Lancaster E==
University # ¢

Improving Network and Middlebox
Resilience with Virtualisation

Lyn Hill, BSc (Hons)
School of Computing and Communications
Lancaster University

A thesis submitted for the degree of
Doctor of Philosophy

February, 2025



Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in
whole or in part, for a degree at this, or any other university. This thesis does not
exceed the maximum permitted word length of 80,000 words including appendices
and footnotes, but excluding the bibliography. A rough estimate of the word count
is: 50061

Lyn Hill



Improving Network and Middlebox Resilience with Virtualisation
Lyn Hill, BSc (Hons).
School of Computing and Communications, Lancaster University
A thesis submitted for the degree of Doctor of Philosophy. February, 2025

Abstract

Modern networks strive to balance performance and resilience in their designs and
operations, the former for maintaining a competitive edge and the latter for ensuring
continued service during periods of disruption. These goals are not diametrically
opposed but are difficult to cater to simultaneously, a problem made more difficult
by the use of high-performance hardware solutions known as “middleboxes”. These
middleboxes limit the applicability and effectiveness of established resilient design
practices for the networks they are utilised in, especially in regards to the preservation
of state. State is the contents of memory retained by hardware to aid in its
operations, and its loss is the cause of observable disruption to end-users. Middleboxes
are popular with network operators for their high-performance and ease of use for
enacting network policy, but their blackbox design and widespread use have created
a distinct vulnerability to disruption. Prior research in this domain has proposed
their replacement with network virtualisation /softwarisation, both to enable greater
network elasticity and allow for more complex resilience techniques. These proposals
have seen limited adoption due to industry prioritising performance scalability over
resilience in the name of competitiveness and guaranteeing SLAs, with hardware
middleboxes orders of magnitude faster than current virtualisation solutions and
unlikely to be replaced in the near future. The popularity of SDN and NFV will
continue to rise in industry, but certain network applications will require hardware
solutions to fulfil and cannot be replaced through virtualisation. This thesis takes
the position that SDN and NFV can instead find use in enhancing the resilience of
this existing infrastructure rather than replace it, so that the flexibility of software
can be exploited without sacrificing the performance of hardware. These blackbox
middleboxes represent a key issue for research: if internal state cannot be observed or
extracted, it must be captured or recreated externally through novel means that are
sufficiently quick, accurate and reliable for real-world use.

To address this problem, this thesis presents Remediate (REsilient MiddIEbox
Defence Infrastructure ARchiTEcture), a state recovery framework that explores
multiple approaches to preserving state for middlebox devices with differing degrees
of accessibility. This proof-of-concept implementation is divided into two major
publications, “Middlebox Minions” and “Katoptron”, that each explore different
techniques for recreating or transferring state. The first contribution, “Katoptron”,
targets blackbox hardware by recreating state using traffic filtering and packet

i



sampling. The second contribution, “MiMi”, targets white and greybox software using
inserted drivers and logging interpretation respectively. Remediate incorporates these
two contributions as its mechanisms for enabling stateful failover in multiple kinds
of middleboxes, distributing state in a platform-agnostic and scalable approach using
message streaming and datastores. Overall, this framework allows for state recreation
and retention across failovers for both hardware and software in any combination
or direction. This is especially demonstrated in its viability across multiple popular
stateful mechanisms for networking and security, as well as the reduction in traffic
necessary to ensure accurate failover by 95% and provide continuation of service
without visible disruption.

il



Publications

The following publications have been generated while developing this thesis, and to
an extent has guided the thesis into what it has become:

Lyn Hill, Charalampos Rotsos, Will Fantom, Chris Edwards and David Hutchison
(2022).  “Improving network resilience with Middlebox Minions”. In: NOMS
2022-2022 IEEE/IFIP Network Operations and Management Symposium. — doi:
10.1109/NOMS54207.2022.9789819

Lyn Hill, Charalampos Rotsos, Chris Edwards, and David Hutchison (2024). “Katop-

tron: Efficient State Mirroring for Middlebox Resilience”. In: NOMS 2024-2024 IEEFE
Network Operations and Management Symposium. doi: 10.1109/NOMS59830.2024.10575815

v



Acknowledgments

I would like to acknowledge a number of people whose presence and support was
fundamental to me completing this degree. First off, I want to thank my boyfriend
Chris for supporting me all these years both emotionally and even assisting with
the work, proofreading papers and helping me practice presentations. I spent a long
time doing this, longer than I should have, but he was there for me. My friends in
Lancaster and especially in my office, Revika, Will, Paul, Taylor, Ben and Ellie, who
made staying here worth it after I had finished my bachelors. If it wasn’t for Ellie, I
wouldn’t have even considered returning, or gotten an RA job in the department in
the first place. My friends further afield, David, Joseph and Janet, Pete, Murray and
Jesper. My family, with my brothers Timothy and Trevor and my mum Rosemary.
I can also add my dog Scruffy to this list, for living as long as he has and trucking
along at 19 years old.

On the academic level, I have to thank Charalampos (Haris), my supervisor, for
having both the patience and willingness to take me on as a PhD and even take a
chance on me as an unproven bachelors student for my first research job. I was sitting
in an obscure corner of the infolab basement and came to find me just to tell me he
was willing to give me a job based on nothing at all. David, my senior supervisor,
providing guidance on direction and potential routes to explore both in research and
writing. Chris Edwards, my secondary supervisor, for tracking progress. Research
wise, a large portion of my initial exploration was inspired by the works of Justine
Sherry, if one is reading these acknowledgments to understand where and how my
research came about.



Contents

1 Introduction 3
1.1 Middleboxes and their evolution . . . . . . .. ... ... ... .... 4
1.2 Middleboxes and state . . . . . . ... ... oL 6
1.3 Networks and resilience . . . . . . . . . .. ... ... .. 7
1.4 Aims . . . . . 9
1.5 Contributions . . . . . . . . ... .. 9
1.6 Thesis structure . . . . . . . ... 10

2 Background and related work 13
2.1 Definitions . . . . . ... 13

2.1.1 Networking terminology . . . . . . . ... ... .. ... ... 13
2.1.2  Middlebox terminology . . . . . . . . ... ... .. ... ... 14
2.1.3 Resilience terminology . . . . . . . ... ... oL 14
2.1.4 White, Grey and Blackbox network devices . . . . . . . . . .. 15

2.2 0Opening . . . . . .. 16
2.3 Network Functions and middleboxes . . . . . . . . .. ... ... ... 17
2.3.1 Internet-design principles . . . . . . . .. ... 17
2.3.2 Network Functions . . . . . .. ... ... ... ... ..... 18
2.3.3 Middleboxes . . . . . . ... 19
2.3.3.1 Middlebox issues . . . ... .. ... ... ... ... 20

2.3.4 Early history of programmability attempts . . . . . . . . . .. 21
2.3.5 Software Defined Networking . . . . ... ... .. ... ... 22
2.3.5.1 SDN architecture . . . . . ... ... ... .. .... 24

2.3.5.2  SDN in production networks . . . . . . ... ... .. 25

2.3.6 Network Function Virtualisation . . . . . . .. ... ... ... 26
2.3.6.1 NFV Benefits and Drawbacks . . . . .. .. ... .. 27

2.4 Resilience . . . . . . .. 28
2.4.1 History of resilience . . . . . . ... ..o 29
24.2 D?R?+ DR Framework . . . . . . ... ... ... ...... 30
2.4.3 Typesof failure . . . . . ... ... oo 33

vi



2.5

2.6

24.4 VNF Resilience . . . . . . . . .

2441 Newrisks . . . . . . Lo

2.4.4.2 Reliability of VNFs . . . . . . ... .. ... ... ..
2.4.5 Middlebox resilience . . . . ... ..o oL
Related work . . . . . . . . ...
25.1 VMecapture . . . . . ...
2.5.2 Packet capture . . . .. ..o
2.5.3 Coarse-grain log-based checkpointing . . . . .. ... ... ..
2.5.4 Fine-grain log-based checkpointing . . . .. .. .. ... ...
2.5.5 VM Migration . . . . . . .. ..o
2.5.6 Live replay and simple redundancy . . . . ... .. ... ...
2.5.7 Service Function Chain techniques . . . . ... .. ... ...
2.5.8 Cloud-based approaches . . . .. .. ... ... ... .....
SUMMATY . . . o o v v o e e

Hybrid networks and resilient design

3.1

3.2
3.3

3.4

Argument . . . . . ...
3.1.1 Hybrid Networking . . . . . . . . .. ... ... ...
3.1.2 ASIC Hardware . . . . . . . . .. ... ... ... ...
3.1.3 Replicating state in ASICs . . . . . . ... ... .. ... ...
3.1.4 CAP theorem . . . . . . .. ... ...
3.1.5 Summary ... ..
High-level Requirements . . . . . . . . ... ... ... ... .....
Design considerations . . . . . . . ... ..o
3.3.1 Extracting or recreating state . . . . .. .. ...
3.3.2 Failover approach . . . . . .. ... .. ... ... .......
3.3.3 Deployment architecture . . . . . .. ... ... ... ...
3.3.4 Technology-agnostic architecture . . . ... .. .. ... ...
3.3.5 Retaining and distributing state . . . . . . ... ..o
Design overview . . . . . . . .. Lo
3.4.1 Levels of middlebox access . . . . . . ... ... ... .. ...
3.4.2 Resiliencenodes . . . . . ... oo

3.4.2.1 State extraction and insertion services . . . . .. ..

3.4.2.2 Facilitating both hardware and software . . . . . . .
3.4.3 External State Repository . . . . .. ... ... ...
3.4.4 SDN management . . . . . . .. ...
3.4.5 Infrastructure . . . . . ... ..o
3.4.6 Cloud management . . . . . . .. ... ... ... ... ..
3.4.7 Orchestration . . . . .. .. ... ...
3.4.8 Remediate - Middlebox Resilience layer . . . . . . .. .. ...

vii

49
49
20
o1
93
95
o6
o7
29
29
61
61
62
63
63
65
66
67
68
68
69
70
70
70
71



3.5 Summary . ... .....

4 Implementation

4.1 Resilience Framework . . . . . . . . . ..o
4.1.1 Point of Failover Architecture . . . . . . . . .. ... .. ...
4.1.2 Points of Failover proof of concept . . . . . . . ... ... ...
4.1.3 Management layer . . . . .. .. .. ... L.

4.2  White and greybox resilience . . . . . . ... ..o
421 Statedrivers. . . . . . . . ...

4.2.1.1 Log interpretation . . . .. ... .. .. ... ...
4.2.1.2 Direct extraction . . . . . . .. ... ... ... ..
4.2.2 Staterepository . . . . ..o L
4.2.3 VNF Infrastructure . . . . . . . . . ...

4.3 Blackbox resilience . . . . . . . . ...
4.3.1 Packet Filter . . . . . . . . . . ...
4.3.2 Service restoration . . . . . .. ... ... ..

4.4 MiMi prototype . . . . . . .
4.4.1 Middlebox Scenarios . . . . . . . ...

4.4.1.1 OpenFlow-based Load Balancer . . . . . .. ... ..
4.4.1.2 Kernel-based Load Balancer . . . . . . ... ... ..

4.4.2 State repository and
4.4.3 Publishing methods

distribution . . . . .. ... ... ..

4.4.4 State Drivers . . . . . . . . ...
4.4.4.1 Direct extraction driver . . . . . . ... .. ... ..

4442 Log interpreter driver . . . . . . . ... ... ...

4.5 Katoptron prototype . . . . . . ..o
4.5.1 Traffic Filter . . . . . . . .. ..o
4.5.1.1 Pipeline breakdown . . . . . .. ... .00 L

4.5.1.2 Filter implementation technologies . . . . . .. . ..

4.5.2 Service restoration mechanics . . . . . ... ... ... ...
4.5.3 Middlebox Scenarios . . . . ... ... ... ... ... ...
4531 NAT . . . ..

4532 IDS . . ...

4.5.3.3 Load balancer . . . . . ... ... ... ... ..., .

4.5.4 CDN . .. .

4.6 SUMMATY . . . . . . .

5 Evaluation
5.1 Experimentation Platform

5.1.1 Testbed environment . . . . . . . . . .. ...

viil



5.1.2 Tools . . . . . . 103

5.1.3 Workloads . . . . . . . . . ... .. 104

5.2  MiMi performance evaluation . . . . . . ... . ... ... .. .... 106
5.2.1 Experimental Setup . . . . . . ... ... oL 107
5.2.2 State mechanism designs . . . . . . . .. ..o 108
5.2.3 Direct extraction evaluation . . . . . .. ... ... ... ... 109
5.2.3.1 WEB workload . . . ... ... ... ... ...... 109

5.2.3.2 DASH workload . . ... ... ... ......... 109

5.2.4 Log-interpretation driver evaluation . . . . . . . .. ... ... 111
5.2.5 State Synchronization Frequency . . . . . ... .. ... ... 114
5.2.6 Impact of middleware choice . . . . . . .. ... .. ... ... 115

5.3 Katoptron performance evaluation . . . . . . .. ... ... ... ... 116
5.3.1 Experimental Setup . . . . . . . ... ... 116
5.3.2 Middlebox support . . . ... ... 118
5.3.3 NAT middlebox performance . ... ... .. ... ...... 120
5.3.4 IDS middlebox performance . . . . . ... ... ... .. ... 122
5.3.5 Load balancer middlebox performance . . . .. .. ... ... 123

5.4 Summary ... 125
6 Conclusions 129
6.1 Thesis Contributions . . . . . . . .. .. ... ... ... 130
6.2 Criticisms and limitations . . . . . .. .. ... ... .. 133
6.2.1 Feasibility and scope . . . . ... ..o 133
6.2.2 Security and points of failure . . . . . ..o 134
6.2.3 Evaluation . . . . . ... ... ... .o o 134

6.3 Futurework . . . .. ... 135
6.3.1 Expanding awareness to Service Function Chains . . . . . .. 136
6.3.2 NFV management, scaling and integration . . . . . . .. ... 136
6.3.3 State recreation approaches . . . . . ... ... ... ... .. 137
6.3.4 Al and machine learning . . . . . .. ... ... ... 138
6.3.5 Non-TCP based statefulness . . . . . .. ... ... ... ... 138
References 141

X



List of Figures

2.1

2.2
2.3
24
2.5

2.6
3.1

3.2

3.3

3.4

4.1

A Venn diagram of the degrees of openness present in both platforms
and network function implementations and where examples of these sit
within this framework. . . . . . . .. ..o 15
Broadcom Trident 3 Internal Architecture Diagram (Arcilla et al., 2019) 20
Layers of the Software-Defined Network Architecture (Tank et al., 2017) 23

Mapping SDN and SDR to the OSI model (Niknami et al., 2023) . . 24
The ResiliNets Strategy framework, formed of two cycles D?R? + DR,
represented as a cycle of its steps . . . . . . ... 31
VNF protection schemes as proposed by Casazza et al., 2019 . . . . . 36
Example of hybrid network architecture. VNFs are typically hosted on
SDN-enabled routers to provide network functionality. . . . . . . . . . 51
Broadcom Trident architecture - Examples of pipelines of interchange-
able built-in functions (Broadcom, 2024) . . . . ... ... ... ... 53
Coefficient of variation of fraction of requests for different bits of the
client IP address (Kang et al., 2015a) . . . . . . ... ... ... ... 54

High-level architecture overview. The middlebox resilience layer serves
as the centralised logic of the framework, utilising the existing network
orchestration and cloud management to operate the state extraction
mechanisms and VNFs within the network. Red arrows indicate control
over an element, black indicates the flow of traffic, purple indicates state. 64

OF flow table rules for a fast-failover bucket and watch ports . . . . . 75



4.2

4.3

4.4

4.5
4.6

4.7

4.8

4.9

4.10
4.11

4.12

The overall system architecture, presenting a logical view of the man-
agement layer and its interactions with the state capture mechanisms.
On the left, the Katoptron traffic filter approach using blackbox VNF's
to pre-populate state tables through targeted filtering. In the centre,
an inserted driver directly serialises state to be distributed by the
repository.  On the right, log output from a greybox is interpreted
and converted into a serialised format, to be distributed by the state
repository to whitebox VNFs. The blue arrows indicate the flow of
state for MiMi using an external interpreter, the red using an internal
directly to the repository. . . . . . . . . ... L
High-level diagram of a log interpreter interacting with a primary
and redundant middlebox using a datastore distribution and internal
subscriber. The flow of activity is represented with these arrows,
forming an almost complete circuit from the primary to the redundant
middlebox for transferring state. . . . . . . .. ...
Another view of the distribution of state from the primary middlebox to
the redundant VNFs. The arrows indicate the flow of actions through
the components that make up the distribution of state. . . . . . . ..
Sequence diagram of the distribution of state for a log interpreter

High-level diagram of a generic filter structure, with the arrows
indicating the flow of operations for the packets that pass through the
stages or operations defined. . . . . . . ... ... L.
Switchover points bleeding flows slowly till all established flows in the
redundant path finish or expire . . . . . . . . ... ... ... ...
Katoptron prototype class diagram overview, depicting the components
constructed for the tested implementation. Not depicted are the
management layers for instantiation and teardown built using open-
source tools, scripting and available MANO. . . . ... .. ... ...
Five packet aggregator filter in Click, with arrows indicating the flow of
traffic through the elements from left to right, starting at FromDevice.
For example, at the tee, two copies are made of the packet and either
sent out of the interface or sent to the next step in the chain. . . . . .
SYN filter in Click . . . . . . . ... ... ... ... ... . ...
OF flow table rule used to create flows for returning path traffic to
slowly bleed off from the redundant path . . . . . . .. .. ... ...
Example of generated restoration rules in OpenFlow table . . . . ..

el

76

30

81

82

87

88

94

95
96

97
98



5.1

5.2

9.3

5.4

9.5

5.6

5.7
5.8

5.9

Simplified high-level diagram of the testbed used across multiple
experiments - a client /server model with traffic served through middle-
boxes providing network functions typical at network gateways. Each
experiments details differ and are expanded in more detail in their
respective sections . . . . . . . .. L.
Experiment topology consisting of a client-server model as shown in
Figure 5.1, showcasing the syslog variant of the evaluation, emulating
a caching service and load balancer with full details of the testbed
implementation . . . . . ... ...
Reported timeouts of WRK connections for the 1000 and 2000 connec-
tion datasets . . . . . ...
Reported timeout rates of scootplayer connections for the 50 and 100
connection datasets, with error bars generated from averaged results .
Rise in page weight (measured in KB) from 2010 to 2024 as reported by
the HTTP archive (archive, 2010). This is attributed to a number of
factors including the number of images used, JS elements and externally
sourced elements beyond simple HTML. . . . ... .. ... ... ..
Reported timeout rates of WRK connections for the 20,000 and 30,000
connection datasets with iptable logging . . . . . . ... ... .. ..
Comparison between timeout results . . . . ... ... .. ... ...
The Katoptron testing topology, consisting of a client/server model
separated into subnets, with traffic passing through the gateway to the
backend of servers. . . . .. .. .. L
Evaluation of the impact of traffic sampling policies on the total number
of signatures detected by the IDS middlebox (Suricata) and diminishing
returns of greater sample sizes for the CICID 2017 datasets. . . . . .

xii

102

106

110

111

112

113
116

117



List of Tables

2.1

5.1
5.2
5.3

5.4

9.5

0.6

5.7

5.8

Comparison of state preservation methods from both past research and

current practices, organised into replaying and non-replaying techniques 40

A brief summary of the tools used for the evaluation and their use . .
The workloads, the tools used to generate them and their parameters
Request throughput and total TCP failures for varying state synchro-
nisation intervals. Frequent state synchronisation improves the overall
resilience of the service. . . . . . . . .. ... 0oL
Minimum number of packets per flow needed for state determined
through simple experimentation, observing for rises in failure rates for
the experiment KPIs . . . . . . . . .. ... ... .
Average HTTP resets and timeout rates during NAT middlebox failures
using the WEB workload for both small (5KB) and large (627KB)
objects served. . . . . . ...
Total number of signatures and alerts raised by the redundant Suricata
IDS instance for each trace, when using the Attack workload. Base
represents the expected detected outcome of the IDS to the attack
workload. Simple represents the results when experiencing loss of
IDS and failover without state preservation. Katoptron represents the

results when experiencing the same with state preservation techniques.

Results of the LB failover using the 627KB object. The number
of reported TCP resets and timeout responses are shown in their
respective columns, averaged from multiple runs. Results indicate a
drop in rests and timeouts significantly when preserving state with
katoptron over not with simple. . . . . . . ... ... ... ... ...
Total count of buffering, resolution change and failed connections

during Load Balancer middlebox failures with the streaming workload.

xiil

103
104

114

118

121

122

124

124



Acronyms

APLOMB Appliance for Outsourcing Middleboxes. 46
ARPANET Advanced Research Projects Agency Network. 7, 29

ASIC Application-Specific Integrated Circuit. 6, 51

CapEx Capital Expenditure. 27

COE Chain Output Equivalence. 45

CoMb Consolidating Middleboxes. 46
CREW Concurrent-Read, Exclusive-Write. 42

CSNET Computer Science Network. 29

EBPF Extended Berkeley Packet Filters. 26

ETSI European Telecommunication Standards Institute. 26

FIB Forwarding Information Base. 52
FTMB Fault Tolerant MiddleBox. 43

HSRP Hot Standby Router Protocol. 44

IETF Internet Engineering Task Force. 18

ISG Industry Specification Group. 27
KPI Key Performance Indicators. 125

LOBUS LOad-Balancing over UnStructured networks. 23



Acronyms Acronyms

MANO Management and Orchestration. 35

MTBF Mean Time Between Failures. 35

NEP Network Equipment Providers. 69
NFV Network Function Virtualisation. 5, 14, 26
NSFNET National Science Foundation Network. 30

NSS Network Service Support. 46

OF OpenFlow. 23-25
ONF Open Networking Foundation. 5, 23

OpEx Operational Expenditure. 27

PAL Packet Access Logs. 43
PNF Physical Network Function. 35

PoF Point of Failover. 78
QUIC Quick UDP Connections. 139
RIB Routing Information Base. 52

SCADA Supervisory Control And Data Acquisition. 34
SDN Software Defined Networking. 5, 14, 22
SFC Service Function Chains. 26

SLA Service Level Agreement. 5
TCAM Ternary content-addressable memory. 52

VNF Virtualised Network Function. 26
VRRP Virtual Router Redundancy Protocol. 44



Chapter 1

Introduction

Computer networks and the Internet today form the lynchpin of modern communi-
cation systems, intersecting with all areas of modern society across the majorities of
countries on the globe (Leiner, Cerf, D. D. Clark, Kahn, Kleinrock, Lynch, Jon Postel,
Larry G. Roberts, et al., 2009). From social media and content distribution,
such as video sharing and messaging, to critical infrastructure such as power grid
monitoring and control (Mather, 2018). These networks have become so ubiquitous
and intertwined that they are now a fundamental aspect of modern society, with nearly
two-thirds of the global population utilising it (Cisco, 2018), a critical infrastructure
unto itself that underpins all other systems. Since its inception in the 90s (Leiner, Cerf,
D. D. Clark, Kahn, Kleinrock, Lynch, Jon Postel, Lawrence G. Roberts, et al., 1997),
the Internet is now relied upon to facilitate a wide range of purposes, both critical and
non-critical, and its infrastructure and design has evolved in response to this growing
demand (J. M. McQuillan et al., 1977). The challenges that affect it have changed
over time as its use cases have evolved (Ingham et al., 2002), with the early Internet
focusing on the growth of its scalability and availability of service (L. Roberts, 1978),
reflected both in policy and growing infrastructure. Now in its modern incarnation,
today’s challenges concern performance and reliability in parts of the world where
computer networks are now a firmly established critical infrastructure. With so many
systems both commercial and non-commercial dependent on the Internet to facilitate
their operations, resilience in the face of disruption has become a primary challenge
of its design (J. P. G. Sterbenz et al., 2010).

Current design practices focus on developing infrastructures at the network edge
in a bid to push functionality outwards from the transit core (Panda et al., 2016).
This is done for a number of reasons, including improving perceived performance
from customers by minimising hops and latency, as well as reducing the overall
volume of traffic that requires transit. This is achieved using technology known as
“Middleboxes”; purpose-built hardware built to perform a singular function, used to



Chapter 1. Introduction 1.1. Middleboxes and their evolution

deploy new network policies through packet processing (Brim et al., 2002). As a
result of this, faults and failures at the edge are now increasingly visible to end-users,
leaving it vulnerable to disruption (Sherry and Ratnasamy, 2012). A load balancer
misconfiguration in December 2012 caused outages across multiple Google services,
with up to 40% of traffic during this period being affected (Brodkin, 2012) despite
failsafes designed to minimise the extent of disruption a misconfigured box might
cause. In a 2011 survey of 1000 organisations (F5, 2011), 42% of the respondents
indicated observable failures of a firewall at the network layer due to DDoS attacks
caused disruption to their services. Despite this, middlebox designers and their
users have typically prioritised performance over resilience due to the difficulty and
costs involved. Like much of the existing network infrastructure, their design has
ossified, with expansion in existing hardware favoured over continued innovation in
their operations. In spite of this, middlebox resilience and, by extension, the network
edge must be assessed in terms of their scalability and resistance to failure scenarios.
The proliferation of these devices and their potential limitations further highlight this
need. This thesis proposes that an overreliance on existing middlebox solutions may
impede the network’s overall resilience and pose a risk of exposing failure to end-users,
with modern network research such as virtualisation offering a means to overcome this
potential gap in network resilience.

1.1 Middleboxes and their evolution

In the early 90s as NSFnet opened up to private and commercial use, businesses
turned to the recently emerged Internet service as a new frontier of operations (Leiner,
Cerf, D. D. Clark, Kahn, Kleinrock, Lynch, Jon Postel, Lawrence G. Roberts, et al.,
1997). This demand inspired innovation with the development of new technologies to
handle growing traffic, encouraging further demand. The explosive growth (Sekar,
Ratnasamy, et al., 2011) far outpaced any standardisation body for these early
building blocks of the network fabric, giving rise to the design of devices we now call
the middlebox. First coined in 1999 by Lixia Zhang, the IETF defines middleboxes as
“any intermediary box performing functions apart from normal, standard functions
of an IP router on a data path between a source host and a destination host” (Brim
et al., 2002). These include a wide range of popular technologies now employed
almost universally in networks such as load balancers, firewalls, web proxies, IPS and
WAN optimisers. Initially formed as software solutions for the deployment of these
new functions, the need for performance and security in a rapidly growing network
infrastructure encouraged the transition to hardware solutions (Ingham et al., 2002).
These fulfil individual roles within the infrastructure cheaply and efficiently, further
increasing demand for commercialised drop-in implementations. Today, middleboxes
are a fundamental component of many networks to enable and expand network

4



Chapter 1. Introduction 1.1. Middleboxes and their evolution

functionality (S. Huang et al., 2017), with their high-performance relied upon by
businesses to meet ever-increasing Service Level Agreements (SLA) and retain a
competitive edge. These SLA serve as a powerful financial motivator for companies
by converting QoS guarantees into monetary agreements, with any failure to meet
these agreements costly both in fees and reputation. This has created a problem.
Middleboxes are not without issues for both usage and design, many of which arose
from the nature by which they were first created. A lack of standardisation both
for design and access leaves most middleboxes as “blackbox” devices: remotely
inaccessible, statically built, and typically not repairable, intended instead as a
disposable unit (Sekar, Ratnasamy, et al., 2011). Individually, these characteristics
are not notable compared to the benefits these hardware devices offer. Deployed in
the thousands, however, across hundreds of networks (S. Huang et al., 2017), these
issues are rapidly amplified into significant management issues with no single solution,
difficult to replace, for they are now necessary for businesses to guarantee the services
they now provide.

Concerns over potential protocol ossification existed as early as the 90s, with a
number of alternative solutions proposed by research initiatives (Gavras et al., 2007,
Elliott, 2008) such as active networks (Tennenhouse et al., 1997) (Gavras et al.,
2007) to the ForCES group in the early 2000s. Each struggled to find adoption
outside of research (Handigol et al., 2009) over concerns regarding their feasibility,
especially with easier solutions rapidly gaining popularity (middleboxes). By the
early 2010s however, the concepts first established by these proposals, such as a
separated data and control plane in packet processing devices (L. Yang et al., 2004a)
and virtualisation of network functions, saw widespread adoption by the establishment
of the Open Networking Foundation (ONF) and OpenFlow (McKeown et al., 2008b).

These concepts evolved into Software Defined Networking (SDN) and Network
Function Virtualisation (NFV), with the former focused upon the aforementioned
separation of the control and data plane to enable a unified global control over
operations, and the latter the softwarisation of the network to be hosted on general-
purpose processing hardware. SDN and NFV have been growing progressively in
both academia and industry in recent years, best demonstrated by the rise of SDN-
supporting routing fabric that allows for product-specific fine-grain control. The
flexibility of software has also allowed NFV to be deployed in areas that would
otherwise require bespoke hardware to accomplish, such as control boxes in mobile
towers. By softwarising packet processing, evolvability can be rapidly iterated upon
far more effectively than middleboxes with none of the issues of planning and
acquiring potentially thousands of new devices to replace the existing infrastructure.
Areas where performance is more critical, however, have seen far less penetration
by these technologies. Typical enterprise and mobile networks deploy significant
quantities of middleboxes to enable faster processing and minimise the volume of



Chapter 1. Introduction 1.2. Middleboxes and state

traffic in transit for the core. These are expensive and difficult to operate and
maintain but provide a critical advantage that software cannot; whilst NFV is
effectively a softwarised equivalent of these hardware devices and is especially suited
for the purpose of multi-functional packet processing, it cannot compete with bespoke
hardware at a fundamental performance level or guarantee the same degree of stability
as middleboxes can.

1.2 Middleboxes and state

Middleboxes are most commonly built using Application-Specific Integrated Circuits
(ASIC), purpose-built circuits offering a fixed set of network manipulation instruc-
tions. This takes the form of a pipeline of processing steps using a match-action
design. Packets are received, their headers are parsed and their contents are matched
to actions based on the contents of this header. The limited reconfigurability of
these actions is implemented using simple registers and performed by the coprocessor
that facilitates the operations of the ASIC. Operations in the pipeline are assisted
by Ternary Content-Addressable Memory (TCAM), a high-speed and highly parallel
memory used for lookup and forwarding operations that require some form of memory.
The contents of these tables can be defined as its “state”, derived from the results
of processing decisions executed on incoming packets. This memory is limited and
the ASIC lacks other forms of generic memory such as a stack or heap, motivating
efficient use of the TCAM.

The loss of these table contents requires the reprocessing of incoming flows to
regenerate their lookup information, which will incur delay in the network. The
limitations of these ASICs are expanded upon in Section 3.1.2. Prior research in this
domain has attempted to tackle the problem of the loss of state with middleboxes,
but often advocates for their replacement with software due to the difficulty of its
recreation without awareness of the internal values at the point of failure. They can
be broadly categorised by their approach into state capture or recreation, then further
subdivided in technique such as VM replication, live replay or packet capture. Each
of these approaches have their positive and negative traits with varying areas of focus,
expanded upon in more detail in the related work in Section 2.5. The key metrics
are accuracy of recovery to minimise disruption or rejection at switchover and the
speed of recovery for the same reasons. The majority of prior work in this domain
has explored this issue with no concise resolution. Earlier work such as Remus (Cully
et al., 2008) encapsulates the target in a virtual machine to allow for checkpointing
of the entire environment’s state.

This is significantly resource intensive and necessitates modifying the target
architecture beyond the tolerable limits set forth by industry requirements (Sherry,
Gao, et al., 2015). Later work focuses instead on minimising this incurred delay

6



Chapter 1. Introduction 1.3. Networks and resilience

through more complex means of state capture such as Fault-Tolerant MiddleBox
(FTMB) (Sherry, Gao, et al., 2015). It uses fine-grained checkpointing of the internal
state of a middlebox such as the order of thread execution via modification to ensure
the greatest possible accuracy of recreated state with minimal delay to per-packet
processing. Despite these iterative improvements to the technique, modification, if not
replacement, is still required by these proposed solutions, with little work conducted
on the greater challenge of capturing state without this. This technical challenge has
given rise to a gap in research and industry for state capture or recreation without
modification that this thesis targets. As discussed prior, state is typically generated
through decisions made on a per-flow basis and, in many circumstances, is generated
from TCP handshakes during the first few packets of a flow. Furthermore, the level
of accuracy for the recreation of state in this domain far exceeds that of the rest of
the network fabric. With networking, there is an implicit understanding that packets
will be lost and connections will fail. To recap the challenges that this thesis attempts
to tackle: Enterprise and commercial networks use devices known as middleboxes at
the network edge to improve performance and minimise latency, but they introduce
vulnerabilities with their limited design that may leave these networks at risk of
visible disruption. These devices have limitations on their openness, minimising the
effectiveness of most state preservation approaches. To enhance their resilience, new
techniques can be explored using NFV and SDN that may allow for this gap in existing
resilient design to be filled without necessitating their replacement.

1.3 Networks and resilience

Since the early design days of Internet protocols under ARPANET (J. McQuillan
et al., 1980), packet-switching network architectures were designed to ensure recovery
from a wide range of failure scenarios versus the circuit-switching approach of
telecommunications, including packet loss and congestion to link and hardware failure.
Redundancy has been the most common and basic approach to network resilience
both in hardware and software, from multiple network paths allowing for traversal
redundancy to clustered containers distributing processing between nodes. However,
the effectiveness of redundancy in the areas of networks that employ middleboxes is
limited. These devices apply transparent cross-layer protocol processing and retain
network state to extend protocol operations. As a result, they increase system
interdependence in the network and violate both the end-to-end and survivability
principles (Detal et al., 2013). This internal information (or “state”), retained for
each connection currently active or recently observed by the middlebox, is necessary
for the device to perform its operations, and its loss would force the middlebox
to reprocess and recreate this state, causing noticeable disruption. Upon failure,
the loss of this state is all but guaranteed, and any connections transferred to a

7



Chapter 1. Introduction 1.3. Networks and resilience

redundant box will inevitably need to reconstruct this lost state. Resilience techniques
for middleboxes are limited in their application, rarely incorporating any form of
internal mechanisms for fault recovery per box, let alone Failover mechanisms to
redundant middleboxes. Building collaborative high-availability recovery mechanisms
incurs a noticeable performance degradation for most middlebox devices due to the
complexity and speed of modern ASICs, while complete state reconstruction is not
always guaranteed. Academic middlebox surveys highlight that even minor processing
middlebox latencies are operationally intolerable, with a reported limit of 1ms per
packet as the upper ceiling (Sherry, Gao, et al., 2015). The scale of deployment for
these network boxes leaves simple redundancy as the only option, both a costly and
imperfect solution.

Despite their low cost per device, the high volume necessary for both the primary
and redundant hardware, as well as the difficulty in their configuration and lack
of standardised design makes it very difficult for networks to replace these boxes
where required, despite their intention as easily replaceable hardware solutions.
Middleboxes are intended to be replaceable drop-in solutions to enable network policy
and functionality, replaced every few years as part of network development and
expansion. The combination of high volume and heavy reliance discourages their
frequent replacement however, as to replace any one type of middlebox may consist
of thousands of devices across the network, motivating network operators to minimise
turnover. This high-volume technique only ensures eventual service recovery, lacking
the ability to recover lost state between middlebox instances and prevent long-lasting
service degradation. The volume of hardware necessary to achieve this is far in excess
of what is required for their packet processing limits, with the primary goal instead
being to achieve a ’five nines’ degree of availability.

High availability is typically measured in this nomenclature, with ‘five nines’
referring to a service being available for 99.999% of a year, roughly translating into
5 minutes of downtime per year at most. This expected degree of availability is
legally guaranteed in the form of SLAs which define both availability and expected
performance and are a key area of competition between businesses. This only
further restricts the options of these companies; competition has given rise to SLAs
that software could not achieve in performance, but the inaccessibility of hardware
forces networks to deploy middleboxes in quantities exceeding their requirements to
mask failure through simple redundancy when it occurs, further exaggerating the
operational costs of their use. This conflict forms the basis of the problem area
that this thesis targets; is it possible to exploit the flexibility of software to enhance
the resilience of these mechanisms without the need to replace them and lose these
performance benefits?



Chapter 1. Introduction 1.4. Aims

1.4 Aims

With the scope of the problem established, a key research question is formed:
“Given the operational requirements of middleboxes and their use, can the resilience
of middleboxes be enhanced externally through the preservation of state without
interference, modification or replacement?”. With this question in mind, several aims
or goals of this thesis can be made.

e What are the limitations of existing approaches to enabling greater resilience
for middleboxes, especially in regards to hardware and blackbox devices, and
why are they not adopted outside of research?

e (Can state be created externally without observation of the interior operations of
a middlebox that is both sufficiently timely and accurate as to provide effective
failover for a middlebox, regardless of the level of observability or technology it
is implemented in?

e How can a proposed solution to the problem of state preservation be im-
plemented into existing infrastructure without the requirement of replacing
existing infrastructure or disrupting the behaviour of normal operations outside
of network failure in a quick and reliable fashion?

The aim of this thesis is to create a generic redundant approach to establishing
persistence of state through failover between network functions for both software and
hardware. There are a number of obstacles to this concept that must be tackled, such
as the potential for non-determinism and the lack of openness in blackboxes. These
problems are discussed in more detail in Sections 2.3.3 and 2.4.5 and form some of
the major challenges of this work.

1.5 Contributions

The contribution of this thesis is Remediate(REsilient MiddlEbox Defence Infrastruc-
ture ArchiTEcture), a novel resilience framework that provides stateful failover for
software and hardware middleboxes in a range of levels of accessibilities. This includes
a wide range of stateful middleboxes, such as IDS, firewalls and load balancers. This
is achieved through a range of mechanisms designed to support state retention across
white, grey and blackboxes without modifying or replacing existing infrastructure,
easily reconfigured with a focus on flexibility. Two publications focus on prototype
implementations of major components of this framework: Middlebox Minions (MiMi)
and Katoptron. The specific contributions of this thesis are summarised below:



Chapter 1. Introduction 1.6. Thesis structure

e High-level resilience framework A non-modifying resilience framework for
middleboxes, realised using virtualisation technologies. Attached to a pre-
existing network externally to the current infrastructure, it interfaces with
existing orchestration and cloud management layers to establish persistent state
across replicas through the deployment of state preserving mechanisms.

e State-preserving mechanisms A selection of external state preservation
mechanisms, able to extract or recreate the state of white, grey and blackbox
middleboxes and distribute it to other replicas. These mechanisms can be
implemented in a number of technologies and are able to target both software
and hardware middleboxes. This state preservation can ensure the persistence of
state across failovers, regardless of source or technology, and can be distributed
to any number of replicas of identical or differing technologies.

e Generic state-recovery system This system is fast, non-modifying, high-
level and easily deployed and incorporated into existing technologies. It does
not require the replacement of any underlying infrastructure and can be scaled
to deploy and operate in a purely redundancy-based role or be fully incorporated
into VNF operations. It offers minimal overhead, supports hardware and
software redundancies and is easily reconfigured to be fit for purpose. Finally,
it supports a wide range of configurations and network layouts to maximise its
usability.

These contributions form the novel resilience framework. Its strength lies in its
high-level design, able to support different middlebox architectures for both software
and hardware. This allows it to adapt to all possible network configurations and user
setups.

1.6 Thesis structure

This thesis is structured into six chapters, with the following five detailed below:

e Background and related work

The background provides a discussion on the trend of how network functions
evolved, with their origins and progression, accompanied by the technologies
that supported them. Following this, it describes SDN and NFV and their roles
within this area. Next, the background goes into the topic of resilience, defining
it and providing examples of how each technology discussed so far handles
failures. It then goes on to review the related work on resilience approaches.
The chapter concludes by highlighting the gaps in existing research and the
work necessary to fill this hole.

10



Chapter 1. Introduction 1.6. Thesis structure

e Design

The design first establishes the motivations of this thesis, establishing the
arguments for the viability of combining software and hardware networks
together and how their respective traits may be exploited to better serve existing
infrastructure. Furthermore, the limitations of ASIC hardware commonly used
in middleboxes are clearly established, as is how software may be used to provide
stateful failover where it would otherwise be infeasible. From this argument,
a series of high-level design requirements and considerations based on these
requirements are established, serving as the motivating factors for how this
solution must be built. The design overview of both contributions of this thesis
is then discussed in detail before finally concluding the chapter to lead into their
implementations.

e Implementation

The implementation chapter describes in technical detail the explorations of
this thesis, created to achieve the stated goals of the design. The first section
discusses Middlebox Minions, or MiMi, the software-targeted side of this state
replication approach to middleboxes, as well as its scalable distribution and
generically applicable design. The second project, Katoptron, exploits NFV
to replicate state in blackbox devices using targeted filters and non-modifying
techniques to mirror it across physical replicas. Finally, it concludes with the
testbed design for the experimentation and evaluation built to determine the
effectiveness of these two contributions.

e Evaluation

The evaluation discusses the contributions of this thesis and its testing. Firstly,
it details the shared environment and elements of the different experiments,
including the tools and workloads. This is then followed up by the specifics of
the testing environments for each major project’s implementation, followed by
a breakdown of the testing performed. These details include the metrics being
evaluated, how they are being evaluated, and why. Finally, each section will
showcase the advantages of these approaches and demonstrate their suitability
as effective and generic solutions to ensuring stateful failover across unmodified
replicas. The chapter then concludes with any remaining explorations beyond
the major projects, including minor experimentation and secondary work.

e Conclusion
This chapter concludes this thesis, first reiterating the problem, followed by a
presentation of the contributions of this body of work. This will examine the
goals of the design and showcase how NFV is well placed to serve in auxiliary
roles in areas of networking where it might otherwise have struggled to see

11



Chapter 1. Introduction 1.6. Thesis structure

adoption. Middleboxes will continue to remain in place in enterprise networks
for the foreseeable future, but the growing presence of SDN and NFV can allow
for effective hybrid infrastructures without advocating for their replacement.
Finally, this chapter will conclude the thesis by presenting future directions this
work may take in terms of how it may expand the concept to both network
testing, SFCs, and other areas of networking.

12



Chapter 2

Background and related work

In the previous chapter, a summary of the problem area was presented, touching
on a large number of topics that require further expansion. The background of this
area covers a number of disparate topics, including middleboxes, the early history
of network development and the principles of resilience. This chapter will go into
much greater detail on these topics to lay the groundwork for understanding the
later arguments and their overall position. It is organised into six sections. The
first, section 2.1, provides definitions for terminology, technology and concepts used
throughout this thesis, also expanding on some defined in the glossary. Section 2.2
then opens the discussion on the topics at hand, setting up the following sections.
Section 2.3.2 delves into network functions, middleboxes, the end-to-end principle,
SDN, NFV and how these technologies evolved over time and their relationships with
one another. Section 2.4 then discusses the concept of resilience, its definition, history
and the types of resilience important to this thesis for VNFs and middleboxes. Finally,
the related work in Section 2.5 discusses relevant research within this specific domain,
ranging from historical to up-to-date approaches and how they shape the argument
in the subsequent chapter. The background then closes with a summary.

2.1 Definitions

To prelude the background discussion, a number of definitions must first be established
for the terminology used throughout this section and later areas of this thesis. This
section will be broken down into subsections, grouped by associated terminology.

2.1.1 Networking terminology

There are a number of technologies that this thesis will discuss, both directly and
indirectly, throughout the text. Firstly, a Network Function is defined by ETSI as

13



Chapter 2. Background and related work 2.1. Definitions

“a functional building block within a network infrastructure, which has well-defined
external interfaces and a well-defined functional behaviour” (N. ETSI, 2013). Their
history is detailed more thoroughly in Section 2.3.2. Software Defined Networking
(SDN) (Haleplidis et al., 2015) is an approach to network management that supports
the separation of the control and forwarding planes of network infrastructure via
standardised interfaces. It emerged in 2011 with the ForCES group’s OpenFlow and
was built as a way of modelling the operations of network functions in software.
This concept evolved into its own independent concept known as Network Function
Virtualisation (NFV) (White Paper, 2012). It is a paradigm that promotes the
implementation of network functions in software to be run on general-purpose server
hardware that can be instantiated wherever in the network as required without the
need for the installation of proprietary hardware.

2.1.2 Middlebox terminology

A middlebox is a physical or digital realisation of a network function, typically
implemented within router fabric in modern design, but for the majority of their
lifespan, they have taken the form of bespoke network hardware. For this thesis,
the term middlebox predominantly refers to these hardware solutions rather than
software, unless stated otherwise such as in other published work. In this form, the
middlebox is inexpensive, bespoke hardware used to enforce new network policies
through drop-in devices in the network. In brief, middleboxes are effective solutions
to the problem of establishing new network functionality, with simplistic architectures
and high packet processing speeds that employ TCAM and internal registers to allow
for stateful operations. They are discussed in more detail in sections 2.3.3 and 2.4.5.

