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BE Fitting Parameters

The �tting parameters in Equation 1 of the main text are shown in Table 1, while the even

and odd parts of the BE are shown in Figure 1.
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Table 1: Fitting parameters in Equation 1 of the main text for the BE of 1L-G/1L-hBN.

Parameter Value
A01 −1.604928 eVÅ4 / atom
A02 −490.4703 eVÅ8 / atom
A03 74950.57 eVÅ12 / atom
A04 −1975507 eVÅ16 / atom
A11 57.39082 eV / atom
B11 −16.12002 eV / atom
κA1 3.363638 Å−1

κB1 2.860883 Å−1
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Figure 1: Even and odd parts of Equation 1 of the main text for each of the stacking
con�gurations. The even BE parts of con�gurations II and III lie on top of each other,
while the odd parts for con�gurations I, IV, and V are zero. The resultant BE curves are in
Figure 1 of the main text.
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Equilibrium Separation, BE, and LBM Frequency

The LBM frequency of an incommensurate 1L-G/1L-hBN bilayer is ωBM = 2
√

Ē ′′
bind(d0)/µ,

where d0 is the equilibrium separation that minimizes the translationally averaged BE

Ēbind(d) (the �rst term of Equation 1 of the main text), and µ = 2mC(mB +mN)/(2mC +

mB +mN) is the reduced mass of a primitive cell of 1L-G/1L-hBN. mC, mB, mN are the C,

B, and N atomic masses. To evaluate the statistical error bars on d0, Ē(d0), and ωBM we

used a bootstrap Monte Carlo procedure,1 in which we repeatedly �tted Equation 1 of the

main text to resampled DMC data drawn from Gaussian distributions centered on the mean

DMC energy at each layer separation, with the standard deviation being the standard error

in the mean energy at that layer separation. The mean and standard error in the mean of

d0, Ē(d0), and ωBM are then accumulated.2

DFT Geometries

DFT-calculated interlayer distances for 1L-G/1L-hBN are reported in Table 2.

Table 2: Equilibrium interlayer separation of 1L-G/1L-hBN calculated by DFT. Both layers
were assumed to have the 1L-G lattice constant in the present work and in Refs. 3 and 4,
while the lattice constant of 1L-hBN was used in Refs. 5 and 6. An averaged lattice constant
was used in Ref. 7. The other DFT-LDA results without citation are from the present work.

Equilibrium interlayer separation (Å)Con�g.
DFT-LDA DFT-vdW4,6 DFT-RPA

I 3.5, 3.50[ 3] 3.5, 3.49 3.55[ 5], 3.46[ 7]

II 3.2, 3.22[ 3] 3.2, 3.30 3.35[ 5], 3.27[ 7]

III 3.4, 3.40[ 3] 3.4 ∼ 3.4[ 5], 3.43[ 7]

IV 3.3 3.4, 3.45 3.5[ 5]

V 3.4
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DFT Phonon Calculations

DFT phonon dispersions were calculated using ultrasoft pseudopotentials and a plane-wave

cuto� energy of 25 Ha within the LDA. We relaxed the lattice constant of the four-atom

cell of 1L-G/1L-hBN. We used a 5 × 5 supercell with a 35 × 35 Monkhorst-Pack k-point

mesh, and displaced the atoms by ±0.04 Å to evaluate the matrix of force constants within

the �nite-displacement method. The initial equilibrium atomic positions were relaxed until

the Hellmann-Feynman forces8 were < 5× 10−5 eVÅ−1.

Figure 2 plots the DFT-LDA phonon dispersion curves for 1L-G/1L-hBN in a four-atom

cell at the relaxed common in-plane lattice constant 2.47 Å and the relaxed equilibrium

separations of 3.5 and 3.2 Å for stacking con�gurations I and II, respectively. Since we are

considering low frequencies close to acoustic branches, we do not calculate Kohn anomaly

e�ects in 1L-G.
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Figure 2: DFT-LDA phonon dispersions of 1L-G/1L-hBN for stacking con�gurations (a) I
and (b) II. The branches that go to the LBM frequency at Γ are shown by dashed red curves
and the DMC LBM frequencies at Γ point are shown by blue squares.

