
1

Privacy-aware Edge Computation Offloading with
Federated Learning in Healthcare Consumer

Electronics System
Yiming Fei, Hao Fang, Zheng Yan, Lianyong Qi, Muhammad Bilal, Yang Li, Xiaolong Xu∗,

and Xiaokang Zhou∗

Abstract—The continuous iteration of consumer electronics has
significantly promoted the development of medical devices, which
has enabled the collection of large amounts of heterogeneous
medical data. These data are offloaded from local devices to cloud
servers for processing using traditional methods, which results in
high transmission latency and the risk of privacy leakage. Addi-
tionally, researchers have employed federated learning to protect
data privacy, but this approach can lead to a straggler effect due
to the limited computational and communication resources of ter-
minal devices. To address these issues, a computation offloading
framework is designed to optimize task and resource allocation,
addressing multi-optimization problems and mitigating the strag-
gler effect in federated learning. Moreover, a novel computation
offloading method within a federated learning framework assisted
by edge computing, named DRWB, is proposed. Specifically, we
develop a deep reinforcement learning-based approach to transfer
lagging training tasks to idle edge servers, enhancing data
processing speed, minimizing transmission delays, and protecting
user privacy. Extensive experimental results demonstrates that
the DRWB method outperforms baseline methods, showcasing
superior performance in handling heterogeneous medical data
tasks.

Index Terms—Smart healthcare, Deep reinforcement learning,
Federated Learning, Edge computing, Computation offloading

I. INTRODUCTION

INTEGRATING wearable biosensors into the Internet of
Things (IoT) framework is transforming the healthcare

industry, particularly in smart healthcare [1]. For example,
smartwatches from major manufacturers can collect sensitive

Yiming Fei is with the School of Software, Nanjing University of
Information Science and Technology, Nanjing 210044, China. (e-mail:
202212210038@nuist.edu.cn).

Hao Fang is with Reading Academy, NanJing University of Information Sci-
ence and Technology, Nanjing 210044, China. (e-mail: fanghuor@163.com).

Zheng Yan is with the School of Cyber Engineering, Xidian University,
Xi’an, Shaanxi, 710026, China (email: zyan@xidian.edu.cn).

Lianyong Qi is with the College of computer science and technology,
China University of Petroleum (East China), Qingdao, China. (email: liany-
ongqi@gmail.com).

Muhammad Bilal is with the School of Computing and Communications,
Lancaster University, United Kingdom. (email: m.bilal@ieee.org).

YangYang Li is with the College of Mechanical and Electrical Engineering,
Shihezi University, Shihezi 832003, China (email: liyang328@shzu.edu.cn).

Xiaolong Xu is a professor in the School of Software, Nanjing University
of Information Science and Technology, Nanjing 210044, China. (e-mail:
xlxu@ieee.org).

Xiaokang Zhou is with the Faculty of Business and Data Science, Kansai
University, Japan. (email: zhou@kansai-u.ac.jp).

∗Xiaolong Xu and Xiaokang zhou are the co-corresponding authors.

user data daily. This private data, processed and analyzed with
machine learning, provides users with personalized services
and recommendations [2]. In a more medical-specific con-
text, wearable biosensors offer healthcare providers detailed,
patient-specific data [3]. By analyzing this data with deep
learning models, healthcare providers can achieve more ac-
curate diagnoses, timely interventions, and customized treat-
ment plans. This personalized approach undoubtedly has the
potential to significantly enhance patient health outcomes [4].

In conventional centralized machine learning systems, the
data from the smart medical framework has to be sent to
a central server for analysis. However, as medical devices
increase in number, the data collected by them is also growing
exponentially [5]. If a purely centralized solution is used for
data processing, communication delays will be caused due to
insufficient bandwidth, which will also lead to data processing
delays [6]. In addition, placing these sensitive data on a central
server or outsourcing them to a third party for data processing
may lead to serious privacy and security issues. Data related
to health information is highly bound to individuals and is
extremely sensitive and private [7]. With the anticipated rise
in the number of wearable devices, the generation of health
data will become increasingly decentralized. A straightforward
centralized data processing approach will be neither secure
nor practical in such a scenario. The emergence of federated
learning (FL) effectively addresses these challenges. FL en-
hances data privacy by enabling models to be trained locally
on devices. As a result, data security is improved, and both
latency and data transmission costs are reduced [8].

Nevertheless, due to the heterogeneity and large volume
of medical data that needs to be processed on terminal
devices(TDs), a purely FL framework inevitably faces the
problem of training lag. The laggard effect is caused by
different nodes having inconsistent training speeds due to
variations in computing power, network conditions, and other
factors, thus slowing down the training progress of the overall
model [9]. This problem is particularly prominent in the field
of smart medical care, due to significant variations in the speed
and accuracy of data collection among different sensors, and
the transmission to the TD is also significantly different. At
the same time, the processor capabilities of the TD are also
different [10].

Recent advancements in smartphone processors have made

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

2

on-device data processing a viable option [11]. However, the
limited computational capacity and battery life of these devices
pose substantial constraints, making it impractical to process
extensive volumes of heterogeneous data exclusively on them
[12]. In our envisioned framework, the bulk of processing tasks
are offloaded to strategically positioned edge servers. These
servers, with their robust capabilities, are inherently equipped
to handle such intensive computational tasks. Thus, although
FL and edge computing have demonstrated great potential
in medical data processing and privacy protection, efficiently
integrating these two technologies remains a pressing issue
that needs to be addressed [13].

