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Abstract 51 
 52 

The role of behaviour – choices, actions, and habits – in shaping neurodivergent development 53 
remains unclear. Here, we introduce computational rationality as a framework for 54 
understanding dynamic feedback between brain and behavioural development, and 55 
neurodevelopmental variation. 56 
 57 
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Computational rationality and developmental neurodivergence 60 
 61 

The search for the neurocognitive bases of conditions like dyslexia (see Glossary), 62 
dyscalculia, and developmental language disorder (DLD) is a central focus in developmental 63 
science. Despite the lessons of the transdiagnostic revolution, which highlights the complexity 64 
inherent in neurodevelopmental conditions and the limitations of core-deficit hypotheses, this 65 
literature remains fundamentally divided between causal accounts centred, for instance, on 66 
either auditory or visual perception, working memory, or statistical learning, each associated 67 
with a candidate neural substrate [1]. In contrast, behavioural contributions to 68 
neurodevelopmental differences remain understudied. There is, of course, acknowledgement 69 
that phenotypic variation is the product of probabilistic epigenesis, that is, the dynamic 70 
interaction between genetics, neural activity, behaviour, and the environment [2]. However, 71 
how a child’s behaviour – their choices, actions, and habits – shapes neurodivergent 72 
development remains hard to define. 73 
 74 

One way to understand how behaviour is not only influenced by but also influences 75 
neurodivergent child development is through computational rationality, which assumes that 76 
behaviours are optimized for achieving the highest expected utility subject to neurocognitive 77 
resource constraints [3]. Computational rationality inherits from a long tradition in decision 78 
theory that incorporates constraints to explain deviations from axiomatic rational behaviour 79 
(e.g., bounded rationality). It is this core theoretical focus on what best to do when faced with 80 
constraints, combined with a novel focus on neurocognitive information processing, that makes 81 
the computational rationality paradigm well suited to determining behavioural contributions to 82 
neurodevelopmental variation.  83 
 84 
The rational analysis of neurodivergent child behaviour  85 
 86 

The description of neurodivergent child behaviour as ‘rational’ might appear 87 
counterintuitive. While neurotypical children tend to engage with stimuli about which they are 88 
uncertain, seemingly to maximise learning and reward, neurodivergent children often 89 
disengage from stimuli about which they are characteristically uncertain, or engage with them 90 
unconventionally. For a child with dyslexia, this might mean relying on whole-word 91 
recognition rather than letter-by-letter phonological decoding when reading [4]. For a child 92 
with dyscalculia, it might mean relying on counting rather than ‘subitizing’, including using 93 
visual aids like their fingers, to determine the number of items (e.g., dots) in a set [5]. And for 94 
a child with DLD it might mean relying on situational cues such as peer behaviour in order to 95 
decode spoken instructions, for instance those from a teacher [6]. These heuristics, which are 96 
sometimes termed compensatory strategies, may appear suboptimal because they do not 97 
always generalise well, perhaps leading to worse outcomes. Sight reading, for instance, may 98 
not support the accurate pronunciation of a novel word, and strategies used in a familiar 99 
environment (e.g., in parent-child interactions at home) might not be as effective elsewhere.  100 
 101 
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The computational rationality paradigm nevertheless interprets such behaviours not – 102 
as is common – in terms of ‘deficiency’ or ‘demotivation’, but instead as adaptive efforts to 103 
maximize utility given the individual’s neurocognitive makeup and the environment in which 104 
they find themselves. The claim here is that optimal decision-making about which information 105 
sources to attend to and which action policies to pursue occurs in the context of a limited-106 
capacity attentional system and perceptual experience that is imprecise due to both exogenous 107 
noise and endogenous neurocognitive noise on a continuum from typical to severe [7,8] (Figure 108 
1A-B). When the expected cost of information processing is high, an implicit cost-benefit 109 
analysis may bias the child towards inferences and the selection of action policies with high 110 
prior probability and likewise towards heuristics that the child associates with relatively low 111 
information processing cost given their experience (Box 1; Figure 1C-F). Disengagement or 112 
unconventional engagement with text in dyslexia, numeric stimuli in dyscalculia, and speech 113 
in DLD may be understood as the outcomes of an implicit resource-rational trade-off of this 114 
kind – a trade-off that becomes increasingly habitual during early development.   115 