Lamé Parameters

The Young's modulus of bulk graphite is Y = 1.02(3) TPa, and the in-plane Poisson's ratio

is ν = 0.165.9 The lattice constants of Bernal-stacked graphite are a = 2.461 Å and c = 6.708
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Å at 300 K.10 The 2d Young's modulus of 1L-G is Y2D = Y c/2 = 340 Nm−1 = 21.4 eVÅ−2.

The �rst Lamé parameter is λ = Y2Dν/[(1 + ν)(1 − 2ν)] = 4.5 eVÅ−2. The second Lamé

parameter is µ = Y2D/[2(1+ν)] = 9.2 eVÅ−2. For thin graphene �lms, the Young's modulus

was measured to be 1.0(1) TPa,11 in agreement with the bulk graphite value.

The Lamé parameters of 1L-hBN are λhBN = 4.0 eVÅ−2 and µhBN = 7.4 eVÅ−2, as

determined by atomic force microscopy.12

2d Adhesion-Potential Parameters

Figure 3: Adhesion potential VA of 1L-G/B-hBN as a function of o�set ℓ of 1L-G relative to
B-hBN around the triangular path through the unit cell shown in the inset. The DMC results
are presented in black and VA(ℓ) is in blue. The symbols indicate the stacking con�gurations
in Table 1 and Figure 1 of the main text. Both layers have the 1L-G lattice constant. The
error bars show the standard error in the mean of the BE at the minimum of the BE curve
for each stacking con�guration. The error bars on relative adhesion potentials are smaller
than suggested by the error bars on the absolute values, due to the fact that the 1L energies
cancel out of di�erences in adhesion potential.

To approximate the adhesion potential per unit cell VA(ℓ) for 1L-G/B-hBN with in-plane

o�set ℓ and a common lattice parameter, we use a truncated Fourier expansion:

VA(ℓ) =
∑
m

vme
igm·ℓ ≈ 4Ebind(d0, ℓ)

≡ vs0 + vs1
∑

m=1,3,5

cos(gm · ℓ) + vas1
∑

m=1,3,5

sin(gm · ℓ), (1)
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where gm is a reciprocal lattice point and Ebind is given in Equation 1 of the main text.

From the �t of that equation, we �nd vs0 = −57(3), vs1 = 2.2(3), and vas1 = −3.5(4) meV

per primitive unit cell. The adhesion potential is plotted in Figure 3.

Relaxation of 1L-G/B-hBN within the Continuum Model

Figure 4: (a) Beating between the moiré patterns (of periods λt and λb) from the top and
bottom 1L-G/B-hBN interfaces yields a supermoiré pattern of period Λ in the B-hBN/1L-
G/B-hBN LMH. (b) Real-space lattice vectors of the 1L-G lattice. (c) Combining reciprocal
lattice vectors to give the reciprocal lattice vectors Knm = Gt

n − Gb
m of the supermoiré

pattern. (d) Misalignment angles where the supermoiré reciprocal vectors Knm vanish, and
the corresponding supermoiré lattice vector Λnm diverges.

When we allow an elastic layer to relax on a rigid substrate, the adhesion potential VA

provides the energy of a unit cell at position r, because VA(r) has the periodicity of the rigid

lattice, and hence VA(r) = VA(ℓr), where ℓr is the position of the unit cell of the elastic layer

relative to the closest rigid lattice point. In other words, ℓr is simply the local o�set of the
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elastic lattice relative to the rigid lattice. Let gm and gbm be the reciprocal lattice points

of the unrelaxed elastic layer and the rigid (�bottom�) layer, respectively. We may write

the Fourier expansion of the adhesion potential as VA(ℓ) =
∑

m vme
igbm·ℓ (see Equation 1).

The di�erence of each corresponding pair of reciprocal-lattice points gm and gbm de�nes a

reciprocal lattice point Gb
m = gm − gbm of the moiré supercell; see Figure 4c. The total

adhesion potential per unit cell of the elastic layer can be written as

UA =
1

N

N∑
n=1

VA(rn + u(rn)) =
1

N

N∑
n=1

∑
m

vme
igbm·rneig

b
m·u(rn)

=
1

N

N∑
n=1

∑
m

vme
−iGb

m·rneig
b
m·u(rn) (2)

≈ v0 + i
∑
m

vmg
b
m · uGb

m
. (3)

Equation 2 uses eig
b
m·rn = ei(g

b
m−gm)·rn = e−iGb

m·rn . Equation 3 assumes the displacement �eld

to be small compared to the rigid lattice constant, which is the case if

|u| ≪ ab/(2π), (4)

where ab is the lattice parameter of the rigid layer.

