζ1Pngnk,i2 +N0

)2 , (5.29)

which shows that it is a monotonously increasing function. Hence, γnk (ζ1, ζ2) is also

monotonously increasing function. We assume that the minimum rate requirement

of the device i2 is equivalent to its target rate, i.e., rnk,i2 = γmin, and the target SINR

is given by ∂target = 2γmin − 1. We set the limit for ζ1 and compute it by placing the

target SINR value in (5.27).

ζ1 = min

(
1,
∂target

(
Png

n
k,i2

+N0

)
gnk,i2 (1 + ∂target)

)
, (5.30)
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Algorithm 5.4 Power Allocation and Sum-rate Computation

1: Input: IIIk,n, (gnk,i)i∈I,n∈N , (N )n∈N , B,N0, P
max
k , learning rate = 0.01.

2: Output: P , PPP n = Pn(1, 2, ..., |N |)

3: Step 1: Power allocation among sub-carriers:

4: Initialize the input layer, two hidden layers, output layer

5: Initialize the random weights (w1, w2, w3)

6: Initialize the random biases (b1, b2, b3)

7: Step 2: Define the activation functions

8: sigmoid(x)← 1
1+e−x

9: softmax(y)n ← τn = eyn∑
t∈N

eyt

10: Step 3: Training loop

11: for itr = 1 : 1000 do

12: a1 = sigmoid((w1 × h) + b1), a2 = sigmoid((w2 × a1) + b2), y = softmax((w3 ×

a2) + b3)

13: Calculate PA, i.e., Pn = yPmax
k

14: Compute the loss function

15: Perform back propagation

16: Update weights and biases

17: end for

18: τn = softmax(y)n

19: Pn = τnP
max
k

20: Pn = FTPA(Pmax
k , Pn) [32]

21: Step 4: Power allocation between devices and sum-rate computing ∀k ∈ K

22: for n = 1 : N do

23: for i = 1 : Ik,n do

24: Compute ζ1 using (5.30), where ζ2 = (1− ζ1)

25: Allocate power to each device, assuming two devices per sub-carrier

26: Compute sum-rate for all device on given sub-carrier

27: end for

28: end for
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Algorithm 5.5 Proposed Algorithmic Solution for Intelligent Resource Allocation

1: Input: (I)i∈I , (N )n∈N , (g
n
k,i)i∈I,n∈N ,X , xk, ϑi, N0, α, β, ϵ0,Mitr, η, decay rate τ =

0.9999, B,N0, P
max
k , learing rate = 0.01

2: Output: ϕϕϕ,IIIk,n,xoptk ,P , PPP n, rrr
n
k,i

3: Initialize the matrixµµµ = 0 to keep the track of allocated devices per sub-carrier

4: Set Gn
k,i = gnk,i/

(
ḡi =

∑
n∈N gnk,i/|Ik|

)
,∀k ∈ K,∀i ∈ Ik,∀n ∈ N

5: Step 1: ISD Grouping (ϕϕϕ)

6: Find optimal clusters Ck via F-Statistics and Elbow method

7: using step 1 in Algorithm (5.1)

8: Set Ik,n = Ck

9: Allocate the sub-carriers per ISD using step 2 in Algorithm (5.1)

10: Set ϕi = ⌊
∑

n∈N Ik,n/Ik⌋,∀i ∈ Ik
11: Step 2: Sub-carrier Allocation (IIIk,n)

12: Perform the sub-carrier allocation using step 3 in Algorithm (5.1)

13: Step 3: Reinforcement learning based optimal ABS placement (xopt
k )

14: Compute optimal ABS position using Algorithm (5.2) and Algorithm (5.3)

15: Step 4: Power Allocation and Sum-rate Computation

16: Compute the optimal powers (PPP n) for each sub-carrier using steps 1-3 in

17: Algorithm (5.4)

18: τn = softmax(y)n

19: Pn = τnP
max
k

20: Pn = FTPA(Pmax
k , Pn) [32]

21: Step 5: Power allocation between devices and sum-rate computing ∀k ∈ K

22: Allocate the power and compute sum-rate for each ISD using steps 4 in

23: Algorithm (5.4)

The pseudocode for PA is given in Algorithm (5.4). The comprehensive algorithmic

solution for intelligent resource allocation integrates all the algorithms discussed in

this chapter and is presented in Algorithm (5.5).
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5.4.4 Complexity Analysis

The proposed solution is slightly more complex than other benchmarks. However,

the primary goal of this research is to maximize the sum-rate of the edge network, so

the solution’s complexity is ignored. In the next section, the simulation and results

of the proposed model are discussed in detail.