2.1.3 Resilience terminology

Resilience in networking has many definitions, but for this thesis, we use the definition
“The ability of the network to provide and maintain an acceptable level of service in
the face of various faults and challenges to normal operation” (J. P. G. Sterbenz et al.,
2010). This term is used interchangeably and covers a wide range of topics, which
shall be explored in more detail in Section 2.4. This section will define the terms used
to refer to approaches to resilience. Redundancy is the inclusion of extra components
that are not strictly necessary to functioning in case of failure in other components.
This can take many forms, from additional links to spare middleboxes and routing
fabric. Failover is a procedure by which a system, upon detection of a fault or failure in
the area it is monitoring, transfers operations and/or traffic to a secondary area. For
example, upon detection of a failure in a middlebox, all traffic is rerouted to be sent
to a second redundant middlebox to bypass this failure. Failover relies on redundancy

14



Chapter 2. Background and related work 2.1. Definitions

Greybox

Open-source
VNFs

Binary VNFs

FPGAs

Vendor
middleboxes

DPUs SDN-enabled

hardware

PISA Binary/proprietary

software

Open-source Closed-source
(Whitebox) (Blackbox)

Figure 2.1: A Venn diagram of the degrees of openness present in both platforms
and network function implementations and where examples of these sit within this
framework.

to function, with redundancy being the practice of having redundant components and
failover being the practice of utilising it to ensure the continuation of operations.
Stateful failover is an extension of this practice to allow for the retention of state
across instances rather than its loss at the original point of failure. Resilience against
all forms of disruption or failure is key to operating networks, especially those that
provide a service or facilitate business with customers. It is considered such a vital
aspect to ensuring continued failure-free operations that guaranteeing an expected
level of service, both in performance and prevention of disruption, is a negotiable
arrangement. A service level agreement, or SLA, is a contractual agreement between
a customer and a service provider that outlines what services will be provided and
defines the acceptable range of performance and availability of those services, with
any breaches made to this expected guarantee incurring heavy fines or penalties for
the company and the customer.

2.1.4 White, Grey and Blackbox network devices

The broad definition of a middlebox effectively encompasses all possible network
functionality beyond routing, including both its physical and virtual implementations.

15



Chapter 2. Background and related work 2.2. Opening

For this thesis, middlebox will typically refer to these physical implementations,
although this term is not fixed among other bodies of work such as those discussed in
the related work. This is due to the term middlebox predominantly being a definition
found in standards and literature and not typically used in real-world contexts where
the network function names themselves are used instead; for example, a firewall
or gateway. The terms white, grey and blackbox used throughout the rest of this
thesis refer to the level of openness that a middlebox supports. A whitebox is an
open-source or programmable middlebox implementation, typically taking the form
of virtual instances or VNFs. A blackbox is the opposite of a whitebox: closed-
hardware or software implementations that abstract all internal operations and state,
typically sold and distributed as products. These generally take the form of hardware,
intended as unmodifiable drop-in solutions to enable a network function, but also
appear in the form of binary pre-compiled software packages. Finally, greyboxes are
configurable hardware or software implementations of a middlebox that are neither
open-source nor closed solutions, generally offering either output, programmability
or some measure of access and control. Examples that fall under these loose terms,
detailed later in the thesis in Sections 2.3.3 and 3.1.2, are presented in Figure 2.1.
Blackboxes are the focus of this thesis, being the hardest of the possible types of
network function implementation to determine their internal operations and thus
replicate their behaviour and internal state.

2.2 Opening

As stated in the introduction, the goal of this thesis is the establishment of accurate
and efficient resilience mechanisms for blackbox middleboxes. Their blackbox nature
and ubiquity in enterprise and commercial networks is especially problematic to their
resilience against loss of state, with state transfer and preservation rarely possible
and internal recovery systems ad-hoc and uncommon (Sherry, Gao, et al., 2015). The
in-transient problems of middlebox usage, like their lack of standardisation, have no
singular root cause but occurred naturally over time as they evolved to accommodate
the needs of the networking industry at the time (Brim et al., 2002). As networks
continue to grow and become more complex beyond what current hardware designs
are able to achieve, industry and academia have turned to the growing adoption of the
paradigm of NFV for the potential of its flexibility and elasticity. This brings with it its
own share of issues regarding performance and reliability, limiting its adoption in real-
world networks until the last few years, and even then only in areas where performance
is not critical, with middleboxes remaining entrenched. An area of research has
developed that has attempted to tackle this issue, mitigating the downsides of
VNF use, such as its lesser performance or reliability, or creating new resilience
techniques or mechanisms in an effort to motivate its use over blackbox hardware.

16



Chapter 2. Background and related work2.3. Network Functions and middlebozes

This operational reality has given rise to hybrid networks, utilising NF'V and physical
networks together in conjunction to minimise replacing existing infrastructure. By
incorporating software into secondary roles for resilience purposes, greater network
resilience could be achieved without sacrificing performance and potentially prevent
middlebox ossification in the future. The scope of this work relies on three networking
paradigms: middleboxes, network resilience and NFV. To familiarise the reader with
the challenge of this goal, we must establish these fields and how this work fits under
each umbrella. Firstly, we shall discuss the history of the Internet and its initial
design principles and how they failed, giving rise to the concept of network functions
and their two implementations: VNFs and middleboxes. We shall also briefly discuss
SDN in this section, the precursor technology to NFV that defined clear APIs, and
the means to realise network functions in software. With these concepts established,
we shall discuss resilience and the relevant methods in the domain of middleboxes and
VNFs, ending finally with related work that presents related efforts and research in
this domain and how it compares to the work of this thesis.

2.3 Network Functions and middleboxes

Network functions first arose in the widening adoption of the Internet as its use began
to propagate into the public sphere in the early 90s (Leiner, Cerf, D. D. Clark, Kahn,
Kleinrock, Lynch, Jon Postel, Larry G. Roberts, et al., 2009). The growth of traffic
as well as the number and types of users outside of research quickly made evident the
need for certain features that could not be supported by existing protocol design and
specifications. These came to be known as network functions, the very first of which
being packet filters, the precursors to firewalls (Ingham et al., 2002). This section
will discuss a number of relevant topics, starting with the history of Internet design
principles and the end-to-end principle in section 2.3.1 and a description of network
functions in section 2.3.2. This is then followed by middleboxes and their issues, along
with their early history and how they first came about in Section 2.3.3. This section
will explore the history of network functions and how they came about, as well as
their later hardware manifestations in the form of middleboxes and the issues that
plague them. This is followed by summaries of both Network Function Virtualisation
in Section 2.3.6 and Software Defined Networking in Section 2.3.5, as well as their own
attempts to fulfil the roles currently occupied by bespoke hardware and the problems
that stem from their own use.

2.3.1 Internet-design principles

In 1981, Saltzer, Reed and Clark established the first definition of the end-to-end
principle of network design (Saltzer et al., 1984), motivated by the need for a formal

17



Chapter 2. Background and related work2.3. Network Functions and middlebozes

specification of the manner in which two end-points must act to communicate across
a networked space. The definition is as follows: “The function in question can
completely and correctly be implemented only with the knowledge and the help of
the application standing at the endpoints of the communication system. Therefore,
providing that questioned function as a feature of the communication system itself
is not possible.” This is known as the “end-to-end” argument and specifies that the
communication system alone cannot be the sole means by which reliability guarantees
are enacted for endpoint communication. Features can be implemented in the network
at intermediary nodes, but they cannot guarantee end-to-end correctness alone. This
argument was formed in counter to the general perception that reliability measures
within a communication system are perceived as an engineering trade-off regarding
performance rather than a requirement for correctness. It has been re-interpreted
many times since its inception, with many definitions of the end-to-end argument
now in existence, but for this thesis, its role on implementing resilience is the most
important.

Reliability is necessary for maintaining performance, but it quickly becomes
difficult to determine where to establish resilience mechanisms, with trade-offs both
at the lower level (the end points) and higher (communication system). The origins of
this argument are found in the earlier works of academics when first establishing both
security and reliability across expanding networks, such as the “wait” message of the
MIT Compatible Time Sharing System upon sending any command as a questionably
useful delivery acknowledgment (Corbatd, 1963). This network was notably unreliable
and offered little to no guarantees beyond this simple message. Later arguments began
with the need for encryption and were significantly expanded on by later work (Diffie
et al., 1976, Kent, 1976, Needham et al., 1978). Despite this well established principle,
the pursuit of performance slowly led to the rise of new functionalities implemented
within the network itself. These came to be known as network functions, and by
extension, their later incarnation middleboxes.

2.3.2 Network Functions

A network function is defined by the IETF and ETSI as “a functional building block
within a network infrastructure, which has well-defined external interfaces and a well-
defined functional behavior” (N. ETSI, 2013). Network functions encompass a wide
array of functionality within modern networking, spanning essentially all activity
beyond routing and can be implemented in both software and hardware. Their
predecessors originated in the mid-80s as software incorporated into user systems
built to serve singular roles within the growing Internet infrastructure. One of the
earliest examples of this are firewalls, first established in 1987 (Ingham et al., 2002)
as simple packet filters on end-user systems. These mechanisms were necessitated

18



Chapter 2. Background and related work2.3. Network Functions and middlebozes

by a growing need for security in the previously open approach to networks, where
a level of trust was considered sufficient within the previously smaller community.
As these networks grew, the potential for malicious traffic arose and necessitated
the need for security, establishing the first packet filtering techniques at the router
level. This need for security shifted its implementation from a user level on a per-
system basis, where each system may have inconsistent implementations of policies, to
network gateways at the router level to maximise its coverage of incoming traffic and
ensure consistency. It suffered from its inability to keep awareness of the established
sessions, minimising their effectiveness at stopping long-term or distributed attacks,
establishing the first need for persistent state awareness and storage in Julkunen et al.,
1998. This motivated the separation of this new functionality into its own hardware
from the routing infrastructure with the term “middlebox” defined by Lixia Zhang in
1999 (Brim et al., 2002).

2.3.3 Middleboxes

Middleboxes are the physical implementations of network functions and are widely
used by networks to enable new functionalities, taking the form of devices such as
WAN optimisers, firewalls, IDS and proxy caches (Z. Wang et al., 2011b, Sherry
and Ratnasamy, 2012). As a broad summary, they are formed of a configurable
pipeline of processing stages, divided into the individual steps of parsing, lookup and
functions, demonstrated in Figure 2.2. The internal architectures are discussed in
more detail in Section 3.1.2. Beginning in the late 90s to the early 2000s, companies
such as Cisco began to sell the first commercially available network functions in
hardware as products (Leiner, Cerf, D. D. Clark, Kahn, Kleinrock, Lynch, Jon Postel,
Lawrence G. Roberts, et al., 1997, Feamster et al., 2014). These devices became
increasingly popular within enterprise and cellular networks (Z. Wang et al., 2011a)
for a number of reasons, the chief of which was their high performance to low cost
ratio. As networks grew and became more complex, newer functionalities were
necessary to ensure their continued expansion, such as load balancing and traffic
inspection. Middleboxes became the primary means by which these new features
were implemented, purchased as complete units that were easily inserted into existing
infrastructure and configured individually. Their simplistic architecture and ease
of deployment (bump in the wire) are, in part, intended to make these devices
replaceable. Treated as a product first and foremost, companies will replace the
boxes they use as their needs change. As hardware-accelerated devices, their packet
processing speed is an order of magnitude faster than the software equivalent. Their
many benefits shaped the design of these network infrastructures, but they are not
without their flaws.

19



Chapter 2. Background and related work2.3. Network Functions and middlebozxes

[Frgrammase || conisuss |

H

:

o =] 1
3 a :
B oAl H
a? o % - |
SZ SE Special |}
cw %3 Functions | !
Q =] 1
=4 a Hash, ECMP, | !
Mirror !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fully Shared MMU

| i

| :

o o 1
3 n 3 n et g 3
£3 £z P Packet Buffer g !
3 £% g
E = 31|
a ] i % 7 = -] 1
Multicast Replication B

_____________________________________________________________________________________________________________

Figure 2.2: Broadcom Trident 3 Internal Architecture Diagram (Arcilla et al., 2019)

2.3.3.1 Middlebox issues

There are a number of issues associated with their use, both for the end-user and
the wider network infrastructure. To begin with, there is no singular universal
model for their design, operations or API agreed upon by vendors and academics.
There have been numerous attempts to define a standard in the past, such
as RFC 3234 (Brim et al.,, 2002 and its high-level definition or the work of
organisations such as the ForCES group (L. Yang et al., 2004b). More recent
efforts like ETSI’'s NFV and PNF architectural frameworks (ETSI, 2012) and
IETF’s OpenConfig YANG models (Bierman, 2011, Bierman, 2018) have seen
greater levels of adoption, but for the immediate future there is no universal
deployment or configuration method shared between companies and their products,
creating a significant combined issue of maintenance and operation as demonstrated
in a survey of middlebox deployments (Sherry and Ratnasamy, 2012). The
array of potential middleboxes and their differences require companies to maintain
dedicated management; misconfigurations make up for 33% of faults that occur
with middleboxes, with other issues including bad operation policies borne from
differing syntax from box to box and poor interoperability (Potharaju et al., 2013)
showcasing this need. For other networks and traffic, these devices break the end-to-
end principle. The nature of the interference is dependant on the middlebox, ranging
from modification of headers or the dropping of packets in accordance with security
policies to modifying header and packet contents for traffic shaping, DNS policies and
caching preferences (Detal et al., 2013).

This interference can cause issues with other areas of networking and has heavily
contributed to a level of ossification in hardware, not only because companies find

20



Chapter 2. Background and related work2.3. Network Functions and middlebozes

them difficult to remove for performance and maintenance purposes but also due to
their simplistic design, which minimises the expansion of existing Internet protocols by
baking assumptions about protocol semantics. Work by Honda et al., 2011 evaluates
the range at which middleboxes interfere and even drop TCP extensions as mangled
packets or replace fields that do not conform to its expected traffic. The extent
of their use is substantial, despite the range of issues they incur. Their numbers
reportedly rival those of routers within enterprise networks, with a survey (Sherry and
Ratnasamy, 2012) across 57 networks varying in size from under 1K hosts to more
than 100K, indicating an average of 1946 middleboxes to 2850 L3 routers in major
networks. Another study that probed for the presence of middlebox deployments
observed hundreds across more than 1000 ASes (S. Huang et al., 2017). Middleboxes
are low-cost per unit, but the sheer volume of middleboxes necessary to deploy a
feature across a network typically scales in the thousands (S. Huang et al., 2017),
magnifying the problem drastically.

Furthermore, this has created a unique problem: despite their intention as
replaceable hardware, easily swapped in and out where necessary, networks instead
have become so reliant upon these devices that they are fundamental to their
business models, ossified both on a per-box basis and an industry-wide problem. The
variance of products dissuades replacement of a line of middleboxes, as it necessitates
replacing an entire line at once, incurring significant costs for both hardware and
new operation/maintenance training for engineers. As a result, middleboxes are
simultaneously replaced too often and not often enough. Their direct interference with
packets that pass through them and widespread use has further contributed to the
ossification of protocols through the baked-in assumptions they enforce, breaching the
end-to-end principle fundamentally. This was in large part motivated by the pursuit
of performance, shifting packet processing and functionally onto the communication
medium rather than the end points and creating this wide variety of issues. In short,
middleboxes are expensive and difficult to operate, maintain and replace, but they are
utterly necessary to guarantee expected levels of performance and retain a competitive
edge.

2.3.4 Early history of programmability attempts

In the early 90s as the Internet began to grow, concerns over its expandability
and protocol ossification had already begun to grow. Several radical alternatives
were proposed, the key among them being the concept of programmable networks.
Programmability would enable a level of flexibility not present in network design
at the time, with the earliest work focusing on the switching fabric itself. The
Devolved Control of ATM Networks (DCAN) (Merwe et al., 1997, Rooney, 1997)
was one of the first that explored the separation of the control and management of

21



Chapter 2. Background and related work2.3. Network Functions and middlebozes

the switches from the hardware itself via an external device. A number of initiatives
established themselves with this new concept of networking in mind, including “Global
Environment for Network Innovations” (GENI) (Elliott, 2008), “Future Internet
Research and Experiment Initiative” (EU FIRE) (Gavras et al., 2007, Serrano et al.,
2022). The IETF established an early approach to label/tag switching with the
General Switch Management Protocol (GSMP) (Worster et al., 2002) that separated
the physical switch into multiple partitioned virtual switches with a unified controller,
able to program labels and alter the directing of traffic. This can be considered a
precursor to protocols such as MPLS, now widely used today.

One particular project relevant to the history of SDN was the concept of “active
networks”. Active networks proposed that networking devices should be a collection of
resources accessible via an API, their functionality remotely programmable (Feamster
et al., 2014). Switches and routers could be programmed remotely through bespoke
network traffic that could reprogram the operations of the switching fabric during
operation. The motivations for active networks mirror those of SDN and NFV, such
as the replacement of middleboxes with virtualised and controllable NFs (Tennenhouse
et al., 1997) that can be operated and configured from a centralised location. Active
networks as a concept never saw any significant adoption beyond these initiatives,
primarily over a lack of motivating problems it could directly solve that did not
already possess alternatives with significantly lower barriers for entry (Feamster et al.,
2014). The concepts established by active networking, such as the separation of
the control and dataplane (L. Yang et al., 2004a), the centralised control of every
network element (Caesar et al., 2005) or virtualisation of ad-hoc hardware solutions
(middleboxes) remained. Their potential benefits on the Internet and networking in
general motivated smaller and more focused initiatives to form in pursuit of these
goals.

2.3.5 Software Defined Networking

Software Defined Networking (SDN) is a precursor technology to NFV, first estab-
lished as a means by which network functions could be realised technically, enabling
the remote operation, teardown and startup of VNFs alongside the control of the
rest of the network infrastructure. It is defined by the IETF as “A programmable
networks approach that supports the separation of control and forwarding planes via
standardized interfaces” (Haleplidis et al., 2015), and the ONF as “A network in which
the control plane is physically separate from the forwarding plane, and a single control
plane controls several forwarding devices” (Larry Peterson, Carmelo Cascone, Brian
O’Connor, Thomas Vachuska, and Bruce Davie, 2016). It was created as an attempt
to model VNF functionality, allowing for their creation and utilisation across a wide
array of generic hardware and SDN-enabled switches. From there, the concept evolved

22



Chapter 2. Background and related work2.3. Network Functions and middlebozes

APPLICATION LAYER |

Business Applications

CONTROL LAYER SDN

Control '
Software Network Services

Control Data Plane interface
(e.g., OpenFlow)
INFRASTRUCTURE LAYER

Network Device Network Device Network Device

Network Device Network Device

Figure 2.3: Layers of the Software-Defined Network Architecture (Tank et al., 2017)

to define an architectural model that enabled control of the network and its operations
by dividing the logic of the network infrastructure into a management /control plane
(exposed via an API to be accessible to network operators) and the dataplane (the
forwarding infrastructure), presented in Figure 2.3. Emerging in the 2000s, the
IETF ForCES group established the concept of separating the control plane from
the forwarding plane but saw little uptake outside of small-scale projects in academia
like “LOad-Balancing over UnStructured networks (LOBUS)” (Handigol et al., 2009)
and Ethane (Casado et al., 2007). This changed in 2011 with the establishment
of the Open Networking Foundation (ONF); a consortium established to promote
SDN through OpenFlow (McKeown et al., 2008a), one of the first communication
protocols to standardise an interface between the two planes with support from
vendors, establishing OpenFlow-enabled switches whose forwarding logic could be
operated remotely through a well-defined API (McKeown et al., 2008b). OpenFlow
presented a realistic means by which network functions could be programmatically
redefined within a limited scope of flexibility. OpenFlow became one of the most
popular industry-supported SDN protocols with a wide range of supporting hardware
and bespoke research roles, able to be utilised to realise VNF's in its language. Major

23



Chapter 2. Background and related work2.3. Network Functions and middlebozes

cloud operations, like Google, have adopted it as the basis of several internal network
infrastructures including B4 (Jain et al., 2013) and Jupiter (Poutievski et al., 2022).
SDN does not play a significant role within the body of work that forms this thesis
under its modern definition, but it is important to cover as it represents a stepping
stone in the evolution of the concept of programmable networks and how they have
interacted with middleboxes over the last 30 years of networking. This timeline can
be loosely defined as beginning in the early 90s with projects such as active networks,
followed progressively by ForCES, the emergence of OpenFlow as the dominant SDN
technology and finally network function virtualisation.

2.3.5.1 SDN architecture

OSI Model SDN-SDR Model
[ Application ] a =
s\ sub-layer
= 5[  Presentation | Application
=7 blayer Layer
= a sublay )
< Session sublayer
g ) N S
Transport Layer . / ‘\'
Network Layer . SDN
s Logical Link Control ) .
| el
39 sub-layer ) \_ J
&R ; ) & ™
B Medium Access .
a . Control sub-layer | SoR
Physical Layer .

B son [ sbr

Figure 2.4: Mapping SDN and SDR to the OSI model (Niknami et al., 2023)

To better understand the role of SDN and how it shaped modern thinking
regarding programmable networking, the structure of the SDN architecture and how
it works shall be discussed. In principle, the SDN paradigm divides the operations of
the network into discrete planes via abstractions, forming three separate layers: the
data, control and management planes. The data plane is comprised of the physical

24



Chapter 2. Background and related work2.3. Network Functions and middlebozes

hardware itself, built in such a way that its operations can be clearly defined and
operated through a southbound interface via the control plane. Its functions include
header parsing, extraction and packet operations. The control plane dictates the
logic of the device itself and how it will employ these functions on traffic received
for the purposes of actions like routing and security. Some define a third layer,
in-between what has been defined as the control and dataplane so far. This third
layer takes the place of the control plane, with the one defined above renamed the
management layer, and provides the abstraction interfaces for enabling control of
the hardware (Zilberman, Watts, et al., 2015). This third layer is more commonly
referred to as the Networking Operating System (NOS) and essentially fulfils the role
of a translation layer for non-standardised hardware interfaces and SDN. An early
example of a NOS is Ethane (Casado et al., 2007), with later works mostly adopting
OpenFlow as the de-facto standard protocol (McKeown et al., 2008b) for controllers
such as NOX (Gude et al., 2008), as well as hardware-specific implementations such as
Broadcom’s OF-DPA (OpenFlow data-plane abstraction (OF-DPA): Abstract switch
specification 2014) and Openvswitch (Pfaff et al., 2015). SDN’s planes do not directly
correspond with layer models such as OSI, but SDN’s scope can be broadly isolated
to the link, network and transport layers, demonstrated in Figure 2.4. The scope that
it may cover however can vary wildly between technologies, however.

Most SDN implementations utilise flow-centric logic, associating sequences of
packets with matching headers and fields such as origin and/or destination address.
What identifies a flow and how it is acted upon by the network device can be changed
and is dictated by the control plane and enacted upon by the data plane respectively.
These flows are matched against entries in a table known as the flow table, which
pairs packets to match against the respective action to perform. For example, a
packet received by the device that matches an existing flow table entry, to drop all
packets from that source MAC, will be discarded. A similar packet from the same
source, but matching a more specific rule that further states those going to a particular
TCP destination port are to be forwarded would not be discarded. Rules are matched
in order of specificity, with wildcard rules able to be established for those that fall
within a specified range. SDN further enables traffic received that does not match
against any existing flow table entries to be used to create new entries.

2.3.5.2 SDN in production networks

Much like NFV, SDN has been growing in popularity both in academia and industry
for its potential to enable fine-grain control over traffic within the network. This
is best demonstrated with deployment methodologies such as Panopticon (Levin et
al., 2014) wherein only a subset of key switches in the network are replaced with
SDN-enabled hardware, allowing for a significant degree of control and observation

25



Chapter 2. Background and related work2.3. Network Functions and middlebozes

over flows with minimal infrastructure replacement. This is especially relevant to
VNF's when discussing Service Function Chains (SFC); logically-defined pipelines of
network functions, typically beginning at the ingress of a network. These NF's are
not physically placed in a chain, but instead traffic is directed to the next link. With
the potential to deploy VNF's anywhere within the network, traffic steering protocols
are required to properly utilise this flexible approach (Hajar et al., 2018) or similar
routing policies such as Flowtags (Fayazbakhsh et al., 2013) where traffic tagging can
allow for both flow tracking and network-wide policy enforcement.

OpenFlow is not the only SDN protocol currently supported in industry; for-
warding plane programming languages such as P4 (Bosshart et al., 2014) and kernel
modules such as Extended Berkeley Packet Filters (EBPF) expand beyond the
rigid definitions of current networking design to allow for both target and protocol
independence. Other companies prefer to maintain their proprietary approaches
outside of the ONF and IETF. These proprietary approaches tend to be specific to
each company’s product use cases, such as Cisco, which extends the concept of SDN
into an IoT platform with their Internet of Everything (IoE) through which all of
their devices are integrated. This includes the Typhoon, QFP and their development
environment onePK (Cisco, 2013). The degree to which this environment is supported
by the ONF and other hardware outside of their respective companies varies from
product to product.

2.3.6 Network Function Virtualisation

Motivated by the multitude of issues associated with these blackboxes and the
potential flexibility and elasticity of software, both vendors and industry pursued
significant research in the field of softwarisation of network functions, culminating in
the proposal of Virtualised Network Functions (VNF). VNFs were first proposed by
the ForCES group in 2004 (L. Yang et al., 2004b) as part of their proposal to define a
framework and set of protocols for the separation of the control and forwarding planes
into discrete elements that could communicate with one another and be rendered as
totally separated physical or virtual implementations. ETSI defines Network Function
Virtualisation (NFV) as “the implementation of network functions in software that
can run on a range of industry standard server hardware and that can be moved to,
or instantiated in, various locations in the network as required, without the need for
installation of new equipment.” (White Paper, 2012). A virtualised network function
is a softwarised NF hosted on generic processing hardware that serves a singular role
akin to its hardware equivalent. As software, the flexibility of VINFs is substantially
greater, allowing them to be modified, created and destroyed to meet the needs of the
user. This early proposal establishes many of the later concepts of virtualisation for
scaling and redundancy purposes as well as orchestration and control of the forwarding

26



Chapter 2. Background and related work2.3. Network Functions and middlebozes

elements of a network from a logically centralised point.

There was little adoption in 2004 at the time of this proposal over concerns of the
unreliability of softwarised forwarding elements versus the growing market for bespoke
hardware. The desire for softwarisation remained, however, for the potential flexibility
and cloud elasticity offered, especially as the flaws of middlebox usage became more
readily apparent, limiting networks from protocol expansion and new technologies.
In 2012, a consortium of telecom companies published a white paper (White Paper,
2012) introducing NFV, motivated by the same reasons for removing this increasingly
ossified technology to allow for innovation in the industry. With this white paper,
they announced the establishment of a Industry Specification Group (ISG) under
ETSI to establish a formal definition of VNFs beholden to a standards body for
industry use and development. Since then, a number of standards and definitions
have been created regarding NFV and its usage, including its management (ETSI,
2014a), architecture (ETSI, 2012) and reliability requirements (ETSI, 2016).

2.3.6.1 NFV Benefits and Drawbacks

The advantages of NFV described in this formal introduction include reducing
OpEx/CapEx costs, faster innovation and greater flexibility in infrastructure design,
especially in regards to redeploying in response to faults and traffic requirements.
With this recognition of its potential advantages, the call to action also established
the challenges faced by NFV that needed to be resolved if it is intended to
replace the existing infrastructure of middleboxes. These challenges included the
recognised performance trade-off shifting from proprietary hardware to general-
purpose processors, as well as the reduction in security, resilience and network stability
by stepping to open software from closed devices. The white paper proposed the use of
appropriate hypervisor techniques and any possible software innovations that followed
to minimise this increased latency. The purpose of this industry-led standards body
was to standardise deployment and accessibility mechanisms for VNF's and prevent the
issues that plagued the market-driven middlebox approach, and ensure compatibility
across all future platforms. With organisations such as BT, Orange, China Mobile,
AT&T and more pushing for their use, VNFs have rapidly gained in popularity over
the last decade, with the industry increasingly integrating the technology into their
product lines (Nokia, 2022). There are limitations to the performance of virtualisation
outside of simple processing speeds. Parallelisation is often touted as a means by which
this gap can be closed, but potential conflict over shared resources, such as CPU
thrashing limits, scaling to the number of logical cores of the host before performance
loss exponentially rises (C. Wang, Spatscheck, Gopalakrishnan, and Applegate, 2016).
Placement and capacity limits exacerbate this issue, preventing naive scale-up and
necessitating careful evaluation of both the resource use and operations of VNFs and

27



Chapter 2. Background and related work 2.4. Resilience

their hosting platforms to maximise performance (Cao et al., 2015).

The distribution of operations is non-trivial, requiring the use of additional
resources such as load balancing to ensure consistent distribution and minimise
disruption. While virtual and physical performance have typically remained orders
of magnitude apart, modern processing hardware has allowed some deployments in
industry for virtualised instances, such as at the base of mobile towers for monitoring
and control roles—roles where their performance is non-critical but operational costs
can be cut where hardware is not strictly necessary. Outside of these non-critical roles,
other companies have pursued offloading the software onto programmable hardware
such as FPGAs, as is the case with Nvidia’s Cumulus (IDC, 2021) or user-space data
plane programming like Intel’s DPDK (L. Foundation, 2015) or Click (Martins et al.,
2014), in an effort to close this gap. Despite this, production networks hesitate to
replace performance-critical hardware with software amidst known concerns about
performance and stability issues, especially given the scale and volume at which
middleboxes are currently deployed.

2.4 Resilience

To discuss the gap in research that this thesis targets, we must first address the field of
resilience itself and why it is important to networking, as well as detail why this subject
area is difficult and worth pursuing. Resilience is an extremely wide field in regards to
computer systems and even networking, and it can be difficult to define succinctly. It
is an umbrella term that holds many independent concepts, such as design principles,
technologies and properties of systems, many of which are not directly relevant to this
thesis. For this body of work, the definition of resilience used and what it means to
networks and systems is derived from the work of Resilinets (J. P. G. Sterbenz et al.,
2010) and detailed in Section 2.1.3, and forms the basis of this thesis” approach to
resilience as a whole.

Disruptions and faults come in many forms, from individual hardware failures and
user error misconfigurations to malicious attacks and even regional disasters such as
earthquakes. It is an important and often vital part of system design, but difficult to
effectively and efficiently achieve with the size and complexity of modern networks,
especially with the level by which they are now depended upon. Computer networks
and their growth from individual research projects into large interconnected systems
created a design principle born of necessity: the primary assumption of all network
design is that the system is fallible and failure is guaranteed with time. The modern
Internet protocol stack assumes that these failures will occur and has been designed
in such a way as to enhance the resilience of service at every level, from live pathing
identification at the link-layer level in case of broken or changing connections to the
transport layer TCP protocol for guaranteeing payload delivery. This mindset has

28



Chapter 2. Background and related work 2.4. Resilience

led to the creation of a significant body of techniques and research into effective
resilience strategies, including but not limited to: redundancy (Lyons et al., 1962),
service migration (C. Clark et al., 2005), survivability planning (Ellison, Fisher,
Linger, Lipson, T. Longstaff, et al., 1997), segmentation, multi-routing (Hopps, 2000),
graceful restarts, fast-reroutes (Bernard Fortz et al., 2000, Li et al., 1998) and so on.
These concepts will be touched upon, with those relevant to this thesis expanded in
more detail.

2.4.1 History of resilience

The beginnings of this resilient design mindset can be first observed with the earliest
research into computer networks with ARPANET. Originally, very early computer
communications were modelled after the existing telephone networks using circuit-
switching, which established a link between two end points that remained dedicated
for the duration of the connection. This approach was considered highly vulnerable
to disruption, especially in the face of large-scale disasters. The Advanced Research
Projects Agency Network (ARPANET), first established in 1969 as a network bridge
between four geographically separated terminals at research centres and universities,
was one of the first realisations of a packet-switched network. Motivated more by
the desire to maximise bandwidth use and minimise latency (L. Roberts, 1978),
its enhanced resilience against disruption became evident as the network began to
grow in size (J. M. McQuillan et al., 1977). Pathless communication allowed for
two approaches to emerge: connectionless and connection-oriented communications,
or virtual circuits and datagrams, respectively. Virtual circuits, used in ARPANET,
required a connection to first be established between two end points, while datagrams
transported packets independently. From there, the development of networking
protocols grew rapidly, resulting in a “protocol war” between competing concepts,
with ARPANET just one of a multitude of projects emerging during the 70s and
80s, conflicting most notably with X.25 (Rybczynski, 2009). In the 1980s, TCP/IP
emerged as two conjoined protocols governing connectionless and connection-oriented
networking, respectively, with UDP following on top of IP for connectionless routing.
Its association with ARPANET heavily contributed to its becoming the standard
across all interconnected networks in 1983 (J. Postel, 1981), subsuming X.25 and other
competing protocols. As awareness of computer networks grew, Computer Science
Network (CSNET) was established in 1981 to support all systems that could not
directly interact with ARPANET, which was by this stage a governmental project.
This network rapidly outpaced ARPANET (which was shut down in 1985), ballooning
from three initial sites to eighty-four in three years. The rapid growth of CSNET and
projects like it made it clear that simple fault tolerance at the message passing and
hardware level was insufficient to handle the potential number of components within

29



Chapter 2. Background and related work 2.4. Resilience

a network as well as the newly discovered risk of malicious activity (Ingham et al.,
2002) as previously discussed in Section 2.3.2. By 1989, National Science Foundation
Network (NSFNET), the successor to CSNET, gave rise to the first ISP, and in 1991,
the removal of access restrictions from purely public-funded organisations and research
into commercial use established what would become the Internet.

The rapid rise in the size and complexity of these network projects leading to
the early Internet in turn gave rise to new concepts of resilience as their necessity
became apparent to ensure the continued operations of the network in the face of a
wide myriad of disruptions. These concepts include, but are not limited to, security,
fault tolerance and survivability planning. Each of these can then be broken down
further into the means by which they are achieved, such as redundancy or high
availability. Survivability planning (Ellison, Fisher, Linger, Lipson, T. A. Longstaff,
et al., 1999) alone has a significant volume of literature that ranges from the principles
of survivability (J. P. Sterbenz et al., 2002) to regional failure modeling (H. Yu, Qiao,
Anand, et al., 2010, H. Yu, Anand, et al., 2011) to protecting critical infrastructure
from attacks (Buldyrev et al., 2010, McDaniel et al., 2009, D. Xu et al., 2004). Another
example can be demonstrated in the evolution of traffic pattern handling. Beginning
with ARPANET), early routing protocols adapted to traffic fluctuations but caused
unexpected poor performance (J. McQuillan et al., 1980), motivating the concept
to evolve instead towards controlling the distribution of the traffic instead. This
concept, known as “traffic engineering” (Bernard Fortz et al., 2000), has propagated
many strategies in the last fifteen years, such as weighted links (B. Fortz et al., 2002),
routing strategies (?7?), MPLS-aware protocols (Elwalid et al., 2001) and burst traffic
adaptation (H. Wang et al., 2006). The growth of networks and their increased reliance
on all factors of society, especially critical infrastructure, have radically increased the
level of research and development on ensuring networked systems are resilient in the
face of disruption. This section will break down the details relevant to this body
of work, including the resilience framework used (Figure 2.5), the types of failure
that must be contended with, and the bodies of research concerning both VNF and
middlebox resilience.

2.4.2 D?R?+ DR Framework

There are many surveys (Cholda et al., 2007) and academic frameworks for defining
resilient design (Vlacheas et al., 2011), the challenges it faces (Cetinkaya et al.,
2013) and even what resilience itself can mean (J. P. G. Sterbenz et al., 2010).
Each attempts to establish the concepts that fall under the term resilience and the
interactions between them. These definitions of what resilience might mean differ
primarily due to what they are targeting. For this thesis and its work, its approach
to resilience is motivated by the D?R? framework. First established by ResiliNets in

30



Chapter 2. Background and related work 2.4. Resilience

2005 (David Hutchison, 2015), it stands for “Defend, Detect, Remediate, Recover”
and “Diagnose, Refine”. Created to fill a perceived gap in existing research, the
framework serves to provide a systematic view of the resilience of the network as a
whole. It is derived from four axioms:

Diagnose

Defend

Figure 2.5: The ResiliNets Strategy framework, formed of two cycles D?R? + DR,
represented as a cycle of its steps

1. Faults are inevitable
Failures will occur at all levels of the network and cannot be prevented, only
mitigated and challenged. Systems are not infallible and networking is an
especially vulnerable field due to its size and complexity.

2. Understanding normal operation is necessary
The remediation and recovery mechanisms, as well as those for the prevention of
faults and failures, must be designed with the understanding of how the system
is intended to operate during failure-free scenarios.

3. Expectation and preparation for adverse events and conditions is
necessary

31



Chapter 2. Background and related work 2.4. Resilience

To plan defence, the potential challenges that the system will face must be
understood. These can be predicted from an awareness of similar systems and
past events, as well as observed potential vulnerabilities.

4. Response to adverse events and conditions is required for resilience
The immediate response to adverse events is known as remediation within this
framework; the immediate actions taken to mitigate the impact of the event,
but not necessarily resolve it. A stop-gap solution to prevent total failure or
system degradation, allowing engineers time to resolve the adverse event and
the system to recover fully.

At a high level, the framework defines a resilience strategy in the form of a loop,
as depicted in Figure 2.5. This loop consists of two separate loops, one encapsulating
the other. The first loop, or “Defend, Detect, Remediate, Recover”, is the strategy for
resolving failures when they occur. The core loop represents the passive day-to-day
operations of the network, defending it from faults and failures using strategies such
as redundancy and fault-tolerant design. In the event of a failure however, the control
loop then transitions to the centre ring. These represent the active deflences and
follow the steps by which to resolve whatever problem has occurred. The final outer
ring is the state of the system once the fault is over and the steps are followed. The
framework works as a cycle between these four quadrants, with the system defending
from faults and failures by default until an error is detected, upon which remediation
steps are taken to mitigate the impact of this fault before being fully recovered from
the incident. This cycle is followed by the outer loop, Diagnose and Refine, referring
to the determination of the cause of the fault and the refinement of both the system
and the recovery strategy.

It was developed with the intent of ensuring the resilience of a network was clearly
established and planned from the beginning, rather than a patchwork of mechanisms
that are not coordinated or intended to operate in tandem. Resilience research can
typically be labelled as a stage of the two loops, e.g. refine (H. Yu, Qiao, J. Wang,
et al., 2014), detect (Sampaio et al., 2018) and defend (Belyaev et al., 2014). The
work of this thesis falls within the remediation cycle of this framework and provides
several reasons for our perception of both faults and related work, as well as the
reasoning behind our approach with NFV as a viable alternative and addition to
physical hardware. Expanding on the stage of the cycle that this thesis falls into,
this section will detail what remediation is and how it applies. Remediation is the
step following the detection of an adverse event or condition in the system, where it
attempts to minimise or remediate the impact of this event. This differs from the
recovery stage, which follows remediation, where the problem is resolved. Instead,
the problem is active and identified, with initial steps taken to effectively dampen
its negative impact. An example of this could be described by the networking

32



Chapter 2. Background and related work 2.4. Resilience

principle of graceful degradation. Graceful degradation is the ability of a network
or system to provide reduced or limited service during periods of significant service
degradation. For example, if the network is under excessive strain and is unable to
service all traffic received, a graceful degradation would be the masking of this over-
saturation to end-users through delayed responses to requests, static responses that
can inform the end user of the issue currently being experienced, and minimising the
drop rate of connections that are externally visible. A non-graceful degradation in this
circumstance would be to drop all incoming traffic and offer no service or notification
under the network strain.

Existing research into resilience is an expansive topic and can be categorised into
the quadrants of the cycle. A significant body of work exists in planning and design,
or the “Defend” and “Refine” stages, that propose how to place resources (Lira et al.,
2013) or VNF's (Qu et al., 2016) when accounting for survivability during disruption.
“Detect” varies between identifying the presence of a failure or the potential cause of
a failure, such as heavy-hitter detection for potential DOS (Sivaraman et al., 2017).
“Remediation” attempts to minimise the immediate impact and extend survival
time (Belyaev et al., 2014). This body of work falls under the remediation stage as it
seeks to provide another route to graceful degradation and fault management; if the
system executes correctly, the entire loss of hardware blackboxes will be completely
masked from end users. Section 2.5 will discuss research in this domain.

2.4.3 Types of failure

When discussing resilience, it is important to consider the types of faults or failures
that the system operator is attempting to mitigate. A fault can be defined as “a flaw
in the system that may cause an error such as a bug” (J. P. G. Sterbenz et al., 2010).
Faults may be transient and unobserved in most circumstances, while the severity
of failures can range from disruptive to causing service degradation. The severity
of these disruptions is highly dependent on the resilience policy of the system, both
for design and action plans when faults occur. A failure is the potential result of a
fault; it is a deviation from intended behaviour, typically caused by an underlying
fault or exterior circumstances. Failures that are observable to the end-user would
be considered significantly disruptive and are a large part of the mitigation strategies
of action plans to mask both faults and failures. Faults, and even to some extent,
failures, are an inevitable result of software development and unavoidable in large-
scale systems such as computer networks. The goal of resilience is to ensure the system
is not only capable of operating in an expected fashion even when faults occur but
also obscures unintended behaviour to outside observers. These observable failures,
known as service disruption, can originate from other sources beyond system flaws.
Colman-Meixner et al., 2016 defines four types of service disruption: human error

33



Chapter 2. Background and related work 2.4. Resilience

(user mistakes, configuration issues), software failure (bugs, age, security breaches),
physical failure (component or cable failure) and disaster scenarios (earthquakes, fire).
The degree to which a system pursues resilience is dependent on its use. The use case
of the network will shape its policy; a small-scale system with few users might employ
simple redundancy for recovery purposes, whereas a larger-scale system serving many
users may focus on disruption and traffic tolerances. Critical infrastructure that
relies on network communication, such as the power grid (Mather, 2018) or industrial
SCADA (Stouffer et al., 2006) will have a much greater focus on survivability and
security to maximise resilience against the failure scenarios relevant to its use. The
body of resilience research is extensive, and for this thesis, we shall focus specifically
on middleboxes, VNF's and localised failures.

2.4.4 VNF Resilience

The rise of software in networks has been firmly established as the current trend of
evolution for both infrastructure and expansion. With this rise in use, virtualisation
brings a new range of possibilities and risks to ensuring network resilience. As
software, instances can be created, migrated and torn down far more easily and quickly
than physical infrastructure. Additionally, its nature as software can be modified and
accessed so that its state can be potentially captured and migrated. These potential
advantages bring an additional set of factors that must be understood and accounted
for to properly utilise VNFs and mitigate their risks and downsides. NFV is unlikely
to exist in a vacuum without SDN serving as a means of deployment and control, so a
discussion on their risks and overall reliability will touch on its employment through
SDN in certain areas.

2.4.4.1 New risks

Software introduces a great deal of complexity over hardware by virtue of its design.
In the scope of typical networks, hardware can refer to either a generic COTS device
such as a router or switching fabric, or more specialised devices such as middleboxes,
build to perform a singular function or role. While these can be subject to design
faults, mechanical failure, or external circumstances such as power loss, software
is subject to these same conditions for both itself and the hosting platform, as
well as a myriad of new risks. These can include deprecated support, software
faults, resource use and hosting issues outside of its control. For example, VNFs
are hosted on physical hardware configured to act as hypervisors and will share
the resources of this host system with other VNFs, bringing with it the need to
manage the sharing of resources where needed as well as enforcing the degree of
isolation necessary depending on their use case. The resources of the network at large
and each hosting platform must be taken into consideration when devising traffic

34



Chapter 2. Background and related work 2.4. Resilience

flows (Y. Chen et al., 2018) for efficiency, as well as survivability planning during
regional failure scenarios (H. Yu, Qiao, J. Wang, et al., 2014, Lira et al., 2013,
Abhishek et al., 2020) or localised redundancy (J. Xu et al., 2012) much like non-
virtualised networks. Additionally, the logic of the control plane would necessitate
significant monitoring and control capabilities, both desired mechanisms but difficult
to employ, warranting further research. Vulnerabilities are not isolated purely to the
forwarding plane, with the separated control plane posing a new area of risk for failure.
Separation of the control plane through fault would equally disrupt operations of the
forwarding plane, be it through paralysis of forwarding decisions or a slow deviation
from intended operation (A. Wang et al., 2014). Despite these new risks, the flexibility
of software brings with it new approaches not possible with hardware. Software can
be instantiated, restarted or migrated far more rapidly than hardware, as well as
modified and its internal values accessed. This allows for far more complex resilience
mechanisms to be created versus the limitations of hardware, as well as the use of
existing concepts such as consensus.

Consensus is an older concept of distributed computing wherein multiple processes
agree to a single outcome of an operation to ensure a consistent data view across
all processes. Examples of this in protocols include Paxos (Lamport, 2001) and
Raft (Ongaro et al., 2014). These enforce synchronicity of state between multiple
instances of a service to prevent conflicting state results from received input. Non-
deterministic execution is a well-established problem for VNF resilience, not just in
arbitrary replicas with enforced synchronicity but also across redundancies, which
will be explored in Section 2.5. Consensus protocols predate NFV but have found
significant use within a domain where replication is far easier to deploy. Beyond reused
concepts, new techniques have emerged from the ease of instantiation and teardown.
The potential to migrate or create new services where needed on the fly is unique to
software and virtualisation, allowing for VNF's to be placed across the network between
server platforms in accordance with the system’s needs. This flexible network topology
brings with it many possibilities for scalability and traffic rerouting (Hantouti et al.,
2019) alongside the risks of software and increased complexity.