The elastic energy per unit cell is

UE =
1

N

∫
crystal

1

2

[
λTr(ε)2 + 2µTr(ε2)

]
d2r (5)

=
1

2

∑
q

u†
qWquq, (6)

where εij = (∂ui/∂xj+∂uj/∂xi)/2 is the 2d pure strain �eld, λ and µ are the Lamé coe�cients

of the elastic layer, and N is the number of unit cells in the elastic layer. The dynamical

matrix at wavevector q is13

Wq = A
[
(λ+ µ)qqT + µq2I

]
, (7)
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where A = |a1×a2| is the area of an unrelaxed primitive unit cell and I is the 2× 2 identity

matrix.

Figure 5: Displacement �eld u(r) of 1L-G unit cells in 1L-G/B-hBN LMHs, obtained by
numerically minimizing the total energy of Equation 2 within the continuum model. The
misalignment angle between the two layers is (a) θ = 0; (b) θ = 1◦. The symbols indicate
the stacking con�gurations shown in Table 1 of the main text.

By minimizing the total energy U = UE + UA with respect to the Fourier components of

the displacement �eld, we �nd the Fourier components of the displacement �eld (which has

the periodicity of the moiré superlattice) to be

uGb
m
= iv∗mW

−1
Gb

m
gbm. (8)

(See the section below for the derivation of Equation 8.) This result holds for any reciprocal

lattice vector m. We do not assume any particular symmetry or structure in the deriva-

tion of Equation 8, so that Equation 8 is valid for any situation where one LM is allowed

to relax after being transferred onto a substrate of another LM with a su�ciently similar

lattice constant. Using a numerical evaluation of the right-hand side of Equation 2, we have

investigated the continuum model without the approximation of small displacement �elds.

See the section below for details. For bilayers with greatly enhanced variations in the ad-

hesion potential as a function of lattice o�set or with greatly reduced elastic parameters,

this method �nds multiple energy minima. However, for 1L-G/B-hBN LMHs, we only �nd
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the one, global minimum of the energy over the range of displacement �elds (≪ ahBN) for

which the continuum model applies. For aligned lattice vectors, this global minimum is

0.82 µeV per primitive cell lower than the energy predicted by the analytical approximation

of Equation 8, which �nds that the 1L-G relaxation lowers the energy by 0.37 meV per

primitive cell. Physically, the sti�ness of the two layers is too great to be overcome by the

variations in the adhesion potential, which only weakly perturbs the 1L-G atomic structure.

The displacement �eld that minimizes the energy is shown in Figure 5.

Minimizing the Analytical Approximation to the Total En-

ergy within the Continuum Model

We assume �nite-temperature e�ects to be negligible. Under zero external stress, the relaxed

displacement �eld is that which minimizes the total energy. Under the assumption of a small

displacement �eld the total energy can be written as:

U = UE + UA ≈ 1

2

∑
q

u†
qWquq + v0 + i

∑
m

vmg
b
m · uGb

m
, (9)

as shown in Equation 3. We therefore require the derivatives of the energy with respect

to the independent complex Fourier components of the displacement �eld to be zero, i.e.,

∇uqU = 0T and ∇u†
q
U = 0. Wq is real and symmetric, and Wq = W−q. Since u(r) is real,

u∗
q = u−q. So

∇uqU = ∇uq

(
1

2

∑
q

u†
qWquq

)
+ i
∑
m

vm(g
b
m)

Tδq,Gb
m

= ∇uq

(
1

2
u†
qWquq +

1

2
u†
−qW−qu−q

)
+ i
∑
m

vm(g
b
m)

Tδq,Gb
m

= u†
qWq + i

∑
m

vm(g
b
m)