In this context, we propose an innovative task offloading
methodology grounded in deep reinforcement learning. By
dynamically evaluating factors such as data size, task priority,
and edge server proximity, our method determines the most
efficient offloading strategies. This intelligent allocation of
processing tasks between end devices and edge servers op-
timizes system efficiency and reduces latency. Consequently,
our approach enhances the performance of smart healthcare
systems and significantly improves the overall quality of
patient care. The main contributions of this paper include:

• To enhance medical data processing speed, we propose a
computation offloading model within a federated learning
framework that optimizes task and resource allocation,
addressing the multi-optimization problem.

• Propose a deep reinforcement learning-based method to
optimize offloading strategies, enhancing efficiency by
offloading intensive tasks to idle edge servers, reducing
the computational burden on end devices, and protecting
patient privacy.

• Comparative analysis with simulated and real datasets
shows that our method consistently outperforms existing
approaches, verifying the efficiency and reliability of our
offloading strategy.

The paper is structured as follows: Section II reviews exist-
ing research on edge computing in smart healthcare. Section
III describes the proposed system model, including problem
formulation and constraints. Section IV details the design of
the DRWB. Section V presents experimental results, compar-
ing our methods with existing solutions. Finally, Section VI
concludes the paper and suggests future research directions.

II. RELATED WORK

In this section, we review the existing research on smart
healthcare and computation offloading within the context of
edge computing scenarios.

A. Improvement of Federated Learning

Federated learning (FL) is a groundbreaking machine learn-
ing approach. It addresses the problem of data silos and
ensures data privacy. In this decentralized system, multiple
clients, including mobile devices, institutions, and organiza-
tions, work together. They collaborate with central servers
without sharing their actual data. This method keeps sensitive

information secure while enabling collective learning and
model enhancement. The potential of FL has prompted sig-
nificant scholarly efforts to advance its development. Hanzely
et al. [14] present an optimization approach for training FL
models. They frame it as an empirical risk minimization
problem to create a unified global model. This model is trained
using private data that is distributed among all participating
devices. Acar et al. [15] introduce a FL approach tailored to
specific objectives for edge devices. Their method involves
training a global meta-model collaboratively via a server,
with each device locally customizing the trained model to
meet its specific needs. Li et al. [16] present PyramidFL,
an approach that accelerates FL training and enhances final
model performance through fine-grained client selection. This
method leverages intra-client and inter-client data and system
heterogeneity to optimize client utility efficiently.

B. Edge Computing-Assisted Smart Healthcare

The immediate gathering and evaluation of health data
demand compliance with standards for latency and energy
efficiency. Edge computing, as an emerging paradigm, offers
significant assistance to healthcare capabilities in meeting
these demands [17]. Numerous researchers have conducted
extensive work in this field. Ming et al. [18] introduce
a blockchain-enabled platform for edge computing, which
utilizes distributed edge servers in conjunction with smart
contracts to expedite data processing and authenticate the
identity and reliability of network entities. Yadav et al. [19]
propose Vehicular Fog Computing (VFC) to optimize over-
loaded cloudlet resources, reduce latency, and save energy,
addressing energy-latency tradeoffs and efficient resource al-
location challenges. Das et al. [20] propose an integrated
IoT-edge-fog-cloud computing framework, aimed at enhancing
green healthcare services through efficient spatio-temporal
data analytics and path prediction in exigent situations like
natural disasters.

Peng et al. [21] present a novel multi-objective meta-
heuristic method for computation offloading in healthcare
systems using AR applications in edge computing, focusing
on preserving user privacy while minimizing latency, energy
consumption, and maintaining load balance, demonstrating
its efficiency through extensive experiments. Tawalbeh et al.
[22] introduce a secure IoT model for healthcare systems,
optimized for both low latency and high energy efficiency,
analyzing its impact on power and bandwidth through simula-
tions with the Mobile Cloud Computing Simulator (MCCSim),
revealing increased delay and power consumption with higher
data encryption and decryption rates. Zhou et al. [23] propose
a Federated Distillation and Blockchain empowered Secure
Knowledge Sharing model to enable efficient and secure data
sharing in Internet of Medical Things environments by trans-
forming data sharing into a collaborative model knowledge
sharing problem with improved flexibility, reduced commu-
nication, and enhanced fairness in node selection and load
balancing. Yadav et al. [24] propose the CORL scheme, using
reinforcement learning to minimize latency and energy in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

IoMT-based healthcare, optimizing resource allocation amidst
battery and latency constraints.

C. Deep Reinforcement Learning for Computation Offloading

Since the inception of the edge computing concept, task
offloading has become an enduring topic accompanying edge
computing, with many researchers conducting extensive work
in this area. Wu et al. [25] propose a semi-Markov deci-
sion process for vehicular fog computing-assisted platoons,
aimed at minimizing offloading delay by considering vehicle
resources and random arrivals, with its effectiveness validated
through simulation experiments and comparisons with bench-
mark strategies. Binh et al. [26] propose a novel vehicular
edge–cloud computing network tailored for the execution of
delay-sensitive tasks within the IoT framework. This network
adeptly combines edge and cloud resources for efficient task
offloading. They frame the offloading issue as a Markov
decision process. To address this, they introduce an advanced
task offloading technique based on a dueling actor-insulator
network architecture. Chen et al. [27] propose predicting
vehicle mobility in IoV-MEC environments to enable efficient,
dynamic computation offloading, enhancing QoS and response
fairness amidst limited RSU resources.

Although many researchers have conducted extensive work
on task offloading in the field of edge computing, few have
integrated healthcare Capabilities with task offloading and
edge computing to fully harness the potential of artificial in-
telligence in healthcare. Therefore, we propose a computation
offloading strategy based on deep reinforcement learning.

