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BE Fitting Parameters

The fitting parameters in Equation [I] of the main text are shown in Table [I| while the even

and odd parts of the BE are shown in Figure [I}


n.drummond@lancaster.ac.uk

Table 1: Fitting parameters in Equation |1 of the main text for the BE of 11-G/1L-hBN.

Parameter Value
Ap —1.604928 eV A% /atom
A —490.4703 eV A3 / atom
Ao 74950.57 eV A2 /atom
Aos —1975507 eV A6 /atom
Ay 57.39082 eV /atom
By —16.12002 €V /atom
KAl 3.363638 A1
KB1 2.860883 A1
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Figure 1: Even and odd parts of Equation [l| of the main text for each of the stacking
configurations. The even BE parts of configurations IT and IIT lie on top of each other,
while the odd parts for configurations I, IV, and V are zero. The resultant BE curves are in
Figure [I| of the main text.



Equilibrium Separation, BE, and LBM Frequency

The LBM frequency of an incommensurate 1L-G/1L-hBN bilayer is wpy = QW,
where dy is the equilibrium separation that minimizes the translationally averaged BE
FEhpina(d) (the first term of Equation [1] of the main text), and pu = 2mc(ms + mx)/(2me +
mp + my) is the reduced mass of a primitive cell of 1L-G/1L-hBN. mg, mg, my are the C,
B, and N atomic masses. To evaluate the statistical error bars on dj, E(do), and wpy we
used a bootstrap Monte Carlo procedure,” in which we repeatedly fitted Equation [1| of the
main text to resampled DMC data drawn from Gaussian distributions centered on the mean
DMC energy at each layer separation, with the standard deviation being the standard error

in the mean energy at that layer separation. The mean and standard error in the mean of

do, E(dy), and wpy are then accumulated.?

DFT Geometries

DFT-calculated interlayer distances for 1L-G/11-hBN are reported in Table

Table 2: Equilibrium interlayer separation of 1L-G/1L-hBN calculated by DFT. Both layers
were assumed to have the 1L-G lattice constant in the present work and in Refs. [3] and /4]
while the lattice constant of 11.-hBN was used in Refs. [5land 6. An averaged lattice constant
was used in Ref. [7. The other DFT-LDA results without citation are from the present work.

Config.  Equilibrium interlayer separation (A)
DFT-LDA DFT-vdW=° DFT-RPA

I 3.5, 3.500 8 3.5, 3.49 3.55!51 3,46l
II 3.2, 3.22[8] 3.2, 3.30 3.3508 327l
111 3.4, 3.4018 3.4 ~ 3.4LB 3 43l
IV 3.3 3.4, 3.45 3.508

Vv 3.4




DFT Phonon Calculations

DFT phonon dispersions were calculated using ultrasoft pseudopotentials and a plane-wave
cutoff energy of 25 Ha within the LDA. We relaxed the lattice constant of the four-atom
cell of 1L-G/1L-hBN. We used a 5 x 5 supercell with a 35 x 35 Monkhorst-Pack k-point
mesh, and displaced the atoms by +0.04 A to evaluate the matrix of force constants within
the finite-displacement method. The initial equilibrium atomic positions were relaxed until
the Hellmann-Feynman forces® were < 5 x 107% eV A1

Figure [2[ plots the DET-LDA phonon dispersion curves for 11-G/1L-hBN in a four-atom
cell at the relaxed common in-plane lattice constant 2.47 A and the relaxed equilibrium
separations of 3.5 and 3.2 A for stacking configurations I and II, respectively. Since we are
considering low frequencies close to acoustic branches, we do not calculate Kohn anomaly

effects in 1L-G.
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Figure 2: DFT-LDA phonon dispersions of 1L-G/1L-hBN for stacking configurations (a) I
and (b) II. The branches that go to the LBM frequency at I are shown by dashed red curves
and the DMC LBM frequencies at I' point are shown by blue squares.