 116 
Computational rationality may explain hallmark neurodivergent behaviours including 117 

disengagement and defaulting to common visual or situational cues or frequent structures (e.g., 118 
spellings, words, or syntax) and similarly to high probability action policies and heuristics 119 
when reading, using numbers, or listening to or producing speech [4–6]. Adaptive 120 
disengagement should also be considered in the context of learning by thinking, which plays 121 
a crucial role in early cognitive development [9]. That is, high expected information processing 122 
cost may reduce the likelihood of the child experimenting with a given class of stimuli (e.g., 123 
numbers or language) through mental analogy and simulation in the absence of direct input, 124 
providing an additional obstacle to developing proficiency. Importantly, computational 125 
rationality is indifferent to diagnostic labels and to the broader neurotypical and neurodivergent 126 
distinction – the neurodivergent child is doing exactly what any rational agent would do: 127 
optimizing their finite resources to maximise expected utility within a limited time horizon [7]. 128 

 129 
Adaptive disengagement as developmental niche construction 130 
 131 

Collectively, adaptive disengagement behaviours attributable to neurocognitive 132 
constraints reflect the construction of a developmental niche that regulates pressures on the 133 
child because it is shaped to their abilities, needs, and preferences [10]. A consequence of this 134 
is that although disengagement behaviours may be optimal within a specific setting and short 135 
time horizon, they may not promote effective and generalisable long-term learning, and so may 136 
reinforce learning differences over time. Active disengagement or unconventional engagement 137 
with text, numeric stimuli, or speech, for instance, may contribute to the reinforcement of 138 
learning delays in dyslexia, dyscalculia, and DLD by precluding regular exposure to and 139 
practice with relevant stimuli (Figure 1C-E).  140 
 141 

Formalising this idea, we recently showed that an active agent-based model with a 142 
precision deficit – a proxy for primary neurocognitive constraints, the nature of which was 143 
bracketed out – adaptively disengaged from subjectively noisy stimuli [11] (Figure 1C-D). This 144 
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resulted in worse learning of stimuli affected by the precision deficit over time compared to a 145 
control model which had the same perceptual precision deficit, but which was programmed to 146 
engage equally with all of the information sources in its environment (Figure 1E). The capacity 147 
for variable engagement to shape a learning trajectory in this way has been described in terms 148 
of a Matthew effect [4] (because ‘the rich get richer’, and vice versa), and our treatment here 149 
in terms of computational rationality lends traction to this idea and highlights its transdiagnostic 150 
importance (Matthew effects have commonly been studied in dyslexia). However, though 151 
complementary, these frameworks are somewhat different. Literature citing the Matthew effect 152 
often centres on affective disengagement due to repeated failures to learn, in contrast to the 153 
idea developed here that adaptive disengagement may be an optimal policy. 154 
 155 