III. SYSTEM MODEL

In this section, we begin by presenting a succinct summary
of the system model investigated in this study. Next, we delve
into the intricacies of the delay model. We then expound on
the workload model and the computation model. Ultimately,
we encapsulate the problem and express it mathematically. The
specific scene diagram is shown in Fig. 1.

Fig. 1: A framework for Smart Healthcare.

A. Network Model

We focus on a singular event that comprises a series of time
slots presented by T = {1, . . . , T}. The duration of every
time slot within this series is set to ∆ seconds. In the context
of smart healthcare, the three-tier architecture encompassing
TDs, edge nodes, and cloud servers is depicted in Fig. 1.

The set N = {n1, n2, . . . , ni, . . . } represents the TDs.
Due to the typically low transmission power of smart devices
like smartwatches and wearable medical equipment, direct
data transmission from TDs to edge servers (ES) is often
impractical. Instead, smartphones serve as intermediaries, ow-
ing to their higher transmission power and broader connec-
tivity capabilities compared to other TDs. Smartphones can
effectively relay monitoring data from lower-power devices to
edge servers, bridging the gap in transmission requirements.
Relevant studies have shown that smartphones can act as
efficient intermediaries in data offloading due to their ability
to manage both short-range (e.g. Bluetooth, Wi-Fi) and long-
range (e.g. 4G, 5G) communications [28].

At each time slot, a computationally intensive task is
generated, which places demands on the TD with constrained
computing resources Cn. We presume that within a single time
slot, the movement of the TDs will not exceed the coverage
distance of any ES.

The consortium of ESs is denoted by S =
{s1, s2, . . . , sα, . . . }. In the proposed model, it is posited
that edge servers are strategically positioned in the vicinity
of cellular base stations. The computation resources inherent
to an edge server are represented by Cs, while its bandwidth
resources are indicated by Bs. Given that both computational
and bandwidth resources are finite, TDs at the edge node
end make determinations on whether to offload tasks to an
ES and choose the suitable server for offloading. When tasks
arrive at the edge node, the server elects either to process
the tasks or to continue offloading them to the cloud server.
Within our framework, we surmise that cloud servers possess
ample computational resources, thus, our consideration is
confined to the latency involved in offloading tasks from the
ES to cloud and the return of results.

In terms of connection modes, two primary modes are
considered: E2E (End-to-Edge) and E2C (End-to-Cloud). In
the E2E mode, TDs offload tasks directly to the nearest
edge server, which can process them locally. In the E2C
mode, the edge server offloads tasks to the cloud for further
processing. The choice of mode depends on factors such as
the computational load of the task, available edge resources,
and network conditions.

B. Computation Model

In the proposed computational model, the majority of tasks
can be executed on TDs and edge servers, with only a mini-
mal number of tasks requiring transmission to cloud servers.
Although the cloud server possesses substantial computational
resources, making processing latency relatively negligible, we
provide a brief model here for completeness.

When offloading to the cloud, the computational latency of
the cloud server for task processing can be defined as:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

胡惠英
高亮

4

Tni,t
cloud =

restni

fcloud
, (1)

where restni
represents the computational requirements of the

task from TD ni, and fcloud is the computation capacity of the
cloud server, typically much higher than edge or TDs. Due
to the cloud’s high processing speed, Tni,t

cloud generally has a
minimal impact on overall latency.

The energy consumption for the cloud server during task
processing can similarly be expressed as:

Et
cloud = ξcloud · restni

· (fcloud)
2
, (2)

where ξcloud is the energy consumption coefficient of the cloud
processor. However, given the vast computational capacity
and efficiency of the cloud infrastructure, the impact on total
energy consumption is minimal in this context.

The computational latency of TD nk in t time slot can be
represented as:

Tni,t
loc =

restni

fni

, (3)

where restni
indicats the computation resources required for the

local task. fni
denotes the computation capacity of the TD ni.

It can be simplified to the frequency of the CPU. The energy
consumption of the TD during task processing is expressed
as:

Et
ni

= ξ · restni
(fni)

2
, (4)

where ξ symbolizes as the energy coefficient of the CPU in
TDs for processing tasks.

Similarly, when the TD opts to offload the task to the ES for
processing, despite the server’s more abundant computational
resources and superior processing capabilities, the computa-
tional delay remains a factor that cannot be overlooked. We
denote the set of computational resources allocated by the
edge server for the task by R =

{
fni
sα | ni ∈ N, sα ∈ S

}
.

FTotal represents the total computational resources available
at the ES. From this, we can deduce the following inequality
concerning the allocation of computational resources:∑

ni∈N

fni
sα ≤ FTotal,∀sα ∈ S. (5)

Consequently, we can derive the computational delay in-
curred by the ES in processing the task, as illustrated by the
following formula:

T t
sα =

∑
sα∈S

Zt
ni,sα resni

fni
sα

,∀ni ∈ N. (6)

Similarly, in accordance with the task offloading policy, we
can establish the formula for the energy consumption incurred
by the edge server while processing the task, as follows:

Et
sα =

∑
ni∈Nt

sα

Zt
ni,sα · λres

t
ni
(fni

sα)
2,∀sα ∈ S, (7)

where λ represents the energy consumption coefficient of the
ES’s processor when processing the task.