Lamé Parameters

The Young’s modulus of bulk graphite is Y = 1.02(3) TPa, and the in-plane Poisson’s ratio

is v = 0.165.% The lattice constants of Bernal-stacked graphite are a = 2.461 A and ¢ = 6.708
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A at 300 K.™ The 2d Young’s modulus of 1L-C is Yap = Y¢/2 = 340 Nm~' = 21.4 eV A2,
The first Lamé parameter is A = Yopr/[(1 + v)(1 — 2v)] = 4.5 éV A2, The second Lamé
parameter is = Yop /[2(1+v)] = 9.2 ¢V A~2. For thin graphene films, the Young’s modulus
was measured to be 1.0(1) TPa,™ in agreement with the bulk graphite value.

The Lamé parameters of 1L-hBN are Aygpy = 4.0 eV A2 and pnpN = 7.4 eV A‘Q, as

determined by atomic force microscopy.#

2d Adhesion-Potential Parameters
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Figure 3: Adhesion potential V of 1L-G/B-hBN as a function of offset £ of 1L-G relative to
B-hBN around the triangular path through the unit cell shown in the inset. The DMC results
are presented in black and V, (€) is in blue. The symbols indicate the stacking configurations
in Table [I] and Figure [I] of the main text. Both layers have the 1L-G lattice constant. The
error bars show the standard error in the mean of the BE at the minimum of the BE curve
for each stacking configuration. The error bars on relative adhesion potentials are smaller
than suggested by the error bars on the absolute values, due to the fact that the 1L energies
cancel out of differences in adhesion potential.

Adhesion potential (meV/cell)

To approximate the adhesion potential per unit cell V (€) for 11.-G/B-hBN with in-plane

offset £ and a common lattice parameter, we use a truncated Fourier expansion:

Va(k) = vaeigm'z ~  4Ebina(do, £)

= vy + Vs Z coS(8m * £) + Vas1 Z sin(g,, - £), (1)

m=1,3,5 m=1,3,5

3



where g, is a reciprocal lattice point and Fyiq is given in Equation [1| of the main text.
From the fit of that equation, we find vyy = —57(3), vs1 = 2.2(3), and v, = —3.5(4) meV

per primitive unit cell. The adhesion potential is plotted in Figure

Relaxation of 1L-G/B-hBN within the Continuum Model

Figure 4: (a) Beating between the moiré patterns (of periods A\ and Ap) from the top and
bottom 1L-G/B-hBN interfaces yields a supermoiré pattern of period A in the B-hBN/1L-
G/B-hBN LMH. (b) Real-space lattice vectors of the 1L-G lattice. (¢) Combining reciprocal
lattice vectors to give the reciprocal lattice vectors K,,, = G — G2 of the supermoiré
pattern. (d) Misalignment angles where the supermoiré reciprocal vectors K, vanish, and
the corresponding supermoiré lattice vector A, diverges.

When we allow an elastic layer to relax on a rigid substrate, the adhesion potential Vy
provides the energy of a unit cell at position r, because Vi (r) has the periodicity of the rigid
lattice, and hence Vi (r) = Va(£,), where £, is the position of the unit cell of the elastic layer

relative to the closest rigid lattice point. In other words, £, is simply the local offset of the



elastic lattice relative to the rigid lattice. Let g,, and gP be the reciprocal lattice points
of the unrelaxed elastic layer and the rigid (“bottom”) layer, respectively. We may write
the Fourier expansion of the adhesion potential as Va(€) = ) VBt (see Equation .
The difference of each corresponding pair of reciprocal-lattice points g,, and g° defines a
reciprocal lattice point G? = g,, — gP of the moiré supercell; see Figure . The total

adhesion potential per unit cell of the elastic layer can be written as

N N
1 1 . .
UA = N ngl VA(rn —+ u(rn)) = N g g UmeZan'rnelg}r)n'u(rn)

n=1 m
| XN
= DD e G (2)
n=1 m
~ vg—i—iZUmgzl-uG%. (3)

. iDL (b . _ b . . .
Equation [2{ uses e’8n™n = ¢H&8n=8m)tn — ¢=iGatn  Equation |3| assumes the displacement field

to be small compared to the rigid lattice constant, which is the case if
u < a”/(2m), (4)

where a® is the lattice parameter of the rigid layer.