2.4.4.2 Reliability of VNFs

The reliability of an NFV deployment is complex to estimate due to the number
of components involved, including the hardware resources, the Management and
Orchestration (MANO) structure and the VNF itself. Modelling this requires
the estimation of the Mean Time Between Failures (MTBF) of these components,
described as a non-trivial task due to the number of components in operation at once in
the environment, as even minor deviations can change these values. Physical Network
Functions (PNF) are typically evaluated for this in an isolated offline environment,

35



Chapter 2. Background and related work 2.4. Resilience

but due to this interactivity, this is infeasible with VNFs. The reliability of a VNF
is dependent on a wide number of factors, with an upper limit effectively established
by the off-the-shelf hardware it is typically hosted upon, which is evaluated as only
three-nines (ETSI, 2016) in the “nines” evaluation nomenclature (Dell, 2015). This
is most typically expressed (in this domain) as the ’five nines’ expectation, wherein a
service is available for 99.999% of the time within the span of a year, or 5.26 minutes
of downtime within this period. ETSI standards propose a number of management
approaches to maintaining VNFs and when to replace them in their lifecycle (ETSI,
2014a) and handle faults when they occur (ETSI, 2014b).

) Homogenous Heterogeneous
Dedicated VNFs Shared VNFs Shared VNFs
Active Active Active Active Active
Standby || Standby Standby | | | | Standby Standby

Standby Standby

Figure 2.6: VNF protection schemes as proposed by Casazza et al., 2019
. Colours represent a VNF base image e.g. blue VNFs are identical to each other
while red VNFs differ from blue

To accommodate for their potential lesser reliability and ensure continued
availability, ETSI standards (ETSI, 2016) the concept of “primary/secondary”
VNFs, or active and standby replicas. Protection schemes defined under this
approach (Casazza et al., 2019) establish two approaches to redundancies depicted
in Figure 2.6. The first approach, depicted on the left, uses dedicated redundant
VNFs or standby that sit idle until the active fails, upon which they take over. This
is a direct 1:1 redundancy, and is a very common method. The second approach,
depicted in the middle and right examples, uses a pool of available standbys to be
consumed by any of the linked actives upon their failure. These pools may contain
homogeneous VNF's, or identical VNFs to the ones in active use, or diverse in their
options. These approaches are akin to pre-existing protection schemes focused around
network pathing, with the simple dedicated redundancy in an active/standby state
being a well-established approach to recovery but incurring delay from potential
startup. The shared pool of VNFs are presumably active to be selected at the point

36



Chapter 2. Background and related work 2.4. Resilience

of failure and to be migrated when needed. These pools may be broken down further
based on active pool homogeneity or whether some measure of context switching is
necessary for secondaries to the chosen active VNF.

These technical definitions set forth approaches to utilising VNFs and exploiting
their ease of replication to overcome any perceived diminishment in their dependability
and overall reliability during heavy load versus traditional hardware approaches.
Distributed NFV systems introduce a higher probability of fault in their design,
configuration and operations which legacy systems do not. These are not so much
disadvantages to resilience in NFV and SDN as new areas that must be explored to
determine the best practices and new techniques beyond what blackbox hardware can
achieve. We shall explore more specific examples below in the related work.

2.4.5 Middlebox resilience

There is no singular resilience technique that fits all circumstances, especially in
regards to middlebox usage. These approaches can be roughly divided into two groups:
resilience in applications and resilience in infrastructure. Modern networks, such as
those of cloud infrastructures, are complex, geographically disparate structures that
carefully tune efficiency and resilience trade-offs in their layout and operations. For
example, a significant degree of vertical scaling for a service would allow for greater
resilience against unexpectedly high volumes of traffic, but in doing so would be
inefficient; compute resources are left underutilised, raising OpEx where less resources
could be used instead (e.g., 50% CPU utilisation vs 95% CPU utilisation) but render
the system more inflexible to changing traffic conditions. X-as-a-service platforms
and datacenters are another example of this effort to balance, allowing for greater
efficiency through a centralised location for resource usage as well as greater potential
redundancy through horizontal scaling possibilities, at the cost of increased risk
against disaster scenarios due to their centralised point of failure.

Redundancy is the oldest and most simplistic form of resilient design (J. P. G.
Sterbenz et al., 2010), utilising multiple copies of a point of failure to minimise
potential inaccessibility and downtime by switching to the redundant (or alternative)
entity when fault or failure disrupts operations of the original entity. For example,
a WAN may considerably overprovision link capacity to handle link failures and
traffic bursts, with more than double the necessary resources to function at normal
levels of traffic (Jain et al., 2013). It is the most popular form of resilience for its
simplicity and ease of deployment, both in hardware and software, offering a layer of
protection against faults with minimal setup. More complex techniques that retain
state, such as service migration or graceful failover, are more effective at minimising
service disruption but necessitate careful planning and design or require significant
overhead in link use, processing or costs. Cost is the defining factor when designing

37



Chapter 2. Background and related work 2.4. Resilience

networks, balancing between efficient design and resilience. Maintaining redundancies
or complex systems increases the OpEx and CapEx of the system and is only necessary
during periods of disruption, but the loss of network operations from disruption will
in turn cost the business that operates the network. The more important resilience
is for a network, the greater the cost of its absence, motivating this balance as well
as the means by which it is pursued, with advantages and disadvantages to be found
with each approach.

Middleboxes face their own issues with resilience, especially in relation to state
retention. State in the context of middlebox hardware typically refers to the contents
of its TCAM and lookup tables that are created by the middlebox to facilitate decision-
making on incoming flows. As hardware, they are far less susceptible to fault than
software and are typically perceived as high performance and reliable. Their closed
or blackbox design masks their specific operations and the contents of memory to the
network operators, intended purely to be dropped into the network and configured to
requirements. This blackbox nature heavily contributes to resilience and operation
issues with middleboxes, far more than transient network or hardware failure. A
large-scale study (Potharaju et al., 2013) of middlebox failures identified that the
majority of faults (40 to 80% depending on middlebox function) that occur with
middlebox use are network rather than hardware-related, with transient connection
issues accounting for 42% of failures whilst overloading and misconfiguration issues are
far less common than thought at only 13%. They categorise failures for middleboxes
as: connectivity errors (ARP conflicts, port errors), hardware failures (defective
components), misconfiguration issues (bad rules, VLAN misallocation), software faults
(firmware bugs, OS errors) and excess utilisation (high load exceeding capacity).

The type and severity of these problems are dependent on the kind of middlebox,
with VPNs subject to the greatest degree of connectivity issues while firewalls
are the most commonly overloaded. More importantly, this paper identified that
primary:standby paired middlebox redundancy, the most common and primary form
of middlebox resilience (Sherry, Gao, et al., 2015), is ineffective in 33% of cases for load
balancers and firewalls, caused mainly due to misconfiguration and faulty mechanisms;
these represent the most common cause of faults in middlebox hardware (Sherry
and Ratnasamy, 2012). Many of these issues cannot be resolved through research
and are still predominantly user error, with misconfiguration issues and connectivity
problems occurring due to the sheer variety of devices and the complexity of their
management and operation. The loss of state is thus uncommon, but the majority
of middleboxes in use by networks are stateful, and the loss of this state is difficult
to mask. Even transient faults can cause disruption (Allman, 2003), with long-term
failures reportedly very costly for both the industry and middlebox vendors (Harris,
2011). The blackbox nature of this hardware greatly hinders the range of options for
resilience and state propagation as a whole.

38



Chapter 2. Background and related work 2.5. Related work

Few middlebox devices possess failover mechanisms and rely on complex internal
state recovery, although it is difficult to ascertain their effectiveness without direct
vendor information (Sherry and Ratnasamy, 2012). These are limited by the desire
of both vendors and the industry to minimise added latency during failure-free
operations; delay beyond even 1 ms is reportedly highly problematic (Sherry, Gao,
et al., 2015). In short, middlebox users rely on good hardware design to minimise
rates of failure and simple 1:1 redundancy to mitigate these failures when they do
occur but are plagued by configuration and network issues. This is an expensive and
inefficient approach to network resilience, with reported rates of hardware use equaling
those of even routing backbones (Sekar, Egi, et al., 2012a) but current middlebox
design renders improvement difficult to establish. NFV proposes their replacement
but brings with it a new wave of complexity and potential issues. As a result, a
new body of research has developed within the last ten years that seeks to integrate
the two technologies and enhance their overall resilience in an area that is currently
lacking. This is a difficult topic that this research attempts to mitigate, and it is also
a major component of the focus of this thesis.

2.5 Related work

Blackbox middleboxes present a difficult problem for resilience. Middlebox failures are
uncommon but significant problems, with the loss of state being the largest concern for
hardware vendors. Any mechanism that attempts to mitigate its impact or likelihood
is bound by strict requirements regarding latency, with a reported limit of 1 ms total
overhead (Sherry, Gao, et al., 2015) for end-to-end communications that would be
tolerated by both vendors and their users. This must also ensure the correctness of the
restored state. This is complicated further by the closed nature of the hardware, which
prevents all remote access or awareness of key metrics for state capture or recreation.
The focus of this thesis in regards to resilience is ensuring this continuation of state
across blackbox redundancies in an effort to improve upon the overall resilience of the
network. Related research to this issue primarily focuses upon VNF and software-
related middleboxes and can be roughly categorised by their own approach to this
topic, each with its advantages and disadvantages, which we shall summarise in Table
2.1.

There are many approaches to state capture, retention and recreation. A key
operational characteristic is whether data is replayed, and these approaches can be
roughly divided into two groups: replaying and non-replaying. Replaying refers to
the capture of packets, traffic or the whole system state (Scales et al., 2010) to be
replayed through a backup to re-establish the state through unmodified operation. The
correctness of this new state to the lost is highly dependent on the target device
and the approach utilised for the checkpointing technique. The second group, non-

39



Chapter 2. Background and related work 2.5. Related work

Benefits Drawbacks

Replaying

VM Capture Perfect state capture Expensive, slow

Packet capture No missing flows Delay, Non-deterministic

Coarse logging Deterministic execution  Delay to regular traffic

Fine logging Low delay, deterministic =~ Requires modification
Non-replaying

Live replay Fast failover Non-deterministic

1:1 redundancy lightweight, fast Loss of state issues

Controlled packet duplication Low cost, no delay Non-deterministic

Log interpreter No delay Requires modification

VM migration Full control complex, slow

Table 2.1: Comparison of state preservation methods from both past research and
current practices, organised into replaying and non-replaying techniques

replaying, targets some form of output or live copy that does not rely on captured
traffic (Dunlap, King, et al., 2002). These can vary in complexity but tend to be
more targeted to the primary device, especially if it is interpreting output. Each of
these approaches has both advantages and drawbacks, which shall be covered below
in their own sections, with a final section on cloud strategies for this problem. With
this in mind, we shall discuss past projects and their efforts in this domain.

2.5.1 VM capture

VM capture uses the ability of modern hypervisors to checkpoint a VM’s state at
runtime, specifically its active memory. This encapsulation has awareness of the
whole system’s memory and state, but in doing so, it introduces a significant level
of abstraction that may impair performance. Remus (Cully et al., 2008) is an early
work in virtualisation resilience that focused predominantly on a generic solution that
requires no significant retooling towards a specific process. This is achieved through
the exploitation of Xen’s (Barham et al., 2003b) in-built checkpointing mechanism;
intended as a snapshotting mechanism for periodic backups, Remus has optimised
the process to convert it into a live checkpointing service. The target software
is encapsulated within a VM and paired with a redundant live VM through an
active-passive arrangement. To mitigate the potential delays caused by repeated
snapshotting on the primary VM, as is typical with services that await confirmation
from the auxiliary it has received it (Bressoud et al., 1995), Remus disregards enforcing

40



Chapter 2. Background and related work 2.5. Related work

deterministic execution to minimise this delay. This whole system checkpointing
guarantees that all visible state, that is, state that would be observed without direct
observation of the internal mechanisms of the software, is captured within the Remus
checkpointing, which occurs every 25 ms. While this may not be relevant to middlebox
work due to the VM targeting and excess delay, its design predates middlebox concerns
and represents a significant effort in attempting to derive state from outside sources
that is both generic and applicable to any and all software that can be encapsulated.

2.5.2 Packet capture

Packet capture is the use of packet traces to regenerate state through the replaying of
traffic, repeating the actions of the middlebox to simulate the original events. This ap-
proach is less impactful on overall performance than VM capture. Pico (Rajagopalan,
Williams, and Jamjoom, 2013) is a later evolution of the work established by Remus
and targets middlebox VMs specifically, such as Suricata (O. I. S. Foundation, 2022)
and Snort. Rather than targeting the entire system state, the paper identifies
traffic flows as the primary observable state to be preserved. From this, state is
further divided into two groups: per-flow state retained by the middlebox and static
configuration information. This per-flow data represents the key targeted state. By
observing the majority of state is established at flow establishment, such as stateful
NAT, these flows can be identified and replicated from the target VM to a buffer
before distribution to multiple replicas. The frequency and classification of this is
defined by the group they are organised into, dictated by Pico’s configuration. This
work builds upon their earlier work Split/Merge (Rajagopalan, Williams, Jamjoom,
and Warfield, 2013) that identifies the per-flow state for VMs, evaluated against the
Bro IDS (Paxson, 1999). Upon the failure of the primary packet processor, the SDN
controller for the network will redirect the buffered standby flows to the other replicas.
This approach is both highly available and significantly generic, whilst also radically
reducing the delay caused by checkpointing caused by Remus down to 8.5 ms and
represents a significant improvement in refining the necessary state from VM-level to
flow-level. However, it still suffers from a significant level of delay from the replaying
approach to high availability from the buffered flows to the new replicas, as well as
primarily targeting software over hardware.

2.5.3 Coarse-grain log-based checkpointing

Log-based checkpointing generates a log that tracks a specified set of values in
accordance with the research’s methods. These logs are then used to replay the traffic
or actions taken. Coarse-grain logging consists of values that refine the selection
process to a moderate degree. For example, maintaining a log of a subset of packets

41



Chapter 2. Background and related work 2.5. Related work

relevant to replaying state rather than retaining all packets. SMP-ReVirt (Dunlap,
Lucchetti, et al., 2008) is one of the earliest papers to pursue execution replay at a
finer grain for application-level checkpointing. With awareness that multiprocessor
systems were increasingly the norm within the 2000s, execution replay as a means for
recovery was becoming more complex due to the potential for thread racing and
shared variables. This approach utilises a coarse logging system combined with
replaying, with specific events recorded for replaying while others are ignored to
minimise data storage needs and further delay. ReVirt categorises the types of events
to be recorded as deterministic or non-deterministic. Deterministic actions such as
branch instructions of memory reads are unrecorded in the logging system, as they will
execute as they did before regardless of when traffic is replayed. Non-deterministic
actions, or asynchronous events, are far more important and will not necessarily occur
as before when replaying. These consist of events such as system clock reads, which
cannot be recreated through replaying, or virtual interrupts; the state change caused
by the interrupt is deterministic, but the point where it occurs in the timeline of
events is non-deterministic.

Thus, ReVirt records only the order of execution between co-processors, avoiding
per-instruction logging as well as data stores to further minimise necessary storage.
This is done via the “Concurrent-Read, Exclusive-Write (CREW)” protocol (LeBlanc
et al., 1987). Implemented in Xen through observation of its shared page tables for
memory access awareness at the hypervisor-level, performance was mainly evaluated
at the rate at which these logging techniques would consume storage, with the
observation that the greater the number of coprocessors, the greater the volume
of logging necessary to allow for accurate recovery during replay. The overhead is
suggested to be negligible in most cases, with a reported 12% during kernel-based
events and 5% for database events. This overhead rapidly rises depending on the
number of shared variables and thread events, observed less in packet delay and
primarily in the size of its storage requirements. Logging itself incurs a time delay from
overhead of up to 8% per packet. Finally, it concludes with awareness of its limitation
solely to software but proposes a more hybrid approach with the employment of a
different approach to logging that is more generic and accessible to blackboxes. The
benefits of this approach are clear, but it requires a significantly invasive technique
to achieve these results, as well as significant tuning to the exact operations of the
target to specify where deterministic and non-deterministic actions occur.

2.5.4 Fine-grain log-based checkpointing

Fine-grain logging is a refinement of the same principles as coarse-grain log-based
checkpointing but records and controls the replayed events in far greater detail, such as
thread accesses and the specific path that each packet takes between context switches.

42



Chapter 2. Background and related work 2.5. Related work

This is done to minimise non-determinism completely, but is difficult to do both
quickly and efficiently. Fault Tolerant MiddleBox (FTMB) (Sherry, Gao, et al., 2015)
argues that non-deterministic execution of packet processing in software middleboxes
impairs the effectiveness of prior work in this domain, including both live replica
systems where deviation is not controlled for and checkpointing systems where delay
is introduced by excessive attempts to control it. Prior work in this domain has
struggled with this issue, with heavy-handed approaches to multiple replicas such
as Colo (Dong et al., 2013) shifting the delay caused by approaches such as Remus
to the replicas only. Non-determinism in this instance is defined as thread racing
and hardware values that cannot be repeated, such as clock times. Instead, FTMB
establishes Packet Access Logs (PAL), lightweight recorded execution logs of packets
and variables as they are acted upon by the multi-threaded CPU.

These PAL are maintained as ordered lists of every thread interaction with a
variable as it occurs in the system, which in turn is tied to each packet that it acts
upon. This is done to control for non-deterministic execution by replaying all thread
actions and packets as they occur upon failure, while also minimising the extent of
delay necessary for the checkpointing necessary on a per-packet basis. As a replaying
approach, delay is incurred by this start-up of the recovery VM, measured at an
average of 275 ms. Checkpointing during failure-free operations averages far lower at
only 30 microseconds. This approach is intended to be a fast and generic solution
to recovery and deterministic state preservation across multiple VMs rather than
more typical active:passive/1:1 pairings, with PALs and recorded packets retained
in a separated middleground datastore. Overall, this approach is significantly faster
than Pico, Colo and Remus while attempting to allow for the significant potential of
scaling recovery of VMs. However, it does necessitate the modification of the target
middlebox software to allow for these observations to be recorded, as well as offering
little in the way towards middlebox hardware.

2.5.5 VM Migration

VM migration is the practice of transitioning an active VM from one hosting
node to another in an effort to preserve its continuity against disruptions to the
hosting platform. VM migration is generally limited in scope to company-specific
implementations, working within their own ecosystem with no interoperability. This
is due to the complexity of the task involved, both in the need for control over the
VM space for instantiation and translation and also in the network itself. More
generic solutions typically concern hosting-specific mechanisms, such as VMotion in
VMware. As a resilience mechanism for middlebox platforms, older examples such as
the work by C. Clark et al., 2005 serve to demonstrate the difficulties associated with
live migrations, including but not limited to the necessary constraints employed by

43



Chapter 2. Background and related work 2.5. Related work

active memory use and disk accessibility. As discussed in this paper, live VM-level
migration requires the migration of memory and active connections, with storage
clusters utilising uniformly available NAS to sidestep this issue. Complications in
the page copying are primarily focused on “hot” pages, where memory is active
and changing at a rate too frequent to allow for significant delay. By defining an
active window of time on a per-VM basis, page pre-copy prior to shutdown can
greatly diminish the overhead and the rate of new copies necessary by changing pages.
Depending on the application, downtime is measured in the tens of miliseconds when
suspension occurs for final transfers of the most at-risk memory. Live connections
are transferred via ARP adverts indicating shifting IPs. This approach is limited
due to its need to establish shutdown windows, inability to handle VNF failures and
poor scalability. Modern networking environments no longer employ the use of VM
or container migration, instead instantiating elsewhere for load balancing or disaster
recovery and are rarely used against live services due to the constraints involved.

2.5.6 Live replay and simple redundancy

Live replay is the practice of duplicating a stream of traffic directed to a service
and directing it to a copy of this service, maintaining a "hot replica’ (Juan-Marin
et al., 2007). It is a costly technique resource-wise, effectively doubling hardware,
processing and bandwidth usage in the low probability failures occur. Redundancy is
a step beneath this, simply consisting of redundant links or hardware to utilise in the
circumstance of failures should they occur with no other mechanisms in place. Both
live replay and redundancy are standardised techniques for improving resilience, as
discussed in the prior background. This is the most simplistic approach, with the least
investment required in complexity, but leaves all recovery exposed to non-deterministic
execution and lost state. Many platforms have built-in configuration tools for paired
redundancy deployments, both at the router and middlebox level. This includes
generic networking protocols such as Virtual Router Redundancy Protocol (VRRP)
and proprietary mechanisms like Cisco’s Hot Standby Router Protocol (HSRP) (Li
et al., 1998). For more failover at the middlebox level, this is primarily isolated
to proprietary platforms, much like VM migration, due to the necessary internal
control to allow for a smooth transition. Many of the larger hosting platforms for
containers and VMs have integrated systems for failover and high availability, or at the
very least redundancy. Examples include AWS elastic scaling (Amazon, 2019) which
allows distribution across multiple geographic locations to enable high availability and
automatic scaling; DigitalOcean’s Reserved IP (Ocean, 2022) (a form of virtual IP)
that implements active:passive failover and VMWare’s in-built vPAC active-active
redundancy support (VMware, 2023).

44



Chapter 2. Background and related work 2.5. Related work

2.5.7 Service Function Chain techniques

Service Function Chains add an additional layer of complexity to the resilience
techniques discussed thus far. As chains of virtual instances, they are hosted on
physical servers and logically connected via traffic forwarding and flow tagging. The
state of packets in these chains is dependant on every link in said chain operating
correctly, with deviation from expected behaviour or breakage affecting every other
link. Furthermore, while multiple links in a chain may be hosted on the same platform,
it is not uncommon for instances to be spread across multiple physical hosts. This
greatly limits the feasibility of many of the techniques discussed thus far. There are
several bodies of work within this area that focus on moving beyond 1:1 redundancy,
expanding the awareness of state from each individual entity to provide failover to
an entire chain. CHC (Khalid et al., 2019) establishes the concept of Chain Output
Equivalence (COE); given a stream of packets as input, a chain with many instances
per NF must produce the equivalent output to a hypothetical equivalent chain with
individual NFs of infinite capacity. This is complicated by the statefulness of VNF's
potentially influencing the correctness of processing across multiple varying instances.

Individual approaches do not consider shared state, impairing their effectiveness
even when working on every NF within a SFC. The CHC, or “correct, high-
performance chains” framework defines logical chains of NFs using the DAG API
that are utilised by a manager entity, directing traffic between clones for each NF
and collecting statistics from each instance. The kinds of state for each node are
classified by order of the least to most amount of information necessary to ensure
correctness of recovery and organised by flow to be directed to NFs in order to
minimise overlap across instances that modify on the same criteria. This extracted
pathing and state information is retained in a separate data store. This approach
highlights the meta-awareness of the framework necessary to operate and maintain
correctness of recovery across an entire chain, taking into account the differing state
requirements, the potential for multiple replicas of each NF and their interactions. The
latency caused by the overhead of these mechanisms is varied, with hardware clock
logging measured on a CPU-based testbed at 3.5 microseconds and packet logging at
34 microseconds.Full recovery from faults can observe latency spikes measured within
miliseconds, depending on the current network load.

Another project, Reinforce (Kulkarni et al., 2020), differs in its approach by
utilising a similar understanding of deterministic and non-deterministic actions to
SMP-Revirt, relying on programmer annotation to indicate state operations that
are non-deterministic by a NF. Logging is maintained for both application state
and packet positioning within the SFC. When a labelled action is performed by a
member of the chain, it is linked to the packet that triggered it, with this information
buffered until sufficient information is retained to restore a checkpoint for the entire
chain. Overhead analysis suggests non-deterministic checkpointing in this two-stage

45



Chapter 2. Background and related work 2.5. Related work

approach incurs a per-packet latency of 8 microseconds on failure-free operations
within the local node, with far greater impact on remote nodes. Non-deterministic
checkpointing is far more costly and scales poorly with both frequency of rate and the
length of the chain, but its lazy replication approach is a useful demonstration of how
state is initialised by the beginnings of flows and how performance can be achieved
without direct modification of the target platform or per-thread logging.

2.5.8 Cloud-based approaches

Other work in this domain has also attempted to tackle the issue of middlebox
resilience and the difficulties surrounding it. While the primary comparisons we
make typically favour their replacement with virtualisation or focus purely on
software instances of middlebox usage, other work has attempted to do away with
middleboxes entirely. One example of this is Appliance for Outsourcing Middleboxes
(APLOMB) (Sherry, Hasan, et al., 2012) that proposes the outsourcing of middlebox
usage to cloud computing, motivated primarily by an OpEx and CapEx argument
for in-house management and operation costs. This proposal attempts to tackle
the issues of redirecting traffic that would normally be handled at the local entry
points or chokes within the traffic flow, as well as the vetting and management of this
additional necessary complexity for maintaining key gateways. Furthermore, it also
attempts to design the platform through which middlebox services would be rented;
more specifically, the business logic of policy chains and how these purchased services
would be facilitated, alongside the necessary scaling of middlebox availability.

A similar concept is demonstrated in an earlier piece of work by Sekar, Ratnasamy,
et al., 2011 that argues the innovations in virtualisation in 2011 could be radically
expanded upon in support to allow for innovation within this domain and prevent
the ossification of protocol and function that hardware middleboxes incurred. They
argued this could be achieved not with individualised entities like a WAN optimiser
or IDS virtual instance, but instead with discrete blocks of processing logic that could
be utilised across multiple “middleboxes” in a fashion akin to unikernels and their
division of the kernel into smaller discrete units. Another similar project to this is
Network Service Support (NSS) (Panda et al., 2016), itself heavily motivated by the
push for processing closer to the network edge by carriers and CDNs to minimise
transit and consolidate processing within centralised locations, as well as Akamai
and Amazon’s EC2. As a final example, Consolidating Middleboxes (CoMb) (Sekar,
Egi, et al., 2012b) seeks to address the management issues of multiple discrete boxes
by consolidating all possible individual middlebox functionality into a singular local
node, akin to the abstract concept of NFV.

46



Chapter 2. Background and related work 2.6. Summary

2.6 Summary

The increasing rate of SDN adoption in modern networks has motivated a large
body of new research dedicated to the resilience of software-based VNFs, with the
progressive replacement of bespoke hardware and their approaches to countering non-
determinism. The presence of hardware middleboxes, or blackboxes, has become an
increasingly obvious problem however. The discussion of this background has made
clear the evolution of middleboxes and how they came to dominate a large section
of networking, and with it introduce a distinct weakness of resilience in their closed
nature and non-standardised designs. Replacement is one solution, although this
brings with it its own problems of performance loss and system alteration. Operators
and enterprise infrastructure design decisions are motivated primarily by cost. Capital
and operating costs (CAPEX and OPEX, respectively) typically dictate the design of
a network, which shapes the focus of its development. For example, high performance
is heavily favoured as it is a part of competitive business practices and SLA, so it takes
priority over redundancy and resilient design. This is best depicted by the widespread
use of blackbox hardware, despite the complications to resilience it may introduce.
This is not to suggest that resilience is not important, as recovery functionalities
for middleboxes can be bought at extra cost, but that the cost of enabling greater
resilience may outweigh the cost of handling disruptions when they occur. The
majority of research discussed so far concerns itself with mitigating the performance
impact of new resilience techniques, but their focus is almost exclusively on open
software. FEnterprise more commonly use purchased solutions to enable network
functionality, the products of which are blackboxes such as precompiled software with
obsfuciated internal code or fixed hardware solutions. These blackboxes are employed
in significant numbers and are unlikely to be replaced entirely within the near future.

There are a wide myriad of strategies to approach the topic, each with its own
benefits and drawbacks, each highlighting the difficulty of this task. Many of these are
not possible without direct access to the hardware, including both the hosting platform
for VM or application capture and the fine-grain logging of F'TMB for system clock and
thread events. The ideas evaluated present a clear picture of the scale of the problem
and the potential work that still needs to be done around blackbox middleboxes that
are unlikely to be replaced in the near future. These cloud-based solutions each argue
for the issues of middleboxes to be resolved through their replacement with software
and, in doing so, attempt to address many of the issues associated both with their use
and their replacement with VNFs. This is a common trend in middlebox research:
hardware is limited in the scope of what it can achieve, with many network functions
deployed in software when its operations exceed that which is possible with physical
devices. Those that are still realised with hardware, however, such as the case with
firewalls or load balancers, will remain in place as the core issue of performance loss is

47



Chapter 2. Background and related work 2.6. Summary

not addressed by any of the differing arguments that advocate for the same concept
as shown by these papers. CoMB argues for consolidation with virtualisation for
management purposes, NSS for scaling, and APLOMB for operating costs. While
there are many benefits that could be realised with a rentable processing service akin
to other web services, there is still a clear gap displayed in research: how do we enhance
the resilience of hardware middleboxes without arguing for their total replacement?

48



Chapter 3

Hybrid networks and resilient
design

With the background of the problem now made clear from the previous chapter, this
chapter will go into detail on the motivations of this work, its technical arguments and
a design for a generically applicable middlebox resilience framework. Firstly, section
3.1 will discuss the motivations created by the understanding of the work covered
in the background and related work, discussing the CAP theorem, the limitations of
ASIC hardware and the current use of hybrid networking. From these motivating
arguments, section 3.2 establishes a set of high-level design requirements that any
proposed design must adhere to, followed by section 3.3 which discusses potential
approaches in an attempt to meet these requirements. From here, the argument
ends and the design overview begins in Section 3.4, establishing the work of this
thesis: a generically applicable middlebox resilience framework, able to support both
software and hardware-based blackbox services for the purposes of retaining state
across failover. This is achieved through the use of a range of resilience mechanisms,
including the use of different types of drivers for different targets. Finally, this chapter
concludes with a summary of the arguments and designs presented in Section 3.5.

3.1 Argument

The previous chapter and its summary in Section 2.6 has established a clear definition
of the scope of the problem. With existing platforms unlikely to change and incapable
of being modified, the remaining approach is to enhance the resilience of platforms
without requiring modification or replacement through the incorporation of software
alongside existing hardware. This serves as the motivation for the work of this thesis,
attempting to answer this stated problem while adhering to the strict limitations
that dictate the feasibility of any real solution. Building on this motivation, this

49



Chapter 3. Hybrid networks and resilient design 3.1. Argument

section will establish an argument for the technical considerations of how this might
be achieved, beginning with a description of the combined use of virtual networking
techniques alongside legacy networks, known as hybrid networks.

3.1.1 Hybrid Networking

A hybrid network is the combination of programmable infrastructure with legacy
networking hardware. This typically includes the presence of compute resources
for virtulisation purposes and SDN-enabled hardware alongside standard network
devices such as switches and routers, depicted in Figure 3.1. The degree of
softwarisation varies between networks, ranging from routers equipped with some
degree of virtualisation cabability to enable new network functions to employing
the use of SDN-enabled routers to control the flow of traffic with legacy switches
remaining in-between. Hybrid networks are not so much the goal but rather a
transitional step. They act as an intermediate architecture between legacy network
technologies and entirely programmable and virtualised devices that will progressively
replace them. These changes do not happen all at once but instead occur slowly as
networks grow and older hardware breaks to be replaced with newer components that
incorporate programmable networking, forming these hybrid networks. An example of
a deployment strategy for hybrid networks is Panopticon (Levin et al., 2014): a hybrid
network that deploys SDN-enabled switches at key locations in the network, allowing
for traffic flows to be controlled on a network-wide basis despite only controlling
10% of the hardware present. Despite this growing rise in SDN adoption in enterprise
networks and the increasing hybridisation of networking, this thesis takes the position
that blackboxes will continue to be used and even grow in usage due to their high
performance and inability to be easily replaced, like routing infrastructure. Given
this, this thesis further claims that by exploiting network programmability, these
blackbox devices need not be replaced but instead aided by softwarisation techniques
to enhance their resilience. This in turn allows for the continued operation of existing
hardware without necessitating its replacement and encourages the continued growth
of SDN adoption in enterprise deployments.

Programmable elements allow for a degree of freedom not available to proprietary
software or hardware appliances, enabling functionality such as maintaining and
recreating state to be built as separate mechanisms in and around this middleware.
By maintaining the existing infrastructure in its place, this also minimises disruption
and maintains expected levels of performance during failure-free operations. The
state must be quantified and replicated across multiple instances, with SDN serving
as both the means by which this is achieved. NFV can also be utilised to provide
redundancy in the absence of existing infrastructure using VNFs modelled to replicate
behaviour, serving as a remediation layer approach. The lower performance of

20



Chapter 3. Hybrid networks and resilient design 3.1. Argument

| SDN '
Controller

External R
network e : _
I.l." ." : | r o
\ — \ External
e < q ‘ 4 7 network
[:' ‘ .
Internal network yd
External
network

Figure 3.1: Example of hybrid network architecture. VNFs are typically hosted on
SDN-enabled routers to provide network functionality.

software-based approaches is less important during this stage of the recovery cycle,
acting as a stop-gap solution while engineers handle the fault. To accomplish this
non-interfering state replication and enhance their resilience without modification, a
thorough understanding of the technologies used in these blackboxes is required.

3.1.2 ASIC Hardware

Application-Specific Integrated Circuit (ASIC) are the most common hardware
realisation of these hardware middleboxes still in use today. These are Integrated
Circuit (IC) designs for traffic processing, offering fast implementations of a fixed
set of network manipulation instructions (fixed-programmability). Unlike general-
purpose CPUs, they are optimised to process traffic and have a tight integration only
with ports, able to support traffic rates at speeds upwards of Thps. These rates are
an order of magnitude beyond other solutions such as FPGAs (Zilberman, Audzevich,
et al., 2015) and hardware-offloaded virtualisation (Sarrar et al., 2012) such as
DPUs (Nvidia, 2022). ASIC design is driven by a single pipeline of processing stages

o1



Chapter 3. Hybrid networks and resilient design 3.1. Argument

performed sequentially, with each stage consisting of multiple parallel processing steps.
With most network devices, these steps are a match-action design; the header of
incoming packets is parsed for its contents, with actions enacted on the packet decided
based on the contents of said header. The complexity of these steps, especially that
of header parsing, varies from device to device and has an effect on its degree of
reconfiguration.

The more simplistic a device, the fewer options are required, encouraging
manufacturers to design products to fit their intended use so as to keep both
manufacturing and energy costs low. More simplistic ASICs have fixed configuration,
providing a closed feature set that can be selected to act in the pipeline, as showcased
in Figure 3.2. The trident series uses a tile-based architecture which consist of a
lookup table and policy, as well as the memory it acts upon depending on the product
in question. i.e.a TCAM tile in the egress pipeline would be a predefined policy and
lookup to the TCAM memory at that stage of the packet processing pipeline. These
are reconfigured with simple registers but offer nothing beyond enabling or disabling
a step. More commonly, configuration is far broader through the use of tables, similar
to SDN; table entries define the pairing of match to action. The size of these tables
greatly affects the design of the device, as they are implemented in memory. This
reconfiguration is generally performed through the coprocessor, facilitating monitoring
and operating configuration agents. As networks have developed, manufacturers
have moved away from proprietary systems that maximise performance (Marvell,
2024) towards well-defined RISC architectures, standardising their platforms and
streamlining the hardware whilst still allowing for some measure of programmability.

Operations in the pipeline are assisted by the Ternary content-addressable memory
(TCAM), a high-speed memory that can search every entry within a single clock
cycle. TCAM is highly parallel memory, often used for lookup tables, forwarding and
similar operations that mandate some form of basic memory. This memory module is
expensive due to the increasing cost of both silicon and energy consumption incurred
by expanding the volume of parallel circuitry, encouraging an efficient approach to
TCAM usage. Rule compression and pre-classifiers are common features to reduce
the consumption of memory, especially by rules expressing a range that must be
expressed as each possible header. Wildcard matching is performed by the TCAM,
able to perform lookup and classification against every possible entry within a single
clock cycle. Non-wildcard matches such as exact matching do not need TCAM to
operate, instead using hashing mechanisms. The second source of state within these
hardware platforms is dependent on the functionality of the device. Forwarding
or routing will depend upon the Forwarding Information Base (FIB) and Routing
Information Base (RIB) respectively, with FIB retained in the coprocessor and RIB in
TCAM. Calculation and installation may be handled by the coprocessor however, with
some of this address information retained in more traditional memory. Alternatively,

52



Chapter 3. Hybrid networks and resilient design 3.1. Argument

PISA architectures such as Intel Flexpipe and Tofino may retain different memory
approaches for matching (e.g. exact matching using hash tables in SRAM, wildcard
in TCAM).

Ingress Pipelines

Tiles + Tiles + Tiles +
Special Special Special
Functions Functions Functions

Fully-Shared
Scheduler Smart Packet
Buffer

Egress Pipelines
Tiles + Tiles +
Special Special
Functions Functions

Flex
Editor

10 GbE — 400 GbE MACs e Trident4-X7

50G PAM-4 LR/SR/VSR Merlin CMICx
Blackhawk7 SerDes SerDes Host I/F

FEEEEREIE |

\

J H_) \W_j
80 x 50G 2x10G PCle
PAM-4 SerDes Management Gen3 x4

Figure 3.2: Broadcom Trident architecture - Examples of pipelines of interchangeable
built-in functions (Broadcom, 2024)

3.1.3 Replicating state in ASICs

ASIC design is fundamentally decided by business more so than technical limitations;
as purpose-built products, they have long development cycles to fit them to their
intended purpose or market. Resources are limited on the silicon, including the
number of logical circuits, the space on the die and the number of pins; increasing one

23



Chapter 3. Hybrid networks and resilient design 3.1. Argument

resource will consume space utilised by another. Other complications include total
power consumption, cooling and overall production. Smaller semiconductor sizes are
produced by fewer facilities and thus reserved for the largest businesses with the
greatest capital to purchase them, as well as the cost difference between standard
designs and more bespoke commissioned work. These motivations, alongside their
more technical limitations, render blackbox middleboxes expressed as ASICs high-
performance but simplistic in their operations; state is expressed only in the form of
lookup and forwarding table entries, with little flexibility to allow for more advanced
packet processing that requires a coprocessor. Emulating the functionality of an ASIC,
if not the performance, is thus easily achieved in software. This is demonstrated by
the increasingly common software alternatives to popular network functions currently
provided by dedicated hardware, often sold in conjunction (Cisco, 2020). Due to their
blackbox nature and their re-use on several products, it is difficult to determine the
exact operations made on a per-device basis, but certain assumptions can be made.
As specialised hardware with minimal internal memory, lacking both a heap and a
stack, there are both technical and economical reasons to minimise the inefficiency of
its internal memory usage. TCAM is expensive, while DRAM and SRAM are scalable
but costly, both in energy use and orders of magnitude slower versus TCAM. Pseudo-
random generation requires multiple clock cycles to generate, incurring latency, which
runs counter to the key focus of ASIC design of speed and high-performance.

1.8 L ! A
14 : : H : :
12

3 4 6 8 9 10 11 12

Coefficient of variation

1 2 5 7
Number of lowest siginificant bits of Client IP

Figure 3.3: Coefficient of variation of fraction of requests for different bits of the
client IP address (Kang et al., 2015a)

With this understanding in mind, the state and loss thereof of these blackboxes
can be broadly predicted for the format it will take and especially its origin; with a
lack of randomisation provided by hardware or memory to waste, it is instead entirely
derived from the packet contents themselves (e.g. traditional five-tuple) allowing for
state to be easily replicated with this same traffic. Any and all of the five-tuple can
be used, although different fields from the five-tuple offer different degrees of entropy.

o4



Chapter 3. Hybrid networks and resilient design 3.1. Argument

i.e. Niagara (Kang et al., 2015a) split its traffic proportionally by utilising the low-
order bits of the source IP as they provide the greatest entropy for its load balancing,
depicted in Figure 3.3. Furthermore, non-deterministic execution that would typically
affect threaded operations, such as the order of thread accesses for a shared resource,
is not an issue for single pipeline devices. The operations of each stage may be
performed in parallel to hasten operations, but each stage follows consecutively to the
next (i.e.header parsing may independently create metadata regarding decisions for a
packet at different stages of the parsing, but the parsing still operates sequentially).

This, combined with their reliance upon the contents of packets to provide suffi-
cient randomness, affords us the opportunity to pursue a form of “lazy correctness”; if
state is both deterministic and derived from capturable traffic, a best-effort approach
to regenerating state with no guarantees on enforcing correctness is significantly more
viable. This means the concern for the loss of state is its effects on latency and
perceived failure by end-users. The state lost by the failure of the ASIC, including the
contents of these lookup tables, can be regenerated rapidly by the hardware itself, even
if handled by the coprocessor. However, any time spent recreating state, especially
numerous active flows all at once, will still create unnecessary latency. Instead of
allowing this to occur, this determinism can be used to establish a live replica and
minimise or even remove this delay. As a final note, its loss is still dependent on both
the traffic protocol and the operations of the rest of the network (e.g. Timeouts and
mass restarts causing surges of traffic).

3.1.4 CAP theorem

The argument on the nature of hardware internal execution, hybrid networks and
the consistency of its state can be framed using an existing theorem on distributed
systems. CAP theorem (Gilbert et al., 2002), also known as Brewer’s theorem after
its creator Eric Brewer, states that any distributed data store can only provide two
of the following three guarantees: Consistency, Availability and Partition tolerance.
These guarantees form the core systemic requirements of a distributed system that
work in tandem, and shall be briefly summarised:

e Consistency - The operations of the system are predictable and consistent with
no deviation from expected behaviour or results. In a distributed environment,
this consistency is the assurance that each of the partitions is observing the
most up-to-date and identical state/message as the other partitions.

e Availability - The operations of the system are functional and working as
expected at any arbitrary time when called upon. In a distributed environment,
this availability is the assurance that the system will always service the request
given to it when prompted.

25



Chapter 3. Hybrid networks and resilient design 3.1. Argument

e Partition tolerance - The operations of each partition continue to function
independently of other partitions regardless of fault or miscommunication. In a
distributed environment, this partition tolerance is the assurance that regardless
of the number of dropped messages, disruptions or partitions present, the system
will continue to be able to operate. Unlike the other two guarantees, partition
tolerance is exclusive to a distributed environment and is the primary cause of
complexity in assuring the other two guarantees.

When considering state across multiple middleboxes, these same principles apply.
State is a useful tool for packet processing, but its use has trade offs. The work
discussed thus far has prioritised consistency over availability when handling network
partitions, which in this context refers to parallel nodes and redundancies. Ensuring
the consistency of recovery is important, but it has become the prevailing concern
of research in this field, whilst industry has prioritised performance and availability
above all. External systems, such as a remote database that all replicas draw their
state from, can help to guarantee consistency and partition tolerance for these replicas,
but introduces overheads and creates a new vulnerability in the database itself - if
it fails, then the partition tolerance is lost. CAP theorem presents a challenge for
software middleboxes in regards to state management, with both consistency and
partition tolerance requiring systems such as Paxos or leader-election processes to
enforce a single view of the system state on all partitions present (Kang et al., 2015a,
Kang et al., 2015b). In enterprise deployments, either consistency or availability
are traditionally sacrificed (Gilbert et al., 2012). Physical middleboxes sacrifice
consistency to minimise the introduction of overheads incurred by enforcement of
consistency. Alternative approaches have formed that seek to drop both of these
in favour of partition tolerance. Chubby is a coarse-grain lock service, built by
Google, that acts as a distributed database with consistency enforced using Paxos and
replicated state machines (Burrows, 2006). Chubby can be partitioned into cells, each
of which would encompass a datacenter, expanding the scope of its communication to
sacrifice partition tolerance at a local scale to guarantee availability and consistency.
This theorem holds great significance to the growing use of SDN and NFV as it
introduces the potential problems of non-determinism at a significant scale from what
it seeks to replace. Problems such as these, combined with the inability to match
packet processing rates of dedicated hardware may be a contributing reason as to
why hardware middleboxes are still widely used in production.

3.1.5 Summary

To restate the problem, NF'V and SDN have seen slow but steady adoption, but have
been limited in certain kinds of networks such as enterprise and business deployments
where hardware solutions remain steadfast. These blackboxes, or “middleboxes”, are

26



Chapter 3. Hybrid networks and resilient design 3.2. High-level Requirements

widely used in modern networking for their high-performance and general reliability,
but are limited in scope when failures inevitably occur due to their closed nature. The
flexibility of software in regards to innovating design has seen NFV gain in popularity
as a means of deploying network functionality, but hardware middleboxes will continue
to remain dominant despite their limitations as they can provide competitive levels
of high-performance for the businesses that operate customer-facing or enterprise
networks. Research in recent years has proposed a number of new solutions to enabling
greater middlebox resilience, but seen little to no adoption.

These approaches propose modification or replacement of existing infrastructure
due to the difficulty of the task when dealing with blackboxes, and inevitably fall
short of the arguments of cost. Replacing existing infrastructure, as well as sacrificing
orders of magnitude performance in the name of resilience is an untenable position
in the eyes of enterprise. Given our understanding of the limitations of ASICs in
regards to state for blackbox middleboxes, as well as a lack of significant enforcement
for consistency in software blackboxes in industry, a new argument and approach to
resilience may be viable. This thesis surmises that a 'best-effort” approach to resilient
design is feasible using SDN and NFV in conjunction with unmodified middleboxes,
encouraging its further adoption in the areas of both research and real world network
adoption where it has otherwise languished. This section summarises the argument
and position of this thesis in its intentions, as well as the existing hole in research and
industry for this approach to resilience.