Tδq,Gb
m

(10)
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and, similarly,

∇u†
q
U = ∇u†

q

(
1

2
u†
qWquq +

1

2
u†
−qW−qu−q

)
+ i∇u†

q

∑
m

v∗m(−gbm) · u−Gb
m

= ∇u†
q

(
u†
qWquq

)
+ i∇u†

q

∑
m

−v∗mu
†
Gb

m
gbm

= Wquq − i
∑
m

v∗mg
b
mδq,Gb

m
. (11)

Therefore, the displacement �eld that minimizes the total energy of 1L-G/B-hBN satis�es

u†
q = −i

∑
m

vm(g
b
m)

TW−1
q δq,Gb

m
and uq = i

∑
m

v∗mW
−1
q gbmδq,Gb

m
, (12)

so that uq and u†
q are an adjoint pair. This gives us Equation 8.

Brute-Force Minimization of the Total Energy within the

Continuum Model

We wrote a program to evaluate the total energy per unit cell within the continuum model,

Equation 2, by brute-force summation over 1L-G lattice sites, with the Fourier components

of the displacement �eld determined by numerical minimization of the total energy using the

conjugate-gradients method.14 Initial real and imaginary parts of the Fourier components

of the displacement �eld in the x- and y-directions are chosen randomly from a uniform

distribution. The condition u(−q) = u∗(q) is imposed to ensure that the displacement �eld

is real, but no other constraints are imposed on the Fourier coe�cients.

For aligned 1L-G and B-hBN lattice vectors, the total energy was evaluated by summing

over N = 173889 1L-G unit cells, corresponding to a 7 × 7 array of moiré supercells. The

Fourier expansion of the displacement �eld included moiré supercell reciprocal lattice vectors

up to a magnitude of 1 Å−1. This ensures that we can describe features on the scale of a

single 1L-hBN unit cell (i.e., the limit of validity of the continuum model). The procedure
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was repeated for 240 di�erent initial uGb
m
, randomly chosen with magnitudes up to 10 Å.

Modelling Moiré SLMinibands for Electrons in B-hBN/1L-

G/B-hBN

For 1L-G encapsulated between two B-hBN crystals,15�22 B-hBN/1L-G/B-hBN, the displace-

ment �eld ut/b =
∑

m u
G
t/b
m

e−iG
t/b
m ·r can be approximated as a sum of the displacements

arising from the top (t) B-hBN at twist angle θt and bottom (b) B-hBN at twist angle θb,

each described using Equation 8. Such deformations lead to a complex moiré SL pattern

experienced by the electrons in the 1L-G, which di�ers for B-hBN layers with parallel and

antiparallel orientations of their unit cells (the latter case has θt = θb + 180◦).

A highly aligned 1L-G/B-hBN interface produces a perturbation δH to Dirac electrons,

with Hamiltonian H = vFp ·σ+ δH,23 where vF = 106 ms−1 is the 1L-G Fermi velocity,24 p

is the momentum operator and σ is the vector of Pauli matrices. In a B-hBN/1L-G/B-hBN

system, the perturbations from the top (t) and bottom (b) interfaces superimpose and we

obtain the combined perturbation,25

δH = δHt + δHb =
∑
α=t,b

6∑
n=1

[Uα
0 + (−1)n (iUα

3 σ3 + Uα
1 en · σ)] eiG

α
n ·(r∓R/2) eign·uR(r), (13)

where en are unit vectors in the directions of the 1L-G lattice points in the �rst star in real

space, R is the reference shift between the top and bottom B-hBN crystals, and uR(r) =

ut(r−R/2)+ub(r+R/2). The parameters take into account the 1L-G displacement caused

by the top and bottom B-hBN crystals. The parameters U
t/b
0 = 16.4

4π
√

δ2+(θt/b)2√
3aG

eVÅ,

U
t/b
1 = −32.8 4πδ√

3aG
eVÅ, and U

t/b
3 = −32.8

2π
√

δ2+(θt/b)2

aG
eVÅ are taken from the earlier

moiré SL model in aligned 1L-G/B-hBN LMHs, and {Gt/b
n } are the �rst star of reciprocal

lattice vectors of the SLs corresponding to the top/bottom interfaces.