C. Communication Model

In this subsection, the communication model will be intro-
duced. Commencing with the Shannon Formula, the maximum
achievable upload rate, if the TD opts to upload a task, is
defined as follows:

ruploadni
= W log2

(
1 +

pni
h2
ni

N0 +
∑

i̸=k pnk
h2
nk

)
, (8)

where rupload
ni denotes the signal-to-interference-plus-noise ratio

(SINR) from TD ni to the ES. The
∑

i̸=k pnih
2
ni

denotes the
interference from other TDs. W = B

N denotes the division
of a bandwidth B into N subchannels, where each task
requiring upload is allocated at most one subchannel. In other
words, during time slot t, a maximum of N tasks can be
uploaded simultaneously. For each edge server, the set of all
its subchannels is represented by N = {1, 2, 3, . . . , j}.

According to the formula proposed in our network model,
when Zni

= 1, it signifies that the TD offloads the task
to the ES. The overall offloading strategy set is denoted by
Z =

{
Zj
ni,s | ni ∈ N, s ∈ S, j ∈ N

}
. In accordance with the

offloading policy set and Shannon’s formula, we can derive
the experimental formula for the task transmission from the
TD to the ES, as follows:

Tni
up =

∑
sα∈S

Zt
ni,sα · resni

rupload
i

,∀ni, t ∈ N. (9)

D. Problem Definition

By combining the earlier presented models and constraints
in this section, we have developed a unified optimization
framework for computation offloading and resource allocation
specifically tailored for smart healthcare.

We initially focus on the overall latency function. Latency
is a crucial metric for enhancing smart healthcare capabilities.
We denote the total latency function by T (t, ni, sα), indicating
the total transmission time for offloading tasks from TDs to
the ES sα within its range during the t time slot, and the
execution time of the task by both the TD and the ES. The
formula is as follows:

T (t, ni, sα) =
∑

ni∈Nt
sα

((
1− Zt

ni,sα

)
Tni,t

loc

+Zt
ni,sα

(
T t
sα + Tni,t

up

))
.

(10)

In the context of task processing, energy expenditure is a
key consideration. When TDs locally execute tasks, they incur
energy costs primarily due to computational demands. Con-
versely, when tasks are offloaded to edge servers, the primary
energy expense shifts from computation to data transmission.
This distinction is crucial in optimizing energy efficiency in
TDs, as it alters the primary source of energy consumption
from local processing to communication with edge server
processors. This nuanced understanding of energy dynamics is
vital for designing energy-efficient task execution strategies in
distributed computing environments. According to the formula

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

胡惠英
高亮

5

mentioned earlier, the energy consumption of the entire system
is represented by E(t, ni, sα), where the formula is as follows:

E(t, ni, sα) =
∑

n∈Nt
sα

((
1− Zt

ni,sα

)
Et

ni
+ Zt

ni,sαE
t
sα

)
.

(11)
Based on formulas (9) and (10), we have defined a utility

function Ucost and introduced a weighting coefficient ξ, as
delineated below:

Ucost = ξT (t, ni, sα) + (1− ξ)E(t, ni, sα). (12)

From the modeling in this chapter, our optimization problem
is described as:

min
(Zt

ni
,R)

ξT (t, ni, sα) + (1− ξ)E(t, ni, sα), (13)

s.t. Zt
ni,sα ∈ {0, 1},∀ni ∈ N, sα ∈ S, (14)

∑
ni∈N

fni
sα ≤ FTotal,∀sα ∈ S. (15)

Eqs. (14) and (15) establish the rules for task offloading
and resource allocation. Eq. (14) specifies that Zt

ni,sα is a
binary variable, where Zt

ni,sα = 1 indicates that a task
from TD ni is assigned to edge server sα at time t, while
Zt
ni,sα = 0 means no offloading occurs to that server. This

constraint clearly defines whether a particular edge server is
responsible for processing a specific task. Eq. (15) limits the
total computational resources allocated to each edge server
sα, ensuring that the sum of allocated resources

∑
ni∈N fni

sα
does not exceed the maximum available resources, FTotal. This
restriction helps prevent server overload, allowing each edge
server to function within its capacity for optimal performance.

IV. DESIGN OF DRWB

Deep reinforcement learning algorithms utilize deep neural
networks. These networks are employed to approximate value
functions, thereby guiding intelligent agents to make decisions.
DQN is one of them. It combines Q-learning with deep neural
networks and provides an effective tool for making decisions
in complex environments.

A. DQN

Q-learning is a RL algorithm designed to learn the action-
value function Q(s, a). This function estimates the expected
return of executing action a in state s. The fundamental
formula of Q-learning is:

Qnew(st, at)← Q(st, at) + α[rt+1

+γmax
a′

Q(st+1, a
′)−Q(st, at)].

(16)

1) Double DQN: Double DQN (DDQN) consists of two
Q-networks: a main network and a target network. The main
network calculates the action-state value, guiding the model
to select actions and representing the current strategy. The
target network evaluates the value of the current state, effec-
tively decoupling the value functions of the main and target
networks. This structure helps mitigate the overestimation
problem commonly encountered in the Q-learning algorithm.
The loss function is as follows:

L(w) = E[(r + γQ(s′, argmax
a′

Q(s′, a′, w), w−)

−Q(s, a, w))2],
(17)

where argmaxa′ Q(s′, a′, w) uses the current network w for
action selection, and Q(s′, argmaxa′ Q(s′, a′, w), w−) uses
the target network w− for value evaluation.