3.2 High-level Requirements

With the scope of the problem area established, this section will highlight several key
limitations to enabling greater resilience to this area of networking. These blackboxes
are too widespread and ingrained to simply be replaced at the sacrifice of performance
in the name of recovery, but their closed nature preventing modification and awareness
of internal logic greatly inhibits research efforts to enhance their resilience. With this
in mind, any recovery or remediation approach proposed would have to abide by a
strict set of criteria:

e Able to target both software and hardware
Middleboxes exist in both software and hardware in modern networks, each
with its own place and use. For this work, these take the form of blackbox
hardware, which is completely inaccessible, and greybox software, which offers
some mild openness. Creating a redundancy platform able to provide state-
aware redundancy should target both forms of middlebox to maximise its
viability in modern networks. These goals should be approached separately as
they have different requirements, forming two halves of the design. The scope

57



Chapter 3. Hybrid networks and resilient design 3.2. High-level Requirements

of this support is dependent on the network function itself and, if software, the
complexity of its operations, with blackboxes being the focus of this work over
greyboxes.

e Support for unmodified blackbox middleboxes

Grey and blackboxes obscure their internal workings and structure from the end
user in a bid to protect their design, as they are first and foremost products.
For hardware, this is done via a lack of documentation on design and operations
beyond configuration and operation, as well as secured casing in more extreme
circumstances. For software, precompiled code, DRM and code obfuscation are
techniques designed to protect their internal operations from being seen. This
makes the task of copying, extracting or replicating state from these middleboxes
difficult, but it is vital that no presumption is made that this is feasible, both on
an individual or universal scale. With the clear understanding that modification
is infeasible and their replacement too costly and disruptive, all efforts to re-
establish state cannot modify the target middlebox.

e Minimise incurred overhead

Latency and overhead incurred on performance and traffic during failure-free
operations should be kept to an absolute minimum wherever possible. Reducing
incurred latency is a key goal of research conducted in this area, as discussed
in Chapter 2.5, with a reported limitation of 1ms per-packet latency incurred
as the maximum tolerable limit. As a remediation step over recovery, some
latency is inevitable. With this in mind, any approach pursued must strive to
avoid anything that would incur delay on traffic on the main branch as much
as possible - delays incurred on copied traffic is not important.

e Guarantee sufficient correctness of recovery
The loss of state is problematic, but incorrect state recovery can cause greater
disruption on top of the pre-existing failure. This is dependent on the type
of state, which is further dictated by the target. Blackbox hardware and
greybox software are not intrinsically stateful, but many stateful devices like
load balancers, NAT gateaways, IDS and so on are still realised in this format
for production and carrier-grade use. For blackbox hardware, this state will
take the form of internal monitoring and forwarding flow entries, while greybox
software may also include the use of hardware clocks, thread accesses and other
internal decisions. The extent that our best-effort approach needs to recreate
these decisions is informed by our understanding of the limitations of hardware
solutions and the work of Reinforce (Kulkarni et al., 2020) showcasing how the
majority of state is established only at the start of most traffic flows for our
targets. The design must provide sufficient correctness to be a viable solution

o8



Chapter 3. Hybrid networks and resilient design 3.3. Design considerations

to state-aware redundancy.

e Technology-agnostic
The design must accommodate a wide variety of potential target configurations
and minimise the extent to which it must be modified to accommodate their
variations. This general applicability must take into account whether it is a grey
or blackbox, the kind of functionality it provides, and the individual products’
variations therein. Some fitting may be necessary to accommodate, but this
should be kept to a minimum and affect the design exclusively.

The design requirements above are derived from observations made in this area
of research as a whole and inform the direction that this thesis takes to successfully

establish a resilience system able to provide state-aware redundancy to both grey and
black middleboxes.

3.3 Design considerations

This section discusses the technologies and limitations that must be tackled to meet
the requirements discussed above. It compares the existing approaches and their
solutions, broken down into each consideration.

3.3.1 Extracting or recreating state

The means by which state is transferred to the redundant unit is one of the most
important considerations in the design of this framework. Firstly, the approach
pursued will differ for the two sides of this thesis: software and hardware. This is
due to differing approaches to how these are deployed in real-world systems. Software
VNFs are often deployed in parallel as clusters, and the approach to distributing state
will differ to that of a more singular approach that hardware will employ. None of
the methods for extracting relevant variables discussed in prior work will be utilised
due to concerns over the presumption of openness impeding their real-world viability.
The modification of software entities that we create can be considered an acceptable
alternative in the circumstance of whitebox VNF redundancies to blackbox hardware
or greybox software. Possible approaches to be considered include:

e Encapsulation Software encapsulation with the use of VMs or containers is a
theoretically non-interfering approach by means of no direct modification to the
entities in question, but necessitates significant reconfiguration of the hosting
platform approach. This is employed by Remus (Cully et al., 2008) and would
allow for a significant level of control over the state captured for checkpointing,

29



Chapter 3. Hybrid networks and resilient design 3.3. Design considerations

but incurs a significant performance overhead from both the encapsulation and
checkpointing.

e Traffic cloning Directly cloning traffic is a simple approach to replicating state
and is used for a number of purposes such as security and monitoring. Older
approaches such as port mirroring (cisco, 2023), or “Switched Port Analyser
(SPAN)” | are used for analysing duplicate packets of the traffic but suffer from
performance issues, packet loss and bottlenecks. For the purposes of populating
state, this would be a costly approach in terms of bandwidth, with a logarithmic
rise from the initial load before linearly scaling with each new copy necessary

e Traffic filtering Similar to cloning, filtering traffic to reduce the overall volume
of packets necessary to establishing state is far more cost-effective and efficient.
Based on our understanding of ASIC limitations as well as the ’lazy correctness’
approach pioneered by Reinforce (Kulkarni et al., 2020) this approach offers a
range of benefits including ease of deployment, efficiency and sufficiently correct
results.

e Log interpretation Output logs generated by middleboxes for monitoring
allow one to interpret the state from the decisions that it has made when
observation of the internal state is not possible, such as with blackboxes. These
decisions can then be interpreted and recreated in software redundancies. This
approach requires some measure of fitting to the blackbox to function, including
both the log interpretation technique and the target middlebox. However, it
offers a viable means of acquiring state through a common output seen with
middlebox usage without interference of live traffic or incurring delay on live
traffic.

e Direct state extraction Whitebox deployments are becoming increasingly
common as both industry and organisations, such as the ONF, continue to invest
in and promote the use of SDN, respectively. By their nature as open-source or
at least accessible middleboxes, their internal values can be observed or accessed,
enabling them to be extracted and replicated to another middlebox. The
means by which this can be achieved varies between software, from standardised
platforms such as OpenFlow and P4runtime that utilise match-action table
blocks accessible via API, to software popular in production like Traefik and
Seesaw requiring inserted drivers. Examples of this technique in research can
be seen in Split/Merge (Rajagopalan, Williams, Jamjoom, and Warfield, 2013),
a hypervisor for virtual middleboxes that defines state in its middleboxes as
policy and flow state, the latter of which is maintained by all replicas of that
middlebox and retained in an external (to each VM) datastore. Any state
generated is enforced across all replicas to maintain a consistent view of this

60



Chapter 3. Hybrid networks and resilient design 3.3. Design considerations

state, with the source of this state selected from each VM’s output via a modulo
rotation. Regardless of the approach, direct interpretation or extraction creates
a highly efficient approach to distributing state from the very source. This is
not the focus of our work but may become more relevant in the future as NFV
continues to grow.

3.3.2 Failover approach

The means by which stateful failover occurs is important to its overall performance
and design. Several approaches have been employed by prior work, divided into
two groups: “replaying” and “non-replaying.” Some of these approaches have been
presented in the work discussed so far in the background. Given the criteria specified
by the design requirements, only a subset of these are suitable for our purposes:

e Packet buffering A form of checkpointing state, as shown in Pico (Ra-
jagopalan, Williams, and Jamjoom, 2013), buffers captured packets from the
primary stream of traffic to be replayed through the redundancy at the point of
detected failure. This is the least costly approach in terms of system resources,
as it maintains the backup on standby to be utilised only at the point of failure.
However, this incurs a slight delay from its startup and the replayed traffic,
demonstrated with Pico at approximately 5ms, alongside the potential risk of
packet loss from link saturation.

e Live replay Maintaining a live replica is costly on resources, depending on the
number of virtual or physical instances used as redundancy, but it removes any
delay from their startup state instantiation. This approach is more technically
simplistic to implement and ensures an up-to-date level of state.

3.3.3 Deployment architecture

The architecture of the framework is an important consideration, as it affects the
design, functionality and flexibility of its use. This would define whether the
components of the framework, such as the traffic control, redirection, failover, and
state extraction mechanisms, are centralised within a single deployed application,
distributed between components with a centralised logical control or divided into
independent microservices. The nature of the deployment can also affect the
scalability of its resources, which is another factor to consider.

e Monolithic architecture The architecture may be monolithic, with all of
its components within a centralised deployment, or it may sit external to the
target middlebox. Every component would then be created rather than using

61



Chapter 3. Hybrid networks and resilient design 3.3. Design considerations

third party tools or mechanisms, as well as hosted and deployed as a whole
system. Prior work in this domain, such as Pico (Rajagopalan, Williams, and
Jamjoom, 2013), has generally favoured centralised solutions that encapsulate
or replace the existing infrastructure, typically to facilitate the greater level of
control required.

e Decentralised architecture A decentralised architecture is similar to the
monolithic, but rather than being deployed as a single framework or system,
its components operate independently of one another with a centralised logical
control or management. This approach would adhere better to a networking
environment for scalability purposes, as well as offer some measure of internal
redundancy in the event of component failure.

e Microservices A microservice architecture would further divide the distributed
architecture into smaller, loosely coupled services. Microservices are beneficial
for flexibility, deployability and technology-agnostic design and are intended to
be used with third-party applications that can be replaced without significant
modification to the rest of the architecture. For this work, it would involve
dividing the liveness, failover, traffic redirection, and state distribution into sep-
arate independent mechanisms and utilising any pre-existing tools to facilitate
its work.

3.3.4 Technology-agnostic architecture

To ensure the viability and longevity of this proposed system, its design must be
sufficiently generic so that it may be created in multiple technologies, with no aspects
of its design reliant on a technology-specific mechanism or tool. This ensures the
widest possible compatibility and appeal for its use. This can be achieved in one of
two ways:

e SDN technology SDN will continue to grow and expand in use as commodity
processors gain in clock speeds and bridge the performance gap. Designing the
system to take advantage of a separated control plane and current shared SDN
practices can allow for both compatibility with all current SDN technologies as
well as future expansion. SDN allows for far greater flexibility in its mechanisms,
replicating both network primitives and providing the means to explore beyond.

e Hardware primitives Existing network layers and protocols are heavily
ossified and unlikely to change. Designing the platform to function with existing
network primitives realised in hardware would ensure its compatibility with
almost all current networks, but limit the scope of what it could achieve to
fairly basic mechanisms.

62



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

3.3.5 Retaining and distributing state

The storage and distribution of state is a similar consideration to that of the
deployment architecture. Specifically for non-packet-based state distribution, state
that is created must be distributed to all redundant middleboxes. As a question
of consistency of state view across multiple redundancies, this problem may be
considered purely in the CAP theorem example, discussed earlier in Section 3.1.4.
There are a number of ways this can be achieved:

e Centralised datastore A centralised datastore, separate from the primary and
redundant middleboxes, can receive and distribute state across all middleboxes.
This approach has a number of advantages, including ensuring a singular view
of the state is maintained as well as enforcing a separation between the primary
and redundant middleboxes. This latter point is beneficial for maintaining the
goal of limiting awareness of the existence of the framework by the primary
middleboxes. An example of this approach would involve the primary middlebox
state being extracted or recreated and distributed to all redundant middleboxes
through a publish/subscribe channel system.

e Direct distribution Rather than a single centralised datastore that retains
all state, state may be distributed directly to the redundant middleboxes from
the primary. This follows a number of existing practices, such as zoning and
Paxos, with an enforced leader already elected as the primary middlebox. This
approach removes the potential weakness of a datastore that could serve as
a single point of failure and replaces it with a direct message channel, but it
might impair the scalability and separation between the primary and redundant
middleboxes.

e Peer-to-peer The state distribution may follow the practices of Paxos and
leader election protocols more directly than direct distribution by allowing for a
new leader to be elected after failover has occurred. The prior approach treats
failover as a one-off, with the service to be restored to the primary middlebox.
This approach would differ by allowing the establishment of a new consensus
leader, introducing some greater resilience alongside further complexity.

3.4 Design overview

With these design considerations taken into account, this thesis presents REME-
DIATE (REsilient MiddlEbox Defence Infrastructure ArchiTEcture) a generic state
recovery system for middleboxes that meets all of the proposed design requirements
of Section 3.2. It is a non-modifying architecture for middleboxes realised using

63



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

Orchestration Layer
v }

e
' SDN
N e Cloud management Layer
Data I
| store ) — i -
Lo . Z2 Y i |
viddleb : State state 1 Middle
1adiebox ; insertion extraction == i
resilience Senices senices boxes ; l
layer \_‘ E »(  Network
' L 7 Infrastructure

b
VINF ¥ _‘—l—) .
PNF T~

Compute and
hosting node

Resilience node NetWDrk Layer

~ 4

Figure 3.4: High-level architecture overview. The middlebox resilience layer serves
as the centralised logic of the framework, utilising the existing network orchestration
and cloud management to operate the state extraction mechanisms and VNFs within
the network. Red arrows indicate control over an element, black indicates the flow of
traffic, purple indicates state.

virtualisation and VNF technologies, able to target both greybox software and
blackbox hardware in a variety of configurations/layouts with minimal overhead.
Figure 3.4 presents a high-level overview of the system as a whole and its components.
This consists of the topology of a network and its interaction with the middlebox
resilience layer, incorporated as an external system. This external system interfaces
with existing orchestration and cloud management layers, encapsulating existing
middlebox implementations with state-preserving mechanisms to establish persistent
state across replicas regardless of the source or technology of their implementation,
able to derive state from white, grey or blackbox middleboxes. These mechanisms,
discussed in more detail in their respective sections in the implementation, form the
two major techniques of the architecture and publications, Katoptron and Middlebox
Minions. This section will break down the various components and their interactions,
with more specific details to be presented in the implementation.

64



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

3.4.1 Levels of middlebox access

The synchronisation of state across devices is a complicated task in its own right, with
the work of this thesis focusing upon blackboxes as a target, complicating this further.
Several approaches are discussed in Section 3.3.1, presenting a selection of methods
used in previous research. To provide the widest possible coverage of potential targets,
the work of this thesis and Remediate must target the three levels of interaction, each
with their own approach.

e Full state visibility - complete programmability

The first scenario consists of direct awareness of the internal state, its operations
and metrics and may be feasible with certain open-source/open VNF's utilised
in modern networks. Not all VNF's popularised in businesses are pre-compiled
paid-for software, but instead may be utilising popular open-source tools and
technology. One example includes the OpenConfig initiative (initiative, 2024), a
consortium of industry figures to establish a set of standardised APIs and open
tools for managing network devices. Direct access allows for modification and
insertion of drivers capable of retrieving table entries and similar variables. An
example of this would be the capture and dissemination of OpenFlow-specific
table entry instantiation commands being received from the control plane/SDN
controller via the channel. The state extracted would be dependent on the
tool itself and whether it can be easily replicated and inserted into other VNF's
without interpretation. Tools such as P4-16 stateful elements would necessitate
a different approach, with their contents read and replicated individually to
their respective stateful element in the replica.

e Partial state visibility - moderate programmability
The second scenario consists of blackbox hardware or greybox software with
observable output, such as logging or diagnostics that provide information on
the decision-making and actions taken by the blackbox. This information can
be interpreted through an external driver separate from the device and used to
establish similar but not identical state using an operationally equivalent VNF
backend. This approach requires some measure of fitting to the circumstance,
both in the log interpretation and the state acquisition by the redundant replica.
An example of this would be interpreting the logging output of a blackbox
firewall using an external driver and serialising this state into OpenFlow table
instantiation commands akin to the new rules it has created, recreating the
functionality as a separate mechanism. Another example would utilise the
external read and write handlers of a Click (Martins et al., 2014) element in
a pipeline or direct modification of the element’s state through exploitation of
the hotconfig mechanism that allows for state to be transferred between routers

65



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

during liveness. The equivalence of functionality between the primary PNF and
the redundant VNF is an important factor in its selection; they might both
be firewalls, but the redundant VNF must allow for the means to replicate the
decisions of the primary middlebox both before and after failover. This may
require the creation of an appropriate VNF in the absence of a pre-existing tool.
Despite this fitting requirement, as a scenario, it is far more likely than the first
scenario due to external logging mechanisms being quite common for this form
of network device for monitoring and diagnostic reasons.

e No state visibility - zero programmability

The third and final scenario to be targeted consists primarily of blackbox
middleboxes that offer no such external information to the operations and
decisions it is making. To replicate state across instances, the limited potential
for non-determinism in hardware (as detailed in section 3.1.2) must be exploited
using traffic cloning and replication to maintain a live replica. On a technical
level, this approach requires far less fitting than the prior scenarios. However,
traffic cloning is an expensive procedure and infeasible in most network setups
(doubling the volume of traffic just to provide more accurate failover results).
To minimise the impact of this approach, traffic filtering and a reduction in the
overall volume of information needed is a key factor in this approach, as pursued
by this thesis’ contributions. The majority of the state generated for flow tables
is formed from flow initiation within the first few packets of each flow. This
allows for the use of a fraction of each flow to pre-populate the state within a
redundant middlebox. It is here that the complexity of the design occurs, as
the type of traffic and the volume necessary to ensure the continuation of state
varies from middlebox to middlebox, although all within the range of a handful
of packets. This is explored in more detail in the evaluation.

3.4.2 Resilience nodes

The resilience node is a logical abstraction of the encompassing or pairing of existing
NF implementations with either virtual or physical redundancies, aided by state-
preserving mechanisms as proposed above. The state of the primary NF is preserved
through a variety of mechanisms that target specific kinds of middlebox, to be copied
to these replicas and establishing a multi-direction stateful failover system without
replacing the existing/underlying infrastructure and hardware. These resilience nodes
form one of the major contributions of this body of work. At a high level, the resilience
node is the unified resilience approach that targets the three levels of accessibility
of middlebox implementations, able to facilitate both software and hardware NF
implementations and enable state persistence in both multi-directional and multi-
targeted ways. For example, the role of the primary middlebox may be fulfilled by

66



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

existing hardware, with its resilience node extracting state through a traffic filter
mechanism to a scalable cluster of VNFs serving as remediation redundancy in the
absence of redundant hardware units to provide failover, leveraging the use of the
compute resources of the network. The resilience node is comprised of at most
3 functionalities: the state extraction service, the state insertion service and the
redundancy. This section will break down these high-level components, with further
details expanded upon in the implementation and evaluation.

3.4.2.1 State extraction and insertion services

State preservation is the means by which the objective of this thesis (improving
the resilience of middleboxes and networks using virtualisation technology) is
accomplished. To target the widest possible range of middlebox implementations,
the three kinds of middlebox must be targeted for these preservation mechanisms:
whiteboxes, greyboxes and blackboxes as defined in Section 2.1.4. To accomplish
this, a multitude of mechanisms are needed, as discussed in Section 3.4.1, that operate
in tandem with both physical and virtualised replicas to the primary middleboxes.
These mechanisms form the core of this thesis: MiMi and Katoptron, the former
targeting white and grey, and the latter black middleboxes. This resilience approach
utilises multiple possible state extraction techniques to offer a significant level of
flexibility to the network engineer for the potential number of network layouts and
tools utilised. The individual components of the resilience node are depicted in
Figure 3.4, with compute resources used to provide VNF hosting and managed by the
cloud management layer. The VNF's, used for both filtering and providing virtualised
redundancies, are managed by the network-wide SDN controller, with PNFs separately
operated by their respective network engineering teams. The state extraction service
depicted in the diagram is a combination of several extraction mechanisms. State is
pulled from these extractors and held within the datastore to be distributed among
the redundant middleboxes via the insertion services.

These extractors are made up of drivers, specifically targeting greyboxes, sit
external to the middlebox and reconstruct state from the datastore. The resilience
node enforces separation between its targets and the redundancies so as to minimise
the level of “awareness” that the system must have to the resilience node. These
mechanisms are built and operated externally from the platform, with the enforced
separation being part of the goal of minimising interaction, interference, modification
or replacement of the underlying infrastructure. This is achieved through three sys-
tems: the external middlebox resilience layer that operates and manages both VNF's
and PNF redundancies but not the original middleboxes; the external state repository
to minimise direct interaction from the primary to the redundancy/redundancies and
finally, the use of external state establishing mechanisms in the resilience node, such

67



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

as log interpretation or traffic filtering. Outside of whitebox scenarios, the state
extraction mechanisms of the resilience node are all external and operate either up or
downstream from the target middleboxes, with best-case scenarios of physical/virtual
network function(s) encapsulated within a resilience node with no awareness of its
presence in their configuration or operations.

3.4.2.2 Facilitating both hardware and software

Remediate is able to accommodate both hardware and software in both directions;
more specifically, state can be extracted externally from both physical and virtual
middleboxes that require state for their operations, as well as utilise either software
or hardware to serve in the redundant role and receive this extracted state. The
aim of this is to accommodate the widest possible number of network configurations
and maximise the viability of the work proposed in this thesis. This is achieved
through the use of external state extractors for each of the white, grey and blackbox
implementations. The arrangement/configuration is dependent on the preference of
the network operator, although there are technical considerations for the approach
chosen. Whiteboxes serving as the primary packet processors are best matched with
equivalent software replicas, modified with inserted drivers. More likely scenarios
would consist of either closed-source software or hardware with observable decision-
making such as logging (greyboxes) or the same with no external view of inner
decisions (blackboxes). For the former, the external interpreter and listener re-
establish state for a targeted VNF, matching performance and operations as accurately
as possible. For the latter, the performance difference and limitations on non-
determinism encourage the use of hardware redundancies for primary hardware with
state provided by traffic filter mechanisms. The scalability of this approach is limited,
however, although there is potential to employ VNF redundancies in clusters with
state distributed amongst the replicas through the external datastore. This body of
work does not explore this technique however. There are limits to the degree to which
parallelism can match the performance gap between software and hardware (C. Wang,
Spatscheck, Gopalakrishnan, and Applegate, 2016). Nevertheless, the flexibility of
Remediate ensures the possibility to provide hardware/software to hardware/software
is available to the end user for whatever their requirements.

3.4.3 External State Repository

Bandwidth in networks is a scalable commodity and the basis of the operators’
business operations. As a business decision, they limit the bandwidth they offer for
operations that are not conducive to this goal, as any bandwidth used for purposes
such as resilience is bandwidth not being used to service customers. As networks
grow in size, so too will the size of state that must be retained. In principle, this

68



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

bandwidth capacity can continue to be scaled as the volume of traffic grows as well
as the state, but in practice, there are physical and economic limits that must be
considered. Therefore, minimising the increase in bandwidth use and latency incurred
by state updates from Remediate is a high-level requirement. To allow for scalability
and reduce the volume of potential traffic between replicas, the extracted state is sent
to and distributed by an external repository.

A datastore is a common network tool often used for a variety of purposes,
including caching and message brokering. They differ from databases, where they
maintain not only data but serve as a global repository for files held only in
memory. An external datastore serves as a centralised state repository, minimising
communications between these two sides to a single entity like a BGP reflector,
further enforcing the separation of the two layers and minimising the complexity
of the communications. The state extraction mechanism used by the resilience node
propagates the state to the state repository. From the repository, message brokering
distributes state to all available listeners that form the second half of the state
extraction mechanisms. Through this middleground, the number of potential VNF's
or PNFs utilised as redundancies can be altered at any time by the user, with no
awareness on the part of the original middlebox. State transfer may vary in its scope
and direction, with the number of entities on either side of the primary:redundancy
balance highly flexible.

3.4.4 SDN management

VNFs are utilised by Remediate in a redundancy capacity, including the use of
purpose-built or modified VNF copies of the primary VNF for whitebox scenarios as
well as scaling for performance purposes. These VNFs may be defined and configured
from the external resilience layer, but deployment and operations are handled by
the network operators and their connectivity by the existing network-wide SDN
controller already in place. Operations for these redundant VNFs would be controlled
by the existing managers using the orchestration and management layers. This is
done to minimise the degree of new technology necessary to utilise Remediate and
exploit pre-existing assets in a network infrastructure. Whilst SDN is not universally
adopted in industry, it is growing at a rapid pace (Feamster et al., 2014), and any
deployment utilising VNFs for redundancy purposes is likely to possess some degree
of supporting infrastructure, with virtualisation rarely used without some measure
of SDN technology for monitoring and control purposes. Examples of real-world
systems include JunOS Space (Juniper, 2009) for managing Juniper Network-specific
fabric or relying on NFV MANO approaches pursued by more traditional Network
Equipment Providers (NEP) such as Cisco and Ericsson that use cloud technologies
such as VMware.

69



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

3.4.5 Infrastructure

The network infrastructure represents the existing network architecture and its
elements. The goal of this thesis is to cater to a wide variety of possible
approaches to middlebox usage, with a focus on those that are vulnerable to
state loss still implemented within dedicated hardware. The middlebox resilience
mechanisms sit externally and should not warrant the replacement of any of the
underlying infrastructure, presuming no complications to interfacing with the network
orchestration. Even in the absence of network overviews or controllers, Remediate is
able to be deployed in an entirely independent format, encapsulating any targeted
middleboxes and feeding state to available redundancies through static deployments
using protocols such as Cisco’s HSRP (Li et al., 1998) or PRP/HSR (IEC, 2016).
Examples of this are best represented by the prototypes developed and examined in
the evaluation section, with their use cases requiring only a minimum of a switching
and state extraction mechanism realised in open-source user-space software.

3.4.6 Cloud management

The cloud management layer represents the network resource and infrastructure
management, essentially encompassing all available entities that may only be utilised
in the short to medium term rather than permanent fixtures. This includes both the
SDN controller, which is orchestrated by the layer above the cloud management, and
the resilience node state extraction mechanisms. These mechanisms are realised in
software but do not strictly fall under the scope of VNFs that might be instantiated
by a typical controller. The middlebox resilience layer provides the patterns
and mechanisms for their use by the management layer, where resources can be
appropriately scaled in the case of any flexible VNF deployment. Other responsibilities
include the switching functionality, which covers both failover and service restoration;
these can be achieved in a number of ways, but more commonly through flow tagging
or SDN-enabled switches inserted at key sections within the network. The means by
which this is achieved is primarily dependent on the network in question and falls
outside of the scope of this research, as it is a common operation in overlay networks
that would seek to provide resilience against disruption through redundancy.

3.4.7 Orchestration

The network orchestration layer, presented at the top of Figure 3.4, represents the
total network control available to the network operators, which itself is performed
through the separate MANO platforms via engineers. The external resilience layer
works in coordination with the orchestration to operate the redundant systems
within the network infrastructure. There are four primary functions performed by

70



Chapter 3. Hybrid networks and resilient design 3.4. Design overview

the orchestration, using the existing VNFI (compute and hosting nodes) and SDN
controller as the interface: redundant VNF initialisation, teardown, traffic control
and redirection. This separated approach is used so that the system may remain
flexible to the layout of the network it is externally fitted to, utilising any existing
SDN or NFV systems present in the network rather than mandating their presence.
Once established, redundant VNFs are deployed using the existing VNFI and hosted
on the hardware supporting the redundancy node elements. These should remain
active during normal operations and are not intended to be used outside of their
almost static redundancy purposes.

Traffic redirection can be done either actively using techniques such as flow
tagging or dedicated flows, as discussed prior, or passively using redundant routing
algorithms. Beyond flexibility in how the external system can adapt to the pre-existing
infrastructure, the other goal of its use is to enable a centralised point of orchestration
for this redundancy system; replicas are deployed by the external platform using the
network’s orchestration layer through its interface. For hardware middleboxes and
networks that lack any significant SDN/NFV presence to utilise, the approach to
their management differs. Blackboxes already lack outside coordination and require
dedicated teams of engineers for their operations, who are required to configure and
monitor specific sets of boxes, replacing them where necessary. This is not a problem
under Remediate however, as PNFs used for redundancy purposes can exploit this
pre-existing management instead, with these devices simply falling under this umbrella
as additional managed hardware. The external state resilience mechanisms that
service these PNF redundancies fall outside of this umbrella, with traffic control,
failover and service restoration performed by the inserted VNF mechanisms. These
are operated instead by either the SDN controller or the cloud management itself,
depending on the network arrangement. For example, failover and state capture
which are both performed by the resilience mechanism of the node would be managed
by the SDN controller. If utilising inserted SDN-enabled switches or flow tagging
for controlling the direction of traffic, however, this would instead fall under the
jurisdiction of the cloud management layer as network infrastructure management
over deployment.

3.4.8 Remediate - Middlebox Resilience layer

The logic and core operations of Remediate are represented by the external middlebox
resilience layer presented in Figure 3.4. As discussed in Section 3.4.7, it sits externally
to the rest of the network as an additional element, providing redundancy using
existing control mechanisms. This includes the patterns/templates for targeted
VNFs, resilience mechanisms for capturing state and communications to the external
state repository. PNF and VNF elements are operated directly via their respective

71



Chapter 3. Hybrid networks and resilient design 3.5. Summary

control mechanisms and engineers as discussed in their specific sections, with external
orchestration performed through configuration files or manual control by the network
engineers at the resilience layer using the overarching network configuration layer. The
state repository, represented as the external datastore incorporated into this resilience
layer, operates independently of direct control but its setup is dictated by this layer.
Once Remediate is incorporated into a network, the number of additional elements
required to enable state-aware resilience to whatever middlebox configuration is in
place should be minor, minimising the overall footprint of the work proposed by this
thesis.

3.5 Summary

This chapter has detailed the high-level design to achieve the aforementioned aims of
this thesis and to address the challenges highlighted in Section 3.2. It has been built
on the awareness of the existing state of middlebox placement and design, as well
as the steady rise of SDN and NFV in enterprise deployments. The decisions have
focused on achieving the design challenges extracted by analysing related literature
and work, such as accuracy, scalability, efficiency and an effective and easily deployed
design. It is key that the proposed system is both non-modifying and cross-compatible
with most use cases, including blackbox hardware and greybox software, as well as
offering mechanisms for most possible network configurations. The design and its two
realisations MiMi and Katoptron, detailed in the next chapter, are intended to be
agnostic of specific technologies so as to allow for the requirements of its users and
the changing landscape of technology as virtualised networking continues to grow. In
the next section, the two branches of this design that were built and evaluated will be
detailed, including the specific mechanics made to achieve these aims and the linkage
between systems.

72



Chapter 4

Implementation

In the previous chapter, a high-level design for Remediate was presented, displaying
how the proposed system would be integrated into an existing network and operate
through pre-existing orchestration and managers. From this design, two major
branches of implementation have been developed as the primary research contribution
of this thesis, depicted in Figure 4.2. This chapter details the implementation of both
the software-targeted state extraction system “Middlebox Minions (MiMi)” and the
hardware-targeted state recreation filtering system “Katoptron”. It will be split into
three sections; shared elements between the implementations, the high-level designs
of MiMi and Katoptron, and finally the prototypes built for the evaluation. The
shared elements, split across the design and prototype, consist of any mechanism
or component, such as the testbed and Fast Failover (FF) implementations similar
for both prototypes. After this, sections 4.2 and 4.3 will detail the design and
mechanisms of each system. Finally, the remaining part, consisting of sections 4.4
and 4.5, will detail the tested implementations used for their evaluations in their
respective publications.

4.1 Resilience Framework

This section is split into two halves: the shared elements across the two architectural
designs, and the shared elements in the prototypes themselves. The two projects form
major contributions of the overall design and represent the body of work of this thesis
and Remediate. As a result, they share certain aspects of their design to be realised
as separate publications which shall be discussed here to avoid repetition.

73



Chapter 4. Implementation 4.1.  Resilience Framework

4.1.1 Point of Failover Architecture

The points of failover (PoF) are logical structures within the network that serve as the
monitoring, switchover and failure junctions between the primary packet processing
route (the existing middlebox) and the redundancy (the PNF or VNF(s)). This
point of failover can be a singular entity such as a programmable network device
(e.g. OpenFlow on merchant silicon (McKeown et al., 2008b) or a P4 switch (Bosshart
et al., 2014) able to support fast-failover path recovery) or set of protocols in the
switching fabric depending on the complexity and forwarding setup of the network.
They are formed of three functions: liveness monitoring, failover mechanisms and,
in the case of Katoptron, service restoration mechanisms. Firstly, liveness protocols
operate upstream from the target middlebox, observing for network disruption or
middlebox failure. To achieve this functionality, the PoF and network can use an array
of different techniques, ranging from voltage checks, L.2 updates, ethernet link sensing
or Fast ReRoute (FRR) paths with RSVP-TE signaling (Chiesa et al., 2019b). These
approaches offer different trade-offs with respect to hardware requirements and failure
detection guarantees. More advanced mechanisms, such as heartbeat monitors (IBM,
2024), are dependent on the product as they must be supported or inbuilt but are
otherwise infeasible for blackboxes due to the modification requirement if not. Simple
link failure monitors require little bandwidth to operate at a local level and tend to
be more common than vendor-specific link aggregations like PAgP (Systems, 1998)
or LACP (Huawei, 2022).

The second function, failover, is the means by which traffic is redirected from
one device to another across the network when needed. During detected failures, the
PoF will failover to the redundant path, masking the change from the primary to
the secondary middlebox from the traffic in flight and bypassing the failure. Both
MiMi and Katoptron are agnostic of the mechanism used to maximise the scope
of applicable network configurations for their use. Finally, the point of failover is
utilised to facilitate service restoration to the original middlebox when the issue has
been resolved. Operating independently of a manager, a single point of failover and
the filter are sufficient to reconstruct state on live flows and maintain a hot replica to
a target middlebox. These points, much like the filter, should sit as ’bumps on the
wire’, or unobserved by the traffic itself as it passes through to the blackbox during
failure-free operations. Two switchover points are recommended, however, for service
restoration purposes, which shall be discussed in more detail in Section 4.5.2.

4.1.2 Points of Failover proof of concept

The two mechanisms both utilise very similar failover, built using OpenFlow’s inbuilt
group tables, allowing a set of static links to be swapped in the progressive chain
in case of link breakage or failure. The “FAST-FAILOVER” group establishes a

74



Chapter 4. Implementation 4.1.  Resilience Framework

list of actions known as ’buckets’. Each bucket contains a list of parameters and
actions. For the FF group, these buckets specify a watch port to observe for
liveness. Liveness is evaluated through link sensing and observing for loss of Ethernet
preamble. If the interface goes down, that bucket and its actions are no longer in
use, falling to the next bucket. Using this ordered list, a set of links and their
redundancies can be specified, falling over to the next available link in the chain.
These in-built mechanisms implement typical real-world systems used for monitoring
link liveness and redundant link protocols. For both Katoptron and MiMi, these
failover mechanisms are implemented into specific static switches in their testbeds on
either side of the target middleboxes with a set of static flows to handle active and
redundant links. For the evaluation, MiMi’s points of failover are present before and
after a simulated middlebox, with link failures triggered by external scripts during
experimentation. For Katoptron, the switch is linked to the filter on the path to the
primary middlebox and the redundant middlebox directly.

ovs-ofctl -00penFlowl3 add-group csl ’group_id=1,type=£ff,
bucket=watch_port:1,output:1,bucket=watch_port:2,output:2’

ovs—ofctl -0O0penFlowl3 add-flow csl ’dl_type=0x806,
nw_dst=10.0.0.20,priority=2,actions=group:1’

ovs—ofctl -00penFlowl3 add-flow csl ’dl_dst=00:00:00:00:00:FF,
priority=1,actions=group:1’

Figure 4.1: OF flow table rules for a fast-failover bucket and watch ports

This code snippet, presented in Figure 4.1, is an example of the group table
structure. It consists of two buckets, each containing a port to observe for liveness and
an output port. This is accompanied by two matching flows to direct traffic to the
group table rule. Katoptron builds on the failover mechanism, expanding the point of
failover with restoration mechanisms that are further elaborated on in Section 4.5.2.

4.1.3 Management layer

The management layer coordinates the operations of the resilience frameworks and
the mechanisms that make up their distributed architectures. The frameworks are
distributed architectures formed from a number of separate mechanisms, managed
by a centralised layer. The layers for both MiMi and Katoptron are sufficiently
similar in their roles and structures that they may be combined here as a shared
architecture. Key differences between the two architectures will be highlighted. These
shared mechanisms include the failover, VNF controllers, liveness monitoring and
VNF instantiation and teardown. The operations of these mechanisms are primarily
independent, operating automatically once configured and deployed, such as link

75



Chapter 4. Implementation 4.1.  Resilience Framework

Management Layer

Resaurce VNF management
State External Serialiser Management servi r?e
repository Service
t

|

L
Traffic Filter Internal Serialiser : i External Interpreter :
__________________________________________________________________________________ FOSSRSRSRSRURRURY Insonvopafuivun. oo

;

' E i / k4 1\ f— \i : Y

1 A s - il i 'S ~
i P MiMi Driver | |{ & || MiMiDriver
i S “ s J

Redundant
Middlebox

Primary
Middlebox

Primary Primary
Middlebox

-

h

Figure 4.2:  The overall system architecture, presenting a logical view of the
management layer and its interactions with the state capture mechanisms. On the
left, the Katoptron traffic filter approach using blackbox VNFs to pre-populate state
tables through targeted filtering. In the centre, an inserted driver directly serialises
state to be distributed by the repository. On the right, log output from a greybox
is interpreted and converted into a serialised format, to be distributed by the state
repository to whitebox VNFs. The blue arrows indicate the flow of state for MiMi
using an external interpreter, the red using an internal directly to the repository.

monitoring and failover. However, some level of control is necessary for the purposes
of monitoring and operations, with examples including the VNFI and controllers for
instantiation and teardown of any replicas utilised for redundancy (in the case of
MiMi) or the filter mechanisms (in the case of Katoptron). The individual mechanisms
not shared between the two architectures shall be discussed separately. For MiMi,
this includes the state repository, publish and subscribe channels, interpreters and
serialisers. These are a part of the state repository mechanism, which is expanded
upon below in its own section. For Katoptron, this includes the traffic filters and
service restoration mechanisms.

¢ VNF management The VNF management is a major component of the
management layer and is responsible for the instantiation and teardown of all
virtual elements of MiMi and Katoptron. This includes the whitebox redundant
VNFs, state serialisers, traffic filters and, in certain circumstances, the PoF

76

'
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Management

State
extraction
mechanisms

;;;;;;;;;;;;;

Data Plane



Chapter 4. Implementation 4.1.  Resilience Framework

mechanisms. These mechanisms operate independently of a control plane in
most circumstances, with the VNF management responsible only for their
deployment and ensuring continued operations. For MiMi, the redundant VNF's
operate as hot replicas, receiving state during normal failure-free operations, and
are live at all times rather than migrated or activated at the point of failure.
The memory and bandwidth costs for this are a consideration however, and the
extent of scalability should be taken into account. It is worth highlighting that
the architecture has a negligible impact on the resources of the infrastructure
during idle mode, as the backup VNF functionality will be limited to collecting
state updates and signal liveness to the management layer. Furthermore,
modern memory ballooning techniques in VMs (Barham et al., 2003a) can
also minimise the need for internal memory fragmentation on the virtualised
servers. Katoptron is intended to target blackboxes via its filter mechanism
to recreate state in its target redundancies, which are best suited as similar
physical hardware for ease of deployment within existing networks. However,
it is capable of targeting precompiled blackboxes such as software VNFs. Any
VNFs and the filters deployed in software fall under the VNF management.
The performance difference between the physical blackbox and a VNF serving
as redundancy is partially mitigated by its role as a failure remediation tool; this
intermediary stage between failure and normal operations provides a diminished
service rather than disruption.

e State Repository The state repository is a middleground that distributes
serialised state to the redundant VNF's. It takes the form of a communications
channel or datastore that implements a publish/subscribe channel model,
configured to receive traffic from the serialisers or interpreters in a 1:N
arrangement. The state repository does not hold state for longer than the
current live state view window, which is maintained only until it is received by
the subscribers. While the operations of the state repository fall under the scope
of the management layer, its actual function operates otherwise independently
of the rest of the management layer.

e Interpreters and Serialisers The interpreter and serialiser drivers provide
MiMi’s state recreation and extraction techniques (or grey and whitebox)
respectively. For the former, the interpreters sit external to the target middlebox
and are configured by the management layer for its communications with the
state repository and logging system. The serialisers consist of inserted or
modified code to existing VNFs and are configured by the management for
communications with the publish /subscribe channels.

e Liveness monitoring There are a number of liveness protocols used in

7



Chapter 4. Implementation 4.2.  White and greybox resilience

production networks, but Katoptron limits the scope of solutions that are
suitable. Heartbeat monitors and keepalive protocols are functional with
software such as white and some greyboxes, but are infeasible with blackboxes.
This limits the liveness monitoring to link sensing methods such as L2 updates,
port sensing and voltage checks. Larger networks outside of this testbed may
use other approaches incorporated into MPLS and existing FRR techniques, but
both Katoptron and MiMi are agnostic of the approach as long as it provides
adequate failure detection and failover.

e Service restoration Failover is the action of changing the direction of traffic
from the primary to the redundancy and is handled by the PoF upon detection
of liveness isuses. Service restoration is the opposite direction, for when the
primary has been restored. This can be done in a number of ways: blindly,
with no regard for the traffic in flight, or through bleedover techniques to slowly
syphon traffic back to the primary. This is dependent on the network itself, with
arguments to be made for each. Katoptron proposes a bleeding mechanism using
an SDN-enabled switch, expanded upon further in Section 4.5.2.

e Traffic filters The traffic filter sits upstream from the target middlebox,
filtering state-generating packets from the primary stream to the redundancy.
Traffic flows bidirectionally, but the filtering is only applied to incoming streams
to a network as that is the primary source of state is derived. Traffic direction
from this box is dependent on the network design and layout, either sitting
directly on the wire before the middlebox in a more simplistic architecture
or relying on flow tagging techniques for forwarding and directing purposes,
e.g. linked directly to the primary and redundant middlebox, or placed elsewhere
in the physical layout with traffic tagged and forwarded across the network in
accordance with these labels. This is one of the key motivations behind reducing
the overall volume of traffic necessary to forward to the redundancies so as to
minimise impact on the system itself.

4.2 White and greybox resilience

Middlebox Minions (MiMi) is the VNF resilience half of the framework that
provides methods for white and greybox stateful failover, as well as the scalable
state distribution for the overall Remediate framework. This section describes the
components and features of its design. Figure 4.2 presents the combined architecture,
with MiMi contained within. As a broad summary, MiMi is a resilience framework that
reconstructs state and maintains partial packet processing and forwarding correctness
during middlebox failures. This is done using pairings of key middleboxes with VNF's,

78



Chapter 4. Implementation 4.2.  White and greybox resilience

where a set of modules maintain state synchronisation between the primary middlebox
and the minion VNF. It is built on two basic assumptions: the network infrastructure
offers compute resources to support VNFs (like 5G RAN, cloud in ORAN, NFV-
MANO and Core architectures) and a fast-failover path is in place when failures
occur. MPLS (Atlas et al., 2005) and group table entry-type SDN technologies
provide built-in support for fast rerouting actions, while recent research efforts
have developed efficient fast-reroute hardware designs (Chiesa et al., 2019a). The
architecture is divided into three layers: management, drivers and middleboxes/VNFs.
Firstly, the management layer orchestrates all the operations of the VNF's, including
liveness and failover. It manages all VNFs and their shared resources. In parallel,
it uses the northbound API of the network control plane to establish a backup
path to the VNF if the middlebox fails. The management layer uses off-the-shelf
database software (e.g. Redis) to store the forwarding state of each middlebox. The
state (extraction/recreation layer) or driver layer offers two approaches to targeting
VNF grey and whiteboxes using serialisers or interpreters respectively. Blackbox
middleboxes for both software and hardware are the focus of this thesis, but a
whitebox (i.e.open-source software) approach has been both established and evaluated
as an important early consideration in this body of work.

These serialisers or interpreters, referred to from this point as drivers, are built to
target the primary software in use. The state acquired or created by the drivers is sent
directly to the datastore, an independent storage shown in line with the management
layer. This state repository will distribute to the redundant replicas, allowing for both
scalability and anonymity of the 1:N connection for the target middlebox. Finally,
the VNF redundancies serve as the backup devices for the target box. They are
created, controlled and torn down by the management layer, which also handles their
resource utilisation, network connectivity and orchestration. It utilises targeted open-
source/modifiable VNF's that are fit to purpose for the primary middlebox and the
type of driver utilised. The number of replicas utilised per box is equally defined by
the user, dependent on the platform. The remainder of this section contains a detailed
breakdown of each of the components, their use within the system and their function
in the overall architecture.

4.2.1 State drivers

The state drivers are the means by which state is extracted or generated for the
redundant VNFs and is key to the state-aware redundancy strategy. These drivers
are purpose-built for their target middlebox and require creation or modification to
fit this role. For example, the logging output of a greybox is defined by the network
operators and the box itself, so any log-interpreting driver created would be built to
fit in accordance with the expected format of these specific logs. In this section, the

79



Chapter 4. Implementation 4.2.  White and greybox resilience

two approaches and their use are detailed. The drivers developed for MiMi consist of
two distinct mechanisms, targeting two of the three kinds of middlebox accessibility:
white and grey boxes. Both solutions are built with the awareness that the redundant
VNFs or drivers are modified to fit their targets and intended use, offering a more
specific solution over Katoptron’s generic hardware-based solution.

4.2.1.1 Log interpretation

External Logging server Frimary Middlebosx
Logs

[

Fetains logs in
memary ar saves to manitoring and

]

i

i
files maintenance Traffic ‘*\,_\

]

X External
— Metworks 3
i

External Driver Redundant Middlebox | Traffic ~— T

T |

. Virtualized copy of the
Listener original device

Generates logs for  fp---- |

Ohserves for new logs T
that match the
middlebox

Internal Driver

J' Subscriber
Interpreter

Listening channel far
Convert human- new flows/state
readable text to fields

.