We consider two mechanisms that give rise to supermoiré perturbations to the electronic
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structure. Firstly, the interference between the top and bottom moiré patterns leads to elec-

trons scattering o� both lattices with respective reciprocal-lattice vectors Gt/b
m . This can be

described within second-order perturbation theory in δHt/b(u = 0) as scattering with the

combined reciprocal-lattice vectors Knm = Gt
n − Gb

m. Secondly, mixing between top and

bottom moiré patterns occurs due to 1L-G lattice relaxation caused by the combined in�u-

ences of the top and bottom B-hBN. Using the Fourier representation of the displacement

�eld, we perform an expansion in Equation 13 for small displacement �elds (Equation 4).

The resulting expression features di�erent pairs of the moiré reciprocal-lattice vectors Gt/b
m ,

which combine to give the e�ective reciprocal-lattice vectors Knm, each describing one of the

emergent periodic supermoiré structures, i.e. di�erent beats between moiré patterns at the

top and bottom interfaces.

If one of the top or bottom B-hBN layers is strongly misaligned with respect to the

1L-G, while the other is almost aligned (e.g. θt ≫ θb ∼ 0), all the supermoiré reciprocal-

lattice vectors are large, so that there is no e�ect of the supermoiré periodic structure at low

energies. However, strain from the near-aligned layer opens a gap:

∆S(θ
b) = −6U3was, (14)

where w
t/b
as = −(−1)mRe(gm · u±G

t/b
m
). The gap is plotted against misalignment angle in

Figure 6a.

For any supermoiré reciprocal-lattice vector Knm the real-space period of the correspond-

ing supermoiré pattern is Λnm = 4π√
3

1
Knm

. In the following we focus on the longest-period

e�ects, and hence keep only the shortest nonzero Knm. As we illustrate in Figure 4d, for

certain misalignment angles of the top and bottom B-hBN layers in B-hBN/1L-G/B-hBN,

combinations of the formKnm = Gt
n−Gb

m become very small and can even vanish completely.

Hence these combinations yield the shortest reciprocal-lattice vectors at those misalignment

angles. The most generic conditions for long-period beats are for m = n, for which the
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Figure 6: (a) Strain-induced energy gap ∆S of a single interface between 1L-G and B-hBN
in B-hBN/1L-G/B-hBN LMH (b) Comparison of the magnitudes of the di�erent energy
contributions in Equations 15 and 16.

period of the supermoiré lattice diverges for any stacking con�guration with θt = θb. We

now discuss the corresponding low-energy Hamiltonians and properties of this con�guration

for the relevant low-energy regime with θt ≈ θb. Since 1L-hBN does not preserve inversion

symmetry, the con�gurations in which the top and bottom B-hBN layers are parallel and

antiparallel yield distinct cases.

The perturbative term in the electronic 1L-G Hamiltonian for the case in which the top

and bottom B-hBN are aligned (θt = θb) is

δHpar =− 12U3wasσ3

−
6∑

n=1

[
2U3wasσ3 +

4U1U3

h̄vFGb
n

+ i
2U2

1

h̄vFGb
n

(ez ×Knn) · σ
Knn

]
e−

i
2
R·(Gt

n+Gb
n) eiKnn·r, (15)

where ez is the unit vector in the +z-direction. As the inversion-symmetry breaking is

enhanced by the two aligned B-hBN acting jointly, the gap is twice as big as that induced

by a single interface, giving the �rst term in Equation 15. The e�ect of both interfaces

combined oscillates with the periodicity of the supermoiré lattice, giving the second term in

Equation 15.
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Figure 7: Band structures in the �rst supermoiré mini BZ for: (a) a single 1L-G/B-hBN
interface, (b) Hmm parallel alignment, and (c) antiparallel alignment. The dispersion is
plotted in the hexagonal BZ.

The perturbative term in the Hamiltonian for θt = θb + 180◦ is

δHantipar =
6∑

n=1

[
i(−1)m2U0was −

4U1U3

h̄vFGb
n

− i
2U2

1

h̄vFGb
n

(ez ×Knn) · σ
Knn

]
e−

i
2
R·(Gt

n+Gb
n) eiKnn·r.