The elastic energy per unit cell is

1 1
Ug = — = [ATr(e)? + 2uTr(e%)] d°r (5)
N (:1rystaul2
1
- §ZuLunq, (6)
q

where €;; = (Ou;/0x;+0u;/0x;)/2 is the 2d pure strain field, A and p are the Lamé coefficients
of the elastic layer, and N is the number of unit cells in the elastic layer. The dynamical

matrix at wavevector q is*®

Wq=A[A+maq" + pg’l], (7)



where A = |a; X a,| is the area of an unrelaxed primitive unit cell and I is the 2 x 2 identity

matrix.
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Figure 5: Displacement field u(r) of 1L-G unit cells in 1L-G/B-hBN LMHs, obtained by
numerically minimizing the total energy of Equation [2| within the continuum model. The
misalignment angle between the two layers is (a) 8 = 0; (b) 8 = 1°. The symbols indicate
the stacking configurations shown in Table [1} of the main text.

By minimizing the total energy U = Uy + U, with respect to the Fourier components of
the displacement field, we find the Fourier components of the displacement field (which has

the periodicity of the moiré superlattice) to be

1

gk -1 ,b
ugy, = v, Wap . (8)

(See the section below for the derivation of Equation [8]) This result holds for any reciprocal
lattice vector m. We do not assume any particular symmetry or structure in the deriva-
tion of Equation [§] so that Equation [§ is valid for any situation where one LM is allowed
to relax after being transferred onto a substrate of another LM with a sufficiently similar
lattice constant. Using a numerical evaluation of the right-hand side of Equation [2, we have
investigated the continuum model without the approximation of small displacement fields.
See the section below for details. For bilayers with greatly enhanced variations in the ad-
hesion potential as a function of lattice offset or with greatly reduced elastic parameters,

this method finds multiple energy minima. However, for 11-G/B-hBN LMHs, we only find



the one, global minimum of the energy over the range of displacement fields (< aypy) for
which the continuum model applies. For aligned lattice vectors, this global minimum is
0.82 peV per primitive cell lower than the energy predicted by the analytical approximation
of Equation [§] which finds that the 1L-G relaxation lowers the energy by 0.37 meV per
primitive cell. Physically, the stiffness of the two layers is too great to be overcome by the
variations in the adhesion potential, which only weakly perturbs the 1L-G atomic structure.

The displacement field that minimizes the energy is shown in Figure [5

Minimizing the Analytical Approximation to the Total En-
ergy within the Continuum Model

We assume finite-temperature effects to be negligible. Under zero external stress, the relaxed
displacement field is that which minimizes the total energy. Under the assumption of a small

displacement field the total energy can be written as:
1 .
U:UE+UA%EZuLunq+vo+zvagfn-uG%, 9)
q m

as shown in Equation We therefore require the derivatives of the energy with respect

to the independent complex Fourier components of the displacement field to be zero, i.e.,

Vu,U =0"and V ;U = 0. Wy is real and symmetric, and Wq = W_q. Since u(r) is real,
q

*
u; =u_g. S0

|
Vil = Vi, (5 2 “Eunq> i) vn(gn) dagy,
q m

| 1 ,
= vuq <§HLunq + §uT_qW_qu_q) +1 Z Um(gl;n)Téqu?n

m

W 1Y o) (10
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and, similarly,

1 1 . .
ViU = Vg (EuLunq + 5lﬂqw_qu_q) +iVy Y v (—gn) u_ay,

m

- Vug <u£WQUQ) + iVuL Z _U:nuTG}’)ng'Bz

Waquq = Y 05,80 0qan - (11)
Therefore, the displacement field that minimizes the total energy of 11.-G/B-hBN satisfies

uL = —1 Z vm(gfn)Tngéq’G% and uq= ZZ U;W;lggléq,g%, (12)