2) Dueling DQN: An innovative aspect of the Dueling
DQN is its unique network architecture. This architecture inde-
pendently estimates the state value. Additionally, it calculates
the advantage function for each action. To mitigate action
selection bias, the formulation adjusts the calculation of the
advantage function, ensuring it remains zero-centered for the
chosen policy action [29]. Specifically, the final module of the
network is designed to perform the following mapping:

Q(s, a; θ, α, β) = V (s; θ, β) + (A(s, a; θ, α)−
max
a′∈A

A(s, a′; θ, α)).
(18)

This approach normalizes the advantage values by subtract-
ing the maximum advantage observed across all possible ac-
tions from the advantage of the selected action. Consequently,
this subtraction biases the advantage of the chosen action
to zero, thereby facilitating more stable and accurate value
estimates and mitigating the risk of overestimating the value
of state-action pairs. This formula can also be expressed as:

Q(s, a; θ, α, β) = V (s; θ, β)+(
A(s, a; θ, α)− 1

|A|
∑
a′

A(s, a′; θ, α)

)
.

(19)
3) D3QN: D3QN combines the features of DDQN and

Dueling DQN, and handles Q-value estimation by using dual
networks and advantage function separation [30]. Specifically,
D3QN uses one network to select actions and another indepen-
dent target network to estimate the value of the selected action,
while introducing a dueling structure that separates state value
and action advantage into the network architecture.

The schematic diagram of D3QN is shown in Fig. 2. Back
propagation in the diagram is used to update the weights of the
Online Network by minimizing the loss function L(θ), which
measures the difference between the predicted Q-values and
the target Q-values. The multiplication sign (×) represents the
discount factor γ applied to the future Q-values, indicating the
importance of future rewards. The addition sign (+) combines
the weighted current Q-value and the discounted future Q-
value to compute the updated Q-value Qnew(s, a), ensuring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

6

Fig. 2: Dueling Double Deep Q Network.

the network considers both immediate and future rewards in
its decisions. Combining these two algorithms, the Q-value of
D3QN is as follows:

Q(s, a; θ, α, β) = V (s; θ, β)+

γ
(
A(s, a; θ, α)−max

a′
A(s, a′; θ, α′)

)
,

(20)

where θ and α′ are the parameters of the target network, used
to estimate the maximum advantage, V (s; θ, β) is the state
value function for state s, and maxa′ A(s, a′; θ, α′) computes
the maximum advantage across all possible actions from the
target network.

B. Federated Learning

Assume there are K edge nodes in the smart healthcare, we
define the optimization objective as follows:

min
w

f(w) =
K∑

k=1

bk
n
Fk(w), (21)

where bk denotes the number of data samples at node k,
n represents the total number of samples across all nodes,
and

∑K
k=1 bk = n. Here, Fk(w) represents the local loss

function for the k-th node, which is used to measure the
model’s performance on local data at each edge node. In this
context, a common choice for Fk(w) is the cross-entropy loss,
particularly if we are dealing with classification tasks.

Each edge node optimizes its loss function on its local data:

w
(t+1)
k ← w(t) − η∇Fk(w

(t)), (22)

where w(t) is the model parameter after the t-th training round,
and η is the learning rate. After each training round, each edge
node sends its locally updated model w

(t+1)
k to the central

server.
The central server aggregates all edge nodes’ local model

updates to create an updated global model. This aggregation

is a weighted average of the local models, where each model’s
weight corresponds to the data size at each node:

w(t+1) =
K∑

k=1

bk
n
w

(t+1)
k . (23)

This aggregated global model is then distributed back to
the edge nodes, which will use it as the starting point for their
next training round. This iterative process allows the model
to learn from decentralized data while preserving privacy by
keeping data on local devices.

After the ES completes the task processing, it returns the
results to the TD. Considering that the data volume of the
downward transmission is significantly less than that of the
upload task, we simplify the model by disregarding the impact
of this latency.

C. Computation Offloading Strategy with DRL

In the model we propose, the TDs face an unknown network
environment. After generating a task, the TD makes a choice
between local processing and uploading to an edge server,
representing a model-free learning process. We define this joint
optimization problem as a stochastic game:

V = (S,A,R). (24)

We consider all TDs N = {n1, n2, . . . , nk} as agents
participating in this game, with their states denoted by S,
actions byA, and rewards byR. Subsequently, we will provide
a detailed analysis of these three elements.

State. Our state representation is a multi-dimensional fea-
ture vector that provides a comprehensive snapshot of the
current system. It includes crucial data about user equipment
(UEs), edge servers, network bandwidth, and other pivotal
parameters that influence decision-making in task offloading.
This rich representation allows the model to make informed
decisions by considering a wide range of factors, including
network conditions, computational loads, and resource avail-
ability. The state is represented as:

S(t) = {Υ(t), C1(t), C2(t), B(t)}. (25)

where at t time slot, Υ(t) represents the task size, C1(t) de-
notes the computational resources of the TDs, C2(t) signifies
the computational resources of ESs, and B(t) indicates ESs’
available bandwidth resources.

Action. The action space, a critical component of our
model, delineates the feasible decisions that an agent can
execute in any given state. It is formulated as a set of tuples
{(di, ci)|i = 1, 2, . . . , n}, where di indicates the binary deci-
sion of offloading a task to an edge server (1 for offloading, 0
for local processing, Same as Z above). And ci represents
the allocation of computational resources for the task. We
assume that computing resources must be sufficient if tasks
are chosen to be executed locally. This approach permits
precise control over the task offloading process, permitting the
strategic assignment of tasks to optimize resource utilization.