5.5 Simulation and Results

5.5.1 Simulations Settings

We have considered one MBS in a single cell, where the MBS, with radius rmax = 500

meters, is located in the center of the cell. We consider J cellular users randomly

deployed within the cell, and K auxiliary ABSs are deployed at optimal locations

to extend their coverage area. We have considered the I number of ISDs that need

to be covered by the serving ABSs using N sub-carriers. We assume that all ISDs

adhere to the Federal Communications Commission guidelines. The minimum rate

requirement for each ISD is assumed to be γmin = 2 bits/s/Hz [108].

The maximum power of the ABS is 1 watt, with a height of 50− 80 meters. The

network bandwidth is 10 MHz for comparison purposes with a carrier frequency of 5

MHz. Other parameters includes the learning rate α = 0.7, blocklength for first hop

m1 = 100, blocklength for second hop m2 = 100, discount factor β = 0.5, maximum

number of episodes in Q-learning step Mitr = 1000, error probability ϵ = 0.001,

decay rate τ = 0.9999, a = 9.61, b = 0.16, noise spectral density N0 = −174

dBm/Hz, number of states Ns = 2, η = 0.05, with a single sub-carrier allocated

to a maximum of χmax = 2 ISDs, and each sub-carrier supporting a maximum of

γn = (1 (OMA), 2 (NOMA)) ISDs, unless otherwise stated. The pathloss model is

defined in [108]. Detailed simulation parameters are also listed in Table 5.1.
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Parameters Values

Additive White Gaussian Noise N0 [108] -174 dBm/Hz

Discount factor β [9] 0.5

Decay rate τ [9] 0.9999

Error probability ϵ [9] 0.001

Height of the given ABS Zk [9] 50-80 Meter

Leaning rate α [9] 0.7

Maximum number of ISDs allocated to single sub-

carriers γn [108]

1 (OMA), 2 (NOMA)

Minimum rate requirement for each ISD γmin [108] 2 Bits/s/Hz

Maximum episodes Mitr [9] 1000

Maximum power of the UAV Pmax
k [108] 1 Watt

Number of states Ns [9] 2

Number of Cellular ISDs |J | 5

Number of ISDs within serving UAv’s coverage |Ik| 15

Number of sub-carriers |N | 30

Number of serving ABSs |K| 2

Radius of the MBS rmax [108] 500 Meters

Maximum numbers of sub-carriers allocated to single

ISD χmax [108]

2

Step length of the given ABS Zk [9] 5 Meter

Tuning weight η [9] 0.05

Table 5.1: Simulation Parameters.

5.5.2 Performance Comparison

Fig. 5.6 shows the convergence of the normalized reward for UAV 1 and UAV

2 over 1000 iterations using a Q-learning based intelligent positioning scheme.

Furthermore, the following figure demonstrates how reward values increase and
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Figure 5.6: Convergence of Normalized Reward for UAVs using Q-learning based

Intelligent Positioning over Iterations.

stabilize over time, indicating the effectiveness of the Q-learning algorithm in

optimizing UAV positioning. Our proposed algorithmic solution can converge to

the optimum in a few iterations, indicating a low computational solution. This

implies that UAVs only need a few moves to reach their optimal positions.

Fig. 5.7 illustrates the sum-rate performance of the NOMA-DeepFusion-PA

[Optimal UAV position] scheme for both UAVs with different power levels and PA

coefficient for the weak ISD ζ1, which has an inferior channel condition compared to

other devices allocated to the given sub-carrier. The sum-rate increases as the PA

coefficient ζ1 increases from 0 to 0.8 for both UAVs, indicating a positive correlation

between ζ1 and the sum-rate. For both UAVs, the sum-rate is consistently higher

when the power level is Pmax
k = 1 or 3 watts. The rate of increase in the sum-rate is

more significant for the higher power level, suggesting that higher PA enhances the

sum-rate more effectively. Therefore, since a weak ISD is the farthest from the UAV,

this device should be assigned the highest power to ensure fairness. Based on the
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Figure 5.7: Sum-rate of NOMA-DeepFusion-PA [Optimal UAV position] Scheme

under different Power Levels and Power Allocation Coefficients ζ1 for both UAVs

with Perfect SIC.

results shown in this figure, the PA coefficient for the weak ISD, i.e., ζ1 = 0.6, is used

for further analysis. In general, increasing the PA coefficient and maximum power

level positively impacts the sum-rate performance of the NOMA-DeepFusion-PA

[Optimal UAV position] scheme.