(16)

In this case, the large gap (Figure 7b) is canceled by reversing one of the top or bottom

B-hBN layers against the other as shown in Figure 7c. Thus, only a small gap due to the

inversion-symmetry-breaking components is present. The magnitudes of the di�erent terms

are compared in Figure 6b. Figure 7 shows examples of band structures corresponding to

the supermoiré Hamiltonians of Equations 15 and 16.

Band-Structure Reconstruction of B-hBN/1L-G/B-hBN:

Derivation of the Hamiltonian of Shortest Period

We take into account the combination of the top and bottom single-interface moiré patterns

via two mechanisms: (i) quantum-mechanical interference; (ii) lattice reconstruction, where
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the total 1L-G strain �eld is the sum of the strain �elds from each interface.

Within second-order perturbation theory, the Hamiltonian for the middle SL generated

by the shortest e�ective reciprocal-lattice vectors Kn,m = Gt
n − Gb

m that combine due to

interference is Hint
n,m = δH(2)

tb + δH(2)
bt , with

δH(2)
tb
(bt)

=
∑
n,m

1

h̄vF(Gb
m)2

([
U0U1(−1)mGb(t)

m · em + U0U1(−1)nGb(t)
m · en

+ U1U3(−1)n+m(ez ×Gb(t)
m ) · (em + en)

]
e∓iR

2 (Gb

m+Gt

n) ei(G
b

m−Gt

n)·r

+ i

[
(−1)mU1U0(ez ×Gb(t)

m ) · em − (−1)nU1U0(ez ×Gb(t)
m ) · en

− U1U3(−1)n+mGb(t)
m · (em − en)

]
σ3 e

∓iR
2 (Gb

m+Gt

n) ei(G
b

m−Gt

n)·r

+

[
i(−1)n+mU2

1

[
(en ·Gb(t)

m )(em · σ) + [en · (ez ×Gb(t)
m )][(ez × em) · σ]

]]
e∓iR

2 ·(Gb

m+Gt

n) ei(G
b

m−Gt

n)·r

+

[
U2
0G

b(t)
m − (−1)n+mU2

3G
b(t)
m + U0U3

(
(−1)m + (−1)n

)
(ez ×Gb(t)

m )

]
· σe∓iR

2 ·(Gb

m+Gt

n) ei(G
b

m−Gt

n)·r

)
.

(17)

The terms in the SL Hamiltonian in which combinations Kn,m = Gt
n −Gb

m arise due to

lattice reconstruction can be written as

δHrec
n,m =

∑
n,m

(
i
[
Ub
0 gn · uGt

m
− U t

0gn · u−Gb
m

]
+ iσ3

[
(−1)niUb

3 gn · uGt
m
+ (−1)miU t

3gn · u−Gb
m

]
+
[
(−1)niUb

1 (en · σ) (gn · uGt
m
)− (−1)miU t

1 (em · σ) (gn · u−Gb
m
)
])

ei(G
t

n+Gb

m)·R2 eiKnm·r. (18)

For each emergent reciprocal-lattice vector of the supermoiré pattern, the corresponding

term in the Hamiltonian of Equation 18 is of equivalent form to Equation 13 with u = 0,

where the reciprocal-lattice vectors are replaced by those of the supermoiré lattice, and the

coe�cients are rescaled:

δHrec
n,m = Cσ0 +∆σ3 +A · σ

+ a(0)nmf
(n,m)
1 (r) + a(3)nmf

(n,m)
2 (r)σ3 + a(12)nm [ez ×∇f

(n,m)
2 (r)] · σ

+ b(0)nmf
(n,m)
2 (r) + b(3)nmf

(n,m)
2 (r)f

(n,m)
1 (r)σ3 + b(12)nm f

(n,m)
2 (r)[ez ×∇f

(n,m)
1 (r)] · σ, (19)
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where f (n,m)
1 (r) =

∑
m ei(G

b
n+Gt

m)·R/2eiKn,m·r and f
(n,m)
2 (r) = i

∑
m(−1)mei(G

b
n+Gt

m)·R/2eiKn,m·r

encode the periodicity of the supermoiré potential. The �rst line in Equation 19 preserves

inversion symmetry, whereas the second line does not. The coupling constants a(i)nm and b
(i)
nm

are given in Tables 3 and 4. The constants in Equation 19 are:

gn,n+1
al,⊥ = −

aG
(
2
√
3δ − 3θt + 3θb

)
8π
(
δ2 +

√
3δ(θb − θt) + θb2 − θbθt + θt2

) , (20)

gn,n+1
rev,⊥ =

3aG(θ
b + θt)