Serialiser
Serialized —
Convert new message state External
to datastore format datastore

S

Figure 4.3: High-level diagram of a log interpreter interacting with a primary and
redundant middlebox using a datastore distribution and internal subscriber. The flow
of activity is represented with these arrows, forming an almost complete circuit from
the primary to the redundant middlebox for transferring state.

This section forms the non-modifying approach to recreating state for greybox
software, using SDN as the resilience strategy. While access to the internal operations

80



Chapter 4. Implementation 4.2.  White and greybox resilience

] ]
] ]
] ]
1] i 1]
GreYbox : Sesrtaal::§8d e :
B ] H ]
middlebox : piblsher state listener : N
! nterpreted ' !
X state | Publishing X
] 1 message '
' New state/flow ' ' _ ciate VNE
. generator X Publish :
i A h I '
: son : channe :
——— . VNF
Logs Syslog Leas—» LOg Interpreter : :
listener i '
- i
External ' : '
Xterna :
' Driver ' Datastore ' NFVI
network : ' :
] ) ]

Figure 4.4: Another view of the distribution of state from the primary middlebox to
the redundant VNFs. The arrows indicate the flow of actions through the components
that make up the distribution of state.

of pre-compiled software may not be possible, greybox software is not as isolated
from the network compared to physical middleboxes. They must still be configured
and managed by the network, offering a significant level of control via its API, with
one aspect of this consisting of its logging mechanisms. Logging is an important and
necessary part of the operations of system-level tools such as this, used for monitoring
and error correction. The contents of this logging is defined by its configuration, such
as printing the headers of all incoming packets, but in typical cases, it will report
actions taken. Using this information, interpretation of this logging output produces
an approximation of the internal state decisions made by the software greybox. Access
to this logging information can be approached either via its API or by external
mechanisms such as rsyslog (Gerhards, 2009), a common approach to network logging
for potentially container-based or remote elements.

This interpreter must be built for purpose, both to interpret contents and convert
them into an appropriate “state”. This state in our work takes the form of lookup
and forwarding table entries, constructed by the driver and distributed to all VNF
replicas via the datastore layer. Figures 4.3 and 4.4 provide visual demonstrations of
these log interpreter systems, with the former presenting a logical view of the actions
taken and the latter showing how it might look within an architecture divided into its
individual components. Finally, Figure 4.5 provides a sequence diagram of the steps
taken for log interpretation state distribution. This mechanism is fairly simplistic and
sufficiently high-level that most current SDN technologies, including OpenFlow, P4
and similar flow-based approaches, are able to implement it. To give an example, for

81



Chapter 4. Implementation 4.2.  White and greybox resilience

State distribution sequence diagram

Network Middlebox Syslog server Datastore WNFs

| |
I |
| Traffic sent

| to middlebox

|

I
| I
| I
| I
I Generated logs l
I sent to server l

| Logs are interpreted and

new state is created
pa—

Serialised state
sent to server

g

Datastore channel
publishes state to all VINFs

Received state is
converted into table
and field entries

-]

J

Figure 4.5: Sequence diagram of the distribution of state for a log interpreter

our implementation and evaluation, we focus on OpenFlow and NetFilter (Org, 2004)
state driver variants.

Packets are processed by the netfilter greybox, with logs generated detailing the
traffic received and the chosen backend server. The driver will receive log entries and
use string splitting and tokenising to divide its contents into fields. A new flow table
entry for the redundant VNFs (consisting of OF-based load balancers) can then be
constructed in much the same fashion, inserting the anticipated fields from this log
entry into a generically applicable entry. This is then sent to the datastore where it
shall be published, received and written into their respective flow or forwarding tables.
This ensures that in the event that traffic is redirected to that particular redundant
unit, it will continue to be served to the target destination regardless of other lost
metrics and prevent delay or rejection.

82



Chapter 4. Implementation 4.2.  White and greybox resilience

4.2.1.2 Direct extraction

This section forms the modifying approach to recreate state for whitebox software,
using SDN as both the primary and resilience strategy. In certain circumstances,
SDN software may be used in place of more commercial solutions, i.e. open-source
software is the most practical and viable approach for that particular use case. While
log interpretation approaches still apply in these circumstances, direct interaction
is more efficient. The approach to this direct access varies with the technology
chosen. Many SDN technologies share a similar interaction structure, consisting of
defined elements within a pipeline model and lookup tables corresponding to certain
elements, externally accessible and modifiable via open APIs. Both Click (Kohler
et al., 2000) and P4 (Bosshart et al., 2014) follow this design format, as it is based on
how physical hardware is typically built in networking. Regardless of the technology,
the goal of direct extraction is to pull the contents of these tables from the primary
middlebox and insert them directly into the redundant replicas. An example using
OpenFlow can utilise the separation of the control and dataplane to both observe and
replicate flow instantiation instructions for its flow tables, which can then be serialised
and distributed. Redundant VNF's then receive these instantiation instructions via
inserted listeners that communicate with the datastore, which then execute these
instructions, creating duplicate flows to those of the primary VNF. This example is
only one of a variety of approaches that can be pursued with open and modifiable
software for enabling state replication.

4.2.2 State repository

The state repository is a vital component for the separation of the existing
infrastructure from the redundant VNFs and serves as the means by which scalable
state distribution is possible. The state repository implementation is an off-the-
shelf datastore, held in memory, that retains serialised state provided by the state
drivers. This datastore can be realised using a multitude of common technologies,
including Redis, Kafka and MongoDB. The datastore is not a database but instead
a FIFO message queue or event store; serialised state is received as messages to
be distributed and held within memory till they are pulled from the queue by all
subscribers. To minimise interactions between the primary greybox and redundant
VNFs, communication between the two is masked through an intermediary, the
datastore. This is done for three reasons:

e To prevent awareness of the redundant VNFs by the primary middlebox and
limiting any need to modify or interfere in its operations

e To allow for a scalable and centralised distribution point for the redundant
replicas

83



Chapter 4. Implementation 4.8. Blackbox resilience

e To serve as an adaptation layer, simplifying fitting for the targeted VNFs to
receive state

To expand on these stated goals, the use of a datastore removes the need for direct 1:1
communication between the driver interpreting state from the primary middlebox to
the redundant VNF. This is especially prudent if multiple replicas are being utilised,
greatly simplifying the configuration. State can be serialised and received by a remote
datastore, wherein it can then be distributed to the 1:N replicas in the user’s chosen
approach, such as a publication/subscription model. MiMi, in its implementation
and evaluation, utilises a pub/sub model, shifting the burden of modification from
the target middlebox to the redundant VNF's.

4.2.3 VNPF Infrastructure

The final component is the VNFI and the VNF replicas, modified with inserted
drivers to receive state. MiMi is agnostic of the NFV/SDN technology utilised,
as long as it supports either modification or interaction with an inserted driver.
There are two approaches available for populating the redundant VNFs with state.
With the serialised state retained in the repository/datastore, it must be distributed
to all VNF replicas. This is done via the publish/subscribe model, where drivers
inserted or operating externally from the target VNF's subscribe to this channel and
receive the serialised state. For internal or inserted drivers on OF-based targets, this
received state is directly translated into new flow table entries. For external drivers,
it is converted into new flow instructions and inserted into the control plane - data
plane communication channel, to be received by all replicas and become functional
state. The extent of this modification is dependent on the technology in which it
is realised; with OpenFlow as evaluated in this thesis’ implementation of MiMi, this
approach is both scalable and realisable in existing mechanisms, necessitating very
little modification. This consisted of the insertion of a separated polling thread into
the redundant load balancer’s control application, running a function that, when
messages are received from the pub/sub channel, a new flow-mod is created from its
separate fields.

4.3 Blackbox resilience

Katoptron (xdtontpov, or “mirror”) is a platform-agnostic failover system that focuses
on the PNF and non-modifying state collection half of this architecture. This section
describes the components and features of its design. As a broad summary, Katoptron
is a high-availability service that propagates state between unmodified hardware
middleboxes and backup/redundant PNF or VNF appliances. The service aims to

84



Chapter 4. Implementation 4.8. Blackbox resilience

achieve two key functionalities: to maintain a hot replica of the state of the primary
middlebox with no output from the blackbox itself, and to facilitate failover and
service restoration without replacing any pre-existing infrastructure. The rest of
its goals are shared with MiMi and the overarching project itself, which facilitates
failover for network functions. The platform utilises targeted packet mirroring to allow
network devices to construct equivalent state and thus facilitate an easy transition
between hardware and software. This is achieved via traffic cloning and packet filtering
to replicate specific packets necessary for establishing state. Our approach exploits
the fact that blackbox hardware consists of specialised ASICs with minimal internal
memory, such as a heap or stack, which dissuades the use of circuit space on pseudo-
random generation or system clocks, and instead derives state from received input.
This greatly minimises potential non-determinism, allowing Katoptron to exploit a
“lazy correctness” approach highlighted by Reinforce (Kulkarni et al., 2020) with
regard to most state being created at flow start. Throughout this section, filtering
specifically refers to the process of acquiring a subset of the original middleboxes traffic
using approaches including but not limited to the example given. This best-effort
approach differs from past work, focusing on enforcing correctness and introducing
novel approaches to improving resilience in areas of networking where its enforcement
is unnecessary. Overall, this allows for a significant reduction in the complexity of
state recreation, exploiting the existing concepts of traffic cloning and hot replicas and
shifting the focus to minimising the cost of such techniques on network bandwidth.

The architecture, presented in Figure 4.2, is represented on the left-hand portion
of the diagram. The packet filter replicates a subset of the traffic necessary for the
establishment of state, forwarding it to the redundant middlebox. It sits in line
with the target middlebox, serving as the only interruption to failure-free operations.
Writing operations are more costly than reads, and replicating all incoming traffic
would incur delay on normal traffic. To minimise this as much as possible, packet
classifications to identify the beginnings of flows are the primary operations, with
cloning minimised to only the necessary packets. This filter is platform-agnostic
and highly adaptable to the user’s requirements, allowing it to be easily modified
to whatever traffic is required to recreate state for that specific network function.
The management layer handles liveness protocols much like MiMi, traffic redirection,
failover and service restoration. The degree of its complexity is dependent on the
redundancy utilised. When targeting only a single PNF serving as the hot replica,
the replicated traffic needs only to be directed to its target. When servicing multiple
replicas, load balancing is required to manage the scaling redundancies. This can also
be expanded to operate and manage the VNF and VNFT in a similar fashion to MiMi.
Finally, the points of failover serve as key junctions to facilitate redirecting traffic when
directed to by the manager or autonomous protocols, as well as cloned traffic for state

85



Chapter 4. Implementation 4.8. Blackbox resilience

population and service restoration. By focusing on the blackbox-targeted side of this
architecture, the mechanics of the state replication differ significantly in approach
from those demonstrated in MiMi, addressing a key gap in existing literature. The
remainder of this section will go into detailed presentations of the mechanics of these
layers and how they achieve their aims.

4.3.1 Packet Filter

The packet filter is a platform-agnostic state extractor, replicating key packets in
the flow of traffic and redirecting them to the redundancy to pre-populate their
lookup tables. In order to maintain a failover path with up-to-date forwarding
state, Katoptron uses a packet filter to duplicate and forward specific packets key
to establishing state, such as the initial packets from each flow, via the failover path
to prime the redundant NF (either another blackbox or VNF). With awareness that
the limited programmability of ASIC platforms keeps the overall complexity of the
packet processing logic simple, it can be easily replicated using off-the-shelf VNF
appliances to match the functionality. We present a set of middlebox scenarios with
this in mind, focusing on those still executed in hardware and able to be replicated
in software such as load balancing. The packet filter can be constructed from a wide
array of SDN technologies, including but not limited to Click, P4, eBPF and other
similar programmable packet processing pipelines.

The use of filters is two-fold: with the assumptions stated earlier, traffic can be
recreated from a subset of packets from each flow, removing the need to replicate all
traffic in service. Secondly, unlike VNFs, which are often hosted on the same or linked
nodes, hardware middleboxes may be geographically separated and directed around
the network. Cloning all traffic is a simple approach to high availability, but costly
due to the bandwidth consumption incurred. By reducing the potential volume by
95-98% (packets replicated to overall volume of same flows), this radically reduces
the impact and overall cost of its utilisation. Traffic filters are placed in line with the
ingress of the target box or chain. These filters are platform-agnostic and adaptable
to the expected traffic requirements of the target. The majority of stateful traffic on
network devices concerns TCP flows, with most middlebox state focused on tracking
newly established connections. Typically in blackboxes, initial packets of flows provide
the five-tuple elements for the key to its hash table entry, with all subsequent packets
hashed and evaluated against existing entries. This renders most traffic irrelevant for
state purposes, leaving the vast majority of it to be dropped. A block diagram of an
example filter is depicted in Figure 4.6.

The specific steps in the filter pipeline are user-defined but can be summarised
in a high-level example, as depicted in Figure 4.6. The filter clones incoming traffic
and forwards one stream out towards the primary middlebox to limit the number of

86



Chapter 4. Implementation 4.8. Blackbox resilience

Filter '
Traffic claner
Incoming %Lrlitmg rtn
traffic Duplicates all incoming middiebox
traffic
¥
Traffic classifier Discard

Y

Drop the rest of the

Identifies target packets claned traffic

h 4

Filter Qutput to
redundant
middlebox

Forward only relevant
traffic

_______________________________________________________________________

Figure 4.6: High-level diagram of a generic filter structure, with the arrows indicating
the flow of operations for the packets that pass through the stages or operations

defined.

processing steps applied to failure-free operations. Classification is then performed
on this duplicated traffic, with the vast majority, or 95 to 98%, dropped with the
filtered subset, then forwarded to establish state in the redundant middlebox. This
example is costly, with all traffic requiring a write to memory to clone its contents,
and the far cheaper operation of traffic classification (reading memory) performed
only on the duplicated traffic. Another pipeline example can consist of all incoming
traffic classified first, with only state-relevant packets then cloned and directed to
their respective middleboxes. This might incur traffic re-ordering or delay on the
most important packets to these devices however. Traffic is typically identified by a
standard 5-tuple hash (source port and IP, destination port and IP and protocol),
with most classification operations consisting of stateless checks for the presence of
flags, although this can once again be extended to maintain awareness of flows that
it is monitoring, rendering it a stateful device. The implementation specifics are up
to the user and their system requirements, with examples of filter logic presented in
Section 4.5.1 including pipelines of both examples given here.

4.3.2 Service restoration

So far, the discussion of the filter has focused on one direction, duplicating state-
generating packets to pre-populate tables to improve redundancy. This is the most

87



Chapter 4. Implementation 4.8. Blackbox resilience

N | Mew Flows
i Primary
Fitter A
O | Old Flows middlebox
2 M
N
o]

N|[O| N||O tN N

L

External

| Backend
networks Bl 5

Redundant
middlebox

Figure 4.7: Switchover points bleeding flows slowly till all established flows in the
redundant path finish or expire

simplistic implementation of Katoptron’s operations, with returning traffic simply
forwarded through the filter as a bump in the wire. Upon restoration of the primary
middlebox, switchover will be triggered by engineers from the redundant unit back
to the original. However, doing so would trigger a loss of state on any traffic still
traversing the redundant middlebox, resulting in short-term service degradation as
flows reset. The return path can be expanded to facilitate ’service restoration’, with
Katoptron able to support two lossless restoration techniques:

e An additional filter on the egress of the middleboxes to acquire state in a similar
fashion to the ingress

e Expansion of the point of failover to bleed flows slowly from the redundant path
by redirecting newer flows to the primary

The first approach utilises an additional filter operating in a similar fashion to
the ingress, replicating key packets to form an internal state. As these packets
are emerging from the network itself to the external network, the targeted packets
concerning state are primarily those of the server responses to these flow establishing
packets. This approach is the more naive of the two, with restoration to the original
middlebox consisting of a forced switchover regardless of traffic in flight that, even with
the filter, will cause some degree of packet loss for those currently being processed.
The second approach alters the switchover points where failover occurs, expanding
functionality to maintain per-flow state. When service restoration is triggered, both
middlebox paths remain active. Established flows continue to be directed via the
redundant path so as not to disrupt packets in-flight, while new flows are then
directed via the restored primary middlebox, as demonstrated in Figure 4.7. This

88



Chapter 4. Implementation 4.4. MiMi prototype

allows Katoptron to slowly drain flows from the redundant path until all flows have
completed, upon which its path can be deactivated manually by network engineers.
It requires some measure of statefulness to implement, but greatly minimises further
state loss during switchover and ensures all traffic in-flight is not lost by service
restoration.

4.4 MiMi prototype

This section details the implementation of the prototype MiMi design shown in section
4.2. To evaluate its feasibility, a software prototype was created consisting of a
container-based distributed architecture formed of 3 mechanisms joined in a simulated
network testbed:

e A set of load balancer VNFs for the purposes of evaluation
e A set of drivers for the extraction or recreation of state

o A state distribution middleware service

The evaluation attempts to determine MiMi’s compatibility with existing middle-
box technologies, in this case a load balancer NF. This type of application maintains
a mapping between information derived from incoming traffic flows and internal logic
and a selected backend address. For middleboxes, especially those implemented in
hardware, this information is typically limited to the standard five-tuple of source
[P, source port, destination IP, destination port and protocol (generally TCP). Due
to limited access to real-world blackbox appliances, software equivalents have been
used to best emulate two scenarios for testing using an OpenFlow-based load balancer
built as a Ryu application and a NetFilter instance using a source NAT policy. This
section will break down the services and their components.

4.4.1 Middlebox Scenarios

Two middlebox implementations were created to evaluate the two approaches for
extracting state; drivers inserted directly into a whitebox (open and modifiable)
VNF and interpreting the logging output of a closed greybox VNF. The two chosen
technologies consist of OpenFlow and [PTables (Team, 1998). They are configured to
replicate the functionality of load balancers in a near-identical fashion, consisting of
a load balancer that utilises the hash of the incoming packet to select a backend for
each flow. Both technologies and their implementations are expanded below.

89



Chapter 4. Implementation 4.4. MiMi prototype

4.4.1.1 OpenFlow-based Load Balancer

Ryu is a component-based SDN framework built with Python and implements support
for the OpenFlow protocol. It is used throughout both MiMi and Katoptron’s proof-
of-concept implementations for its ease of development and integration with other
networking tools. TCP packets are the only packets targeted, with an index generated
from a hash function of the source IP and TCP port and modulated against by the
total number of backend servers. This selects the specific destination server from the
list, with the selection not completely consistent with each hash to introduce some
variation and state to be lost. For MiMi, the load balancer integrates a large number
of additional features that are used at different stages of its evaluation, enabled by
a configuration file external to the load balancer. These features include threaded
polling and publishing mechanisms, which message passing system is used, publishing
methods and the load balancing itself. These features are shared across the main
and backup instance and are separately enabled or disabled through flags. Packets
received by the load balancer are split into their respective fields, with ARP requests
responded to and TCP traffic distributed to specific backend servers before writing
the flow to the datapath.

4.4.1.2 Kernel-based Load Balancer

[Ptables is a user-space utility program, native to the Linux kernel, that allows the
user to configure IP packet filter rules. These rules correspond to specific sections of
the packet processing chain: prerouting, input, forward, output and postrouting.
These stages within the chain happen sequentially, with stacks of rules in each
stage allowing for targeted modification of how packets are processed or forwarded.
For example, rules inserted into the INPUT table will affect all packets that are
to be locally delivered, whereas rules in the POSTROUTING table can be used
to alter anything as they leave the overall chain after routing decisions have been
made. For testing, the IPtables is configured within the testbed initialisation with a
series of PREROUTING and POSTROUTING rules that establish the load balancer
mechanism. These consist of a set of PREROUTING NAT table rules that match
client IP addresses and modify the destination address to one of the five backend
servers using a randomised probability. The POSTROUTING rules alter the origin
address for returning messages to mask the backend server IP addresses using the
front-facing virtual IP of the load balancer and a logging rule to enable pushing its
logs to the rsyslog server, further discussed in section 4.4.4.2. As a kernel-space
program, [Ptables is far more performance-focused than the OpenFlow variant, used
to evaluate MiMi and the external log-interpretation approach under heavy load.

90



Chapter 4. Implementation 4.4. MiMi prototype

4.4.2 State repository and distribution

State is retained on a short-term basis, with an external datastore retaining current
and near-current state to be distributed to the redundancies. The MiMi prototype
utilises two state distribution services in its evaluation: Redis and Kafka. Redis is
an open-source in-memory datastore that retains information in key:value pairings,
built in C. Apache Kafka is a distributed stream processing platform that publishes
data streams in real-time, built in Scala. Each is used in its own evaluation, with
Redis utilised for the majority of the evaluation, alongside several approaches to
publishing. Both services are hosted externally from the testbed on the host system
and are configured to realise a Publish/Subscribe distribution mechanism. This is
done to allow for scalability and greater separation of the VNF's from the datastore.
Each VNF subscribes to this channel at initialisation, with publishing configured to
distribute state received as soon as it is received. Redis and Kafka implement these
distribution systems differently, but they are used interchangeably in experimentation,
with evaluations focusing on differing techniques to publishing methods as discussed
below.

4.4.3 Publishing methods

There are two key factors to publishing state that must be taken into account: the
speed at which state is received, which affects how accurate it is (the more up-to-date,
the more accurate its use), and the volume of traffic consumed in doing so. One of
the stated goals of this thesis’ work is to ensure that the overall impact on the rest of
the system is kept to a minimum so as not to affect failure-free operations. However,
any propagation latency from batching techniques used to reduce the overall volume
of traffic being broadcast may also affect its accuracy and, therefore, its usefulness. In
the evaluation, four approaches to publishing flows from the primary load balancer are
evaluated in different scenarios: a direct push to the Redis queue, the same mechanism
in Kafka, a batched publish and the selected fields publish function. These first two
are simple to implement, using in-built mechanisms to serialise flows directly to the
queue with no other logic in place. The batch publish function expands upon this
with a Python-Redis pipeline. Pipelines are a simple subclass of the Redis Python
client that allow for multiple commands to be buffered into a single request. They
are typically used to reduce the overall volume of traffic by minimising the number
of sent and received TCP packets between the client and the server. Due to technical
limitations of the virtualised testbed, 100 miliseconds is used as the base level of
delay to batch instructions, as the smallest value the system can reasonably achieve
during testing while also being sufficiently long as to batch enough instructions at
once. Flows are batched within a 0.1-second time period into this pipe to be executed
as a batch communication to Redis. Finally, the “part publish” method consists of

91



Chapter 4. Implementation 4.4. MiMi prototype

reducing the data sent to Redis to a subset of the fields.

4.4.4 State Drivers

For the evaluation, both a white and greybox application are targeted, formed of
two load balancers with different implementations. Both of these scenarios perform
packet-level load balancing and offer some form of state control, either in the form of
internal observable state or exterior configured messages. Early in this exploration,
we also attempted to integrate work with the HAProxy project, but the user-space
version of HAProxy relies heavily on the socket layer of the underlying OS and it was
technically impossible to extract this state.

4.4.4.1 Direct extraction driver

The OpenFlow application implements a reactive load balancing control using a 5-
tuple hash to randomise backend server selection and exact match rules to rewrite the
MAC and IP addresses, forwarding the packet to the correct output port. The MiMi
driver is implemented as part of the application and uses a Redis Python library to
synchronise with the remote state repository. Several of the publishing mechanisms
discussed above in Section 4.4.3 were directly inserted into the primary Ryu load
balancer. These mechanisms are utilised during the flow instantiation from packets
received at the end of the decision-making process, with an identical copy of the
flow being pushed to the dataplane distributed to the middleground instance. A
listener sits on the redundant Ryu load balancer on a separate thread, pushing this
flow to its own dataplane to maintain a direct 1:1 copy of the current flow table.
The CPython implementation of the Python language is single-threaded by default
through an enforced global lock to ensure safe concurrency. However, there are a
number of libraries and operations that release the global lock and allow for multi-
threading. This approach is highly accurate, as the flows match exactly across the
primary middlebox and any redundancies it is replicated to. Whitebox scenarios,
while uncommon, present the best scenarios for motivating direct modification, as
they overcome many of the issues faced by blackboxes and even greybox designs.

4.4.4.2 Log interpreter driver

For the log interpretation evaluation, the Ryu-based load balancer is replaced with
an instance of IPTables. A set of rules is inserted into the NAT table for the post-
routing chain that selects a random backend server and forwards the traffic to it. In
this implementation, because the NetFilter rules are executed at the kernel level, we
opted to design an external MiMi driver instead. As a summary, this driver uses the
logging capabilities of NetFilter to output its actions via a syslog server, which can

92



Chapter 4. Implementation 4.5.  Katoptron prototype

extract the relevant fields from this logging and interpret its contents. To be more
specific, it is configured to generate logs with an identifiable prefix from the INPUT
chain using an in-built action LOG. This default action will send all generated logs
to a Python-based syslog server listening on a UDP port, polling every 0.5 seconds
for the tagged logs to pull new flows in batches. Logs pulled are decoded into byte
strings and separated into fields before being serialised into JSON and published to
the Redis instance. For these experiments, the redundant unit is perceived as an
open and modifiable VNF for the purposes of enabling this approach while allowing
the primary packet processor (the middlebox/blackbox) to remain undisturbed. The
consumer (the backup load balancer) will then pull these JSON messages on its own
separate thread from the primary load balancing operations and use the five-tuple to
create a flow and push it to the datapath.

4.5 Katoptron prototype

This section details the implementation of the prototype Katoptron design and testbed
for the purpose of evaluating its effectiveness and performance. Depicted in Figure
4.8, this takes the form of a replicated network ecosystem and utilises several tools
to explore a variety of middlebox targets and use cases. The figure represents how
the primary components of the system interact, with automated clients generated
through separated configuration files utilising different mechanisms to evaluate the
prototype. As discussed in Section 4.3, this section will be broken down into the
specific components of the testbed and prototype parts of this implementation.

4.5.1 Traffic Filter

The traffic filter is the most important aspect of the Katoptron design and it is
hinged on several technical assumptions made in prior sections for allowing continued
state through replication of state-forming packets without loss of generality. It is
implemented using the Click programmable router (Kohler et al., 2000), a modular
and extensible packet processing switch formed of individually defined elements
chained in their operations. Click is a user- and kernel-space programmable router
that is both highly efficient and open source. Individual functions are defined as
elements and chained together in a pipeline structure using the Click configuration
language. These elements are implemented in C+4. Two kinds of filters were
implemented for Katoptron’s evaluation: a flow initialisation filter and first N filter.
The first N filter is demonstrated in figure 4.9. Divided into components, it is formed of
default elements that are predefined to Click to minimise the extent of functionality
that needs to be built bespoke for its implementation and evaluation. In a short

93



Chapter 4. Implementation

4.5.  Katoptron prototype

Routers
+flowTable:list
TCPReplay +groupTable:list
+interface: string
+flags: string, int -config() ovSs
— +pcap: string — -terminate()
-routeTraffic(flow) +groups:list
+runPCAP(interface, +Hlows:list
pcap, flags) -
Tools Clients +addFlow(table flow)
WRK +ip: String +addGroup(table, group)
+threads: int (] +mac: String
+connections: int + Threads(client L
— +duration: int | TopenTirea sicllents) +runWRK(threads, conns, Mininet
+IP: string dur, IP) inine
+runBenchmark(threads +unGST(MPD) +clients: int
' - +runTCP(MAC, interface,
conns, dur, IP) Lighttpd PCAP) +servers:int
+MiddleboxType: String
GST +ip: string
— 1 -setup()
+uri: string -init() Servers -runAutomatedTests()
— +video-sink: strini — + E
g response() +ip: string teardown()
+runStream(uri, (s +mac: string
video-sink) L +config: string
NAT.cl +runLighttpd()
-Addressinfo:string T
backendMap:string Switches
-init() +flowTable:list
-queue() +groupTable:list
-sendToDevice(outport)
-sourcelPHashMapper ~config()
(backends) -terminate()
~classify() +forwardTraffic(packet) ="
'SEtT(iP_CTJegksum() +fastFailover(list) er
-strip(bytes) +pattern:string
-
: Middleboxes
Suricata -init()
+rules-file -classify(pattern)
+config:file ™ -duplicate()
-queue(capacity)
L . -unstrip(bytes;
-init(config) -strip?tf yt)gs))
+capturePacket() X
+decodePacket() -sendToDevice(outport)
+detection(rules)
+generatelLogs():files
Load Balancer
-init()
-matchBuckets(packet)
-sendToBackend(packet)

Figure 4.8: Katoptron prototype class diagram overview, depicting the components
constructed for the tested implementation. Not depicted are the management layers
for instantiation and teardown built using open-source tools, scripting and available
MANO.

94



Chapter 4. Implementation 4.5.  Katoptron prototype

summary, the filter receives traffic and clones five initial packets from each flow.
What follows is a technical breakdown of the steps taken and the elements involved.

/ToDevice\
r— — = = \(fiterethyy) — — — — T T T T T T T T T T T T T 1
/ | / ] SR B
| | Queue, Unstrip(l4)‘ /Queue/ (ToDevice \
| / / ‘ / / \(filter-eth2)
— / /
| \ Oulto [ & l |
F(;ﬁtr:r[?:t‘;]ig)e - Tee Aggregatel  |Aggregate|  |Aggregate|  |Aggregate|  |Aggregate| |
First First "l First "l First "l First |
| v i B
| Strip(14) ChecklIP Aggregate \/Discard ]
P | Header IPFlows NI
| |
| TN |
| ( Discard ) o
N ) Filter internal structure | |
- - = = === -

Figure 4.9: Five packet aggregator filter in Click, with arrows indicating the flow of
traffic through the elements from left to right, starting at FromDevice. For example,
at the tee, two copies are made of the packet and either sent out of the interface or
sent to the next step in the chain.

4.5.1.1 Pipeline breakdown

For the first-N filter depicted in Figure 4.9, packets received are replicated into two
sets: the primary route, where they are forwarded to the middlebox, and the traffic to
be modified. After header verification, this implementation targets the first five initial
packets of each stream and is built using pre-existing primitives of Click “Aggregate
First”; using a stateful check, incoming flows are hashed, and only the first packet
of each hash is emitted through output zero to the redundant device, while the rest
is directed to the next aggregateFirst. Chained in a line, the overall effect is to
take the first five packets of each flow using existing elements. These elements are
stateful, retaining information on a per-flow basis in the form of counters to identify
whether this is the initial packet in a flow. This information is minimal however,
using direct hashing of the five-tuple against a direct lookup, and is easily recovered
if lost as a deterministic action, posing no additional risk of increasing the impact of
lost state by introducing more. The second implementation, depicted in Figure 4.10,
uses a different order for classifying SYN packets. Incoming packets are received and
classified as to whether they are ARP requests, responses or other traffic. Requests
are discarded out of output 0 of eth-classifier]l, with ARP responses (responses from
the client to the server for destination’s location) forwarded towards the server and all

95



Chapter 4. Implementation 4.5.  Katoptron prototype

ToDevice
(filter-eth1)

A

FromDevice
(filter-eth0)

Forward .
responses Unstrip(14)

eth_classifierl

Other traffic A
* SYN to
main
IPClassifier
Strip(14) (External IP
and syn)

ToDevice SYNto .
(filter-eth2) backup

Figure 4.10: SYN filter in Click

other traffic continuing along the pipeline. Ethernet headers are stripped, with an 1P
header check to confirm this is IP traffic. The second classifier identifies if it’s intended
for the backend IP range and a SYN packet. All non-SYN traffic is then forwarded
towards the backend servers, with SYN packets duplicated and distributed to the
two middleboxes. This approach uses a stateless check and retains no information,
minimising the volume of traffic cloned to reduce the processing costs of doing so but
potentially incurring additional delay through multiple packet classifiers on all traffic
flows for incoming packets. The two pipeline approaches are similar in structure but
built to the minimum requirements for state for each scenario: the first packet of
each flow for web traffic and the first several packets for security fingerprinting. The
order of operations also differs as part of the evaluation; cloning packets received is the
heavier of the two actions and incurs greater delay as it must write to memory, whereas
classification only reads. This is done to examine the effect of both delay incurred
by the filter as well as potential packet reshuffling from the singularly delayed SYN
packets in the SYN filter (the rest of the traffic continues whilst they are isolated for
cloning before being sent onwards). Furthermore, the first-N filter is mildly stateful,

96



Chapter 4. Implementation 4.5.  Katoptron prototype

maintaining awareness of flows on multiple elements unlike the SYN filter which is an
otherwise stateless pipeline.

4.5.1.2 Filter implementation technologies

The two filters utilised within the evaluation are implemented in the Click pro-
grammable router. These filters are platform-agnostic, with the primitives supported
by Click easily replicated in other similar technologies, such as P4, but may not be
as well placed for their use. During the evaluation, a data plane filter version was
implemented using the P4 language (Bosshart et al., 2014), compatible with the P4
Behavioural Model v2 (BMv2) switch and based on the five packet sampling variant.
This P4 filter implementation uses a hash function and an array of registers to support
a stateful flow tracker. Unfortunately, due to hash collision, the P4 program must
oversample sample traffic to guarantee that every set of initial packets from a new
flow is sent to the redundant path. Due to the performance limitations of the BMv2
switch, the evaluation uses the Click variant.

4.5.2 Service restoration mechanics

Service restoration is a manually triggered action in a real-world context, to be
initiated when failures in the primary middlebox have been resolved. To prevent state
loss and facilitate this in the OV'S switches on either side of the two middleboxes, this
implementation operates an automated LEARN action in the OVS platform. This
rule, held in a lower priority to failover groupings, utilises the “LEARN” action to
generate return flows on the secondary point of failover (the backend of the bypass)
upon packet matches. Matches are made only on the returning path, with generated
rules being short-lived reversals of the packet’s fields. They ensure that during
restoration, any established flows maintain service via the established state on the
backup middlebox. This helps to minimise delay and any loss of state from the
switchover from the redundant path back to the primary. Figure 4.11 is an example
snippet of the restoration mechanic, as well as an example of the flows it generates in
Figure 4.12:

ovs-ofctl add-flow bsl ’in_port=2,ip,tcp,priority=10,actions=learn( \
priority=11,idle_timeout=60,d1l_type=0x800,nw_proto=6,dl_dst=dl_src, \
dl_src=dl_dst,nw_dst=nw_src,nw_src=nw_dst,tp_dst=tp_src,tp_src=tp_dst,\
output=NXM_OF_IN_PORT[]),goto_table=1’

Figure 4.11: OF flow table rule used to create flows for returning path traffic to
slowly bleed off from the redundant path

97



Chapter 4. Implementation 4.5.  Katoptron prototype

cookie=0x0, duration=70.657s, table=0, n_packets=25, n_bytes=1850, priority=10,tcp,in_port="bsl-eth2" actions=learn(table=1,idle_timeout=60,priority=11,eth_type=
0x800,nw_proto=6,NXM OF ETH DST[]=NXM OF ETH SRC[],NXM _OF ETH SRC[]=NXM_OF ETH DST[],NXM OF IP DST[]=NXM _OF IP SRC[],NXM OF IP SRC[]=NXM _OF IP DST[],NXM OF TCP DS

T[]=MXM_OF_TCP_SRC[],NXM_OF_TCP_SRC[ ]=NXM_OF_TCP_DST[],output:NXM_OF_IN_PORT[]),resubmit(,1)
( cookie=0x0, duration=70.665s, table=8, n_packets=0, n_bytes=0, priority=2,arp,arp_tpa=10.0.0.20 actions=group:1

cookie=0x0, duration=70.662s, table=0, n_packets=12646, n_bytes=250972945, priority=1,dl_dst=-00:00:00:00:01:ff actions=group:1

cookie=0x0, duration=70.660s, table=0, n_packets=85028, n_bytes=5675380, priority=0 actions=resubmit({,1)

cookie=0x0, duration=58.779s, table=1, n_packets=0, n_bytes=0, idle_timeout=60, priority=11,tcp,dl_src=00:00:00:00:01:03,d1l_dst=00:00:00:00:01:ff,nw_src=10.0.1.3
,nw_dst=10.0.0.1,tp_src=80,tp_dst=49030 actions=output:"bsi-eth2"

cookie=0x0, duration=58.779s, table=1, n_packets=0, n_bytes=0, idle_timeout=60, prierity=11,tcp,dl_src=00:00:00:00:01:01,d1l_dst=00:00:00:00:01:ff,nw_src=10.0.1.1
,nw_dst=10.0.0.2,tp_src=80,tp_dst=48000 actions=output:"bsi-eth2"

cookie=0x0, duration=58.218s, table=1, n_packets=0, n_bytes=0, idle_timeout=60, priority=11,tecp,dl_src=00:00:00:00:01:02,d1l_dst=00:00:00:00:01:ff,nw_src=10.0.1.2
,nw_dst=10.0.0.3,tp_src=80,tp_dst=52882 actions=output:"bsi-eth2"

Figure 4.12: Example of generated restoration rules in OpenFlow table

4.5.3 Middlebox Scenarios

For prototyping and evaluation, a number of network functions were required. These
are implemented in VNF's for ease of development rather than physical hardware, but
have been approached as if they were blackboxes; no modification or interference in
their operations, treated as an isolated entity. The functions chosen were prioritised
for their stateful mechanisms and common deployment in hardware over software.
The details of their use are expanded upon below in the evaluation in Section 5.3.

4.5.3.1 NAT

A reverse Network Address Translator (NAT) serving as the entry point to set of
backend servers is a common use case for controlling outside network awareness of
server information. It acts as the front-facing IP address for incoming requests,
distributing traffic between the five servers present in the CDN using fixed-source IP
hashmapping. This reverse NAT has been implemented in Click and handles standard
operations including bidirectional traffic, NAT functions and ARP. The Click-based
NAT is statically configured and modelled after an existing implementation to Click
“mazu-nat”, commonly used in other evaluations such as FTMB (Sherry, Gao, et al.,
2015).

4.5.3.2 1IDS

Suricata (O. I. S. Foundation, 2022) is an open source high-performance IDS and
IPS that is widely used in software deployments for its ease of configuration and
extensibility. It utilises signature-based detection and can be configured to operate
passively (for the IDS) and actively (for the IPS) on traffic received. For evaluation,
we used the Emerging Threats open ruleset (Inc, 2021), another popular and widely
used open-source ruleset utilised by other software IDS such as Snort (Roesch, 1999).
Suricata is configured to serve in an IDS role, generating alerts based on incoming
traffic to the server and monitoring connections and flows, but not preventing or
affecting the overall traffic. Each instance of Suricata during the evaluation utilises

98



Chapter 4. Implementation 4.6.  Summary

32 packet processing threads and 4 management threads, with a total of 23,681 rules
from the ET rulesets with coverage for phishing, malware, FTP, exploits and so on.

4.5.3.3 Load balancer

Load balancers are often deployed in hardware and are one of the most common forms
of middlebox utilised in networks. For Katoptron’s evaluation, two implementations
of a load balancer were utilised. The first implementation is based in [Ptables using
a similar design to the MiMi evaluation variant, using a hash randomisation load
balancing algorithm. The second implementation utilises OVS, or Open vSwitch, an
open-source user-space programmable switch implemented in C and widely utilised
by both network virtualisation technologies and protocols such as OpenFlow, with
a module now integrated into the Linux kernel. This static OVS implementation is
similar in structure to the flow instantiation of OpenFlow, configuring a static switch
on the path. This consists of a set of weighted bucket rules, dividing the traffic between
the five backend servers in the testbed. This establishes a level of traffic awareness in
the load distribution, increasing the degree of state retained by the network system
beyond a static hash approach.

4.5.4 CDN

The CDN used to evaluate the various middlebox functions is formed of five backend
servers, each hosting the same content. These servers consist of instances of
“lighttpd” (Bosshart et al., 2014), an open-source high-speed webserver compiled
in C and the in-built Python HTTP server libraries. The files hosted consist of a
set of HTTP files of varying sizes to provide material for the clients to request for
experiments, as well as an MPEG-DASH video with several bitrate levels. This video,
‘big buck bunny’ (Benjamin Rainer et al., 2012), is a popular testing mechanism for
DASH player streaming. This CDN backend is not a service or network function
fulfilled by middleboxes, but a common network scenario and useful for the evaluation
of middleboxes often used in conjunction. This includes network functions such as
load balancers, firewalls and NAT middleboxes that may be used by a server for
controlling the flow of traffic and its interactions with the backend servers.

4.6 Summary

This section has presented the design and prototype implementations of both
Katoptron and MiMi, including how they may be realised in existing software and
the specific technologies used in their evaluations. The MiMi design implementation
serves as an initial exploration into the topic of state preservation through external

99



Chapter 4. Implementation 4.6.  Summary

methods, with the majority of its work concerning the distribution of state via the
datastore and the logging interpreter system. Its prototype implementation has
focused on evaluating the effectiveness of this external driver approach as well as
possible latency, accuracy of copied state and overall feasibility. The Katoptron
design implementation has focused on the means by which this filtering approach
can be realised in a multitude of technologies to avoid limiting its flexibility and
potential for adoption. Its prototype implementation has focused on ensuring the
evaluation of the filter is at the forefront to best determine its effectiveness across
multiple technologies, levels of traffic and targeted middleboxes. This chapter has
presented both prototype/proof-of-concept implementations that form the two halves
of Remediate. The following chapter will detail the evaluations of each prototype,
including the testbed design, approach, workloads, tools and their overall effectiveness
in each of the aforementioned key evaluation goals.

100



Chapter 5

Evaluation

In this chapter, the designs of the resilience framework and the implementation of the
two mechanisms prototype implementations are evaluated. Firstly, in Section 5.1 the
topologies and workload used to evaluated the resilience of each separate project are
described, with further details in their respective sections. Secondly, in Section 5.2
a breakdown of the testing approach of MiMi is discussed, followed by an extensive
evaluation of differing traffic scenarios and sampling rates and their impact on the
effectiveness of this approach to redundant VNFs. Finally, in Section 5.3, the filter
approach of Katoptron is evaluated in multiple implementation technologies and
multiple target middlebox functions.

5.1 Experimentation Platform

MiMi and Katoptron share aspects of their prototype designs and evaluation processes,
which will be discussed in this section. Details specific to either MiMi or Katoptron
will be discussed in their respective sections.

5.1.1 Testbed environment

The testbed environment, presented in a high-level diagram in Figure 5.1, is similar
for the two projects for the purposes of testing, with some key differences. To
begin with, the experiments performed in this evaluation are made from a series
of independent programs tied together in a unifying Python environment. The
strawman implementation is implemented using an emulation tool called Mininet.
Mininet (Lantz et al., 2009) is a network emulation tool that allows for rapid testing
and development of SDN technologies, built with support for technologies such as
OpenFlow (McKeown et al., 2008b). It uses Linux namespaces (Kerrisk, 2013) to
emulate network isolation with veth pairs and SDN technologies such as OpenvSwitch

101



Chapter 5.  Evaluation 5.1.  Ezxperimentation Platform

Primary middlebox

Clients Servers

==y ’
| | s s e

L~}

S

Redundant middlebox

PR

Figure 5.1:  Simplified high-level diagram of the testbed used across multiple
experiments - a client /server model with traffic served through middleboxes providing
network functions typical at network gateways. Each experiments details differ and
are expanded in more detail in their respective sections

allowing networked communication. The environment is automatically configured
using config files at initialisation. Upon instantiation, a number of elements are
created including the topology, mininet nodes, servers and experiment processes. This
also includes any project-specific elements, such as the middleware for MiMi, which
may alter the topology or flow of traffic in accordance with the experiment. For
example, the Suricata experiments will establish hosts running instances of Suricata
and use forwarding via the IP address route with ARP enabled, while other projects
use a NAT function to provide routing to the backend. Clients are statically configured
to operate in accordance with their automated tests, with more details on these
configurations discussed in the evaluation in sections 5.2.1 and 5.3.1.

These environments also configure the services used by the two projects. Client
processes used to generate traffic loads such as WRK (Glozer, 2023), scoot-
player (Broadbent, 2015) and GST (Taymans, 1999) (detailed below in Section 5.1.2)
are statically configured to run on a per-client basis according to the specifics of
the experiment, utilising Python subprocesses to manage discrepancies in completion
time. The topologies used for the testbeds vary between both projects and
experiments but all follow the broad structure of Figure 5.1. The testbed environment
for MiMi uses a singular topology with a client/server network split into separate

102



Chapter 5.  Evaluation 5.1.  Ezxperimentation Platform

subnets, joined by a load balancer. The testbed for Katoptron is similar. Built
off the structure of MiMi’s evaluation, Katoptron’s testbed is divided into three
independent topologies, one for each experiment variant: a reverse NAT, a weighted
load balancer and an IDS/IPS. These topologies each consist of the same Mininet
layout with modifications specific to their use-case, establishing the clients, backend
servers, fast failover rules and initialisation of the respective technology (e.g., the
testbed network is configured to mirror the network of the malicious traffic captures).
To emulate failure scenarios, link failures are used to force the OpenFlow switches to
forward traffic via the redundant paths. Link failure is achieved using the link sensing
capability of the Ethernet layer. Without loss of generality and for ease of testing,
link failures on either or both ends of the service are simulated by manually shutting
down the respective interface. The number and rate of these link failures back and
forth vary between experiment scenarios. The implementation of this mechanism
differs slightly between MiMi and Katoptron and will be detailed in their respective
sections, but it is ultimately done to achieve the same effect.