Fig. 5.8 evaluates the performance of the proposed NOMA-DeepFusion-PA

[Optimal UAV position] scheme against the varying power constraint Pn for each

NOMA sub-carrier under different SIC conditions, i.e., perfect SIC and imperfect

SIC for both UAVs. It shows the highest sum-rate across all power levels for both

UAVs, indicating that perfect SIC significantly enhances the sum-rate performance.

This positive correlation indicates that higher transmit power enhances the sum-rate

performance in NOMA schemes. When power increases, that is, from 0.4 to 0.8, the

performance gap between perfect SIC and imperfect SIC becomes notably greater,

especially for ν = 100, and ν = 10−1. In other words, the sum-rate decreases as
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Figure 5.8: Performance Comparison of NOMA-DeepFusion-PA [Optimal UAV

position] Scheme under Perfect and Imperfect SIC Conditions with Residual of

Coefficient ν for both UAVs.

the residual coefficient ν increases, highlighting the impact of imperfect SIC on the

system’s performance. Specifically, the sum-rate is higher for ν = 10−2 compared

to ν = 10−1, demonstrating that a lower imperfection in SIC leads to better

performance. In conclusion, UAV 1 consistently achieves a higher sum-rate than

UAV 2 in all scenarios and power levels. Although UAV 2’s sum-rate is lower than

UAV 1’s, the trend is similar. The numerical results show that the sum-rate for UAV

1 with ν = 0 (perfect SIC) is 7.86442% higher than with ν = 10−1(imperfect SIC)

and 18.5332% higher with ν = 0 (perfect SIC) than with ν = 10−1(imperfect SIC)

for UAV 2, when Pn = 0.8 (W).

Fig. 5.9 compares the sum-rate of the proposed NOMA-DeepFusion-PA [Optimal

UAV position] against the benchmark OMA scheme under various transmit power

levels (1 ≤ Pmax
k ≤ 5 (W). The analysis is carried out under perfect SIC conditions,

with the system parameters N = 10, Ik = 20, and χmax = 2. The results are derived
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Figure 5.9: System Sum-rate under different Power Allocation and UAV Positioning

Strategies with Perfect SIC for OMA and NOMA Systems.

by averaging the Monte-Carlo simulations with 105 realizations at each iteration.

It can be observed that the proposed NOMA schemes are superior to conventional

OMA regardless of the position of the UAV and PA schemes employed by the system.

This performance is attributed to the benefits of NOMA, including superposition

coding at the transmitter end and SIC at the receiver end, which allow efficient

spectrum utilization and higher sum-rates. According to the results, the proposed

NOMA-DeepFusion-PA [Optimal UAV position] achieves a sum rate that is 38.

3119% higher compared to the legacy OMA scheme.

The proposed NOMA-DeepFusion-PA [Optimal UAV position] consistently

performs better than NOMA-FPA [Optimal UAV position]. This demonstrates the

advantage of the DeepFusion PA, which optimally distributes the power among sub-

carriers, enhancing the overall system’s performance. The figure shows that the rate

is higher when the UAVs are in optimal positions compared to suboptimal positions.

This is mainly due to the intelligent placement based on reinforcement learning,
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Figure 5.10: Evaluation of Blocklength Impact on Sum-rate for NOMA-DeepFusion-

PA with Optimal UAV Positioning Compared to Benchmark Schemes on both UAVs.

which finds optimal positions relative to NOMA devices to maximize the utility

function of maximizing the rate. Specifically, the NOMA-DeepFusion-PA [Optimal

UAV position] outperforms all other schemes, indicating the combined benefit of

optimal PA and UAV positioning. Overall, the sum-rate of the systems improves

for all schemes by increasing the transmit power of UAVs. The rate increase is

more pronounced in the NOMA-DeepFusion-PA [Optimal UAV position], further

highlighting its efficiency in leveraging higher power levels to enhance performance.

Numerical results reveal that the system’s sum-rate for NOMA-DeepFusion-PA

[Optimal UAV position] is 28.5762% higher than NOMA-FTPA [Optimal UAV

position, and 6.46565% higher than NOMA-DeepFusion-PA [Suboptimal UAV

position].