m m

so that uq and UL are an adjoint pair. This gives us Equation

Brute-Force Minimization of the Total Energy within the
Continuum Model

We wrote a program to evaluate the total energy per unit cell within the continuum model,
Equation [2| by brute-force summation over 1L-G lattice sites, with the Fourier components
of the displacement field determined by numerical minimization of the total energy using the
conjugate-gradients method.™ Initial real and imaginary parts of the Fourier components
of the displacement field in the z- and y-directions are chosen randomly from a uniform
distribution. The condition u(—q) = u*(q) is imposed to ensure that the displacement field
is real, but no other constraints are imposed on the Fourier coefficients.

For aligned 1L.-G and B-hBN lattice vectors, the total energy was evaluated by summing
over N = 173889 1L-G unit cells, corresponding to a 7 x 7 array of moiré supercells. The
Fourier expansion of the displacement field included moiré supercell reciprocal lattice vectors
up to a magnitude of 1 A~!. This ensures that we can describe features on the scale of a

single 1L-hBN unit cell (i.e., the limit of validity of the continuum model). The procedure
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was repeated for 240 different initial ugp , randomly chosen with magnitudes up to 10 A.

Modelling Moiré SL Minibands for Electrons in B-hBN /1L-
G/B-hBN

For 1L-G encapsulated between two B-hBN crystals,*"*¢ B-hBN /1L-G/B-hBN, the displace-
ment field u'/? = m Ugt/b e=iG%"T can be approximated as a sum of the displacements
arising from the top (t) B-hBN at twist angle #' and bottom (b) B-hBN at twist angle 6",
each described using Equation Such deformations lead to a complex moiré SL pattern
experienced by the electrons in the 1L-G, which differs for B-hBN layers with parallel and
antiparallel orientations of their unit cells (the latter case has 6* = 6° + 180°).

A highly aligned 11-G/B-hBN interface produces a perturbation dH to Dirac electrons,

lis the 1L-G Fermi velocity,** p

with Hamiltonian H = vpp - o + dH,?! where vp = 10 ms~
is the momentum operator and o is the vector of Pauli matrices. In a B-hBN/1L-G/B-hBN
system, the perturbations from the top (t) and bottom (b) interfaces superimpose and we

obtain the combined perturbation,??

6

OH = 0H + 61" = Y Y (U + (—1)" (iU o3 + Ute,, - o)) ' (FFR2) clanun() = (13)

a=t,b n=1
where e,, are unit vectors in the directions of the 1L-G lattice points in the first star in real
space, R is the reference shift between the top and bottom B-hBN crystals, and ugr(r) =
u'(r—R/2) +uP(r+R/2). The parameters take into account the 11.-G displacement caused
7/ /

by the top and bottom B-hBN crystals. The parameters Ué/b = 16.4% eV A,

Uf/b = —32.84m oV A and U?f/b = —32.8 eV A are taken from the earlier

V3ag
moiré SL model in aligned 1L-G/B-hBN LMHs, and {Gz/b} are the first star of reciprocal

21/ 82+ (04/P)2
ag

lattice vectors of the SLs corresponding to the top/bottom interfaces.

We consider two mechanisms that give rise to supermoiré perturbations to the electronic

11



structure. Firstly, the interference between the top and bottom moiré patterns leads to elec-
trons scattering off both lattices with respective reciprocal-lattice vectors G%b. This can be
described within second-order perturbation theory in 6H"P(u = 0) as scattering with the
combined reciprocal-lattice vectors K,,, = Gt — GP . Secondly, mixing between top and
bottom moiré patterns occurs due to 11-G lattice relaxation caused by the combined influ-
ences of the top and bottom B-hBN. Using the Fourier representation of the displacement
field, we perform an expansion in Equation for small displacement fields (Equation .
The resulting expression features different pairs of the moiré reciprocal-lattice vectors G%b,
which combine to give the effective reciprocal-lattice vectors K,,,,, each describing one of the
emergent periodic supermoiré structures, i.e. different beats between moiré patterns at the
top and bottom interfaces.