Reward. The reward function is carefully constructed to
guide the agent towards making decisions that optimize the

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

7

use of computational resources while balancing factors like
latency and energy consumption. The reward function takes
into account various parameters like task execution time, en-
ergy efficiency, and system throughput to evaluate the efficacy
of an action. Given that the optimization problem aims at
concurrently minimizing both delay and energy consumption,
our reward function is accordingly defined.

D. DRWB Algorithm

In our design, the central server works alongside clients
to collaboratively update the model. This method is akin to
incorporating a new client into the existing federated learning
framework, without factoring in communication aspects such
as data offloading. Consequently, the convergence performance
closely resembles that of federated learning. Building on the
foundational work on federated learning by McMahan et al.
[31], we define the client-side loss function in the following
manner:

l(w)=
1

m

m∑
j=1

lj(w). (26)

The server-side loss function is expressed as:

l(w) =
P∑

p=1

1

Bp −mp
Lp(w), (27)

where Bp represents the data size of client p, and

Lp(w) =
1

mp

∑
j∈Qp

lj(w). (28)

Once the clients and server finish their local updates, a
global aggregation phase begins. During this phase, the server
merges the parameters from all clients with its own model
parameters to create a unified global model. The global model
is subsequently distributed to all clients. The global model
parameter can be defined as follows

w =
1

B

∑
p∈P

(Bp −mp)wp +mws

 . (29)

In our approach, clients experiencing dropouts will offload
a portion of their data to the edge server, which aids in
collaboratively updating the model. This method is analogous
to federated learning, with the primary difference being that
the server acts as a more powerful client [32]. Our main goal
is to mitigate the effects of client dropouts rather than merely
accelerating inference. Therefore, the focus of our design is on
the volume of data offloaded. According to the above formula,
we demonstrate that partitioning a portion of the data does not
impede the convergence of federated learning:

Algorithm 1: Dueling Double Deep Q Network for
the offloading strategy

1 Initialize prediction network with random weights θ
2 Initialize target network with weights θ− = θ
3 Initialize environment E representing task offloading

conditions
4 for episode = 1 to M do
5 Initialize state s1 based on initial task offloading

conditions, including computation,
communication, and energy parameters

6 for t = 1 to T do
7 With probability ϵ, select a random action at

considering computation, communication, and
energy consumption

8 Otherwise, select at = argmaxa Q(st, a; θ),
where

9 at ∈
{set of possible offloading decisions considering

10 computation and energy consumption}
11 Execute action at in the computation offloading

environment
12 Observe new state st+1 and reward rt based on

computation cost, communication cost, and
energy consumption

13 Store transition (st, at, rt, st+1) in replay
memory D

14 Sample random Mini-batch of transitions from
D: (sj , aj , rj , sj+1)

15 if episode terminates at step j + 1 then
16 Set yj = rj
17 else
18 Set yj = rj +

γQ(sj+1, argmaxa′ Q(sj+1, a
′; θ), θ−)

19 end
20 Perform a gradient descent step on

(yj −Q(sj , aj ; θ))
2 with learning rate α

21 if t mod C = 0 then
22 Update target network: θ− = θ
23 end
24 end
25 end
26 return θ

w(t) =
1

B

∑
p∈P

(Bp −mp)wp(t) +mws(t)


=

∑
p∈P Bpw(t− 1)

B

− η∇
∑

p∈P(Bp −mp)Lp(w(t− 1)) +mLs(w(t− 1))

B
= w(t− 1)− η∇L(w(t− 1)).

(30)
We define two pivotal functions for the simplified offloading

strategy: offfloading cost function and offloading decision

Page 7 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8

threshold function. The offfloading cost function is as follows:

C(s) =
Required Resources(s)

Available Resources

Here, C(s) represents the ratio of the resources required
for task execution under state s to the resources cur-
rently available on the device. Required Resources(s) denotes
the total resources needed for the task at state s, while
Available Resources refers to the current available resources
on the device.

The offloading decision threshold function is as follows:

Θ = 1 + δ

In this expression, Θ is the decision threshold used to deter-
mine the necessity of offloading, where δ is a small positive
number representing a resource buffer to ensure system sta-
bility amid uncertainty and dynamic changes.

Based on the aforementioned formulas, we can further ex-
plain the uninstallation decision in section III. The offloading
decision rule can be defined as follows:

Offload Decision =

{
True if C(s) ≥ Θ

False otherwise

If the calculated offloading cost function C(s) exceeds or
equals the offloading decision threshold Θ, the decision is
made to offload tasks to the ES; otherwise, the task remains
to be executed on the local device.

According to the offloading strategy proposed above, Algo-
rithm 1 details a corresponding algorithm. In this algorithm, a
selected client offloads a portion of its data to an ES. The ES
processes the offloaded data and aggregates the results with the
client’s trained model. This aggregated model is then uploaded
to the central server. Through multiple rounds of aggregation
and updating, the client continually refines its model using the
aggregated data, significantly reducing inference time. After
several rounds of training, the client obtains a robust model
that effectively guides its decision-making processes. In the
algorithm, we set ϵ = 0.1 for the exploration rate, which
determines the likelihood of selecting a random action at
each step to encourage exploration. This value was chosen
based on a balance between exploration and exploitation, as
a lower ϵ favors more deterministic decision-making, while
a higher ϵ would increase randomness. The initialization of
prediction and target networks, as well as the environment
setup, are constant-time operations, with complexity O(1).
The outer loop runs for M episodes, each with T time steps,
yielding a complexity of O(M × T). Selecting an action at
each time step has complexity O(A), where A is the number of
possible actions. For each mini-batch from replay memory D,
the Q-value calculation and backpropagation have complexity
O(B×N), where B is the batch size and N the network size.
Every C steps, the target network is updated with complexity
O(N), as it involves copying N weights. The total time
complexity is O(M × T × (A + B × N)). Memory grows
linearly with the size of replay memory D.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the DRWB
method. To ascertain the efficacy of our proposed algorithm,
several control groups have been established for comparative
analysis.