Fig. 5.10 evaluates the sum-rate performance of the proposed NOMA-DeepFusion-

PA scheme with optimal UAV positioning in comparison to the NOMA-FTPA and

the benchmark OMA scheme under perfect SIC and over a range of blocklengths
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Figure 5.11: Sum-rate of NOMA-DeepFusion-PA, NOMA-FTPA, and OMA

Schemes with Optimal UAV Positioning across different Horizontal Distances.

ranging from 200 to 1000. The key observations are as follows: 1) NOMA-

DeepFusion-PA [Optimal UAV position] consistently outperforms the other schemes

in all blocklengths, indicating the effectiveness of DeepFusion PA and optimal

UAV positioning in improving system performance. 2) NOMA-FPA [Optimal UAV

position] performs better than the legacy OMA scheme but is outperformed by

NOMA-DeepFusion-PA, demonstrating the advantage of the DeepFusion approach

over fixed PA.

It is also noted that an increase in blocklength results in an improved system rate

across all schemes. This positive trend suggests that longer blocklengths enhance

the system’s ability to process and transmit data, thereby increasing the sum-rate.

This rate increase is more evident for NOMA-DeepFusion-PA, indicating that it

leverages the advantages of a longer blocklength more effectively than the other

approaches. For both UAVs 1 and 2, the NOMA-DeepFusion-PA with optimal

positioning achieves the highest sum-rate, followed by NOMA-FTPA and then
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the OMA scheme. Importantly, this performance gap widens as the blocklength

increases, further emphasizing the superior scalability and efficiency of the proposed

approach. Numerical results validate that the sum-rate for NOMA-DeepFusion-PA

[Optimal UAV position] is 9.0259% higher than NOMA-FPA [Optimal UAV position]

and 36.2806% higher than OMA for UAV 2 at a blocklength of 1000. Similarly, the

system’s sum-rate for NOMA-DeepFusion-PA [Optimal UAV position] is 20.696%

higher than NOMA-FPA [Optimal UAV position] and 40.1457% higher than OMA

for UAV 1 at a blocklength of 1000.

Fig. 5.11 compares the sum-rate performance of three schemes: NOMA-

DeepFusion-PA, NOMA-FTPA, and OMA, across different horizontal distances

between MBS and UAVs. The key observations are: 1) NOMA-DeepFusion-

PA scheme achieves the highest sum-rate across all distances, demonstrating the

superior efficacy of Deepfusion PA and optimal UAV positioning in enhancing the

system’s performance. The sum-rate generally decreases as the horizontal distance

increases from 100 to 300 meters. This trend suggests that the greater distance

reduces the system’s ability to maintain higher data rates because of increased path

loss, including shadowing, fading, and signal degradation. 2) NOMA-FTPA schemes

outperform legacy OMA schemes; however, short of the performance achieved

by NOMA-DeepFusion-PA. This indicates the advantage of NOMA over OMA,

particularly when DeepFusion PA is used.

The performance gap between NOMA-DeepFusion-PA against benchmarks

becomes more evident as the distance increases. The increasing gap demonstrates

the scalability and robustness of the DeepFusion-PA approach in sustaining higher

data rates over extended distances. Moreover, the figure illustrates that optimal

positioning is essential in maximizing the sum-rate, as evident from the consistently

outperforming NOMA over OMA. According to numerical results, the system’s

sum-rate for NOMA-DeepFusion-PA [Optimal UAV position] is 20.95179% higher

than NOMA-FPA [Optimal UAV position] and 33.041% higher than OMA, when

the distance is around 100 meters. Likewise, the system’s sum-rate for NOMA-
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DeepFusion-PA [Optimal UAV position] is 25.7152% greater than NOMA-FPA

[Optimal UAV position] and 27.5098% greater than legacy OMA when the distance

is 300 meters.

5.6 Summary

This article introduces a novel framework for the optimal deployment of UAVs

and resource allocation using FBL coding in URLLC networks. This framework

optimizes ISD grouping/sub-carrier allocation, UAV placement, and PA, subject to

delay, reliability, and other QoS requirements to maximize the system’s performance.

The inherited non-convex optimization problem is divided into solvable sub-

problems for optimal solutions. The proposed solution involves the following steps:

1) integrating the elbow method with the F-test method to control the maximum

number of devices on each sub-carrier, 2) implementing a Q-learning (type of

reinforcement learning) technique for optimal UAV placement, and 3) DeepFusion

based PA by integrating the deep-learning PA method with the fractional transmit

PA method to provide an additional layer of optimization to ensure power efficiency

and fairness among sub-carriers. The comparative analysis demonstrates that our

proposed algorithmic solution achieves a performance improvement of 28.5762% than

NOMA-FPA [Optimal UAV position], and 38.3119% higher than traditional OMA

[Optimal UAV position].
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6.1 Conclusion

This concluding chapter of the thesis evaluates how the research findings align with

the intended objectives and outlines potential directions for future research. This

research primarily addresses optimal resource optimization solutions by utilizing

innovative, sustainable, and energy-efficient resource scheduling in integrated aerial-

terrestrial networks to enhance QoS and latency aspects, offering significant

improvements over existing state-of-the-art methods. The key contributions of this

thesis are summarized as follows.