If one of the top or bottom B-hBN layers is strongly misaligned with respect to the
1L-G, while the other is almost aligned (e.g. #* > 6 ~ 0), all the supermoiré reciprocal-
lattice vectors are large, so that there is no effect of the supermoiré periodic structure at low

energies. However, strain from the near-aligned layer opens a gap:
As(6°) = —6Uswss, (14)

where wif” = —(=1)"Re(gm - u

Figure [6h.

For any supermoiré reciprocal-lattice vector K,,,,, the real-space period of the correspond-

.gv»)- The gap is plotted against misalignment angle in

ing supermoiré pattern is A,,, = f/—’%% In the following we focus on the longest-period

effects, and hence keep only the shortest nonzero K,,,. As we illustrate in Figure [dd, for
certain misalignment angles of the top and bottom B-hBN layers in B-hBN/1L-G/B-hBN,
combinations of the form K,,,,, = G! —GP. become very small and can even vanish completely.
Hence these combinations yield the shortest reciprocal-lattice vectors at those misalignment

angles. The most generic conditions for long-period beats are for m = n, for which the

12
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Figure 6: (a) Strain-induced energy gap Ag of a single interface between 1L-G and B-hBN
in B-hBN/1L-G/B-hBN LMH (b) Comparison of the magnitudes of the different energy
contributions in Equations [15] and

period of the supermoiré lattice diverges for any stacking configuration with ' = . We
now discuss the corresponding low-energy Hamiltonians and properties of this configuration
for the relevant low-energy regime with ' ~ 6. Since 1L-hBN does not preserve inversion
symmetry, the configurations in which the top and bottom B-hBN layers are parallel and
antiparallel yield distinct cases.

The perturbative term in the electronic 1L-G Hamiltonian for the case in which the top

and bottom B-hBN are aligned (6' = 0) is

6Hpar = — 12U3wa50'3

6 9 ‘
. Z |:2U3wasg3 n 4U1U3 . 2U1 (ez X Knn) o —%R'(G;—kGh) eiKnnT

e (15)

hUF G}TDL ! h’UF Gg Knn ’

n=1

where e, is the unit vector in the +z-direction. As the inversion-symmetry breaking is
enhanced by the two aligned B-hBN acting jointly, the gap is twice as big as that induced
by a single interface, giving the first term in Equation The effect of both interfaces

combined oscillates with the periodicity of the supermoiré lattice, giving the second term in

Equation
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Figure 7: Band structures in the first supermoiré mini BZ for: (a) a single 1L-G/B-hBN
interface, (b) H,,, parallel alignment, and (c) antiparallel alignment. The dispersion is
plotted in the hexagonal BZ.

The perturbative term in the Hamiltonian for 6° = 0 + 180° is

6
4U1U3 . 2U12 (ez X Knn) O —%R-(G%A-GB) eiKnn'I’

antipar — (—1)"2 as -
oH Hp nzzl |:Z( ) Uow hUFGE ZhUFGg Knn ©

(16)
In this case, the large gap (Figure ) is canceled by reversing one of the top or bottom
B-hBN layers against the other as shown in Figure [7c. Thus, only a small gap due to the
inversion-symmetry-breaking components is present. The magnitudes of the different terms

are compared in Figure [fb. Figure [7] shows examples of band structures corresponding to

the supermoiré Hamiltonians of Equations [15] and

Band-Structure Reconstruction of B-hBN /1L-G/B-hBN:
Derivation of the Hamiltonian of Shortest Period

We take into account the combination of the top and bottom single-interface moiré patterns

via two mechanisms: (i) quantum-mechanical interference; (ii) lattice reconstruction, where