There is an important link here with the perceptual narrowing literature, which 156 
indicates that infants gradually lose sensitivity to perceptual distinctions outside of their 157 
experience (e.g., to non-frequent language sounds) [12]. Our account argues that an analogous 158 
effect is seen because of the developmental niche shaped by optimal moment-to-moment 159 
decision making under neurocognitive constraints. The parallel is that information outside of 160 
the child’s niche – defined in terms of modes of passive learning, action policy selection, inter-161 
personal experiences, and mental simulation – is subject to attenuated encoding in memory, 162 
itself explaining learning delay. This feedback cycle can be inferred from the formalism 163 
presented in Box 1 (see also Figure 1), where perceptual imprecision or processing constraints 164 
bias the rational agent to make inferences and select action policies with high prior probability, 165 
inhibiting exploration and learning [7,8]. Considering non-linear dynamics, saddle points, and 166 
the notion of sensitivity to initial conditions, a cycle like this may in principle be set in motion 167 
by relatively small perturbations in precision and capacity, in contrast to the gross, discrete 168 
deficits commonly assumed under dominant core-deficit hypotheses. This includes very subtle 169 
neurological variation attributable to a constellation of genetic and environmental risk factors 170 
and in itself difficult to reliably detect through neuroimaging and neurophysiological 171 
assessment. Resource rational decision-making may be an essential behavioural mechanism 172 
linking different forms and severities of neurological variability to common 173 
neurodevelopmental phenotypes. 174 
 175 
Concluding remarks 176 
 177 

In its search for core neurocognitive deficits, developmental science has overlooked the 178 
potential for adaptive disengagement behaviours to amplify individual differences and play a 179 
formative, transdiagnostic role in conditions including but not limited to dyslexia, dyscalculia, 180 
and DLD. Computational rationality builds on established frameworks examining decision-181 
making under constraints and points to formal mathematical and computational tools that can 182 
help to determine how a child’s behaviour – their choices, actions, and habits – shapes 183 
neurodevelopmental variation. In contrast to dominant core-deficit approaches, these 184 
formalisms are characteristically multivariate – they view behaviour and learning as the 185 
product of dynamic interactions between factors including perceptual integrity, processing 186 
bandwidth, policy selection, and developing long-term knowledge. This perspective enriches 187 
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our understanding of probabilistic epigenesis and our capacity to respond to individual 188 
differences effectively when required. Future research should pursue the application of 189 
computational rationality to neurodevelopmental variation, validating existing formalisms 190 
developed to explain adult behaviour against child data.   191 
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Box 1  219 
 220 
A normative Bayesian model of computational rationality 221 
 222 
Agents infer a parameter such as the identity of a spoken or written word, 𝜇, from an exemplar, 223 
𝑥, where the posterior inference, 𝑃( µ ∣∣ 𝑥 ), depends on perceptual experience, 𝑃( 𝑥 ∣∣ µ ), and 224 
prior experience, 𝑃(µ): 225 
 226 
              𝑃( µ ∣∣ 𝑥 ) ∝ 𝑃( 𝑥 ∣∣ µ )𝑃(µ) 227 
 228 
Learning is driven by the relative precision (inverse variance) of the perceptual experience, λ, 229 
and prior, λ!. High perceptual precision supports effective learning (updating µ! to µ*), while 230 
low precision leads agents to default to their priors:  231 
 232 
                         µ* = µ! +

"
"#"!

(𝑥 − µ!)  233 

 234 
Reward, 𝑈 , is inversely proportional to prediction error, 𝜖 = (µ − µ*)$ , and dependent, 235 
therefore, on perceptual precision. Agents can increase perceptual precision, λ, by increasing 236 
attention. However, the critical feature of computational rationality is that attention is bounded, 237 
as expressed by:  238 
 239 

       𝐶 = 𝐵 log$ 51 +
%
&
7 240 

 241 
Where 𝐶  is capacity, 𝐵  is bandwidth, and %

&
 is signal-to-noise ratio. Mutual information, 242 

𝐼(µ; 𝑥), formalises how attention reduces uncertainty. The optimisation problem agents face 243 
balances reward procurement with attentional cost, κ: 244 
 245 
       λ∗ = argmax