8π
(
δ2 +

√
3δ(θb − θt) + θb2 − θbθt + θt2

) (21)

gn,n+2
al,s,⊥ = gn,n+2

rev,as,⊥ =
3aG

(√
3δ + θt + 2θb

)
8π
(
3δ2 +

√
3δ(θb − θt) + θb2 + θbθt + θt2

) (22)

gn,n+2
al,as,⊥ = gn,n+2

rev,s,⊥ = −
3aG

(
2
√
3δ + θb − θt

)
8π
(
3δ2 +

√
3δ(θb − θt) + θb2 + θbθt + θt2

) (23)

gn,n+3
⊥ = −

√
3aG
2π

δ

4δ2 + (θb + θt)2
(24)

gn,n+4
al,s,⊥ = gn,n+4

rev,as,⊥ = − 3aG(θ
b + θt)

8π
(
3δ2 +

√
3δ(θt − θb) + θb2 + θbθt + θt2

) (25)

gn,n+4
al,as,⊥ = gn,n+4

rev,s,⊥ −
3aG

(
2
√
3δ + θt − θb

)
8π
(
3δ2 +

√
3δ(θt − θb) + θb2 + θbθt + θt2

) (26)

gn,n+5
al,⊥ = −

aG
(
2
√
3δ − 3θb + 3θt

)
8π
(
δ2 +

√
3δ(θt − θb) + θb2 − θbθt + θt2

) , (27)

gn,n+5
rev,⊥ =

3aG(θ
b + θt)

8π
(
δ2 +

√
3δ(θt − θb) + θb2 − θbθt + θt2

) . (28)

Table 3: Coupling constants for B-hBN/1l-G/B-hBN with aligned B-hBN lattice vectors
[Cσ0 = −6(U t

0w
t
s + Ub

0w
b
s ), ∆ = −6(U t

3w
t
as + Ub

3w
b
as), A1 = 0, and A2 = 0]. w

t/b
as =

−(−1)mRe(gm · u±G
t/b
m
) and w

t/b
s = Im(gm · u±G

t/b
m
)

a
(0)
nm a

(3)
nm a

(12)
nm b

(0)
nm b

(3)
nm b

(12)
nm

n, n −(Ub
0w

t
s + U t

0w
b
s ) −(Ub

3w
t
s − U t

3w
b
s ) 0 (Ub

0w
t
as − U t

0w
b
as) −(Ub

3w
t
as + U t

3w
b
as) 0

n, n+ 1 −1
2
(Ub

0w
t
s + U t

0w
b
s )

1
2
(Ub

3w
t
s − U t

3w
b
s ) −U1

2
wsg

n,n+1
al,⊥

1
2
(Ub

0w
t
as + U t

0w
b
as) −1

2
(Ub

3w
t
as + U t

3w
b
as)

U1

2
wasg

n,n+1
al,⊥

n, n+ 2 −1
2
(Ub

0w
t
s + U t

0w
b
s ) −1

2
(Ub

3w
t
s − U t

3w
b
s ) −U1

2
wsg

n,n+2
al,s,⊥

1
2
(Ub

0w
t
as − U t

0w
b
as) −U3

2
(wt

as + wb
as)

U1

2
wasg

n,n+2
al,as,⊥

n, n+ 3 (Ub
0w

t
s + U t

0w
b
s ) −(Ub

3w
t
s + U t

3w
b
s ) −(Ub

1w
t
s + U t

1w
b
s )g

n,n+3
⊥ −(Ub

0w
t
s + U t

0w
b
s ) −(Ub

3w
t
as + U t

3w
b
as) (Ub

1w
t
as + U t

1w
b
as)g

n,n+3
⊥

n, n+ 4 −1
2
(Ub

0w
t
s + U t

0w
b
s ) −1

2
(Ub

3w
t
s − U t

3w
b
s ) −U1

2
wsg

n,n+4
al,⊥

1
2
(Ub

0w
t
as − U t

0w
b
as) −1

2
(Ub

3w
t
as + U t

3w
b
as)