14



the total 1L-G strain field is the sum of the strain fields from each interface.
Within second-order perturbation theory, the Hamiltonian for the middle SL generated
by the shortest effective reciprocal-lattice vectors K,,,, = G!, — G that combine due to

interference is H", = — 1) + oM, with

(2) 1™ b(t) | 1) b(t) |
6H% me@ (MM()GW em + UoU1(—1)"GhY - e,

+ U1 Us(=1)" ™ (e, x GEW) - (e, + en)} eFi (G +Gl) i(Gy,—Gl)r
+{()Lum%xegnem(n%um%xewhen
— T Us(~1)"™ G2 . (e, — e )} g eFIB(GLAG) (G -Gl x
+ [i(—l)"’“"’Uf[(en LGP (e, o) + [en - (e, x GEMY][(e. X en) .g]]}e% (Gh,+GY) Li(Gh~GY)r
{ 2GEY — (—1)"TmUZGEY + UgUs ((-1)™ + (—1)™) (e, x GEM )} . geTiB(Gh+GY) ei(Gi’rLG;).r).
(17)
The terms in the SL Hamiltonian in which combinations K,,,, = Gt — GP arise due to

lattice reconstruction can be written as

Mo =D <Z [Ué’gn ‘ugy, — Uggn - “—GEJ +io3 [(*1)"@'U§°gn “ugs, +(=1)"iUsgn - u Gb}

n,m

+ [0 (e 0) (8 - uc,) — (<1} (e - ) (8- u_Gaﬂ)D HCLr G (Mo (1)

For each emergent reciprocal-lattice vector of the supermoiré pattern, the corresponding
term in the Hamiltonian of Equation [18|is of equivalent form to Equation [13| with u = 0,
where the reciprocal-lattice vectors are replaced by those of the supermoiré lattice, and the

coeflicients are rescaled:

OHyon = Cop + D03+ A -0
+ a9 1 (1) + a5 (00 + aPle, x VY ()] - o

+ 0O £ () 4 08 £ (0) £ (0) g 4+ 002 £ (0 e x VA ()] o, (19)
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where flmm) (r) = Zm cH(GR+GL ) R/20iKn,mT 41 f2(n7m) (r) = Z—Zm(_1)mez‘(GEL+G§n)~R/2€z‘Kn,m~r

encode the periodicity of the supermoiré potential. The first line in Equation preserves

inversion symmetry, whereas the second line does not. The coupling constants '), and

are given in Tables [3]and [ The constants in Equation [I9] are:

. ac (2v/36 — 30" + 36")
Gl T T (32 1 V/3o(60 — 6) + 07 — 66 + 67
gn,n+1 _ 3&(} (Hb + et)
8 (02 + V/BO(6P — 61) + 607 — gbgr + 62)
gn,n+2 _ gn,n+2 _ 3&(} (\/§5 + Qt + er)
al,s, L rev,as, L ] (352 + \/35(9}3 . et) + 9b2 + ebet + 9t2)
gn,n+2 _ gn,n+2 — BOJG (2\/55 + eb _ et)
al,as, L rev,s, L S (352 + \/g(s(eb . Qt) 4 9b2 + gbpot + 9t2)
n,n+3 — _ \/ga’G 0
9L 21 462 + (6" + 61)2
gn,n+4 _ gn,n+4 _ 30,(}(919 + Qt)
al,s, L rev,as, L ] (352 + \/§(5(9t . eb) + 9b2 + gb gt + 9‘52)
n,n+4 n,n+4 3G’G (2\/36 + et — eb)

Jatas, L = Grevs, L~ g (302 4+ V/36(6" — 6°) + 6°2 + 6Pt + 61)
ac (2v/36 — 36" + 36")

n,n+5 - _
Ga kT TS (07 1+ V/30(0F — 0%) + 6% — gbgr 1 0)
n,n+5 __ 3aG (eb + et)

Grev, L — . (52 i \/55(@ — 00 + gb2 _ gbgt + 91;2) .

b,

Table 3: Coupling constants for B-hBN/11-G/B-hBN with aligned B-hBN lattice vectors