"
			𝑈 − κ𝐼(µ; 𝑥) 246 

 247 
With high exogenous or endogenous noise, attentional disengagement and reliance on priors 248 
may be optimal. This formalism can be extended to policy selection with similar conclusions: 249 
noisy state knowledge results in the avoidance of action policies with low prior probability 250 
[7,8].   251 
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Figure 1 252 
 253 
Computational rationality and neurodevelopmental variation 254 
 255 
Note. (A) Numeric, text, and speech information sources and states (𝜇, 𝑠), with low precision 256 
( λ ) indicating neurocognitive constraints. (B) Abstract encoder-decoder communication 257 
channels for perception (top) and action (bottom).	𝑝(𝑚) indicates encoding,	𝜖 is error, 𝑎 is 258 
action, and 𝜋 is policy (see [7,8]). (C) Engagement with numbers and text (high precision) and 259 
speech (low precision) over time [11]. Engagement is initially symmetrical across information 260 
sources, but engagement with speech declines over time due to low precision limiting learning 261 
and reward. (D) Engagement-related error rates over time. Low engagement with speech is 262 
associated with a high error rate for this information source. (E) Error rates for two agents with 263 
the precision deficit illustrated in (A): the ‘active’ agent engages adaptively with numeric, text, 264 
and speech information sources as per computational rationality; the ‘clamped’ agent is 265 
programmed to engage symmetrically with all three information sources (i.e., this agent cannot 266 
disengage from speech). Clamping results in better learning for speech stimuli, illustrating that 267 
resource rational behaviour (or ‘rational inattention’) can deepen learning delays over time [11]. 268 
(F) Resource-rational trade-off between heuristic and direct computation strategies in advanced, 269 
delayed, and restricted agents. Direct computation is most effective in advanced agents, 270 
mimicking a neurotypical profile. Direct computation progresses more slowly in delayed 271 
agents, and asymptotes early in restricted agents, mimicking plausible neurodivergent profiles. 272 
Direct computation by each agent may be compared to the fast-and-frugal heuristic strategy. 273 
At t₁, the heuristic strategy is universally optimal due to insufficient time for direct computation 274 
(i.e., inference refinement and complex action policy planning). At t₂, the heuristic remains 275 
optimal for the delayed and restricted agents, but direct computation is optimal for the advanced 276 
agent. By t₃, all agents benefit more from direct computation than from the heuristic strategy, 277 
though this gain is relatively small for the restricted agent.   278 
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Glossary 279 
 280 
Bounded rationality: a decision-making framework emphasising that agents rely on heuristics 281 
and satisficing to navigate cognitive, temporal, and informational constraints effectively. 282 
 283 
Compensatory strategies: adaptive techniques and heuristics used by individuals with 284 
neurodevelopmental difficulties to work around specific challenges to achieve a goal. 285 
 286 
Computational rationality: framework in which behaviour is understood as the outcome of 287 
decision-making optimized to maximize expected utility under constraints in a given 288 
environment. The word computational highlights a novel focus on biological and artificial 289 
neural processing.  290 
 291 
Core-deficit hypothesis: assumption that symptoms of a developmental condition arise from 292 
a single, discrete cognitive or neurological cause. 293 
 294 
Decision theory: classically models rational decision-making under uncertainty using 295 
expected utility and probability. 296 
 297 
Developmental language disorder (DLD): neurodevelopmental condition affecting spoken 298 
language acquisition and use. 299 
 300 
Dyscalculia: neurodevelopmental condition affecting the ability to understand and use 301 
numbers and arithmetic. 302 
 303 
Dyslexia: neurodevelopmental condition characterized by reading difficulties, typically 304 
involving phonological processing. 305 
 306 
Learning by thinking: the use of mental simulation, synthesis, and reasoning to solve 307 
problems or develop knowledge in the absence of direct input. 308 
 309 
Developmental niche construction: framework proposing that organisms actively modify 310 
their environments in ways that shape their development. 311 
 312 
Perceptual narrowing: developmental process in which the ability to perceive stimuli 313 
becomes more specialized, reducing sensitivity to less frequently encountered information. 314 
 315 
Probabilistic epigenesis: idea that development results from the dynamic interaction of 316 
genetic, neural, behavioural, and environmental factors. 317 