Chapter 3 investigates a mixed-integer non-linear programming problem to

optimize resource allocation in an integrated aerial-terrestrial wireless network for

maximizing the system sum-rate. A novel low-complexity algorithm is proposed,

which applies alternating optimization and a two-step projected gradient descent-

based strategy to optimize the resource allocation policy while incorporating delay,

reliability, and QoS constraints. Simulation results demonstrate that the proposed

algorithm requires 1600 times less computational cost than baseline approaches.

This chapter concludes that NOMA with optimal blocklength outperforms OMA

with optimal blocklength. NOMA with fixed or random blocklengths surpasses

their respective OMA counterparts in their corresponding scenarios.

Chapter 4 emphasizes the significance of task dependencies between devices that

influence task offloading and resource allocation decisions. A closed-form solution

is derived to optimize transmit power, CPU frequency, and task offloading policy,

thereby minimizing the energy-time cost. This chapter concludes that the proposed

solution can handle multiple tasks, sometimes exceeding 100. Additionally, the

system’s energy-time cost closely approximates the brute-force algorithm’s, ensuring

equitable energy-time costs for IoT devices regardless of task loads. Our algorithmic

solution converges in five iterations, a stark improvement over the brute-force

algorithm requiring 4096 iterations.

Chapter 5 investigate intelligent approaches to provide optimal resource alloca-

tion and UAV deployment aimed at maximizing the achievable rate. This chapter
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leverages unsupervised learning to optimize ISD grouping/sub-carrier allocation,

UAV placement, and deep-learning based power allocation, subject to delay,

reliability, and other QoS constraints. Additionally, it ensures power efficiency

and fairness among sub-carriers, thereby improving overall system performance.

A mathematical definition is also derived to calculate the value of the F-test for a

given number of clusters. Simulation results validate that the proposed solutions

outperform well-recognized benchmark schemes.

This research underscores the potential for optimization techniques in integrating

aerial-terrestrial networks and their application to future-generation networks,

setting the stage for further advancements in resource allocation, system efficiency,

and QoS enhancement.

6.2 Limitations of the Study

• Many URLLC algorithms have been developed in UAV-based communication

systems under the assumption of perfect hardware. However, various hardware

imperfections present in practical UAV systems must be considered. The

computer simulations for each part of this Ph.D. thesis represent the most

feasible options.

• Current research integrates NOMA with UAV-based communication. How-

ever, when NOMA is used, the application of SIC poses a significant security

risk, as one user can decode the signal intended for another. Therefore, it

is crucial to study this area from a security perspective to fully leverage

the advantages of NOMA-based wireless networks without compromising

transmission integrity.

• Current research assumes perfect SIC. However, a more realistic understanding

of channel conditions or an accurate channel prediction is challenging. It

requires a pilot-based training process, which results in increased overhead

and complexity, ultimately leading to delayed feedback. Consequently, various
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robust resource allocation strategies should be developed to effectively address

the challenges of adopting the NOMA concept in practical scenarios.

6.3 Future Improvements

It is anticipated from this thesis that some promising areas can be further developed

in future research. These are summarized as follows.

• Innovative synergy: It is clear that UAVs will perform for aerial and ground

users, with computational resources distributed on the ground and in the air.

However, matching the time and spatially varying AI demands with distributed

data supplies remains uncharted territory.

• Secure wireless communication: It is obvious that UAVs will be extensively

deployed and seamlessly integrated into terrestrial communication systems.

Relying solely on onboard embedded sensors for sensing will be insuffi-

cient. Therefore, integrated sensing, which combines UAV-embedded and

infrastructure-based sensing, is required. Moreover, future networks must

develop advanced security measures to protect against sophisticated cyber

threats and unauthorized access.

• Empowering collaborative intelligence: we study the integration of machine

learning in future wireless networks. However, there is a strong need

for interplay between AI and edge networks, i.e., intelligent user access,

adaptive decision-making, and more realistic knowledge of channel conditions

or accurate channel prediction for AI-aided wireless transmission. Moreover,

machine learning’s predictive capability allows better resource allocation,

capacity planning, and optimization of network parameters to meet changing

demands.
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