_ 006 b,,.b _ 00 b,,b _ _ t/b
[Co, = —6(Ulwt + Ujwy), A/b— —6(Uswt, + URwY,), A1 = 0, and Ay = 0]. was =
t
m .
—(=1)"Re(gm - u,gyv) and ws'” =Im(gy -, i)
\ | a', \ ald), \ alid) \ b, \ b, \ b2 \
n,n *I(U(?w; + Uguy) T(U;?WQ — Ujuy) - 0 » 1(U$”w;‘s — Ugwy,) *I(U;?w; + Ujwy,) " 0 »
T, n,n
n,n+1 *§<UL1))U'; + Ugwy) E(Uéj’w; — Ujwy) *[}Tl’wsgal.L“ E(U(?w;s + Ubwb, *Q(?gwgs + Ulwh,) l}leasgal,L+2
1 1 n,n+- 1 . n,n
n,n+2 | —5(Upwt + Ugwp) | —3(Upwl — Ugu?) — Ul (UGl — Ugwdy) | =G (whs + why) R
n,n+3 (lUé"wé + Uwy) *1<U§wé + Uswp) *(U}’wéb + Ul‘wél)igi’” ‘ ;(Ué’wé + Ugw?) fl(Ue?w;s + Ugwyy) (UFw;J + Ufwa?i)lgi’” ‘
J n,n+4 n,n+4
n,n+4 | —5(Ugwy + Ugwy) | —5(Upw} — Uswy) — UL §(U§ s — Ugwly) | =5 (U3wis + Uswl,) sl
nn+5 | —L(Uwt + Ugw?) | —1(Upwt + Ulw?) —Grwsgy —P(wis +wd) | 3(USwi + Uwl,) — P WasGyr L
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Table 4: Coupling constants for B-hBN/1L-G/B-hBN with anti-aligned B-hBN lattice vec-
tors |Cyy = —6(Uiwt — Ubw?), A = —6(Utwt, — Ubw?y), Ay =0, and Ay = 0].

\ [ a \ ah \ alt bion \ bion \ bw) \
o | = (Ohut - Oy | —(Obu + Ul 0 Tl +wk) | —(O%wl, - Oul) 0
non+ 1| —5(Ugws = Ugwy) | 5(Uswg + Uguy) —Zwggret! 3 (Upwis — Upwyy) | —5(Uswig — Ugwyy) Gwagrert!
n,n+2 7%<U15)LL; - Uﬁ’w:) 7%(U?LL; + Ué"wi’) 7%[17‘(/;19\7[:1 %<ULI)) Wis + an:s) 7%(%‘1& - wl;s) %wdbqrﬂnzji
mon+3| (Ubut— Ugu?) | —(Ubut — Usub) | —(Ubui — Ubul)gi™® | —(Uput — Uu®) | —(Ubul, — Uk | (Ubw, — Ubut g™+
non+4 | =5 (Ugwg — Ugu?) | —5(Ugwg + Uswy) — gt 3 (Upwi, + Ugwy,) | —5(U3wi, — Usw},) G Was G,
nyn+5 || —5(Upwt — Ugwl) | —5(Upwf — Uwy) ~Gusgrn —Qwh —wl) | 5(URwl — Ujuy,) — G wasgi

Time-Step Errors in DMC Calculations

To investigate the finite-time-step errors in our DMC energies, we calculated the non-twist-
averaged ground-state DMC energy of 1L-G and 1L-hBN as well as the BE of 1L-G/1L-hBN
(stacking configuration IT) for a supercell composed of 3 x 3 primitive cells. Figure |8 shows

1

that the time-step errors in the total energies at a time step of 0.04 Ha™" are typically

~ 30 meV /atom, but these errors partially cancel when the BE is calculated. The DMC

~1 The nonlinear

total energy of each 1L varies linearly with time step, up to ~ 0.04 Ha
contribution to the time-step bias is primarily due to the atomic cores, and hence largely
cancels out of the BE, which exhibits linear time-step bias up to a much larger time step of

~ 0.2 Ha=!. We therefore extrapolate all our final DMC BEs to zero time step using time
steps of 0.04 and 0.1 Ha=*.
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