U1

2
wasg

n,n+4
al,as,⊥

n, n+ 5 −1
2
(Ub

0w
t
s + U t

0w
b
s ) −1

2
(Ub

3w
t
s + U t

3w
b
s ) −U1

2
wsg

n,n+5
al,⊥ −U0

2
(wt

as + wb
as)

1
2
(Ub

3w
t
as + U t

3w
b
as) −U1

2
wasg

n,n+5
al,⊥
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Table 4: Coupling constants for B-hBN/1L-G/B-hBN with anti-aligned B-hBN lattice vec-
tors [Cσ0 = −6(U t

0w
t
s − Ub

0w
b
s ), ∆ = −6(U t

3w
t
as − Ub

3w
b
as), A1 = 0, and A2 = 0].

a
(0)
nm a

(3)
nm a

(12)
nm b

(0)
nm b

(3)
nm b

(12)
nm

n, n −(Ub
0w

t
s − U t

0w
b
s ) −(Ub

3w
t
s + U t

3w
b
s ) 0 U0(w

t
as + wb

as) −(Ub
3w

t
as − U t

3w
b
as) 0

n, n+ 1 −1
2
(Ub

0w
t
s − U t

0w
b
s )

1
2
(Ub

3w
t
s + U t

3w
b
s ) −U1

2
wsg

n,n+1
rev,⊥

1
2
(Ub

0w
t
as − U t

0w
b
as) −1

2
(Ub

3w
t
as − U t

3w
b
as)

U1

2
wasg

n,n+1
rev,⊥

n, n+ 2 −1
2
(Ub

0w
t
s − U t

0w
b
s ) −1

2
(Ub

3w
t
s + U t

3w
b
s ) −U1

2
wsg

n,n+2
rev,s,⊥

1
2
(Ub

0w
t
as + U t

0w
b
as) −U3

2
(wt

as − wb
as)

U1

2
wasg

n,n+2
rev,as,⊥

n, n+ 3 (Ub
0w

t
s − U t

0w
b
s ) −(Ub

3w
t
s − U t

3w
b
s ) −(Ub

1w
t
s − U t

1w
b
s )g

n,n+3
⊥ −(Ub

0w
t
s − U t

0w
b
s ) −(Ub

3w
t
as − U t

3w
b
as) (Ub

1w
t
as − U t

1w
b
as)g

n,n+3
⊥

n, n+ 4 −1
2
(Ub

0w
t
s − U t

0w
b
s ) −1

2
(Ub

3w
t
s + U t

3w
b
s ) −U1

2
wsg

n,n+4
rev,⊥

1
2
(Ub

0w
t
as + U t

0w
b
as) −1

2
(Ub

3w
t
as − U t

3w
b
as)

U1

2
wasg

n,n+4
rev,as,⊥

n, n+ 5 −1
2
(Ub

0w
t
s − U t

0w
b
s ) −1

2
(Ub

3w
t
s − U t

3w
b
s ) −U1

2
wsg

n,n+5
rev,⊥ −U0

2
(wt

as − wb
as)

1
2
(Ub

3w
t
as − U t

3w
b
as) −U1

2
wasg

n,n+5
rev,⊥

Time-Step Errors in DMC Calculations

To investigate the �nite-time-step errors in our DMC energies, we calculated the non-twist-

averaged ground-state DMC energy of 1L-G and 1L-hBN as well as the BE of 1L-G/1L-hBN

(stacking con�guration II) for a supercell composed of 3× 3 primitive cells. Figure 8 shows

that the time-step errors in the total energies at a time step of 0.04 Ha−1 are typically

∼ 30 meV/atom, but these errors partially cancel when the BE is calculated. The DMC

total energy of each 1L varies linearly with time step, up to ∼ 0.04 Ha−1. The nonlinear

contribution to the time-step bias is primarily due to the atomic cores, and hence largely

cancels out of the BE, which exhibits linear time-step bias up to a much larger time step of

∼ 0.2 Ha−1. We therefore extrapolate all our �nal DMC BEs to zero time step using time

steps of 0.04 and 0.1 Ha−1.
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