5.1.2 Tools

Tool Traffic Details
Scootplayer | MPEG-DASH Experimental logging player
WRK HTTP requests HTTP benchmarking tool
Gstreamer | video formats Multimedia framework
TCPReplay PCAPs Packet capture and replay tools

Table 5.1: A brief summary of the tools used for the evaluation and their use

The prototype implementations for the two publications both use traffic generator
tools to create realistic workloads. These tools (summarised in Table 5.1) will be
discussed in more detail here with the workloads summarised and further elaborated
below in their own section. The first workload (short-term WEB flows) consists of
requesting small web/HTTP objects from the server to the client. This workload is
generated using the WRK (v.4.1.0) HTTP traffic generator running on two threads
for each client, requesting a small web object (two sizes available: 5.7 and 617Kb).
The number of connections running in parallel varies between workload per test.
The second workload (long-term CDN streams) consists of MPEG-DASH streams of
the “Big Buck Bunny” test video common to DASH testing (Benjamin Rainer et al.,
2012). This is served from the backend to the client via one of two video streamers. For
Mimi, Scootplayer (Broadbent, 2015), an experimental DASH streamer with logging
support. For Katoptron, the clients use a dummy gstreamer plugin that emulates
the behaviour of an MPEG DASH client but does not perform any video decoding.

103



Chapter 5.  Evaluation 5.1.  Ezxperimentation Platform

The players differ between the two publications due to replacing Scootplayer with
gstreamer for its limitations in handling intermittent connection failures. This stream
defaults to the highest quality version (8000kbit) segmented in 1 second chunks, with
chunk sizes varying between 100kb to 1.4Mb and quality representations split six
ways from 2500kbit to 8000kbit. These settings are used as they provide a wide
range of chunk bitrates for the player to utilise when handling disrupted connections
and make observation of its error handling easier. In both scenarios, the servers use
the lighttpd (Kneschke, 2003) HTTP server (v.1.4.45) to emulate the server. The
final workload is not generated but instead uses live captured traffic from an existing
dataset using TCPReplay. TCPReplay is an open-source suite of network utilities for
replaying captured traffic. It is a popular tool for testing purposes, with a wide range
of functionality beyond just broadcasting, including modification of playback as well
as the contents themselves.

5.1.3 Workloads

Workload Tools parameters Metrics
timeouts
read errors

threads
Short flows WRK connections

. . write errors
object size

connection errors
Buffer events

Streaming/long flows Scootplayer chenF > Resolution changes
Gstreamer duration . .
Failed connections
TCPReplay Signatures
Attack/traffic traces CICID2017 dataset Tracefile Alerts

Table 5.2: The workloads, the tools used to generate them and their parameters

The evaluations utilise three workload models, summarised in Table 5.2, to emulate
typical Internet traffic workloads. These consist of short and long term flows, as well
as live captured traffic for Katoptron. The WEB workload generates HTTP traffic
between the client end-hosts using the WRK software for static content and the serve
end-hosts, with server static pages using Lighttpd services. This workload emulates
short-lived HTTP traffic, typically generated by an Internet web server. To control
the duration of HT'TP flows, we use two objects of different size: a 5 KB HTML page
and a 627KB binary object. On each client, the WRK instances use two threads and
our workload will run up to 500 concurrent TCP flows. To evaluate the performance of
the workload, there are four statistics produced by WRK that are considered: socket
connection errors, read errors, write errors and timeouts. Connection errors are any

104



Chapter 5.  Evaluation 5.1.  Ezxperimentation Platform

refusal of a TCP connection that would be reported as a socket connection error.
Read and write errors are reported TCP errors from a failure to read and write to
a connection respectively. Finally, timeouts are any connections that fail to respond
to a request in the default two second timeout window. For these experiments, the
connection and timeout errors reported are the focus, evaluated against the RTT of
the TCP connection, which sits within a range of 35-50ms for HT'TP traffic; a transfer
window of 50ms thus being far slower than a timeout, which defaults to 2 seconds in
WRK. The streaming workload emulates a varying number of MPEG-DASH streams
between the client and the server endpoints. The DASH client will actively switch
between the 20 sets of encoded chunks at varying bit rates and resolutions in response
to changing network conditions.

The workload runs a total of 375 parallel connections, split across five clients for
a duration of 120 seconds. During an experimental run, we count the total number
of buffer events (client does not have enough data to play the next frame), resolution
changes (client selects a lower bit rate video format due to detected poor network
condition) and the number of failed connections. Together, the two workload scenarios
offer a typical level of normal web traffic, emulating both short and long flows with
differing characteristics and responses to loss. For example, shorter flows, such as
simple HTTP requests, will suffer less from intermittent failures as they are less likely
to be impacted due to their short-lived flow duration, allowing for rapid replacement
with a greater number of active flows overall through the system. Longer flows, such
as those of the DASH stream, are far more likely to be observed by the end user, both
from the greater potential for loss of flow from their longer duration and from the loss
of chunks that may not be mitigated through buffering and the adaptive streaming
technique being triggered.

Finally, the attack workload, used by Katoptron, replays traffic traces (PCAP files)
from an open-source IDS evaluation dataset using TCPReplay. During replay, we
modify the Ethernet header fields to match the host MAC addresses in the emulated
topology. The trace files come from the CICID2017 dataset (Sharafaldin et al., 2018),
which contains labelled network traces from real networks and the data represent
traffic that spans four different days. A breakdown of the attacks for each day is
depicted below:

e Tuesday - Brute force and scans for FTP and SSH
e Wednesday - DoS/DDoS and heartbleed
e Thursday - Brute force, XSS, SQL injections, dropbox exploits and portscans

e Friday - Botnet, portscan and DDoS

105



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

Rsyslog
Fython syslog server
Listens for and < L
interprets logs into OF ogs
table entries
_____________________ IPtables load balancer
Serialised flows
! Set of rules matching
| client traffic to randomly
Clients ! selected backend Servers
Primary route i server Frimary route
Client 1 [ Senver 1
|
Executes traffic ; ! e S
Client Switch i Server Switch
testing . W i v W R Hosts content
"l Implements FF rules L Implements FF rules 7
between LBs between LBs
ClientN T Server N
Redundant route Redundant route
Executes iraffic Hosts content
testing Ryu load balancer

OF load balancer that
emulates behaviour of
primary LB

Figure 5.2: Experiment topology consisting of a client-server model as shown in
Figure 5.1, showcasing the syslog variant of the evaluation, emulating a caching service
and load balancer with full details of the testbed implementation

The workload is used exclusively to test the IDS middlebox, and during each
experimental run, we record the number of signatures and the number of alerts per
signature reported by the IDS instance. The first metric is the most important and
reflects the number of unique attacks detected by the IDS, while the later metric
reflects the number of unique instances of an attack detected. In order for an IDS to
operate correctly, the first metric is essential, while the larger metric is less important.

5.2 MiMi performance evaluation

This section evaluates the performance of the MiMi resilience mechanism. The
analysis uses network emulation to run a small-scale network topology equipped
with the MiMi service and state repository. Both state extraction approaches are
evaluated in their effectiveness at acquiring sufficiently accurate state for different
types and loads of traffic, as well as sampling rates and the impact of sampling delay
and batching.

106



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

5.2.1 Experimental Setup

The experimental topology is depicted in Figure 5.2, consisting of a set of clients and
servers arranged to emulate a CDN/caching service. It consists of multiple clients
accessing a load-balanced HTTP service supported by a set of servers, separated
on subnets. This topology is realised using namespaces via Mininet (Lantz et al.,
2009), utilising Linux’s in-built namespaces to simulate the isolation between nodes,
each with their own virtual interfaces with a fully fledged network stack. The
switches are statically configured, with the topology divided into subnets to emulate
different networks. The primary hardware load balancer exposes a HT'TP service
via a virtual IP address, with each request randomly redirected to a backend server.
A minion VNF acts as a hot replica, available to remediate service delivery upon
failure detection. The load balancers are implemented as Ryu applications using a
round-robin distribution of traffic flows. The client and servers connect with the load
balancers using OpenFlow-enabled switches configured with static L2 forwarding rules
and Fast Failover group table entries, implementing a network failover mechanism.
When the link to the primary middlebox is disabled, all traffic is rerouted to the
minion VNF. This failure model serves as an effective analogue to how such a system
would typically be implemented, observing for simple link breakages and switching to
the alternate route if so. All of the components within this testbed are either software
or virtualised equivalents of hardware (such as switches and routers) using Mininet,
as it is an effective testing and simulation tool for its ease of deployment and accuracy
compared to other simulation methods.

These experiments were executed on a Dell server (dual Socket Xeon 4114, 20
cores, 32gb RAM, Ubuntu 18.04) using the Mininet platform. For each experiment,
four scenarios were conducted.

e Clean - No failures and replication disabled
e Copied - No failures and replication enabled
e Fail - Failures and replication disabled

e Failover - Failures and replication enabled

Firstly, the control or base scenario is labelled as clean in the results, with
the system running without any failures to measure the performance when MiMi’s
flow replication mechanism is disabled. The second scenario is the same, but
with the mechanism enabled to observe for impact, labelled as copied. Thirdly,
failures are triggered at fixed intervals while flow replication is enabled, labelled
as failover. Finally, the same scenario of failures, but with flow replication
disabled, is labelled fail. To evaluate the effectiveness of the state recreation in

107



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

the redundant middlebox/minion VNF, the number of failed connections and overall
traffic throughput are compared, as well as traffic-specific metrics. Each experiment
is performed multiple times (from 5 to 10 iterations depending on experiment results)
with an average result calculated to ensure consistency. For the WEB workload,
the experiment runs for five minutes with a link failure triggering every 30 seconds,
totaling five state transfers. For the DASH workload, 15 failures are triggered at the
same evenly spaced 30-second intervals. It is worth noting that state is only mirrored
in one direction, from the primary middlebox to the minion VNF. This is due to
the design intending to be served as a failover mechanism to solve immediate loss
of hardware, with restoration to the primary path an action taken by the network
engineers in charge as they resolve the problem fully. This means that state is
lost when the traffic is restored to the primary and magnifies the failure scenario
beyond what would be encountered in reality, as a form of stress test. The number of
connections per experiment is dictated by a relative 'sweet spot’ of traffic load, wherein
a sufficient volume of traffic is consuming the majority of available bandwidth with
what the system can handle to better replicate typical operating conditions in an
otherwise limited virtualised environment.

5.2.2 State mechanism designs

MiMi evaluates two approaches to extracting/recreating state from the primary
middlebox. Following the vein of the three possible formats specified in Section 3.4.1,
Middlebox Minions explores the first two scenarios: an open or modifiable VNF and
a VNF with observable configurable output. The latter is more common and the
main approach of MiMi, but the former is explored as a matter of course. The
first approach utilises a driver inserted into the primary middlebox, serialising flow
state and distributing it to the datastore. The driver experimentation intercepts and
replicates OpenFlow instantiation commands, serialising it into JSON and sending it
to the Redis middleware (Sanfilippo, 2009). This approach is an initial exploration of
the concept and is not feasible in most real-world deployments. The second approach
interprets the log output of the middlebox, which is commonly used for monitoring and
troubleshooting purposes. Logs are generated from actions performed and distributed
to the syslog host, giving access to a degree of decision-making of the middlebox. An
external driver intercepts the syslog output and interprets its contents, extracting
relevant fields to recreate the OpenFlow instantiation command before sending it
to the Redis datastore. This second approach is agnostic of the technology of the
primary middlebox, relying on fairly standardised logging mechanisms and practices.
This driver must be adapted to fit the log output of its target middlebox, creating a
small but not unreasonable barrier to entry.

108



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

5.2.3 Direct extraction evaluation

The first approach extracts OpenFlow flow table instantiation commands from the
control plane channel, serialising and distributing it via the Redis datastore with the
auxiliary middlebox receiving it from the pub/sub channel.

5.2.3.1 WEB workload

The first workload consists of the HT'TP traffic using WRK, generating large numbers
of short-term flows where the loss of state in the middlebox will reset active
connections. This workload represents a significant portion of normal web traffic,
requiring little in the way of persistent state, only needed for the very short duration
of the flow to fulfil its request. These flows are short and able to quickly restart
upon loss with WRK reporting on latency, request rate, total requests, read errors
and timeouts. These breakdown in WRK to socket read and write errors, and TCP
timeouts waiting for a response, with a default window of two seconds. The results are
depicted in Figure 5.3, split between two scenarios: 1000 and 2000 parallel connections
requesting a small 5.7kb file, divided across 10 threads and 5 clients equally. Failovers
were triggered every 30 seconds, with state copied only in one direction (from primary
to redundant middlebox with no state copied back on the return path), for a duration
of 5 minutes totaling 5 triggered failovers.

Does MiMi reduce short flow timeouts? Overall, the web workload is robust
against disruption as anticipated, with two trends emerging: TCP timeouts for
connections are reduced by a significant margin, with a 41% reduced rate between
stateless and stateful failover per 1000 parallel connections. This continues in the
2000 set, with a reduction of timeouts by 40%. Each connection is too short-lived to
be hit by more than one switchover every 30 seconds, with retransmissions occurring
only within their two second window.

Effect on traffic rates Timeouts incur retransmitted packets, increasing the overall
traffic load from an average of 98K requests to 133K. Using the drivers, this increase
is only 17% per 1000 connections (114K) and similarly halved for the 2000 set. There
is an observable improvement in overall connection retention with no clear increase
in latency due to the invasiveness of this technique, although the evaluation of this is
impaired by the nature of the traffic and its short-lived statefulness.

5.2.3.2 DASH workload

The second workload consists of MPEG-DASH video streams using Scootplayer (Broad-
bent, 2015), generating a small number of long-term flows where the loss of state will

109



Chapter 5.  FEvaluation 5.2.  MiMi performance evaluation

Il 1000 conns
7000 = 2000 conns

60001

5000

Timeouts
B
o
o
o

3000

2000
1000
0,

Clean
ied
Fail

Cop
Failover

Mode

Figure 5.3: Reported timeouts of WRK connections for the 1000 and 2000 connection
datasets

disrupt active connections, triggering buffer events or potentially severing connections
entirely. This workload represents another form of typical web traffic, requiring a far
more significant volume of persistent state with a greater risk of disruption due to their
length. Compared to other DASH streaming tools, Scootplayer is relatively intolerant
to disruption, lacking most video player mechanisms for resilience to disruption, and
intended purely for testing rather than real-world use. The results are depicted in
Figure 5.4.

Does MiMi reduce long flow timeouts? Overall, the results are consistent with
the WEB workload showcasing a reduction in the rate of timeouts that occur but
not a significant improvement. Starting with the 100 client set, the failure rate of
connections is reduced by 18%, with a similar level for the 50 client set at 16%. The
results suggest some improvement to this early approach, although the evaluation
is impaired by the technical limitations of the testbed as the first iteration of these
experiments, showcased in Figure 5.3 where the results for low traffic levels without

110



Chapter 5.  FEvaluation 5.2.  MiMi performance evaluation

failovers still indicates timeouts due to being unable to handle any significant traffic
load.

I 50 conns
B 100 conns

801

601

Timeouts

401

20

Fail

Clean
Copied
Failover

Mode

Figure 5.4: Reported timeout rates of scootplayer connections for the 50 and 100
connection datasets, with error bars generated from averaged results

5.2.4 Log-interpretation driver evaluation

The second approach, the logging interpreter/driver, derives key information from
the output of the middlebox externally of the device, creating flow insertions with
this information to be distributed via Redis. To evaluate the effectiveness of this
second approach as well as explore the potential effects of utilising lesser-performing
software as the remediation, an IPTables middlebox is used in place of the Ryu
load balancer as the primary middlebox, with the redundant role now served by
the Ryu instance. While both instances are software, there is a significant gap in
performance regarding packet processing speeds between these two instances, serving
as a stand-in replacement. To remove other potential performance mitigations, static
flows replace the reactive switches in the testbed, as well as an increase in the size

111



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

of the requested file from 5.7kb to 617kb. Web page sizes have steadily increased in
the last fourteen years, as reported by the HT'TP archive, primarily due to the rise in
the number of images and CSS elements. A typical HT'TP header is within the range
of 500-700 bytes, while a full webpage in 2022 averages 2.2MB, or 2200kb (archive,
2010), depicted in Figure 5.5.

MEDIAN DESKTOP MEDIAN MOBILE

2505.3 KB 2228.9 KB

A435.7% A1439.3%

Timeseries of Total Kilobytes =
Source: httparchive org -

Zoom 1m  3m 6m YTD 1y 3y Al 15 Nov 2010 — 1 Jan 2024

£k
4k

3k

Total Kilobytes

2k

0 R - . _
T T

T T T T T T T 1
20m 2012 2013 2014 2015 2016 2017 2018 2020 2022 2024
A E F G H | J KL M N {] PlQ R

01 B —2013 BRECEE 2017 2020

— Desktop  — Mobile

Figure 5.5: Rise in page weight (measured in KB) from 2010 to 2024 as reported by the
HTTP archive (archive, 2010). This is attributed to a number of factors including the
number of images used, JS elements and externally sourced elements beyond simple

HTML.

The requested file is changed to not only reflect this difference between header
requests and typical webpage sizes but also increase the size of the overall volume of
traffic, increasing the duration of flows and the overall performance load. Additionally,
as this is a kernel-level service with many optimisations to its functionality, the number
of supported connections is vastly increased, and thus the volume and size of traffic are
increased, reflecting the difference in performance between the tools used. Figure 5.6
presents the performance of the web workload for the four experimental scenarios and
for a varying number of parallel connections.

112



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

200004 s 20000 conns

[ 30000 conns

400001

30000

Timeouts

20000

i

Clean
Copied
Fail
Failover

Mode

Figure 5.6: Reported timeout rates of WRK connections for the 20,000 and 30,000
connection datasets with iptable logging

Does the log interpretation reduce timeout rates? From the results, it is
evident that there is a continued trend of timeout reduction with an observable drop
of 56% and 60% in 20-30K connections, respectively. This is significantly improved
versus the direct driver, with more pronounced results with a rise in traffic volume.

Impact of externally interpreted state on recovery The separation of the
driver from the middlebox incurs no reduction in effectiveness and reduces the possible
impact to performance and operations significantly.

To summarise, the log-interpreting driver offers a significant reduction in the loss
of state despite interpreting its information externally through a targeted method.
Furthermore, there is no clear degradation of its ability to perform its role as a result of
differing performance levels between that of the primary and auxiliary middlebox, with
the Ryu instance utilised as a partner technology to the logging interpreter for its flow
table instantiations. This approach may require some measure of configuration and
awareness of logging practices for existing middlebox hardware, but it does offer a non-
modifying and performant means by which state may be retained using a Middlebox
Minion. The results of the first driver approach, while an improvement, are presented

113



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

Clean Fail Failover
delay | requests | Timeouts | requests | Timeouts ‘ requests ‘ Timeouts

0 120,090 1177 140,788 7144 93,805 4278
0.1 | 120,115 1279 141,707 7113 106,995 4894
0.25 | 119,846 1264 145,699 7550 107,192 4804
0.5 | 119,594 1385 140,014 7660 106,142 4895

Table 5.3: Request throughput and total TCP failures for varying state
synchronisation intervals.  Frequent state synchronisation improves the overall
resilience of the service.

more as an initial exploration of the topic rather than a viable approach.

5.2.5 State Synchronization Frequency

For these evaluation scenarios, the distribution of state to the middleware datastore is
live, effectively updating as quickly as log output is interpreted and ensuring state is as
consistent as possible across all middleboxes. This approach is motivated by the desire
to ensure state liveness (up-to-date state) and reduce disruption from unexpected
behaviour over restarting flows. It is not uncommon for backup systems such as this
to batch state updates rather than live, however. To return to the CAP theorem,
the consistency of state is sacrificed in favour of availability through an “eventually
consistent” approach. A state distribution algorithm that guarantees a transaction,
such as a two-phase commit, ensures the consistency of the state view across the
primary and redundancy, but this is costly on processing. Past work in this domain
has batched packets (Rajagopalan, Williams, and Jamjoom, 2013, Rajagopalan,
Williams, Jamjoom, and Warfield, 2013) and other forms of state (Sherry, Gao, et al.,
2015, Dunlap, King, et al., 2002) as discussed in section 2.5. It is worth examining
whether small-scale batching would benefit the system by reducing the overall time
the processor is interrupted from packet processing to update the flow tables without
impairing the effectiveness of recovery. The more frequently state is synchronised
between multiple instances, the greater the presumed correctness of state. Delays
may hamper how quickly failure is remediated. To examine the impact of this, we
replayed the WEB traffic experiment with varying levels of delay: 0.1, 0.25 and 0.5
seconds. Greater levels of delay than this are unlikely to be seen in real-world networks
where even milliseconds of delay can be problematic. Each of these levels of delay are
examined through the WEB workload experiment using 2000 clients via the Ryu to
Ryu whitebox experiment.

114



Chapter 5.  Evaluation 5.2.  MiMi performance evaluation

Effect of batching on timeout rates The results of these experiments are
depicted in Table 5.3, with a control group with no failovers in the first column.
Delays through batching flows do incur an observable impact on timeout rates and
the resulting increase in repeated traffic, as shown by the slight rise in the number
of total requests made. These rises in request rates and timeouts amortises after the
initial batching delay, however. Further delays beyond those displayed in the table
show greater rates of failure, but they are beyond the scope of relevancy. The rate
of flow instantiation is not sufficient to overwhelm the queue within the time frame
tested, suggesting that this window of effect will differ between use cases and traffic
load. The necessity of batching is also dependent on the system, such as its effect
on CPU utilisation and the scale of traffic, but at least within this use case, it only
incurs a minor diminishment in overall performance if one requires it.

5.2.6 Impact of middleware choice

The choice of middleware is an area of experimentation that also bears exploration.
The choice of data store and middleground is up to the end user, with considerations to
be made over its interaction with the state extraction drivers, ability to disseminate
what it receives, and the potential latency incurred. The data store used in the
experiments for the MiMi evaluation is Redis (Sanfilippo, 2009), an open-source
datastore used for a variety of functions, including caching, key-value storage and
message distribution. While Redis does feature a publish/subscribe mechanism, used
for the distribution across all potential replicas in MiMi’s evaluation, this is built atop
its primary focus as a database and caching mechanism.

Other tools exist that are built for the distribution of state. Kafka (Sax, 2018) is
a distributed event streaming platform that operates using a publish /subscribe model
at its base, built for the purpose of continuously capturing, storing and distributing
‘events’ within a system as it is operating. Utilising a cluster implementation of Kafka
in place of Redis, the WRK test was repeated with 2000 clients so as to observe any
potential overhead changes.

Difference in latency between Kafka and Redis The results depicted in Figure
5.7 presents little observable change that does not fall outside of reasonable deviation
of results from experiment to experiment. One change, the reduction in failover
timeouts, may present that overhead differences between Katka and Redis, whilst
small, may still observe a beneficial reduction in latency for distributing state.
The results suggest the choice of middleground technology should be taken into
consideration, but the deviations between each technology may only be minor, at
least within the scale of this testbed’s use case.

115



Chapter 5.  FEvaluation 5.3.  Katoptron performance evaluation

—— I Redis
m kafka
6000
5000
2
3 4000
Q
€
=
30001
2000+
c © = e
© (7] © (]
3 - - s
o ®

Mode

Figure 5.7: Comparison between timeout results

5.3 Katoptron performance evaluation

This section evaluates the proposed Katoptron architecture. The analysis uses
network emulation to run a small-scale network topology equipped with the Katoptron
service. We evaluate two aspects of the Katoptron architecture: the ability to support
a wide range of middlebox types and the improvement of the service on application
resilience during middlebox failures.

5.3.1 Experimental Setup

To evaluate Katoptron, a new testbed was created using the MiniNet emulation
platform to emulate a topology using OpenVswitch switch instances. Depicted in
Figure 5.8, it consists of a number of client and server end-hosts, each running on a
distinct subnet and connected to an ingress and egress switch/router. The switches
are configured using static OpenFlow rules to connect end-hosts with the Katoptron
service as well as route traffic between the client and the server subnets. The
Katoptron service consists of a primary and backup middlebox instance and a Click-
based Katoptron filter. Both middlebox instances connect via the Katoptron filter to
the ingress switch via dedicated links, while the output traffic of the middleboxes is

116



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

Clients Servers
Client 1 Client N Server 1 Server N
Executes traffic e Executes traffic :
testing testing Hosts content Hosts content
*
k4
Client Switch Client Switch
Local routing Local routing
r
¥
Client router Server router
Cross-network routing Cross-network routing
A
b4
FF switch Secondary Suricata/MAT/LB
route
Implements FF rules Redundant middlebox
_____ > implementation
v State v
Filter I Suricata/NAT/LE FF switch
Duplicates state- Primary = Primary middiebox >
. . Implements FF rules
generating traffic route impl en,?;m ation P

Figure 5.8: The Katoptron testing topology, consisting of a client/server model
separated into subnets, with traffic passing through the gateway to the backend of
servers.

forwarded to the egress switch, which connects the two middleboxes with the server
end-hosts. The ingress and egress switches use static OpenFlow rules that route traffic
between the client and server subnets and perform the learning operation required for
service restoration during failures. During operation, traffic between the client and
the server traverses the different subnets and the middlebox, while a small subset
of traffic is duplicated and redirected to the redundant middlebox, whose links are
disabled during failure-free operations to minimise the risk of packet duplication on
end-hosts. The testbed and the evaluation were run on a Dell server (2x Intel Xeon
4114, 32gb RAM) running Ubuntu 20.04. The experiments use three distinct network
traffic workloads, previously summarised in Section 5.1.3 and Table 5.2. The first
two workloads, WEB and streaming, are similar but not identical to those discussed
in the prior Section 5.1. The WEB workload generates HTTP traffic between the

117



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

Function State Functionalities Mm'
sampling rate
NAT hashmap Map address space 1
IDS thresholds Detect attacks 5)
LB weighted buckets | Distr. new conns 1

Table 5.4: Minimum number of packets per flow needed for state determined through
simple experimentation, observing for rises in failure rates for the experiment KPIs

client and the servers for evaluation of short-lived HTTP traffic, as would be typically
produced by an Internet web server using different payload sizes. The streaming
workload emulates a varying number of MPEG-DASH streams between the client
and the server end-points for evaluation of long-lived HTTP traffic (video content)
that forms another major chunk of typical Internet traffic. Finally, the attack workload
replays traffic from the CICID 2017 evaluation dataset using TCPReplay. This final
body of traffic is evaluated against real-world traffic that has been employed for the
purposes of testing IDS detection effectiveness in prior research by others, so as to
ensure the evaluation of Katoptron’s ability is thoroughly evaluated.

Finally, in all experiments, we consider three experimental configurations: Base,
executes the experiment with no failures, Simple, executes the experiment with failures
and uses simple 1:1 middlebox redundancy, and Katoptron, executes the experiment
with failures and uses the Katoptron architecture to improve network resilience. The
first setup is used to demonstrate the performance of the application during normal
operation; the second setup demonstrates the limitation of simple 1:1 redundancy;
and the third configuration is used to demonstrate the improvement achieved with
our Katoptron architecture.

5.3.2 Middlebox support

In order to demonstrate the generality of the Katoptron architecture, we discuss in
this section the set of middlebox appliances that we provide out-of-the box support for
our Katoptron strawman implementation. Our set of compatible middleboxes consists
of three off-the-shelf, unmodified network functions: a NAT, an IDS and a load
balancer. The selected functions cover a wide range of network operations, including
packet field modifications, stateful packet forwarding and flow monitoring. Without
loss of generality, the middlebox implementations we employed in our evaluation
are software-based, and we use them as black-box devices, i.e. VNF instances are
unmodified, and their implementation closely matches the behaviour of a hardware-
accelerated device. Where possible, we have utilised open source tools to assist
our aim of evaluating the generality and avoid overfitting to specific operational

118



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

25
©
Q
0
@ 20 A
)
Q
©
n
Q
—_
2 15
@©
c
2
wn
10 A —— Tuesday
Wednesday
—— Thursday
—— Friday
5 T T T T T
1 3 5 10 15

Packets sampled

Figure 5.9: Evaluation of the impact of traffic sampling policies on the total number
of signatures detected by the IDS middlebox (Suricata) and diminishing returns of
greater sample sizes for the CICID 2017 datasets.

models, such as the Suricata IDS (O. I. S. Foundation, 2022). Furthermore, the
filter implementation does not depend on a specific technology and could be realised
using several packet processing technologies (e.g. the P4 language, DPDK program).
Overall, our experimentation and approach showcases that Katoptron can both target
many production middlebox targets and cater to physical or virtual redundancies, as
well as realised in multiple technologies as demonstrated.

Our NAT middlebox uses the high-performance Click modular router and its built-
in mazu-nat application. The function uses a lookup table with a 5-tuple hash (IP
Proto, IP address and port source and destination) to connect the client hosts to
the server network via a single IP. Furthermore, the NAT operates as a gateway
for all incoming and outgoing traffic between the client and server hosts. The Click
application implements a full-cone NAT and utilises a consistent hashing mechanism
common across similar NAT implementations. The function state includes the entries
of the lookup table and possible loss during a failure incurs processing overhead in the
recalculation of the lookup state for every established connection. Our IDS function

119



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

uses the open-source Suricata software, equipped with the open emerging threats
ruleset (Inc, 2021). The IDS instance monitors the traffic between the client and the
server network, operating in IPS mode (the IDS receives a copy of the active traffic)
and its configuration will log alerts when a rule matches a flow of packets. State
is defined in this scenario as these threshold counters; if counters are lost for active
connections in flight, it would be possible for false negatives to occur when thresholds
are not met for each separate instance’s view of the live connection, allowing malicious
traffic to reach the target. Typically, emerging rules match against flow and host
statistics or apply wildcard masks on the start of the application payload.

Finally, the load balance function uses the Open VSwitch switch with a fixed set
of OpenFlow rules. The function maps incoming flows to a random backend server
using a weighted bucket entry, which distributes traffic evenly between a fixed set of
servers using a consistent hash function on the 5-tuple of incoming packets. Finally,
we develop a load balancer middlebox application using an Open vSwitch configured
with a static set of OpenFlow rules that spread user requests across the servers, using
a simple weighted bucket approach to distribute load in a broadly even distribution
via consistent hashing of the five-tuple of incoming packets.

Table 5.4 summarises the three integrated middleboxes and reports the minimum
number of packets required in order to ensure sufficient state recreation between a
primary and a backup instance. The sampling rates were determined through initial
testing of each scenario to narrow down the minimum viable state. For the NAT and
LB, only the initial SYN packets are sufficient to prime state on the backup server,
with the majority of their logic beginning at connection establishment. For the IDS
middlebox, we ran different traffic sampling scenarios using the attack workload and
concluded that the middlebox requires a minimum of five packets to fingerprint a flow
accurately. Fewer packets impair its success rate, with greater offering no additional
benefit once signature rates are matched, as shown in Figure 5.9.

5.3.3 NAT middlebox performance

The first scenario we explored is the NAT middlebox, where the loss of state results
in the reset of active connections between clients and servers. The redundant NAT
constructs its state by duplicating SYN packets from all incoming connections to the
primary box. In this experiment, we use the WEB workload and vary the number of
parallel HT'TP connections. We run our experiment for 30 seconds and trigger a link
failure halfway through the experiment. We run each experimental setup five times
and report in Table 5.5 the average timeout and reset rate when running the WEB
workload for two different content sizes (5KB and 627KB) and for a varying number
of clients. Furthermore, we run experiments using both the streaming and the web
workloads. The values displayed in Table 5.5 consist of TCP RSTs generated from

120



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

WEB workload - 5KB object

no. clients Base Simple Katoptron
Reset Timeout | Reset Timeout | Reset Timeout
50 0 0 157 159.2 126.6 98.4
100 0 0 128.8 124.8 191.8 56.2
200 0 0 344.2 359 158.2 114.2
300 1.8 12.2 503.2 492.4 256.8 252
WEB workload - 627KB content
no. clients Base Simple Katoptron
Reset Timeout | Reset Timeout | Reset Timeout
50 0 7 29.8 175.4 0.2 17.2
75 0 63.8 1.4 237.8 1.4 155.96

Table 5.5: Average HTTP resets and timeout rates during NAT middlebox failures
using the WEB workload for both small (5KB) and large (627KB) objects served.

packets hitting the closed port and timeouts triggered by state loss. A rise of either,
but especially timeouts, is indicative of traffic dying on the wire, with its reduction
demonstrating a visible improvement in minimising observable failures for the end
user.

Does Katoptron reduce short-lived state failures? At first glance, there is
a clear reduction in timeouts and resets across every test. This becomes more
pronounced for experiments with higher traffic rates, as showcased with the 300
clients set with an almost 50% reduction in failure rates of short-lived connections.
While short connections have far less state to lose, the results demonstrate a marked
improvement over simple redundancy.

Effect on overall traffic rates Inaccurately copied state could potentially cause
a rise in the volume of overall traffic, as well as restarting connections from their
general loss. However, there is only a minimal observed rise in request rates in each
scenario (e.g. 326K requests for filtered traffic to 315K unfiltered redundancy for 300
clients, or 3.5%). This is a relatively minor rise versus typical traffic patterns and is
well within tolerable limits for bandwidth use.

Lighter vs heavier traffic Short flows, like those shown in the top half of Table 5.5
using the 5KB object, are short-lived and far easier to restore when their connections
are disrupted with or without Katoptron, as their loss and repeated traffic incurs
far less bandwidth use versus larger flows. For the 5KB HTTP requests, there

121



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

Base Simple Katoptron
Experiment | sigs alerts | sigs alerts | sigs alerts

Tuesday 14 7420 9 5073 | 14 6619
Wednesday | 18 1106 | 15 1366 | 18 1347
Thursday | 28 1434 | 22 1153 | 28 1460
Friday 28 1381 | 12 671 | 28 1235

Table 5.6: Total number of signatures and alerts raised by the redundant Suricata
IDS instance for each trace, when using the Attack workload. Base represents the
expected detected outcome of the IDS to the attack workload. Simple represents
the results when experiencing loss of IDS and failover without state preservation.
Katoptron represents the results when experiencing the same with state preservation
techniques.

is a pronounced improvement on both connection resets and timeouts. For longer
flows, such as the larger 627KB request, the window of potential disruption is longer.
The bottom half of the table, using the 627KB object, shows a similar and clear
improvement in minimising timeouts for these longer and more vulnerable flows, with
a significant drop in the number of timeouts between failures with katroptron and
without (simple). Overall, while short connections have far less state to lose, the
results of both the lighter and heavier traffic tests showcase that even for easily
restarted traffic such as simple web requests, our non-modifying improvement to
blackbox redundancy has an observable benefit in reducing disruption to connections
during failover.

5.3.4 IDS middlebox performance

The second scenario we explored is the IDS middlebox, where the loss of state
influences the number of attacks detected by the IDS since the system will have a
limited view of the active traffic. For this experiment, we use the Suricata IDS both
for the primary and secondary middlebox and execute the attack workload. During
each experimental run, we trigger five failures, with a 15-second gap between them.
Furthermore, we run each experiment five times and report the average signature and
alert results in Table 5.6. These indicate the detection of attack signatures (sigs) and
how often they are observed (alerts) and are directly compared to the control/“base”
set; observing the same number of signatures indicates no degradation of the ability
to detect attacks.

Does the filter affect signature detection? The results show a clear continua-
tion of detected attacks even with only 1.5 to 5% of the body of traffic and repeated

122



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

failovers disrupting detection versus non-state-preserving redundancy. These results
do not significantly improve with increasing the number of packets sampled beyond
five packets. When reducing the number of packets below this determined value,
however, there is a marked rise in false negatives and mismatched signature detection.

short-term and long-term attacks The Tuesday and Thursday traces utilise
short-term rapid attacks, necessitating repeated and aggressive failures to meet the
short duration of each type of attack. As showcased by the “Simple” category in
Table 5.6, is unable to detect the majority of these short-term attacks due to this
difficulty of timing, but the redundant device primed with state via the filter detects
all potential malicious traffic. Attacks that occurred over more significant periods
of time, including all botnet and distributed attacks, show a far greater loss when
this state is not preserved and likely pose a greater risk and danger to networks in
real-world scenarios if they were to go unchecked.

5.3.5 Load balancer middlebox performance

The third scenario we explored is the Load Balancer middlebox,where the loss of
state influences the number of connection resets per client, with the loss of state
during failover forcing them to be re-established. This approach is akin to the NAT
deployment, but with a far greater dependence on state due to the weights used
in the decision process. This experimental configuration uses the service restoration
mechanism, configured using static rules on the ingress and egress switches. It is aided
further by a secondary OVS rule to the failover and a masking switch on the server
side of the failover mechanism that keeps track of existing flows so that when traffic is
returned to the primary path, existing connections that have already been established
by the auxiliary will return through the primary rather than being dropped. The filter
is formed in the same SYN configuration as the NAT experiment as well as the body
of experimentation for both traffic and failover tests. The state for this scenario
consists of the hash lookup tables, the loss of which is improbable to recreate outside
its original moment of generation due to the weighted consideration of the current
table contents. During this experiment, we fluctuate the link state to the primary
middlebox every ten seconds, which triggers the Katoptron service to switch between
the primary and secondary middlebox instances. As discussed in Section 5.3.1, the
GST streams consist of 375 active connections divided across five clients for a total
duration of 120 seconds, saturating the traffic load the testbed is able to handle. The
metrics presented in Table 5.8 showcase resolution changes where the DASH format
shifts its streaming bitrate to accommodate for perceived bad connectivity, as well as
buffer periods and broken streams.

123



Chapter 5.  Evaluation 5.3.  Katoptron performance evaluation

Test reset timeout

Base 26.68 +£8.37 | 1.92 +0.796
Simple 324.2 £6.172 | 240 +7.886
Katoptron | 50.32 £6.161 | 2.2 +0.744

Table 5.7: Results of the LB failover using the 627KB object. The number of reported
TCP resets and timeout responses are shown in their respective columns, averaged
from multiple runs. Results indicate a drop in rests and timeouts significantly when
preserving state with katoptron over not with simple.

Test buffer events | res changes | failed conns
Base 1 2 0
Simple 8.75 19 £0.693 1
Katoptron 1 2 0

Table 5.8: Total count of buffering, resolution change and failed connections during
Load Balancer middlebox failures with the streaming workload.

WEB workload - Small objects For the short-term streams, the difference
between simple redundancy and the Katoptron is more service-pronounced than NAT,
due to the weighted bucket approach establishing a small measure of non-deterministic
execution. This magnifies the effects of the failure of state transfer. Table 5.7 reflects
this with the significant reduction in timeouts and TCP resets between simple and
Katoptron, from 324 to 50 and 240 to 2.2 timeouts respectively. With short-lived
traffic, this is not a significant load on a load balancer in most use-cases, but our
live capture of state ensures that even short-lived failures are minimised. This shows
that the decision-making logic of this bucket is consistent to the state at that moment
in time, serving as a demonstration for how Katoptron can facilitate even slightly
non-deterministic decision logic that might be present in blackboxes alongside more
common hash-based methods.

Effect on video streams for buffer events Table 5.8 reports the performance
results of the streaming workload when processed by the load balancer middlebox.
With five active streams split between the topology servers, there were no changes in
both buffer events and resolution changes, despite 20 failovers randomised across
the ten-minute duration of the experiment. The simple redundancy mechanism
results in multiple resolution changes during each failure, with each flow forced to
re-initiate connection at each failover and one forced to timeout completely. The
simple redundancy /non-Katoptron instance also showed a significant increase in both
the total playtime and the mean buffering time due to the persistent loss and forced

124



Chapter 5.  Fvaluation 5.4. Summary

delay to re-establishing connections at each lost chunk, with a total playtime of 1047
seconds versus the expected 595.

5.4 Summary

In this chapter, the resilience framework and its mechanisms have been evaluated.
Each of these evaluations aimed to test their effectiveness at transferring state, their
impact on the overall system operations, including incurred latency and delay, the
accuracy of their recovered state, generic applicability for both construction and their
ability to target all possible middleboxes. The Key Performance Indicators (KPI) of
the evaluation varies between tests and shall be broken down with the results. It is
split into two sections for the two sets of contributions, MiMi and Katoptron, from
Sections 5.2 and 5.3, respectively. These sections have examined the effectiveness of
the white, grey and blackbox state mechanisms created and how well they meet these
KPIs.

In the first section, presented in Section 5.2, the contributions of MiMi are
demonstrated. As a broad summary, MiMi explores the scope of the problem of
building resilient systems for blackbox middleboxes. The mechanisms developed
target white and greybox scenarios using direct extraction with open-source software
and interpretation of logging information respectively. The whitebox mechanism was
evaluated through the direct extraction of flow table instantiation messages from a
Ryu-based load balancer to a Redis datastore, acting as the middleground. The
greybox mechanism was evaluated through an external interpreter acting as a syslog
server receiving the logging output of an IPtables-based load balancer and using
this to create OF flow table instantiation messages for a Ryu-based redundant load
balancer. Furthermore, the choice of middleground and its method of distributing
state was examined for its potential impact on failover, as well as the batching of
state distribution.

The KPIs of the WEB workload, examining short-term flows, consist of the
timeout rate of connections and increases in traffic volume. Other performance
indicators include read errors, latency and request rates, as reported by WRK.
The KPI of the video workload, examining long-term flows, consists of the failed
connections from timeouts as reported by Scootplayer. Overall, there is an observable
improvement in connection retention for both long and short flows. For the whitebox
evaluation using the Ryu load balancer, there is a reduction in timeout rates for the
web workload (short-term flows) of up to 40% with an increase in traffic volume of
up to 17%, with no observable change in latency. The video workload (long-term
flows) shows a smaller improvement, with the reduction of timeouts up to 18%. For
the greybox evaluation using [PTables, the WEB workload reports a much more
observable drop of 56-60% in timeout rates for 20-30K connections respectively. The

125



Chapter 5.  Fvaluation 5.4. Summary

state synchronisation evaluation repeats the WEB workload of the greybox scenario,
monitoring for increases in request rates and timeouts as the KPI. Results indicate
a minor increase in timeout rates of 14% with a delay of 100ms, with further
delays amortising with no increase in timeout rates from larger delays. Finally,
the middleground impact evaluation observed for increases in timeouts from inferred
latency between the two technologies, Redis and Kafka, with the results suggesting
the difference in latency between technologies is negligible, at least for the testbed
used. Middleboxes present a difficult goal for maintaining state across failures, but
NFV offers considerable potential in its adaptability, especially when played in an
auxiliary role where its comparative downsides are diminished.

Overall, the results for MiMi show an observable improvement in connection
retention for both long and short flows, with state reconstructed from logging serving
as an effective first step in more generic approaches to state preservation. This half
of the work presented in this thesis also explores the necessary level of separation and
technology required to allow NF'V to work in this secondary role to a middlebox and
ensure its operations are undisturbed, as well as accommodate for potential scalability
and expansion.

In the second section, presented in Section 5.3, the contributions of Katoptron are
demonstrated. The larger body of work for this thesis, it evaluates the effectiveness
of the blackbox state mechanisms created. Katoptron establishes a targeted packet
filtering approach to recreate state in a redundant middlebox by replicating sufficient
traffic to instantiate flow table entries. The evaluation is divided across three different
middlebox use cases, each built within a different technology. The first is a NAT built
within Click evaluated against the WEB workload using two sizes of payload. Its
KPIs differ slightly by reporting on both the timeout rates and reset connections.
Results indicate a significant reduction in timeouts for the 5KB payloads with an up
to 68% reduction in timeouts, and a 34% reduction for the larger 627KB payload.
The NAT scenario also indicated an increase in traffic volume of up to 3.5% from
disrupted connections attempting to re-establish.

The second scenario was an IDS using Suricata and the emerging threats signature
set, evaluated using the CICID 2017 attack dataset. This evaluation was divided into
four sets for the four days of PCAPs within the set, each focusing on a different set of
attacks. For example, “tuesday” uses short-term DDOS connections in high volume,
while other days possess heartbleed or botnet attacks over long-term flows. The
KPIs for the IDS consist of signature detections where malicious traffic was observed
accurately by the IDS and the number of alerts triggered per signature. Of the two,
the signature is far more important as an indicator of the accuracy of the IDS’s ability
to detect and detect accurately. Results show no disruption to signature detection
in the redundant middlebox using only 1.5% of the traffic. There is a reduction in
the alert rate; however, this is to be expected with repeated triggered failovers and

126



Chapter 5.  Fvaluation 5.4. Summary

does not disrupt the IDS’ performance. The volume of traffic necessary to ensure the
maximum detection offered diminishing returns beyond five packets and no further
improvement beyond ten per-flow for this evaluation.

Finally, the third scenario consisted of a load balancer built within OVS,
distributing traffic between multiple backend servers. This is evaluated using the
WEB workload with the 627KB payload for short-term flows and a gstreamer parser,
configured to act as a video player for an MPEG-DASH short film. The short-
term flows differ slightly from the prior experimentation due to the presence of a
weighted bucket distribution, which introduces some measure of non-determinism
into the load distribution. Results indicate a continued reduction in timeout and reset
rates, with a reduction of resets up to 84% and timeouts almost eliminated at 99%.
The KPIs of the DASH stream consist of reported buffer events, resolution changes
from detection of disruption to buffering from a slow or poor quality connection, and
the number of failed connections. Results indicate that for these long-term video
streams, no disruption could be detected by the player for middleboxes pre-populated
via Katoptron, compared to an average of 9 buffer events and 19 resolution changes
for simple redundancy. Furthermore, the persistent loss of state and re-establishing
of connections incur a significant delay in the playtime of the video file, from 595
seconds of the expected duration to 1047 seconds.