A. Parameter Settings

Our experimental procedures were primarily executed on
a personal workstation powered by an 11th Gen Intel(R)
Core(TM) i7-11700KF @ 3.60GHz , paired with one NVIDIA
GeForce RTX 3090 graphics card. During the processing by
TDs, the computational capacity of these devices is set to be
in the range of [1, 1.5] GHz [33]. When tasks are offloaded
to edge servers, the computational capacity of these servers is
defined to be within [5, 7] GHz [34]. The energy consumption
coefficient is established as [10−26, 3 × 10−26] [35]. The
bandwidth of the edge servers is set to 20 MHz [36].

Fig. 3: Convergence performance of different learning rates.

We referred to the initial federated learning scheme [31].
The MNIST data was divided into IID and Non-IID datasets
[37]. For the IID data, it was shuffled and then split among
50 clients, with each client receiving 600 examples. For the
Non-IID data, the data was first sorted by digit labels and
then divided into 100 shards, each containing 300 examples.
Each of these shards was assigned to 2 out of the 50 clients.
In our experiments, we employed a deep reinforcement learn-
ing model with a nine-layer Convolutional Neural Network
(CNN) architecture. The network structure consists of layers
organized as follows: two 5 × 5 convolutional layers with
32 filters each, followed by 2 × 2 max-pooling and local
response normalization layers. This setup is repeated before a
fully connected layer with 256 nodes, leading to a final fully
connected layer with 10 nodes, followed by a softmax layer.
The total number of units, z, depends on the dataset, with
z = 1568 for MNIST-O and MNIST-F and z = 2048 for
CIFAR-10 [38].

B. Comparative Strategies

1) FedAVG [31]: We chose FedAVG as a baseline due to
its foundational role in federated learning, making it a
relevant benchmark for evaluating any enhancements in
the offloading or resource allocation domains.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

胡惠英
高亮

9

(a) Comparison of test accuracy (E = 1) (b) Comparison of test accuracy (E = 5) (c) Comparison of time cost (E = 5)

Fig. 4: Learning performance for IID datasets.

(a) Comparison of test accuracy (E = 1) (b) Comparison of test accuracy (E = 5) (c) Comparison of time cost (E = 5)

Fig. 5: Learning performance for Non-IID datasets.

2) DQN: DQN is a reinforcement learning algorithm that
uses a deep neural network to approximate the Q-
value function, allowing for efficient decision-making
in complex environments.

3) DDQN: DDQN is an improvement over DQN, address-
ing the issue of overestimation in Q-learning by using a
separate target network to evaluate Q-values. This helps
reduce bias in action-value estimation, which is crucial
in applications with resource constraints.

4) DUELING-DQN: Dueling-DQN is an advanced version
of DQN that separates the estimation of state values
and advantages, helping the network to evaluate actions
more efficiently in states where specific actions do not
significantly affect the outcome.

C. Simulation results
We selected three learning rates of 0.01, 0.001 and 0.0001

for training. Fig. 3 describes the change of the reward function
in 500 training cycles. We selected a learning rate of 0.001
as the learning rate parameter. Compared with the other two
learning rates, it has better convergence performance and can
converge faster. Due to the existence of the penalty factor and
the discount factor, the function still has some fluctuations.

Fig. 4 illustrates the comparative learning performance of
federated learning and our proposed approach on an IID
dataset. The results show that, despite varying data distribu-
tions and the count of epochs in each round, the accuracy of
both methods remains quite similar, aligning with our previous
analysis. When the aggregation round is relatively small, there

is still a certain gap between the two, but when the aggregation
round increases, the gap between the two is almost negligible.
We also increased the count of training cycles each client
completes on its local dataset in each round. And we find that
when the training sessions increase, the starting value disparity
becomes minimal. When the accuracy is almost the same,
our proposed method can effectively shorten the inference
time and reduce the lagging effect. Compared to the baseline
experiment, our method reduces time cost by 3.75% to 11.68%
on the standard dataset.

Fig. 5 illustrates the learning performance of federated
learning and our proposed method on a Non-IID dataset.
Due to the fact that each device’s data distribution does
not correspond to the global data distribution, meaning that
each device has incomplete class coverage. The accuracy is
inevitably lower compared to the IID dataset. However, we
also observed as both the number of aggregation rounds and
the value of E rise, particularly with an increase in E, the
accuracy of our proposed method improves rapidly, becoming
almost indistinguishable from that of the standard federated
learning algorithm. On the Non-IID dataset, the presented
method can effectively reduce the inference time and performs
better than on the IID dataset. Compared to the baseline
method, our approach achieves an average time cost reduction
of 8.97%.

As illustrated in Fig. 6, the Cifar-10 dataset presents more
challenges compared to MNIST dataset. We conducted similar
experiments utilizing the Cifar-10 dataset. The findings reveal
that our proposed method performs consistently with both

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

胡惠英
高亮

胡惠英
高亮

10

(a) Comparison of test accuracy (E = 5) (b) Comparison of time cost (E = 5)

Fig. 6: Learning performance for the Cifar10 datasets.

the baseline algorithm and the latest personalized federated
learning algorithm, FedCP [39], just as it did with the MNIST
dataset. Our approach notably decreases processing time while
maintaining a high level of accuracy. Compared to the baseline
algorithm, our proposed algorithm achieves a latency improve-
ment ranging from 5.45% to 23.47%.