Overall, the results show a significant improvement in retaining state across
instances even with a radically reduced volume of traffic to build state from the
targeted replicas, achieving three major goals: to provide an effective and accurate
failover using only minimal data without modification to the target device. The total
volume of traffic needed to regenerate traffic varies between targets, with a measured
reduction of volume needed for only SYN packets totaling 98.5%. For state derived
from observing entire flows, the first five packets of each flow total 4.8% of traffic, or a
reduction of 95.2% of the total volume. This radical reduction in overall traffic needed
to maintain a hot replica is a strong contribution to Katoptron’s viability in real-
world systems where diverse systems may require significant transit between nodes,
even paired redundancies. The accuracy of this state is also demonstrated clearly in
the results displayed across the three target middleboxes. The lack of modification
necessary to ensure this degree of effective stateful failover is a significant step beyond
existing work within this domain, providing an elegant and easily deployable drop-in
solution. This is further emphasised by its demonstration in multiple technologies and
its design, which is sufficiently high-level as not to be tied to any particular technology
or language feature.

In summary, this evaluation demonstrates the feasibility of replicating state across
blackbox hardware and software without modification efficiently and effectively. The
aim of this thesis was to create a generic, all-purpose approach to establish persistent
failover between network functions for both software and hardware. The goals of this

127



Chapter 5.  Fvaluation 5.4. Summary

thesis have been met and presented within this section, including:

e Ability to support both software and hardware
Both Katoptron and MiMi present use cases for targeting blackboxes in both
software and hardware effectively, with proven results to showcase their ability to
extract and distribute state to both duplicate devices and differing redundancies.

e Support for unmodified blackboxes
The logging interpretation driver and the packet filter both necessitate no
modification to the target device, especially that of the filter, with no reduction
in their overall accuracy at the re-established state or issues involving non-
determinism.

e Minimise overhead incurred
Per-packet overhead is incurred through checkpointing and logging mechanisms
that interfere with the flow of traffic. To minimise the impact of this approach,
the body of work for this thesis has focused on non-checkpointing mechanisms
and live replication as well as indirect state sources from the packet flow to
prevent interference.

e Guarantee sufficient correctness of recovery

The methods explored create an approximation of the original middlebox’s state
rather than a perfect copy as prior research has pursued, either through log
interpretation or traffic filtering. Inaccurately replicated state on the redundant
middlebox could impair recovery to a greater degree than its loss. However,
the evaluation of both MiMi and Katoptron indicate both reduced timeout
rates and more successfully transitioned connections, especially demonstrated
in section 5.3.4 and the signature detection for the Suricata IDS. This suggests
that the state created is sufficiently correct as to improve failover despite its
“lazy failover” approach.

e Technology-agnostic
To be adoptable to real-world networks and deployments, the systems developed
must be both applicable to multiple kinds of middleboxes, especially those still
implemented in hardware, and able to be created in a variety of technologies.
Both of these requirements have been met across the two bodies of work, their
designs sufficiently high level so as not to require any mechanism specific to one
technology.

128



Chapter 6

Conclusions

The Internet today forms the lynchpin of modern communication systems, intersecting
with all areas of modern society. With its integration in all aspects of modern
society, from business and enterprise networks to critical support infrastructure, its
resilience against disruption and failure has become a critical aspect of its design and
propagation (Cisco, 2018). The over-reliance on proprietary hardware and software to
deliver network features, typically in the name of performance or security, has created
a vulnerability in the resilience of the infrastructure. The inability to preserve state
through even common techniques such as redundancy greatly inhibits recovery efforts
in minimising the visibility of failure to its users (Sherry and Ratnasamy, 2012). Their
use to fulfil performance requirements for both service and contractual obligations has
made them further ingrained, making this problem difficult to overcome; middleboxes
have become too necessary and widespread as to be easily replaced as they were
originally intended (S. Huang et al., 2017).

This thesis has tackled these challenges and presents a solution that consists of
a middlebox resilience framework capable of preserving state in an extensible and
distributable fashion without modification or replacement of the original hardware.
This is formed of Remediate that offers two mechanisms (Hill, Rotsos, Fantom, et
al., 2022, Hill, Rotsos, Edwards, et al., 2024), each targeting greybox software or
blackbox hardware, alongside a scalable distribution approach to multiple replicas
and an efficient high-level state filtering mechanism. This thesis has demonstrated
its viability and general application for use across different technologies and common
network functions with no observed degradation in effectiveness for both long- and
short-term flows. Together, these two systems allow for the retention of state for
all possible configurations of target devices and their redundancies (e.g., 1:N, 1:1,
software to hardware, hardware to software etc.). Networking infrastructure is made
with the understanding that failure is an inevitable part of its operation at every level,
from intermittent packet loss to significant hardware faults (J. P. G. Sterbenz et al.,

129



Chapter 6. Conclusions 6.1. Thesis Contributions

2010) and must be built with a mindset focused upon resilience and continuation
of service rather than high-grain performance. Katoptron has been built with this
mentality in mind, using a low-cost and non-complex means of retaining state via
filtering traffic across live blackboxes to enhance the resilience of critical areas of
failure without impairing its normal operations. This filtering approach is especially
powerful, enabling blackbox hardware to remain in place and incurring a minimal
impact on operations versus existing research, allowing for efficient live replicas to
operate with up-to-date state without the delay and overhead incurred by replaying
approaches.

The evaluation of Katoptron further validates the argument that state requires
minimal information from the target blackbox to ensure continuation of service
during failovers, allowing it to minimise both its invasiveness through the need for
modification or replacement and its impact on failure-free operations. In summary,
MiMi and Katoptron improve upon the existing work within the domain of resilience
for middleboxes, advancing beyond current practices in a new direction. Katoptron
has been shown to effectively replicate state to provide a reasonable degree of
resilience against failures with only 1.5% of the traffic, removing any need for incurred
delay, modification of the target or advocating for its replacement. Furthermore, its
backwards compatibility and scalability with MiMi allow for a great deal of flexibility
for deploying in real-world networks with minimal modification. As middlebox usage
continues to grow and change within real-world networks, the approaches to improving
their resilience will also change, with future work expanding upon the capabilities of
Katoptron and the contributions of this thesis to allow it to target any and all possible
middleboxes, networks, and use cases.

6.1 Thesis Contributions

It is worth repeating the research questions first posed by the introduction now, to
examine how the thesis and its contributions have addressed them:

e What are the limitations of existing approaches to enabling greater resilience
for middleboxes, especially in regards to hardware and blackbox devices, and
why are they not adopted outside of research?

e Can state be created externally without observation of the interior operations of
a middlebox that is both sufficiently timely and accurate as to provide effective
failover for a middlebox, regardless of the level of observability or technology it
is implemented in?

e How can a proposed solution to the problem of state preservation be im-
plemented into existing infrastructure without the requirement of replacing

130



Chapter 6. Conclusions 6.1. Thesis Contributions

existing infrastructure or disrupting the behaviour of normal operations outside
of network failure in a quick and reliable fashion?

The first research question is to explore the domain of middlebox resilience in
research and establish its limitations, especially in regards to adoption and use. The
second and third questions build upon the now-established limitations of research,
especially in regards to its lack of use. These limitations are namely the need to
replace infrastructure and the loss of performance this might cause. This thesis
aims to expand upon the challenge of enabling resilience for grey and blackboxes, a
subset of middlebox technology typically deployed in hardware whose inner workings
are unknown to the external user. This prevents the direct programmability of
internal decision-making or memory, as well as the interpretation and recreation of
the decision-making logic of these middleboxes. These challenges are highlighted
by the existing work in this domain, focusing instead on modification or replacing
blackboxes with accessible hardware or virtualisation (Sherry, Gao, et al., 2015,
Rajagopalan, Williams, and Jamjoom, 2013, Panda et al., 2016). As a result, the
design and implementation of a backwards-compatible and generically applicable
resilience framework has been created, which, combined with a highly scalable
approach to distributing state, has pursued a new direction that has improved upon
the areas that otherwise limit the deployability of past research in real-world networks.
This thesis has contributed the following:

e Described the history of how middleboxes first evolved and the scope of the
problem in modern network infrastructure

e Created a taxonomy of approaches for middlebox resilience and identified gaps
in existing research

e Established a novel approach to recreating state across grey and blackboxes by
exploiting the awareness of their technical limitations for non-determinism

e Design for a set of state recovery mechanisms that do not require replacement
or modification of existing middleboxes

— whitebox resilience mechanism that extracts flow table instantiation
commands from open-source whiteboxes and propagates them to other
modifiable redundant whiteboxes

— greybox resilience mechanism that uses log interpretation and external
serialisers to establish equivalent state to be instantiated in redundant
whiteboxes

131



Chapter 6. Conclusions 6.1. Thesis Contributions

— blackbox resilience mechanism that uses targeted traffic filtering to recreate
deterministic state using only a subset of the overall traffic distributed to
redundant blackboxes

e Utilised off-the-shelf technologies to create a scalable distribution for state that
also serves as an abstraction layer to obscure awareness of redundancy from
primary/target middlebox

e Created proof-of-concept implementations of the resilience mechanisms for the
purposes of evaluation

— A client/server testbed for servicing traffic to pass through middleboxes at
the gateways to the backend network

— An inserted state serialiser to extract OpenFlow flow table instantiation
commands

— A set of log interpreter and state serialiser drivers to interpret greybox
output and generate flow table instantiation commands, as well as the
different drivers to receive them

— A set of state filters in multiple NFV technologies, evaluated against
multiple common hardware middlebox types

The contributions listed are a significant step towards enabling greater resilience in
middleboxes. State preservation and transfer mechanisms are uncommon and complex
in hardware, but advocating for their replacement (Sherry, Hasan, et al., 2012) with
more accessible hardware is an infeasible position due to their numbers and how
heavily relied upon they are. The research in this thesis allows for state preservation
and transfer across a scalable number of replicas, removing the concern for their
replacement or interference and providing a solution to the challenges that this area
of networking faces. Much of the body of existing research on middlebox resilience
concerns itself with minimising non-deterministic execution and can be roughly staged
by their increasing evasiveness and improved effectiveness as they handle a greater
number of potential variables. This presumption of modification is infeasible in real-
world deployments, however, and has always served as a barrier to the adoption of
NFV in areas concerning middlebox usage (Sherry and Ratnasamy, 2012). Through
analysis of the typical operations and limitations of hardware implementations, the
work of Katoptron establishes a direct, non-interfering approach to recreating state
that exploits the argument that the Internet is inherently fallible and the need to
limit non-determinism to this degree is unnecessary, as showcased in its evaluation.

This greatly reduces the barrier to entry and increases the potential for the designs
of this thesis and future work like it to be adopted. The key motivation driving

132



Chapter 6. Conclusions 6.2. Criticisms and limitations

this research concerned the further adoption of NFV in modern networks, with
resilience providing a key gap in this domain. Its backwards-compatible approach
can be implemented in a number of technologies, as this thesis has demonstrated,
with future improvements possible in both hardware offloading and refinement of the
filtering approach. The other body of work, MiMi, establishes this concept by first
targeting software using an initial example of interpreting logging output, although
it can realise many more. The largest contribution is the framework, establishing the
means by which a middlebox may be logically separated so that no interaction takes
place between the redundancy framework and the target itself. A scalable distribution
mechanism leverages third-party datastore tools common to networks, allowing for
significant versatility in configuration. The ability to provide redundancy to a variety
of possible configurations and a number of replicas in each direction when the two
projects are used in conjunction showcases just how flexible the contributions of this
research may be. Overall, the work of this thesis covers a wide scope of middlebox
use cases, but it is not without its limitations.

6.2 Criticisms and limitations

There are a number of points of criticism that can be raised on the work of
REMEDIATE, and are worth highlighting here in the conclusion. These vary from
the design, the problem it seeks to solve and its overall applicability, and finally the
execution of the evaluation itself.

6.2.1 Feasibility and scope

Firstly, as network functions continue to grow in complexity, so will their operations
and the means by which state is created. The proposed solution offers IP-layer
resilience and is built with the expectation that hardware middleboxes will continue
to operate within the bands of purely TCP traffic. However, this is not guaranteed,
and the emergence of protocols such as QUIC pose a problem for the existing
infrastructure, as well as for the ability of new protocols to gain traction. If they
continue to limit the scope of what is achievable in current networks, the infrastructure
will most likely change, and with it greatly diminish the scope and viability of
technologies such as REMEDIATE. In its current state, REMEDIATE offers the
ability to provide stateful failover for a number of popular mechanisms but by no
means all, and only at this TCP level. Network functions that operate at higher layers,
such as the HAProxy load balancer, cannot be supported. Hardware middleboxes that
rely more extensively on the use of the co-processor and information that cannot be
inferred, such as internal clocks, will reduce the scope of potential targets that this
research applies to. Beyond its scope, another potential barrier is its deployability.

133



Chapter 6. Conclusions 6.2. Criticisms and limitations

The execution of REMEDIATE in a real-world context is left flexible and up to
the user, which makes evaluating its impact on a system difficult. Latency incurred
by bumps in the wire is the greatest potential impact it might have, especially in
regards to packet duplication from write operations. The low tolerance for additional
latency however would likely restrict deployments to hardware offloaded approaches
to minimise the potential risk. Despite these criticisms, REMEDIATE offers a broad
solution for some, if not all, current middlebox use cases, and further evolution of
the concepts explored in this thesis would likely expand on its effectiveness. Some
examples will be discussed below in Section 6.3.

6.2.2 Security and points of failure

There are a number of potential security criticisms and points of failure that warrant
further exploration that fell outside of the scope of this thesis. The mechanisms used
to extract state from blackboxes have the potential to expose information that may
cause risk to network devices, which is an important area that needs to be explored
more thoroughly. Observation of extracted logs and duplicated traffic travel through
non-encrypted mediums, and their use in secure systems could expose this. Its use
within closed networks somewhat minimises this risk, especially as its intended role
is to function in a purely redundant system. Instead, a greater risk is posed by its
scalability and as a point of failure. One key point of criticism is that REMEDIATE
fails to address the scalability issue of redundancy systems raised by past work
sufficiently. In these publications, the concern stemmed more towards one-to-one
redundancies, which REMEDIATE avoids by allowing for a one-to-many or many-to-
many distribution, but does so through the introduction of singular points of failure.
The loss of the filter for example, or the disruption of message passing systems used
to distribute state would disrupt REMEDIATE’s operations significantly, and it is
not built in such a way as to handle these failures. This is once more mitigated by
the notion that it is the redundant system, and there are limits to the degree that
redundancy should be pursued for all entities in the network.

6.2.3 Evaluation

The evaluation of REMEDIATE occurred as its components were produced across the
duration of my research, and have a number of weaknesses in how it was executed.
Middlebox Minions, or MiMi, was the first publication produced and the earliest work
included in this thesis, and its evaluation suffers because of this. The tooling chosen for
its evaluation, as well as its testbed, was subpar, and this is reflected in the technical
limitations that constrain the earliest results. The number of dropped packets, as well
as timeout rates, is far higher than a real-world system should reflect and warranted

134



Chapter 6. Conclusions 6.3. Future work

rapid adjustment even within that publication to correct. Given motivation, the
developments and improvements made on the testbed overall by the time of Katoptron
would have been well-placed to correct these issues with MiMi. However, the approach
that it employs is decidedly less effective than the filtering, which was surprising in
its results.

The overall testbed and use case scenario were discussed in peer reviews for the
two publications. Namely, the applicability or scope of this research given the scenario
used across all experiments. The client-server model of requesting information, be it
web pages, video streams and so on, represents a significant majority of typical traffic
on the Internet as a whole, and especially from the perspective of the typical end-user.
This model was both simple to implement and wide reaching in its applicability, and
allowed for the evaluation of a number of network functions that are typically used.
For example, the use of DASH was chosen as it is an adaptive streaming technique,
so disruptions in the medium (i.e.loss of packets/traffic from failover) directly alter
the current bitrate being streamed, which provides a very clear indication of packet
loss and congestion detection.

The evaluation was by no means exhaustive however, and represents a selection
of the best results encountered during experimentation. For example, one technology
that was evaluated but offered little to no benefit were those of proxy caches. A
proxy cache retains copies of content as a local repository that are being requested by
more than one end-user, and are employed to reduce the overall level of traffic. The
cache is populated by the original request made, and is retained for future requests
of the same content. To prepopulate a proxy cache, the files themselves must be
transferred, but mechanisms such as Katoptron only allow for the initial request
to be made again to be cached, which would inevitably happen if the original was
lost. Overall, REMEDIATE’s evaluation is limited both by the technology available
and time, but the publications provide clear evidence that the testbed and use cases
were adjusted progressively to correct the faults that could be resolved and eliminate
disruptions to the results.

6.3 Future work

With the growing use of NFV in real-world networks, there is interest in further
expanding the potential roles in networking that may be replaced or augmented by
its use. The research conducted has the capacity to be expanded upon in several
directions, chiefly in regards to service function chains, performance, management,
and other types or means of state reconstruction. These will be summarised below:

135



Chapter 6. Conclusions 6.3. Future work

6.3.1 Expanding awareness to Service Function Chains

Remediate targets individual middleboxes for the purposes of failover, for both
greyboxes with MiMi and blackboxes with Katoptron, further reinforced by their
need to be fitted to a minor degree to their targets. Modern networks typically
chain network functions together to form the gateway to networks or as a packet
processing pipeline, known as Service Function Chains (SFC). Prior research regarding
SFCs (Khalid et al., 2019) has explored the recreation of state and the complexities
involved, with discussion on how state is transformed by the additional complexity of
each stage of the pipeline versus just a single box. Furthermore, criticism from past
work in this domain is that ad-hoc and individual solutions, like those proposed in
this thesis, are not scalable for enterprise networks due to the volume of middleboxes
involved (Kulkarni et al., 2020). It would be worth exploring Remediate’s effectiveness
when expanded to target entire chains at once, especially in regards to its feasibility
and the impact it might incur. For example, filters from Katoptron could be inserted
in-between each NF within the chain rather than simply at the start, or the decisions
made by multiple chained greyboxes may require more complex logic to properly
interpret and replicate in software rather than treat the boxes as purely independent
elements. In summary, SFCs represent one area of increased complexity that future
research should explore to examine its effectiveness and its need to adapt to more
complex environments and networks.

6.3.2 NFV management, scaling and integration

As NFV adoption grows, the potential to incorporate virtualised techniques for
remediation and recovery grows. The initialisation and utilisation of VNFs in this
design and experimentation during the proof-of-concept evaluations were established
manually, created on a per-box basis, with some experimentation given towards
scaling replicas for both performance loss mitigation and non-deterministic testing.
The integration of Remediate into VNF platforms would be an appropriate step
towards its further use. The development of either APIs, integrations or adoptions
of one specific technology is one such course of action worth exploring, such as via
Kubernetes using labels to identify the pod elements. This could be taken further
from virtualisation deployment methods to larger frameworks. One such example is
the Open Digital Architecture ODA model, or “Open Digital Architecture”, which
proposes a framework of interoperable APIs and microservices for all services to
replace existing approaches to deployments (Forum, 2021). Beyond the deployment
and integration with both existing and future technologies, the need for scaling and
performance is an existing major concern for virtually deployed systems, with AWS
and kubernetes popular for their automatic resource scaling. There are limitations to
the extent that scaling virtualisation may offset the performance loss experienced by

136



Chapter 6. Conclusions 6.3. Future work

using a software fallback or redundancy to a physical primary middlebox (C. Wang,
Spatscheck, Gopalakrishnan, Y. Xu, et al., 2016), but further exploration of the
effectiveness of this research when scaled to significantly larger numbers than was
feasible within the course of this thesis would be of interest as a body of future
research and development.

6.3.3 State recreation approaches

The filtering mechanism is efficient in its design, proving effective yet easy to replicate
in a multitude of technologies. Further work in this area may be able to reveal further
refinements to its technique, reducing the load of duplicate traffic further. This filter
is not the only viable approach, however, and further work in this domain would be
especially productive in discovering new non-modifying approaches that may refine its
design further. Areas where this improvement would be of significant benefit include
consistent monitoring, where observation is better over a connection’s lifespan, such
as an IDS or IPS, or reducing the volume of information necessary to recreate the
state even further. There are several possible directions this might take that offer
potential. Sketching algorithms are a proposed alternative to monitoring networks
using data structures to estimate statistics of a streaming workload (Liu et al., 2019).
Rather than consuming bandwidth with high-fidelity monitoring (Alizadeh et al.,
2014, Garcia-Teodoro et al., 2009) sketching proposals utilise hashing techniques to
estimate the size and volume of traffic, providing an approximate view of the network
without consuming network resources.

This can include heavy hitter detection (Ben-Basat et al., 2018, Schweller et al.,
2004, Sivaraman et al., 2017), per-flow frequency (Charikar et al., 2004) and traffic
pattern estimation (Krishnamurthy et al., 2003). There are several examples of this
technology in modern literature (Q. Huang, Lee, et al., 2018, Liu et al., 2019) originally
targeting physical switches with and now with a transition more towards implementing
techniques into the growing presence of software switches and NFV/SDN (M. Yu
et al., 2013, Q. Huang, Jin, et al., 2017, T. Yang et al., 2018). The advantages
of this are clear in their minimal footprint on resource usage when their accuracy
is sufficient for real-time use and the parallel of their use is clear for the purposes
of preserving state; if certain information can be predicted using a minimal degree
of information derived from traffic flows, it may be possible to expand this concept
further to encompass middleboxes so that their existing state can be both modelled
and replicated using predictive techniques, further reducing the impact on the system
in resource consumption and interference with failure-free operations.

137



Chapter 6. Conclusions 6.3. Future work

6.3.4 AI and machine learning

The proposed use of sketching algorithms to predict the behaviour of blackboxes and
the decisions they will make could be defined as a form of state machine. Typically,
these behaviour models are rather simplistic, and the middleboxes that the work of
this thesis has targeted are not stateless, producing the same result given the same
input. Machine learning could bridge this gap instead, creating models based on data
collection and reinforcement learning (M. Wang et al., 2018). Through observation of
incoming and outgoing traffic and the operations that the box is expected to perform,
middleboxes could potentially be modelled and their behaviour replicated externally.
The limited variability of hardware middlebox design is beneficial in this regard.
Machine learning generates models through a series of steps, following a cycle of
problem formulation, data collection, data analysis, model construction and finally
model validation. The use of Al and machine learning in networking was limited until
recent years due to a number of issues, including the diversity of network designs from
their components to their layouts and the volume of information necessary for their
operations to accurately model the network’s operations and react appropriately to
its ever-changing traffic (Boutaba et al., 2018). The growth of SDN into enterprise
networks allows a great deal of potential control over its operations; however, a number
of use cases for ML in networking have developed in recent years. This includes traffic
prediction (Samira et al., 2010, Bermolen et al., 2008) and classification (Sun et al.,
2010), as well as more complex operations such as congestion control (Fonseca et al.,
2005) and QoE management (Shaikh et al., 2010, Fiedler et al., 2010).

Traffic prediction, as a product of ML, can be broken down into its steps: collecting
traffic traces with flow statistics, observation of trends in significant volumes to
determine the decision-making logic, training a Hidden-Markov model with Kernel
Bayes Rule and Recurrent Neural Networks, and finally inputting live traffic traces
and evaluating the accuracy of its results (M. Wang et al., 2018). Work in this
domain is generally limited more to traffic volume estimation such as network
tomography (A. Chen et al., 2007), but there is a body of work dedicated to generating
simulated flow statistics and similar table counts (Z. Chen et al., 2016). Machine
learning is a wide area of research and is out of the scope of this thesis, but its potential
for simulating flow information accurately provides a future avenue of research worth
examining further for generating state for redundant units without the need for
duplicating packet processing with live replaying.

6.3.5 Non-TCP based statefulness

The focus of both this thesis and the work prior to it has been almost exclusively
on TCP traffic; it forms the majority of traffic within the Internet by a significant
margin over UDP, but these are not the only protocols employed in networking today.

138



Chapter 6. Conclusions 6.3. Future work

Newer transport layer protocols such as Quick UDP Connections (QUIC) (Iyengar
et al., 2021) have seen growing adoption beyond their initial drafts, with a number
of IETF standards now set (Thomson and Turner, 2021, Thomson, 2021), and this
may pose a problem for the techniques explored thus far. QUIC, established by
Google in 2012, utilises multiplexing and UDP to divide the traffic across multiple
independent streams to be sent to the target end. This approach establishes some
measure of redundancy for active connections on a per-stream basis and eliminates
the need for some of the TCP’s mechanisms, namely its handshake process and other
mechanisms that might incur delay in the name of guaranteeing transmission. QUIC
aims to provide the same level of guarantees as TCP without this additional incurred
latency through multiplexing, with UDP used as its base. This new protocol presents
a number of issues for the work pursued. Firstly, the majority of middleboxes in use
today drop UDP traffic, which includes QUIC, limiting its adoption to a degree. This
is a known problem of middleboxes and their contribution to network ossification,
with their need to be aware of the network protocols for the traffic they operate
upon a well-established problem. There are a number of proposed solutions to this
problem, with QUIC adopting a fallback mechanism to TCP and HTTP/2 if packet
loss is observed with the initial QUIC connection. The multiplexed streams of even an
individual traffic flow add a significant degree of complexity to the proposed designs,
as none of the approaches used for TCP traffic can be employed here. These streams
cannot be externally identified and handled as an observable multiplexed connection;
connection IDs, the markers used to indicate the individual streams are a part of the
same connection, are explicitly designed so as not to be identifiable to an outside
observer (such as a middlebox breaking the end-to-end principle) to accomplish this.

One advantage is that any streams received that are inconsistent with the rest of
the stream’s state, such as falling out of the idle timeout window or having already
been rebroadcast, are dropped immediately and will not cause any confusion in the
protocol. Streams can potentially be treated as separate flows, although this is difficult
to evaluate without testing. Loss of a single stream can be recovered at the end points
of the connection, but there are a number of in-built mechanisms to this protocol that
the operations of something like Katoptron might interfere with. These mechanisms
include handling connection migration, loss detection and path validation, which,
while highly beneficial to the traffic itself, adds a degree of complexity to the work
performed in this thesis. Unexpected behaviour such as redirection without resetting a
stream from either end poses a number of potential risks that would require significant
exploration. The use of QUIC is likely to grow, as are other protocols that attempt to
circumvent the ossification of the networking infrastructure. This is predominantly a
problem for middleboxes themselves and how they handle non-TCP traffic, but equally
challenges certain presumptions about the nature of traffic received by my work. It
will require consideration and potentially need to be incorporated into any future

139



Chapter 6. Conclusions 6.3. Future work

work pursued in this domain, depending on the continued presence of middleboxes in
the network.

140



References

Abhishek, Rohit, David Tipper, and Deep Medhi (2020). “Resilience of 5G Networks
in the Presence of Unlicensed Spectrum and Non-Terrestrial Networks”. In: 2020
16th International Conference on the Design of Reliable Communication Networks
DRCN 2020. por: 10.1109/DRCN48652.2020.1570604438.

Alizadeh, Mohammad, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan,
Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra
Yadav, and George Varghese (2014). “CONGA: Distributed Congestion-Aware
Load Balancing for Datacenters”. In: Proceedings of the 2014 ACM Conference
on SIGCOMM. SIGCOMM ’14. Association for Computing Machinery. DOI: 10.
1145/2619239.2626316.

Allman, Mark (2003). “On the Performance of Middleboxes”. In: Proceedings of the
3rd ACM SIGCOMM Conference on Internet Measurement. IMC ’03. Association
for Computing Machinery. DOI: 10.1145/948205.948246.

Amazon (2019). Resilience in Amazon EC2 Auto Scaling. URL: https://docs .
aws . amazon. com/pdfs/autoscaling/ec2/userguide/as-dg.pdf#disaster-
recovery-resiliency.

archive, HTTP (2010). HTTP archive: page weight. URL: https: //httparchive.
org/reports/page-weight?start=2017_05_15&end=latest&view=1list.

Arcilla, Alex and Tony Palmer (2019). Achieving Predictably High Performance for
Real-world Data Center workloads. URL: https://docs . broadcom. com/doc/
12395356.

Atlas, Alia, George Swallow, and Ping Pan (2005). Fast Reroute Extensions to RSV P-
TE for LSP Tunnels. RFC 4090. DOI: 10.17487/RFC4090. URL: https://www.
rfc-editor.org/info/rfc4090.

Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield (2003a). “Xen and the Art of
Virtualization”. In: Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles. SOSP ’03. Association for Computing Machinery. DOI: 10 .
1145/945445.945462.

— (2003b). “Xen and the Art of Virtualization”. In: SIGOPS Oper. Syst. Rev. 37.
DOI: 10.1145/1165389.945462.

141


https://doi.org/10.1109/DRCN48652.2020.1570604438
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/948205.948246
https://docs.aws.amazon.com/pdfs/autoscaling/ec2/userguide/as-dg.pdf#disaster-recovery-resiliency
https://docs.aws.amazon.com/pdfs/autoscaling/ec2/userguide/as-dg.pdf#disaster-recovery-resiliency
https://docs.aws.amazon.com/pdfs/autoscaling/ec2/userguide/as-dg.pdf#disaster-recovery-resiliency
https://httparchive.org/reports/page-weight?start=2017_05_15&end=latest&view=list
https://httparchive.org/reports/page-weight?start=2017_05_15&end=latest&view=list
https://docs.broadcom.com/doc/12395356
https://docs.broadcom.com/doc/12395356
https://doi.org/10.17487/RFC4090
https://www.rfc-editor.org/info/rfc4090
https://www.rfc-editor.org/info/rfc4090
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/1165389.945462

References References

Belyaev, M. and S. Gaivoronski (2014). “Towards load balancing in SDN-networks
during DDoS-attacks”. In: 2014 International Science and Technology Conference
(Modern Networking Technologies) (MoNeTeC). DOI: 10.1109/MoNeTeC . 2014 .
6995578.

Ben-Basat, Ran, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich (2018). “Efficient
Measurement on Programmable Switches Using Probabilistic Recirculation”. In:
2018 IEEE 26th International Conference on Network Protocols (ICNP). IEEE.
DOI: 10.1109/icnp.2018.00047.

Benjamin Rainer Stefan Lederer, Christopher Miiller and Christian Timmerer (2012).
Big Buck Bunny MPEG-DASH testing. https://dash.itec.aau.at/dash-js/.

Bermolen, Paola and Dario Rossi (2008). “Support vector regression for link load
prediction”. In: 2008 4th International Telecommunication Networking Workshop
on QoS in Multiservice IP Networks. DOI: 10.1109/ITNEWS.2008.4488164.

Bierman, Andy (2011). Guidelines for Authors and Reviewers of YANG Data Model
Documents. RFC 6087. DOI: 10.17487/RFC6087. URL: https://www.rfc-editor.
org/info/rfc6087.

— (2018). Guidelines for Authors and Reviewers of Documents Containing YANG
Data Models. RFC 8407. por: 10 . 17487 /RFC8407. URL: https://www.rfc-
editor.org/info/rfc8407.

Bosshart, Pat, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker (2014). “P4: Programming Protocol-Independent Packet Processors”. In:
SIGCOMM Comput. Commun. Rev. 44. DOT: 10.1145/2656877 .2656890.

Boutaba, R., Mohammad Salahuddin, Noura Limam, Sara Ayoubi, Nashid Shahriar,
Felipe Estrada-Solano, and Mauricio Caicedo (2018). “A Comprehensive Survey
on Machine Learning for Networking: Evolution, Applications and Research
Opportunities”. In: Journal of Internet Services and Applications 9. DOI: 10 .
1186/s13174-018-0087-2.

Bressoud, T. C. and F. B. Schneider (1995). “Hypervisor-Based Fault Tolerance”. In:
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles.
SOSP ’95. Association for Computing Machinery. DOI: 10.1145/224056.224058.

Brim, Scott W. and Brian E. Carpenter (2002). Middlebozes: Taxonomy and Issues.
RFC 3234. por: 10.17487/RFC3234. URL: https://www.rfc-editor.org/info/
rfc3234.

Broadbent, Matthew (2015). Scootplayer. https : / / github . com / broadbent /
scootplayer.

Broadcom (2024). Broadcom Trident 4-X7 Diagram. URL: https://www.servethehome.
com/broadcom-trident-4-x7-for-400gbe-networking-launched/ (visited on
01/16/2024).

142


https://doi.org/10.1109/MoNeTeC.2014.6995578
https://doi.org/10.1109/MoNeTeC.2014.6995578
https://doi.org/10.1109/icnp.2018.00047
https://dash.itec.aau.at/dash-js/
https://doi.org/10.1109/ITNEWS.2008.4488164
https://doi.org/10.17487/RFC6087
https://www.rfc-editor.org/info/rfc6087
https://www.rfc-editor.org/info/rfc6087
https://doi.org/10.17487/RFC8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1145/224056.224058
https://doi.org/10.17487/RFC3234
https://www.rfc-editor.org/info/rfc3234
https://www.rfc-editor.org/info/rfc3234
https://github.com/broadbent/scootplayer
https://github.com/broadbent/scootplayer
https://www.servethehome.com/broadcom-trident-4-x7-for-400gbe-networking-launched/
https://www.servethehome.com/broadcom-trident-4-x7-for-400gbe-networking-launched/

References References

Brodkin, Jon (2012). Why Gmail went down: Google misconfigured load balancing
servers. http : / / static . googleusercontent . com / external _ content /
untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.
pdf. URL: %5Curl?7Bhttps://arstechnica.com/information-technology/
2012/12/why - gmail - went - down - google -misconfigured - chromes - sync -
server/%7D.

Buldyrev, Sergey V, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo
Havlin (2010). “Catastrophic cascade of failures in interdependent networks”. In:
Nature 464. DOI: 10.1038/nature08932.

Burrows, Mike (2006). “The Chubby lock service for loosely-coupled distributed
systems”. In: Proceedings of the 7th Symposium on Operating Systems Design
and Implementation. OSDI ’06. USENIX Association. DOI: 10 .5555/1298455 .
1298487.

Caesar, Matthew, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,
and Jacobus Van Der Merwe (2005). “Design and implementation of a routing
control platform”. In: Proceedings of the 2nd conference on Symposium on
Networked Systems Design € Implementation-Volume 2.

Cao, Lianjie, Puneet Sharma, Sonia Fahmy, and Vinay Saxena (2015). “NFV-VITAL:
A framework for characterizing the performance of virtual network functions”. In:
2015 IEEE Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN). DOI: 10.1109/NFV-SDN.2015.7387412.

Casado, Martin, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker (2007). “Ethane: Taking control of the enterprise”. In: ACM
SIGCOMM computer communication review 37. DOI: 10.1145/1282427 .1282382.

Casazza, Marco, Mathieu Bouet, and Stefano Secci (2019). “Availability-driven NFV
orchestration”. In: Comput. Netw. 155. DOI: 10.1016/j.comnet.2019.02.017.

Cetinkaya, Egemen K and James PG Sterbenz (2013). “A taxonomy of network
challenges”. In: 2013 9th International Conference on the Design of Reliable
Communication Networks (DRCN). IEEE.

Charikar, Moses, Kevin Chen, and Martin Farach-Colton (2004). “Finding frequent
items in data streams”. In: Theoretical Computer Science 312. Automata, Lan-
guages and Programming. DOI: https://doi.org/10.1016/S0304-3975(03)
00400-6. URL: https://www.sciencedirect . com/science/article/pii/
S0304397503004006.

Chen, A., J. Cao, and T. Bu (2007). “Network Tomography: Identifiability and
Fourier Domain Estimation”. In: IEEE INFOCOM 2007 - 26th IEEE International
Conference on Computer Communications. DOI: 10.1109/INFCOM.2007.218.

Chen, Yang and Jie Wu (2018). “NFV Middlebox Placement with Balanced Set-up
Cost and Bandwidth Consumption”. In: Proceedings of the 4 7th International Con-

143


http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/plibxfjh8whr44h.pdf
%5Curl%7Bhttps://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/%7D
%5Curl%7Bhttps://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/%7D
%5Curl%7Bhttps://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server/%7D
https://doi.org/10.1038/nature08932
https://doi.org/10.5555/1298455.1298487
https://doi.org/10.5555/1298455.1298487
https://doi.org/10.1109/NFV-SDN.2015.7387412
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1016/j.comnet.2019.02.017
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00400-6
https://www.sciencedirect.com/science/article/pii/S0304397503004006
https://www.sciencedirect.com/science/article/pii/S0304397503004006
https://doi.org/10.1109/INFCOM.2007.218

References References

ference on Parallel Processing. ICPP "18. Association for Computing Machinery.
DOI: 10.1145/3225058.3225068.

Chen, Zhitang, Jiayao Wen, and Yanhui Geng (2016). “Predicting future traffic using
Hidden Markov Models”. In: 2016 IEEE 24th International Conference on Network
Protocols (ICNP). DOI: 10.1109/ICNP.2016.7785328.

Chiesa, Marco, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej Kamisinski,
Georgios Nikolaidis, and Stefan Schmid (2019a). “PURR: A Primitive for Re-
configurable Fast Reroute: Hope for the Best and Program for the Worst”.
In: Proceedings of the 15th International Conference on FEmerging Networking
Experiments And Technologies. CONEXT '19. New York, NY, USA: Association
for Computing Machinery. DOI: 10.1145/3359989.3365410.

— (2019b). “PURR: a primitive for reconfigurable fast reroute: hope for the best and
program for the worst”. In: Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies. CONEXT "19. Association
for Computing Machinery. DOI: 10.1145/3359989.3365410.

Cholda, Piotr, Anders Mykkeltveit, Bjarne E Helvik, Otto J Wittner, and Andrzej Ja-
jszcezyk (2007). “A survey of resilience differentiation frameworks in communication
networks”. In: IEEE Communications Surveys € Tutorials 9. DOI: 10 . 1109/
COMST.2007 .4444749.

Cisco (2013). Cisco’s One Platform Kit (onePK). https://blogs . cisco.com/
security/ciscos-onepk-part-1-introduction.

— (2018). Clisco Annual Internet Report. Tech. rep. URL: https://www . cisco .
com/c/en/us/solutions/collateral /executive - perspectives/annual -
internet-report/white-paper-c11-741490.html.

— (2020). Cisco Cloud Services Platform 5000 Series. https://www.cisco.com/c/
en/us/products/collateral/switches/cloud-services-platform-5000/nb-
06-csp-bk-data-sheet-cte-en.html.

cisco (2023). Catalyst Switched Port Analyser. URL: https://www.cisco.com/c/
en/us/support/docs/switches/catalyst-6500-series-switches/10570-
41.html (visited on 2023).

Clark, Christopher, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield (2005). “Live Migration
of Virtual Machines”. In: Proceedings of the 2nd Conference on Symposium on
Networked Systems Design amp; Implementation - Volume 2. NSDI'05. USENIX
Association. DOI: 10.5555/1251203.1251223.

Colman-Meixner, Carlos, Chris Develder, Massimo Tornatore, and Biswanath Mukher-
jee (2016). “A survey on resiliency techniques in cloud computing infrastructures
and applications”. In: IEEE Communications Surveys € Tutorials 18. DOI: 10.
1109/COMST.2016.2531104.

144


https://doi.org/10.1145/3225058.3225068
https://doi.org/10.1109/ICNP.2016.7785328
https://doi.org/10.1145/3359989.3365410
https://doi.org/10.1145/3359989.3365410
https://doi.org/10.1109/COMST.2007.4444749
https://doi.org/10.1109/COMST.2007.4444749
https://blogs.cisco.com/security/ciscos-onepk-part-1-introduction
https://blogs.cisco.com/security/ciscos-onepk-part-1-introduction
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/products/collateral/switches/cloud-services-platform-5000/nb-06-csp-5k-data-sheet-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/switches/cloud-services-platform-5000/nb-06-csp-5k-data-sheet-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/switches/cloud-services-platform-5000/nb-06-csp-5k-data-sheet-cte-en.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://doi.org/10.5555/1251203.1251223
https://doi.org/10.1109/COMST.2016.2531104
https://doi.org/10.1109/COMST.2016.2531104

References References

Corbatd, Fernando J (1963). The Compatible Time-Sharing System: A Programmer’s
Guide. The MIT Press.

Cully, Brendan, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield (2008). “Remus: High Availability via Asynchronous
Virtual Machine Replication”. In: Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation. NSDI'08. USENIX Association.
DOI: 10.5555/1387589.1387601.

David Hutchison, James P. G Sterbenz (2015). Resilinets. URL: https://resilinets.
org/main_page.html.

Dell (2015). Tech. rep. URL: https : / /i . dell . com / sites / doccontent /
business/large-business/en/documents/BeyondFiveNines-availability-
AchievingHighAvailabilty-with-DellCompellentStorageCenter.pdf.

Detal, Gregory, Benjamin Hesmans, Olivier Bonaventure, Yves Vanaubel, and Benoit
Donnet (2013). “Revealing Middlebox Interference with Tracebox”. In: Proceedings
of the 2013 Conference on Internet Measurement Conference. IMC ’13. Association
for Computing Machinery. DOI: 10.1145/2504730.2504757.

Diffie, W. and M. Hellman (1976). “New directions in cryptography”. In: IEEE
Transactions on Information Theory 22. DOI: 10.1109/TIT.1976.1055638.

Dong, YaoZu, Wei Ye, YunHong Jiang, Ian Pratt, ShiQing Ma, Jian Li, and
HaiBing Guan (2013). “COLO: COarse-Grained LOck-Stepping Virtual Machines
for Non-Stop Service”. In: Proceedings of the 4th Annual Symposium on Cloud
Computing. SOCC ’13. Association for Computing Machinery. Dor: 10 . 1145/
2523616.2523630.

Dunlap, George W., Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen (2002). “ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay”. In: Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (Copyright Restrictions Prevent ACM from Being
Able to Make the PDFs for This Conference Available for Downloading). OSDI
'02. USENIX Association. 1SBN: 9781450301114.

Dunlap, George W., Dominic G. Lucchetti, Michael A. Fetterman, and Peter M. Chen
(2008). “Execution replay of multiprocessor virtual machines”. In: Proceedings
of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. VEE ’08. Association for Computing Machinery. DOTI:
10.1145/1346256.1346273.

Elliott, Chip (2008). “GENI - global environment for network innovations”. In: 2008
33rd IEEE Conference on Local Computer Networks (LCN). pDOI: 10.1109/LCN.
2008.4664143.

Ellison, Robert J, David A Fisher, Richard C Linger, Howard F Lipson, Thomas
Longstaff, and Nancy R Mead (1997). “Survivable network systems: An emerging
discipline”. In.

145


https://doi.org/10.5555/1387589.1387601
https://resilinets.org/main_page.html
https://resilinets.org/main_page.html
https://i.dell.com/sites/doccontent/business/large-business/en/documents/BeyondFiveNines-availability-AchievingHighAvailabilty-with-DellCompellentStorageCenter.pdf
https://i.dell.com/sites/doccontent/business/large-business/en/documents/BeyondFiveNines-availability-AchievingHighAvailabilty-with-DellCompellentStorageCenter.pdf
https://i.dell.com/sites/doccontent/business/large-business/en/documents/BeyondFiveNines-availability-AchievingHighAvailabilty-with-DellCompellentStorageCenter.pdf
https://doi.org/10.1145/2504730.2504757
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/2523616.2523630
https://doi.org/10.1145/2523616.2523630
https://doi.org/10.1145/1346256.1346273
https://doi.org/10.1109/LCN.2008.4664143
https://doi.org/10.1109/LCN.2008.4664143

References References

Ellison, Robert J, David A Fisher, Richard C Linger, Howard F Lipson, Thomas
A Longstaff, and Nancy R Mead (1999). “Survivability: Protecting your critical
systems”. In: IEEE Internet Computing 3. DOI: 10.1109/4236.807008.

Elwalid, A., C. Jin, S. Low, and I. Widjaja (2001). “MATE: MPLS adaptive traffic
engineering”. In: Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No.01CH37213). Vol. 3. DOI: 10.1109/INFCOM.
2001.916625.

ETSI (2012). “ETSI GS NFV 006 V4.4.1 (2022-12) Network Functions Virtualisation
(NFV) Release 4; Management and Orchestration; Architectural Framework
Specification”. In: Architectural Framework. sl: ETSI.

— (2014a). “ETSI GS NFV-MAN 001: "Network Functions Virtualisation (NFV);
Management and Orchestration””. In: Architectural Framework. sl: E'TSI.

— (2014b). “ETSI GS NFV-SWA 001: ”Network Functions Virtualisation (NFV);
Virtual Network Functions Architecture””. In: Architectural Framework. sl: ETSI.

— (2016). “ETSI GS NFV-REL 003: "Network Functions Virtualisation (NFV);
Resiliency Requirements””. In: Architectural Framework. sl: ETSI.

ETSI, N (2013). “Etsi gs nfv 002 v1. 1.1 network functions virtualization (nfv)”. In:
Architectural Framework. sl: ETSI

F5 (2011). 2011 ADC Security Survey Global Findings. URL: %5Curl%7Bhttps://
www . slideshare . net/f5dotcom/2011-f5-adc-security-survey-global -
slide-share,7D.

Fayazbakhsh, Seyed Kaveh, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul (2013).
“FlowTags: Enforcing Network-Wide Policies in the Presence of Dynamic Middle-
box Actions”. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking. HotSDN ’13. Association for Computing
Machinery. 1SBN: 9781450321785. DOI: 10.1145/2491185.2491203.

Feamster, Nick, Jennifer Rexford, and Ellen Zegura (2014). “The Road to SDN:
An Intellectual History of Programmable Networks”. In: SIGCOMM Comput.
Commun. Rev. 44. DOI: 10.1145/2602204.2602219.

Fiedler, Markus, Tobias Hossfeld, and Phuoc Tran-Gia (2010). “A Generic Quanti-
tative Relationship between Quality of Experience and Quality of Service”. In:
Netwrk. Mag. of Global Internetwkg. 24. DOI: 10.1109/MNET.2010.5430142.

Fonseca, N. and M. Crovella (2005). “Bayesian packet loss detection for TCP”.
In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Vol. 3. DOI: 10.1109/INFCOM.2005.1498462.

Fortz, B. and M. Thorup (2002). “Optimizing OSPF/IS-IS weights in a changing
world”. In: IEEE Journal on Selected Areas in Communications 20. DOIL: 10 .
1109/JSAC.2002.1003042.

146


https://doi.org/10.1109/4236.807008
https://doi.org/10.1109/INFCOM.2001.916625
https://doi.org/10.1109/INFCOM.2001.916625
%5Curl%7Bhttps://www.slideshare.net/f5dotcom/2011-f5-adc-security-survey-global-slide-share%7D
%5Curl%7Bhttps://www.slideshare.net/f5dotcom/2011-f5-adc-security-survey-global-slide-share%7D
%5Curl%7Bhttps://www.slideshare.net/f5dotcom/2011-f5-adc-security-survey-global-slide-share%7D
https://doi.org/10.1145/2491185.2491203
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1109/MNET.2010.5430142
https://doi.org/10.1109/INFCOM.2005.1498462
https://doi.org/10.1109/JSAC.2002.1003042
https://doi.org/10.1109/JSAC.2002.1003042

References References

Fortz, Bernard and Mikkel Thorup (2000). “Internet traffic engineering by optimizing
OSPF weights”. In: Proceedings IEEE INFOCOM 2000. conference on computer
communications. Nineteenth annual joint conference of the IEEE computer and
communications societies (Cat. No. 00CH37064). Vol. 2. IEEE. por: 10. 1109/
INFCOM.2000.832225.

Forum, TM (2021). Open Digital Architecture. https://www.tmforum.org/oda/.

Foundation, Linux (2015). Data Plane Development Kit (DPDK). URL: http://wuw.
dpdk.org.

Foundation, Open Information Security (2022). Suricata - Open Source IDS/IPS. URL:
https://suricata.io/.

Garcia-Teodoro, Pedro, Jesis Diaz-Verdejo, Gabriel Macia-Fernandez, and En-
rique Vazquez (2009). “Anomaly-based network intrusion detection: Techniques,
systems and challenges”. In: Computers and Security 28. DOI: 10.1016/j.cose.
2008.08.003.

Gavras, Anastasius, Arto Karila, Serge Fdida, Martin May, and Martin Potts
(2007). “Future internet research and experimentation: the FIRE initiative”. In:
SIGCOMM Comput. Commun. Rev. 37. DOI: 10.1145/1273445.1273460.

Gerhards, Rainer (2009). The Syslog Protocol. RFC 5424. DOI: 10.17487 /RFC5424.
URL: https://www.rfc-editor.org/info/rfcb424.

Gilbert, Seth and Nancy Lynch (2002). “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News 33.
DOI: 10.1145/564585.564601.

— (2012). “Perspectives on the CAP Theorem”. In: Computer 45. DOI: 10.1109/MC.
2011.389.

Glozer, Will (Dec. 30, 2023). wrk - a HTTP benchmarking tool. URL: https: //
github.com/wg/wrk.

Gude, Natasha, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado, Nick
McKeown, and Scott Shenker (2008). “NOX: Towards an Operating System for
Networks”. In: SIGCOMM Comput. Commun. Rev. 38. DOI: 10.1145/1384609.
1384625.

Hajar, Hantouti, Nabil Benamar, Tarik Taleb, and Abdelquoddouss Laghrissi (2018).
“Traffic Steering for Service Function Chaining”. In: IEEE Communications
Surveys and Tutorials PP. DOI1: 10.1109/COMST.2018.2862404.

Haleplidis, Evangelos, Kostas Pentikousis, Spyros Denazis, Jamal Hadi Salim, David
Meyer, and Odysseas Koufopavlou (2015). Software-Defined Networking (SDN):
Layers and Architecture Terminology. RFC 7426. DOI: 10.17487 /RFC7426. URL:
https://www.rfc-editor.org/info/rfc7426.

Handigol, Nikhil, Srini Seetharaman, Mario Flajslik, Nick McKeown, and Ramesh
Johari (2009). “Plug-n-Serve: Load-Balancing Web Traffic using OpenFlow”. In:
vol. 4.

147


https://doi.org/10.1109/INFCOM.2000.832225
https://doi.org/10.1109/INFCOM.2000.832225
https://www.tmforum.org/oda/
http://www.dpdk.org
http://www.dpdk.org
https://suricata.io/
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1145/1273445.1273460
https://doi.org/10.17487/RFC5424
https://www.rfc-editor.org/info/rfc5424
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/MC.2011.389
https://doi.org/10.1109/MC.2011.389
https://github.com/wg/wrk
https://github.com/wg/wrk
https://doi.org/10.1145/1384609.1384625
https://doi.org/10.1145/1384609.1384625
https://doi.org/10.1109/COMST.2018.2862404
https://doi.org/10.17487/RFC7426
https://www.rfc-editor.org/info/rfc7426

References References

Hantouti, Hajar, Nabil Benamar, Tarik Taleb, and Abdelquoddous Laghrissi (2019).
“Traffic Steering for Service Function Chaining”. In: IEEE Communications
Surveys and Tutorials 21. DOI: 10.1109/COMST.2018.2862404.

Harris, Chandler (2011). Data center outages generate big losses. URL: https://wuw.
informationweek.com/it-sectors/data-center-outages-generate-big-
losses.

Hill, Lyn, Charalampos Rotsos, Chris Edwards, and David Hutchison (2024).
“Katoptron: Efficient State Mirroring for Middlebox Resilience”. In: NOMS 2024-
2024 IEEE Network Operations and Management Symposium, pp. 1-9. DOI: 10.
1109/N0OMS59830.2024.10575815.

Hill, Lyn, Charalampos Rotsos, Will Fantom, Chris Edwards, and David Hutchison
(2022). “Improving network resilience with Middlebox Minions”. In: NOMS 2022-
2022 IEEE/IFIP Network Operations and Management Symposium. DOIL: 10 .
1109/N0OMS54207.2022.9789819.

Honda, Michio, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley,
and Hideyuki Tokuda (2011). “Is It Still Possible to Extend TCP?” In: Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference.
IMC ’11. Association for Computing Machinery. 1SBN: 9781450310130. por: 10.
1145/2068816.2068834.

Hopps, Christian (2000). Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992.
DOI: 10.17487/RFC2992. URL: https://www.rfc-editor.org/info/rfc2992.
Huang, Qun, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and Gong
Zhang (2017). “SketchVisor: Robust Network Measurement for Software Packet
Processing”. In: Proceedings of the Conference of the ACM Special Interest Group
on Data Communication. SIGCOMM ’17. Association for Computing Machinery.

DOI: 10.1145/3098822.3098831.

Huang, Qun, Patrick P. C. Lee, and Yungang Bao (2018). “Sketchlearn: Relieving User
Burdens in Approximate Measurement with Automated Statistical Inference”. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. SIGCOMM ’18. Association for Computing Machinery. DOT: 10.
1145/3230543.3230559.

Huang, Shan, Félix Cuadrado, and Steve Uhlig (2017). “Middleboxes in the Internet:
A HTTP perspective”. In: 2017 Network Traffic Measurement and Analysis
Conference (TMA). por: 10.23919/TMA.2017.8002906.

Huawei (2022). Link Aggregation Control Protocol. URL: https://support .huawei.
com/enterprise/en/doc/ED0C1100086560#EN-US_TOPIC_0169439602.

IBM (2024). PowerHA®) SystemMirror®) cluster heartbeat over TCP. URL: https:
//vwww . ibm . com/docs/en/powerha-aix/7.27topic=heartbeating-over-
tcpip-storage-area-networks (visited on 2024).

148


https://doi.org/10.1109/COMST.2018.2862404
https://www.informationweek.com/it-sectors/data-center-outages-generate-big-losses
https://www.informationweek.com/it-sectors/data-center-outages-generate-big-losses
https://www.informationweek.com/it-sectors/data-center-outages-generate-big-losses
https://doi.org/10.1109/NOMS59830.2024.10575815
https://doi.org/10.1109/NOMS59830.2024.10575815
https://doi.org/10.1109/NOMS54207.2022.9789819
https://doi.org/10.1109/NOMS54207.2022.9789819
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.1145/2068816.2068834
https://doi.org/10.17487/RFC2992
https://www.rfc-editor.org/info/rfc2992
https://doi.org/10.1145/3098822.3098831
https://doi.org/10.1145/3230543.3230559
https://doi.org/10.1145/3230543.3230559
https://doi.org/10.23919/TMA.2017.8002906
https://support.huawei.com/enterprise/en/doc/EDOC1100086560#EN-US_TOPIC_0169439602
https://support.huawei.com/enterprise/en/doc/EDOC1100086560#EN-US_TOPIC_0169439602
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks

References References

IDC (2021). The business value of NVIDIA ethernet switch solutions for managing
and optimising network performance. Tech. rep. URL: https://resource.nvidia.
com/en-us-ethernet-switching/idc-biz-value-ethernet-swtich-wp.

[EC (2016). Industrial communication networks - High availability automation net-
works - Part 3: Parallel Redundancy Protocol (PRP) and High-availability Seam-
less Redundancy (HSR). en. Tech. rep. International Electrotechnical Commission.
URL: https://webstore.iec.ch/publication/24447.

Inc, Proofpoint (2021). Emerging Threats Ruleset. https://rules.emergingthreats.
net/.

Ingham, Kenneth, Kenneth Consulting, and Stephanie Forrest (2002). “A history and
survey of network firewalls”. In: University of New Mexico, Tech. Rep.

initiative, OpenConfig (2024). Open Config. URL: https://www.openconfig.net/
(visited on 2024).

Iyengar, Jana and Martin Thomson (2021). QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. DOI: 10.17487/RFC9000. URL: https://www.rfc-
editor.org/info/rfc9000.

Jain, Sushant, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Holzle, Stephen Stuart, and Amin Vahdat (2013). “B4: Experience with a Globally-
Deployed Software Defined Wan”. In: Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM. SIGCOMM ’13. Association for Computing Machinery.
DOI: 10.1145/2486001.2486019.

Juan-Marin, Ruben de, Hendrik Decker, and Francesc D. Munoz-Esco (2007).
“Revisiting Hot Passive Replication”. In: The Second International Conference on
Awailability, Reliability and Security (ARES’07). DOI: 10.1109/ARES.2007.126.

Julkunen, H. and C.E. Chow (1998). “Enhance network security with dynamic packet
filter”. In: Proceedings 7th International Conference on Computer Communica-
tions and Networks (Cat. No.98EX226). DOT: 10.1109/ICCCN.1998.998786.

Juniper (2009). Junos Space Network Management Platform. URL: %5Curly%7Bhttps:
//www. juniper.net/gb/en/products/sdn-and-orchestration/junos-space-
platform.html%7D.

Kang, Nanxi, Monia Ghobadi, John Reumann, Alexander Shraer, and Jennifer
Rexford (2015a). “Efficient Traffic Splitting on Commodity Switches”. In: Pro-
ceedings of the 11th ACM Conference on Emerging Networking FEzperiments and
Technologies. CONEXT ’15. Association for Computing Machinery. Do1: 10.1145/
2716281 .2836091.

— (2015b). “Efficient traffic splitting on commodity switches”. In: Proceedings of the
11th ACM Conference on Emerging Networking FExperiments and Technologies.
CoNEXT ’15. Association for Computing Machinery. Do1: 10.1145/2716281 .
2836091.

149


https://resource.nvidia.com/en-us-ethernet-switching/idc-biz-value-ethernet-swtich-wp
https://resource.nvidia.com/en-us-ethernet-switching/idc-biz-value-ethernet-swtich-wp
https://webstore.iec.ch/publication/24447
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
https://www.openconfig.net/
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1109/ARES.2007.126
https://doi.org/10.1109/ICCCN.1998.998786
%5Curl%7Bhttps://www.juniper.net/gb/en/products/sdn-and-orchestration/junos-space-platform.html%7D
%5Curl%7Bhttps://www.juniper.net/gb/en/products/sdn-and-orchestration/junos-space-platform.html%7D
%5Curl%7Bhttps://www.juniper.net/gb/en/products/sdn-and-orchestration/junos-space-platform.html%7D
https://doi.org/10.1145/2716281.2836091
https://doi.org/10.1145/2716281.2836091
https://doi.org/10.1145/2716281.2836091
https://doi.org/10.1145/2716281.2836091

References References

Kent, Stephen Thomas (1976). “Encryption-based protection protocols for interactive
user-computer communication over physically unsecured channels.” PhD thesis.
Massachusetts Institute of Technology.

Kerrisk, Michael (2013). Namespaces in operation, part 5: User namespaces. URL:
https://lwn.net/Articles/532593/.

Khalid, Junaid and Aditya Akella (2019). “Correctness and Performance for Stateful
Chained Network Functions”. In: 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). DOI: 10.5555/3323234.3323276.

Kneschke, Jan (2003). Lighttpd: a light-weight web server. https://www.lighttpd.
net/.

Kohler, Eddie, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek
(2000). “The click modular router”. In: ACM Trans. Comput. Syst. 18. DOI: 10.
1145/354871.354874.

Krishnamurthy, Balachander, Subhabrata Sen, Yin Zhang, and Yan Chen (2003).
“Sketch-Based Change Detection: Methods, Evaluation, and Applications”. In:
Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement.
IMC ’03. Association for Computing Machinery. DOI1: 10.1145/948205.948236.

Kulkarni, Sameer G, Guyue Liu, K. K. Ramakrishnan, Mayutan Arumaithurai,
Timothy Wood, and Xiaoming Fu (2020). “REINFORCE: Achieving Efficient
Failure Resiliency for Network Function Virtualization Based Services”. In: vol. 28.
DOI: 10.1145/3281411.3281441.

Lamport, Leslie (2001). “Paxos Made Simple”. In: ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001). URL: https :
//www.microsoft.com/en-us/research/publication/paxos-made-simple/.

Lantz, Bob and Brandon Heller (2009). Mininet: An Instant Virtual Network on your
Laptop. http://mininet.org/.

Larry Peterson, Carmelo Cascone, Brian O’Connor, Thomas Vachuska, and Bruce
Davie (2016). Software-Defined Networks: A Systems Approach. en. Standard. URL:
https://sdn.systemsapproach.org/index.html.

LeBlanc, T. J. and J. M. Mellor-Crummey (1987). “Debugging Parallel Programs with
Instant Replay”. In: IEEFE Trans. Comput. 36. DOI: 10.1109/TC.1987.1676929.

Leiner, Barry M., Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard
Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and Stephen Wolff
(2009). “A brief history of the internet”. In: SIGCOMM Comput. Commun. Rev.
39. DOI: 10.1145/1629607.1629613.

Leiner, Barry M., Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard
Kleinrock, Daniel C. Lynch, Jon Postel, Lawrence G. Roberts, and Stephen S.
Wolff (1997). “The past and future history of the Internet”. In: Commun. ACM
40. por1: 10.1145/253671.253741.

150


https://lwn.net/Articles/532593/
https://doi.org/10.5555/3323234.3323276
https://www.lighttpd.net/
https://www.lighttpd.net/
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/948205.948236
https://doi.org/10.1145/3281411.3281441
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
http://mininet.org/
https://sdn.systemsapproach.org/index.html
https://doi.org/10.1109/TC.1987.1676929
https://doi.org/10.1145/1629607.1629613
https://doi.org/10.1145/253671.253741

References References

Levin, Dan, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feldmann
(2014). “Panopticon: Reaping the Benefits of Incremental SDN Deployment in
Enterprise Networks”. In: 2014 USENIX Annual Technical Conference (USENIX
ATC 14). USENIX Association. ISBN: 978-1-931971-10-2. URL: https: //www .
usenix.org/conference/atcl4/technical-sessions/presentation/levin.

Li, Dawn, Bruce A. Cole, Phil Morton, and Tony Li (1998). Clisco Hot Standby Router
Protocol (HSRP). RFC 2281. por: 10.17487/RFC2281. URL: https://www.rfc-
editor.org/info/rfc2281.

Lira, Victor, Eduardo Tavares, Stenio Fernandes, Paulo Maciel, and Ricardo M.A.
Silva (2013). “Virtual Network Resource Allocation Considering Dependability
Issues”. In: 2013 IEEFE 16th International Conference on Computational Science
and Engineering. DOI: 10.1109/CSE.2013.58.

Liu, Zaoxing, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy
Friedman, and Vyas Sekar (2019). “Nitrosketch: Robust and General Sketch-Based
Monitoring in Software Switches”. In: Proceedings of the ACM Special Interest
Group on Data Communication. SIGCOMM ’19. Association for Computing
Machinery. DOI: 10.1145/3341302.3342076.

Lyons, R. E. and W. Vanderkulk (1962). “The Use of Triple-Modular Redundancy to
Improve Computer Reliability”. In: IBM Journal of Research and Development 6.
DOI: 10.1147/rd.62.0200.

Martins, Joao, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici (2014). “ClickOS and the Art of Network
Function Virtualization”. In: 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). Seattle, WA: USENIX Association. DOI:
10 . 5555 /2616448 . 2616491. URL: https://www . usenix . org/conference/
nsdild4/technical-sessions/presentation/martins.

Marvell (2024). Data flow architecture. http : / / www . marvell . com / network -
processors/technology/data-flow-architecture/. (Visited on 2024).

Mather, Michael (2018). “A Roadmap for Cybersecurity Research”. In.

McDaniel, Patrick and Stephen McLaughlin (2009). “Security and privacy challenges
in the smart grid”. In: IEEE security € privacy 7. DOI: 10.1109/MSP.2009.76.

McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner (2008a). “OpenFlow:
Enabling Innovation in Campus Networks”. In: SIGCOMM Comput. Commun.
Rev. 38. DOI: 10.1145/1355734.1355746.

— (2008b). “OpenFlow: enabling innovation in campus networks”. In: ACM SIG-
COMM computer communication review 38. DOI: 10.1145/1355734.1355746.
McQuillan, J., I. Richer, and E. Rosen (1980). “The New Routing Algorithm for the
ARPANET”. In: IEEE Transactions on Communications 28. DOI: 10.1109/TCOM.

1980.1094721.

151


https://www.usenix.org/conference/atc14/technical-sessions/presentation/levin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/levin
https://doi.org/10.17487/RFC2281
https://www.rfc-editor.org/info/rfc2281
https://www.rfc-editor.org/info/rfc2281
https://doi.org/10.1109/CSE.2013.58
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.5555/2616448.2616491
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
 http://www.marvell.com/ network-processors/technology/ data-flow-architecture/
 http://www.marvell.com/ network-processors/technology/ data-flow-architecture/
https://doi.org/10.1109/MSP.2009.76
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/TCOM.1980.1094721
https://doi.org/10.1109/TCOM.1980.1094721

References References

McQuillan, John M and David C Walden (1977). “The ARPA network design
decisions”. In: Computer Networks (1976) 1. DOIL: https://doi.org/10.1016/
0376-5075(77)90014-9.

Merwe, Jacobus E van der and Ian M Leslie (1997). “Switchlets and dynamic virtual
ATM networks”. In: Integrated Network Management V: Integrated management
in a virtual world Proceedings of the Fifth IFIP/IEEE International Symposium on
Integrated Network Management San Diego, California, USA, May 12-16, 1997.
Springer. 1SBN: 0412809605.

Needham, Roger M. and Michael D. Schroeder (1978). “Using Encryption for
Authentication in Large Networks of Computers”. In: Commun. ACM 21. DOTI:
10.1145/359657.359659.

Niknami, Nadia, Avinash Srinivasan, Ken St. Germain, and Jie Wu (Dec. 2023).
“Maritime Communications—Current State and the Future Potential with SDN
and SDR”. In: Network 3, pp. 563-584. DOI: 10.3390/network3040025.

Nokia (2022). Nokia Service Router Linuz. Tech. rep. URL: https ://onestore.
nokia.com/asset/207598ga=2.11886007.223215410.1674487897-1044014544 .
1674487897.

Nvidia (2022). DPU power efficiency. Tech. rep. URL: https://resources.nvidia.
com/en-us-telecom-wireless-resource/nvidia-dpu-power-eff-171x=u_
4HIc&contentType=white-paper.

Ocean, Digital (2022). Digital Ocean Reserved IPs. URL: https://docs.digitalocean.
com/products/networking/reserved-ips/details/.

Ongaro, Diego and John Ousterhout (2014). “In Search of an Understandable
Consensus Algorithm”. In: Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference. USENIX ATC’14. USENIX Association.
DOI: 10.5555/2643634.2643666.

OpenFlow data-plane abstraction (OF-DPA): Abstract switch specification (2014).
https://docs.broadcom.com/doc/12378911.

Org, Netfilter (2004). The Netfilter Project. URL: https://www.netfilter.org/.

Panda, Aurojit, James Murphy McCauley, Amin Tootoonchian, Justine Sherry,
Teemu Koponen, Syliva Ratnasamy, and Scott Shenker (2016). “Open Network
Interfaces for Carrier Networks”. In: SIGCOMM Comput. Commun. Rev. 46. DOT:
10.1145/2875951.2875953.

Paxson, Vern (1999). “Bro: a system for detecting network intruders in real-time”. In:
Comput. Netw. 31. DOI: 10.1016/51389-1286(99)00112-7.

Pfaff, Ben, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith
Amidon, and Martin Casado (2015). “The design and implementation of open
vSwitch”. In: Proceedings of the 12th USENIX Conference on Networked Systems

152


https://doi.org/https://doi.org/10.1016/0376-5075(77)90014-9
https://doi.org/https://doi.org/10.1016/0376-5075(77)90014-9
https://doi.org/10.1145/359657.359659
https://doi.org/10.3390/network3040025
https://onestore.nokia.com/asset/207598ga=2.11886007.223215410.1674487897-1044014544.1674487897
https://onestore.nokia.com/asset/207598ga=2.11886007.223215410.1674487897-1044014544.1674487897
https://onestore.nokia.com/asset/207598ga=2.11886007.223215410.1674487897-1044014544.1674487897
https://resources.nvidia.com/en-us-telecom-wireless-resource/nvidia-dpu-power-eff-1?lx=u_4HIc&contentType=white-paper
https://resources.nvidia.com/en-us-telecom-wireless-resource/nvidia-dpu-power-eff-1?lx=u_4HIc&contentType=white-paper
https://resources.nvidia.com/en-us-telecom-wireless-resource/nvidia-dpu-power-eff-1?lx=u_4HIc&contentType=white-paper
https://docs.digitalocean.com/products/networking/reserved-ips/details/
https://docs.digitalocean.com/products/networking/reserved-ips/details/
https://doi.org/10.5555/2643634.2643666
https://docs.broadcom.com/doc/12378911
https://www.netfilter.org/
https://doi.org/10.1145/2875951.2875953
https://doi.org/10.1016/S1389-1286(99)00112-7

References References

Design and Implementation. NSDI'15. USENIX Association. DOI: 10 . 5555 /
2789770.2789779.

Postel, J. (1981). NCP/TCP transition plan. RFC 801. DOI: 10.17487/RFC0801. URL:
https://www.rfc-editor.org/info/rfc801.

Potharaju, Rahul and Navendu Jain (2013). “Demystifying the Dark Side of the
Middle: A Field Study of Middlebox Failures in Datacenters”. In: Proceedings of
the 2013 Conference on Internet Measurement Conference. IMC ’13. Association
for Computing Machinery. DOI: 10.1145/2504730.2504737.

Poutievski, Leon, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,
Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason
Ornstein, Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura,
Shidong Zhang, Junlan Zhou, and Amin Vahdat (2022). “Jupiter evolving:
transforming google’s datacenter network via optical circuit switches and software-
defined networking”. In: Proceedings of the ACM SIGCOMM 2022 Conference.
SIGCOMM ’22. Association for Computing Machinery. DOI: 10.1145/3544216.
3544265.

Qu, Long, Chadi Assi, Khaled Shaban, and Maurice Khabbaz (2016). “Reliability-
aware service provisioning in NFV-enabled enterprise datacenter networks”.
In: 2016 12th International Conference on Network and Service Management
(CNSM). po1: 10.1109/CNSM.2016.7818411.

Rajagopalan, Shriram, Dan Williams, and Hani Jamjoom (2013). “Pico Replication:
A High Availability Framework for Middleboxes”. In: Proceedings of the 4th
Annual Symposium on Cloud Computing. SOCC ’13. Association for Computing
Machinery. DOI: 10.1145/2523616.2523635.

Rajagopalan, Shriram, Dan Williams, Hani Jamjoom, and Andrew Warfield (2013).
“Split/Merge: System Support for Elastic Execution in Virtual Middleboxes”. In:
Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation. nsdi’13. USENIX Association.

Roberts, L.G. (1978). “The evolution of packet switching”. In: Proceedings of the
IEEFE 66. DOI: 10.1109/PR0OC.1978.11141.

Roesch, Martin (1999). “Snort - Lightweight Intrusion Detection for Networks”. In:
Proceedings of the 13th USENIX Conference on System Administration. LISA ’99.
USENIX Association.

Rooney, Sean (1997). “The Hollowman an innovative ATM control architecture”.
In: Integrated Network Management V: Integrated management in a wvirtual
world Proceedings of the Fifth IFIP/IEEE International Symposium on Integrated
Network Management San Diego, California, USA, May 12-16, 1997. Springer.
DOI: 10.1007/978-0-387-35180-3_28.

153


https://doi.org/10.5555/2789770.2789779
https://doi.org/10.5555/2789770.2789779
https://doi.org/10.17487/RFC0801
https://www.rfc-editor.org/info/rfc801
https://doi.org/10.1145/2504730.2504737
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1109/CNSM.2016.7818411
https://doi.org/10.1145/2523616.2523635
https://doi.org/10.1109/PROC.1978.11141
https://doi.org/10.1007/978-0-387-35180-3_28

References References

Rybczynski, Tony (2009). “Commercialization of packet switching (1975-1985): A
Canadian perspective [History of Communications|”. In: IEEE Communications
Magazine 47. DoI: 10.1109/MCOM.2009.5350364.

Saltzer, J. H., D. P. Reed, and D. D. Clark (1984). “End-to-End Arguments in System
Design”. In: ACM Trans. Comput. Syst. 2. DOI: 10.1145/357401.357402.

Samira, Chabaa, Abdelouhab Zeroual, and Jilali Antari (2010). “Identification and
Prediction of Internet Traffic Using Artificial Neural Networks”. In: JILSA 2. DOT:
10.4236/jilsa.2010.23018.

Sampaio, Lauren S. R., Pedro H. A. Faustini, Anderson S. Silva, Lisandro Z. Granville,
and Alberto Schaeffer-Filho (2018). “Using NFV and Reinforcement Learning
for Anomalies Detection and Mitigation in SDN”. In: 2018 IEEE Symposium on
Computers and Communications (ISCC). bor: 10.1109/ISCC.2018.8538614.

Sanfilippo, Salvatore (2009). Redis: Remote Dictionary Server. https://github.
com/redis/redis.

Sarrar, Nadi, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang (2012).
“Leveraging Zipf’s Law for Traffic Offloading”. In: SIGCOMM Comput. Commun.
Rev. 42. DOI: 10.1145/2096149.2096152.

Sax, Matthias J. (2018). “Apache Kafka”. In: Encyclopedia of Big Data Technologies.
Ed. by Sherif Sakr and Albert Zomaya. Cham: Springer International Publishing,
pp. 1-8. DOI: 10.1007/978-3-319-63962-8_196-1.

Scales, Daniel, Mike Nelson, and Ganesh Venkitachalam (2010). “The design of a
practical system for fault-tolerant virtual machines”. In: Operating Systems Review
44. DOI: 10.1145/1899928.1899932.

Schweller, Robert, Ashish Gupta, Elliot Parsons, and Yan Chen (2004). “Re-
versible Sketches for Efficient and Accurate Change Detection over Network Data
Streams”. In: Proceedings of the 4jth ACM SIGCOMM Conference on Internet
Measurement. IMC ’04. Association for Computing Machinery. DOI: 10. 1145/
1028788.1028814.

Sekar, Vyas, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi
(2012a). “Design and Implementation of a Consolidated Middlebox Architecture”.
In: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation. NSDI’12. USENIX Association. DOI: 10 . 5555 /2228298 .
2228331.

— (2012b). “Design and implementation of a consolidated middlebox architecture”.
In: Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation. NSDI'12. USENIX Association. ISBN: 978-931971-92-8.

Sekar, Vyas, Sylvia Ratnasamy, Michael K. Reiter, Norbert Egi, and Guangyu Shi
(2011). “The Middlebox Manifesto: Enabling Innovation in Middlebox Deploy-
ment”. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks.

154


https://doi.org/10.1109/MCOM.2009.5350364
https://doi.org/10.1145/357401.357402
https://doi.org/10.4236/jilsa.2010.23018
https://doi.org/10.1109/ISCC.2018.8538614
https://github.com/redis/redis
https://github.com/redis/redis
https://doi.org/10.1145/2096149.2096152
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1145/1899928.1899932
https://doi.org/10.1145/1028788.1028814
https://doi.org/10.1145/1028788.1028814
https://doi.org/10.5555/2228298.2228331
https://doi.org/10.5555/2228298.2228331

References References

HotNets-X. Association for Computing Machinery. DOI1: 10 . 1145/ 2070562 .
2070583.

Serrano, Martin, Michael Boniface, Monique Calisti, Hans Schaffers, John Domingue,
Alexander Willner, Chiara Petrioli, Federico M Facca, Ingrid Moerman, Johann M
Marquez-Barja, et al. (2022). “Next generation internet research and experimen-
tation”. In: Building the Future Internet through FIRE. River Publishers.

Shaikh, Junaid M., Markus Fiedler, and Denis Collange (2010). “Quality of Experience
from user and network perspectives”. In: annals of telecommunications - annales
des télécommunications 65. DOI: 10.1007/s12243-009-0142-x. URL: https:
//api.semanticscholar.org/CorpusID:14051498.

Sharafaldin, Iman, Arash Habibi Lashkari, and Ali Ghorbani (2018). “Toward Gener-
ating a New Intrusion Detection Dataset and Intrusion Traffic Characterization”.
In: International Conference on Information Systems Security and Privacy. DOI:
10.5220/0006639801080116.

Sherry, Justine, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, Joao Martins, Sylvia Ratnasamy;,
Luigi Rizzo, and Scott Shenker (2015). “Rollback-Recovery for Middleboxes”.
In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication. SIGCOMM ’15. Association for Computing Machinery. DOT: 10.
1145/2785956.2787501.

Sherry, Justine, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy;,
and Vyas Sekar (2012). “Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service”. In: Proceedings of the ACM SIGCOMM 2012 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’12. Association for Computing Machinery. DOT: 10.
1145/2342356.2342359.

Sherry, Justine and Sylvia Ratnasamy (2012). A Survey of Enterprise Middlebox
Deployments. Tech. rep. URL: http : // www2 . eecs . berkeley . edu / Pubs /
TechRpts/2012/EECS-2012-24 . html.

Sivaraman, Vibhaalakshmi, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan,
and Jennifer Rexford (2017). “Heavy-Hitter Detection Entirely in the Data Plane”.
In: Proceedings of the Symposium on SDN Research. SOSR ’'17. Association for
Computing Machinery. DOI: 10.1145/3050220 . 3063772.

Sterbenz, James P. G., David Hutchison, Egemen K. Cetinkaya, Abdul Jabbar, Justin
P. Rohrer, Marcus Scholler, and Paul Smith (2010). “Resilience and Survivability
in Communication Networks: Strategies, Principles, and Survey of Disciplines”.
In: Comput. Netw. 54. DOI: 10.1016/j . comnet.2010.03.005.

Sterbenz, James PG, Rajesh Krishnan, Regina Rosales Hain, Alden W Jackson,
David Levin, Ram Ramanathan, and John Zao (2002). “Survivable mobile wireless

155


https://doi.org/10.1145/2070562.2070583
https://doi.org/10.1145/2070562.2070583
https://doi.org/10.1007/s12243-009-0142-x
https://api.semanticscholar.org/CorpusID:14051498
https://api.semanticscholar.org/CorpusID:14051498
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/2342356.2342359
https://doi.org/10.1145/2342356.2342359
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.html
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1016/j.comnet.2010.03.005

References References

networks: issues, challenges, and research directions”. In: Proceedings of the 1st
ACM workshop on Wireless security. DOI: 10.1145/570681.570685.

Stouffer, Keith, Joe Falco, and Karen Kent (2006). “Guide to supervisory control
and data acquisition (SCADA) and industrial control systems security”. In: NIST
Special Publication 800. DOI: 10.6028/NIST.SP.800-82r2.

Sun, Runyuan, Bo Yang, Lizhi Peng, Zhenxiang Chen, Lei Zhang, and Shan Jing
(2010). “Traffic classification using probabilistic neural networks”. In: 2010 Sizth
International Conference on Natural Computation. Vol. 4. DOI: 10.1109/ICNC.
2010.5584648.

Systems, Cisco (1998). Port Aggregation Protocol. URL: https://www.ieee802.org/
3/trunk_study/april98/finn_042898.pdf.

Tank, Gunjan P, Anmol Dixit, and Alekhya Vellanki (2017). “Software Defined Net-
works: The New Norm for Networks”. In: URL: https://api.semanticscholar.
org/CorpusID:53052362.

Taymans, Wim (1999). Gstreamer - Open source multimedia framework. URL: https:
//gstreamer.freedesktop.org/.

Team, Netfilter Core (1998). Iptables. URL: https://www.netfilter.org/projects/
iptables/index.html (visited on 1998).

Tennenhouse, D.L., J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and G.J. Minden
(1997). “A survey of active network research”. In: IEEE Communications Maga-
zine 35. DOI: 10.1109/35.568214.

Thomson, Martin (2021). Version-Independent Properties of QUIC. RFC 8999. pDoTI:
10.17487/RFC8999. URL: https://www.rfc-editor.org/info/rfc8999.

Thomson, Martin and Sean Turner (2021). Using TLS to Secure QUIC. RFC 9001.
DOI: 10.17487/RFC9001. URL: https://www.rfc-editor.org/info/rfc9001.

Vlacheas, P, V Stavroulaki, P Demestichas, S Cadzow, S Gorniak, and D ITkonomou
(2011). “Ontology and taxonomies of resilience, version 1”. In: Proc. Fur. Netw.
Inf. Secur. Agency (ENISA) Rep.

VMware (2023). Utility Substation Virtual Protection, Automation, and Control
(vPAC) Ready Infrastructure. URL: https://docs . vmware . com/en/VMware -
Edge - Compute - Stack / services / utility - substation - vpac - ready -
infrastructure.pdf.

Wang, An, Yang Guo, Fang Hao, T.V. Lakshman, and Songqing Chen (2014). “Scotch:
Elastically Scaling up SDN Control-Plane Using VSwitch Based Overlay”. In:
Proceedings of the 10th ACM International on Conference on FEmerging Net-
working Ezrperiments and Technologies. CONEXT ’14. Association for Computing
Machinery. Dor1: 10.1145/2674005.2675002.

Wang, Chengwei, Oliver Spatscheck, Vijay Gopalakrishnan, and David Applegate
(2016). “Toward High-Performance and Scalable Network Functions Virtualiza-
tion”. In: IEEE Internet Computing 20. DOI: 10.1109/MIC.2016.111.

156


https://doi.org/10.1145/570681.570685
https://doi.org/10.6028/NIST.SP.800-82r2
https://doi.org/10.1109/ICNC.2010.5584648
https://doi.org/10.1109/ICNC.2010.5584648
https://www.ieee802.org/3/trunk_study/april98/finn_042898.pdf
https://www.ieee802.org/3/trunk_study/april98/finn_042898.pdf
https://api.semanticscholar.org/CorpusID:53052362
https://api.semanticscholar.org/CorpusID:53052362
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/
https://www.netfilter.org/projects/iptables/index.html
https://www.netfilter.org/projects/iptables/index.html
https://doi.org/10.1109/35.568214
https://doi.org/10.17487/RFC8999
https://www.rfc-editor.org/info/rfc8999
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://docs.vmware.com/en/VMware-Edge-Compute-Stack/services/utility-substation-vpac-ready-infrastructure.pdf
https://docs.vmware.com/en/VMware-Edge-Compute-Stack/services/utility-substation-vpac-ready-infrastructure.pdf
https://docs.vmware.com/en/VMware-Edge-Compute-Stack/services/utility-substation-vpac-ready-infrastructure.pdf
https://doi.org/10.1145/2674005.2675002
https://doi.org/10.1109/MIC.2016.111

References References

Wang, Chengwei, Oliver Spatscheck, Vijay Gopalakrishnan, Yang Xu, and David
Applegate (2016). “Toward High-Performance and Scalable Network Functions
Virtualization”. In: IEEFE Internet Computing 20. DOT: 10.1109/MIC.2016.111.

Wang, Hao, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert Green-
berg (2006). “COPE: traffic engineering in dynamic networks”. In: SIGCOMM
Comput. Commun. Rev. 36. 1SSN: 0146-4833. DOI: 10.1145/1151659.1159926.

Wang, Mowei, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang (2018).
“Machine Learning for Networking: Workflow, Advances and Opportunities”. In:
IEEE Network 32. por: 10.1109/MNET.2017.1700200.

Wang, Zhaoguang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang (2011a).
“An Untold Story of Middleboxes in Cellular Networks”. In: Proceedings of the
ACM SIGCOMM 2011 Conference. SIGCOMM ’11. Association for Computing
Machinery. DOT: 10.1145/2018436.2018479.

— (2011Db). “An Untold Story of Middleboxes in Cellular Networks”. In: SIGCOMM
Comput. Commun. Rev. 41. DOI: 10.1145/2043164.2018479.

White Paper, NFV (2012). “Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges and Call for Action. Issue 1”.

Worster, Tom, avri doria, Fiffi A. Hellstrand, and Kenneth Sundell (2002). General
Switch Management Protocol (GSMP) V3. RFC 3292. por: 10. 17487 /RFC3292.
URL: https://www.rfc-editor.org/info/rfc3292.

Xu, Dahai, Yizhi Xiong, Chunming Qiao, and Guangzhi Li (2004). “Failure protection
in layered networks with shared risk link groups”. In: IEEE network 18. DOTI:
10.1109/MNET.2004.1301021.

Xu, Jielong, Jian Tang, Kevin Kwiat, Weiyi Zhang, and Guoliang Xue (2012).
“Survivable Virtual Infrastructure Mapping in Virtualized Data Centers”. In: 2012
IEEFE Fifth International Conference on Cloud Computing. DOI: 10.1109/CLOUD.
2012.100.

Yang, Lily, Todd A. Anderson, Ram Gopal, and Ram Dantu (2004a). Forwarding and
Control Element Separation (ForCES) Framework. RFC 3746. pOI: 10.17487/
RFC3746. URL: https://www.rfc-editor.org/info/rfc3746.

— (2004b). Forwarding and Control Element Separation (ForCES) Framework. RFC
3746. DOI: 10. 17487 /RFC3746. URL: https://www.rfc-editor.org/info/
rfc3746.

Yang, Tong, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig (2018). “Elastic Sketch: Adaptive and Fast Network-
Wide Measurements”. In: Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. SIGCOMM ’18. Association for
Computing Machinery. DOI: 10.1145/3230543.3230544.

Yu, Hongfang, Vishal Anand, Chunming Qiao, and Gang Sun (2011). “Cost Efficient
Design of Survivable Virtual Infrastructure to Recover from Facility Node

157


https://doi.org/10.1109/MIC.2016.111
https://doi.org/10.1145/1151659.1159926
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1145/2018436.2018479
https://doi.org/10.1145/2043164.2018479
https://doi.org/10.17487/RFC3292
https://www.rfc-editor.org/info/rfc3292
https://doi.org/10.1109/MNET.2004.1301021
https://doi.org/10.1109/CLOUD.2012.100
https://doi.org/10.1109/CLOUD.2012.100
https://doi.org/10.17487/RFC3746
https://doi.org/10.17487/RFC3746
https://www.rfc-editor.org/info/rfc3746
https://doi.org/10.17487/RFC3746
https://www.rfc-editor.org/info/rfc3746
https://www.rfc-editor.org/info/rfc3746
https://doi.org/10.1145/3230543.3230544

References References

Failures”. In: 2011 IEEE International Conference on Communications (ICC).
DOI: 10.1109/1icc.2011.5962604.

Yu, Hongfang, Chunming Qiao, Vishal Anand, Xin Liu, Hao Di, and Gang Sun
(2010). “Survivable Virtual Infrastructure Mapping in a Federated Computing
and Networking System under Single Regional Failures”. In: 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010. bo1: 10.1109/GL0OCOM. 2010.
5683951.

Yu, Hongfang, Chunming Qiao, Jianping Wang, Lemin Li, Vishal Anand, and Bin Wu
(2014). “Regional failure-resilient virtual infrastructure mapping in a federated
computing and networking system”. In: Journal of Optical Communications and
Networking 6. DOI: 10.1364/J0CN.6.000997.

Yu, Minlan, Lavanya Jose, and Rui Miao (2013). “Software Defined Traffic Mea-
surement with OpenSketch”. In: Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation. nsdi’13. USENIX Association.
DOI: 10.5555/2482626.2482631.

Zilberman, Noa, Yury Audzevich, Georgina Kalogeridou, Neelakandan Manihatty-
Bojan, Jingyun Zhang, and Andrew Moore (2015). “NetFPGA: Rapid Prototyping
of Networking Devices in Open Source”. In: SIGCOMM Comput. Commun. Rev.
45. DOI: 10.1145/2829988.2790029.

Zilberman, Noa, Philip M. Watts, Charalampos Rotsos, and Andrew W. Moore
(2015). “Reconfigurable Network Systems and Software-Defined Networking”. In:
Proceedings of the IEEE 103. bor: 10.1109/JPR0C.2015.2435732.

158


https://doi.org/10.1109/icc.2011.5962604
https://doi.org/10.1109/GLOCOM.2010.5683951
https://doi.org/10.1109/GLOCOM.2010.5683951
https://doi.org/10.1364/JOCN.6.000997
https://doi.org/10.5555/2482626.2482631
https://doi.org/10.1145/2829988.2790029
https://doi.org/10.1109/JPROC.2015.2435732

	Introduction
	Middleboxes and their evolution
	Middleboxes and state
	Networks and resilience
	Aims
	Contributions
	Thesis structure

	Background and related work
	Definitions
	Networking terminology
	Middlebox terminology
	Resilience terminology
	White, Grey and Blackbox network devices

	Opening
	Network Functions and middleboxes
	Internet-design principles
	Network Functions
	Middleboxes
	Middlebox issues

	Early history of programmability attempts
	Software Defined Networking
	SDN architecture
	SDN in production networks

	Network Function Virtualisation
	NFV Benefits and Drawbacks


	Resilience
	History of resilience
	D2 R2 + DR Framework
	Types of failure
	VNF Resilience
	New risks
	Reliability of VNFs

	Middlebox resilience

	Related work
	VM capture
	Packet capture
	Coarse-grain log-based checkpointing
	Fine-grain log-based checkpointing
	VM Migration
	Live replay and simple redundancy
	Service Function Chain techniques
	Cloud-based approaches

	Summary

	Hybrid networks and resilient design
	Argument
	Hybrid Networking
	ASIC Hardware
	Replicating state in ASICs
	CAP theorem
	Summary

	High-level Requirements
	Design considerations
	Extracting or recreating state
	Failover approach
	Deployment architecture
	Technology-agnostic architecture
	Retaining and distributing state

	Design overview
	Levels of middlebox access
	Resilience nodes
	State extraction and insertion services
	Facilitating both hardware and software

	External State Repository
	SDN management
	Infrastructure
	Cloud management
	Orchestration
	Remediate - Middlebox Resilience layer

	Summary

	Implementation
	Resilience Framework
	Point of Failover Architecture
	Points of Failover proof of concept
	Management layer

	White and greybox resilience
	State drivers
	Log interpretation
	Direct extraction

	State repository
	VNF Infrastructure

	Blackbox resilience
	Packet Filter
	Service restoration

	MiMi prototype
	Middlebox Scenarios
	OpenFlow-based Load Balancer
	Kernel-based Load Balancer

	State repository and distribution
	Publishing methods
	State Drivers
	Direct extraction driver
	Log interpreter driver


	Katoptron prototype
	Traffic Filter
	Pipeline breakdown
	Filter implementation technologies

	Service restoration mechanics
	Middlebox Scenarios
	NAT
	IDS
	Load balancer

	CDN

	Summary

	Evaluation
	Experimentation Platform
	Testbed environment
	Tools
	Workloads

	MiMi performance evaluation
	Experimental Setup
	State mechanism designs
	Direct extraction evaluation
	WEB workload
	DASH workload

	Log-interpretation driver evaluation
	State Synchronization Frequency
	Impact of middleware choice

	Katoptron performance evaluation
	Experimental Setup
	Middlebox support
	NAT middlebox performance
	IDS middlebox performance
	Load balancer middlebox performance

	Summary

	Conclusions
	Thesis Contributions
	Criticisms and limitations
	Feasibility and scope
	Security and points of failure
	Evaluation

	Future work
	Expanding awareness to Service Function Chains
	NFV management, scaling and integration
	State recreation approaches
	AI and machine learning
	Non-TCP based statefulness


	References