Figure. 7 illustrates the convergence time of different strate-
gies with 20 users and varying join ratios. It is noteworthy that
the convergence time of compared method when the join ratio
is 20% represents the latency across the full 30 communication
rounds, as FedAvg does not reach the target accuracy of 80%
within 30 rounds at this participation level. We observe that the
convergence time of Fed-DRWB is consistently lower than that
of the baseline method, particularly as the join ratio increases.
Specifically, Fed-DRWB demonstrates a convergence time that
is approximately 1.1 times faster than FedAvg at higher join
ratios. Furthermore, as the join ratio increases, the convergence
time for both methods decreases. This trend occurs because
a higher join ratio implies that a larger portion of users with
trained models participate in each communication round, thus
accelerating the convergence process.

Fig. 7: Convergence time of different strategies in IoV different join ratios.

Based on the data in Fig. 8, our proposed model demon-
strates significant efficiency improvements over other models
in terms of delay reduction across different numbers of UEs.
Specifically, the proposed method reduces delay from 16.7% to
35.5% compared to DDQN, from 10.5% to 24.1% compared
to Dueling, and from 15.1% to 21.6% compared to DQN.
These reductions become more pronounced as the number of
UEs increases, highlighting our method’s robust performance

Fig. 8: Delay with different UEs.

in minimizing delay in high-load scenarios.

Fig. 9: Energy consumption with different UEs.

In Fig. 9, as the number of users grows, it is observed that
the server’s energy consumption also rises. Nevertheless, the
energy consumption increase associated with our algorithm
is considerably lower compared to the other three methods.
This efficiency is attributed to our algorithm’s superior ability
to leverage the idle instances of the edge computer, thereby
optimizing energy usage more effectively. Quantitatively, our
proposed algorithm reduces energy consumption by 8.4% to
12.9% compared to DDQN, from 13.8% to 20.4% compared to
Dueling, and from 20.5% to 31.1% compared to DQN. These
results highlight the significant energy-saving potential of our

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

胡惠英
高亮

胡惠英
高亮

胡惠英
高亮

胡惠英
高亮

11

method, especially critical in resource-limited and real-time
scenarios typical of smart healthcare.

VI. CONCLUSION

In this paper, we introduce a novel algorithm based on deep
reinforcement learning. This algorithm is specifically designed
to alleviate the straggler effect in federated learning. Servers
with weaker computational capabilities offload part of the
computation to edge servers, significantly improving system
efficiency while protecting patient privacy. Our approach is
evaluated using well-known public datasets, showcasing its ef-
fectiveness.Additionally, we conducted a quantitative analysis
of simple task offloading, where our proposed algorithm also
demonstrated excellent performance.

In future work, we plan to use more precise medical image
datasets for further research. Moreover, due to the mobility of
wearable devices, we need to conduct more in-depth studies
in dynamic environments.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China under Grant (No. 62372242 and
92267104), and in part by Natural Science Foundation of
Jiangsu Province of China under Grant (No. BK20211284).

REFERENCES

[1] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, and A. A. Khan, “A review
and state of art of internet of things (iot),” Archives of Computational
Methods in Engineering, pp. 1–19, 2021.

[2] X. Zhou, C. K. Leung, I. Kevin, K. Wang, and G. Fortino, “Editorial deep
learning-empowered big data analytics in biomedical applications and
digital healthcare,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 21, no. 4, pp. 516–520, 2024.

[3] J.-H. Syu, J. C.-W. Lin, G. Srivastava, and K. Yu, “A comprehensive
survey on artificial intelligence empowered edge computing on consumer
electronics,” IEEE Transactions on Consumer Electronics, vol. 69, no. 4,
pp. 1023–1034, 2023.

[4] P. Dong, Z. Ning, M. S. Obaidat, X. Jiang, Y. Guo, X. Hu, B. Hu,
and B. Sadoun, “Edge computing based healthcare systems: Enabling
decentralized health monitoring in internet of medical things,” IEEE
Network, vol. 34, no. 5, pp. 254–261, 2020.

[5] J. Liu, Y. Di, X. Zhou, X. Mao, L. Qi, L. Shi, and Y. Dong, “A low-
latency synchronization scheme for vehicle information based on cloud-
edge collaboration,” IEEE Transactions on Consumer Electronics, 2024.

[6] X. Zhou, X. Zheng, X. Cui, J. Shi, W. Liang, Z. Yan, L. T. Yang,
S. Shimizu, I. Kevin, and K. Wang, “Digital twin enhanced federated
reinforcement learning with lightweight knowledge distillation in mobile
networks,” IEEE Journal on Selected Areas in Communications, vol. 41,
no. 10, pp. 3191–3211, 2023.

[7] A. Rahman, M. S. Hossain, G. Muhammad, D. Kundu, T. Debnath,
M. Rahman, M. S. I. Khan, P. Tiwari, and S. S. Band, “Federated
learning-based ai approaches in smart healthcare: concepts, taxonomies,
challenges and open issues,” Cluster computing, vol. 26, no. 4, pp. 2271–
2311, 2023.

[8] X. Xu, S. Tang, L. Qi, X. Zhou, F. Dai, and W. Dou, “Cnn partitioning
and offloading for vehicular edge networks in web3,” IEEE Communi-
cations Magazine, vol. 61, no. 8, pp. 36–42, 2023.

[9] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computation
offloading for edge-assisted federated learning,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 9, pp. 9330–9344, 2021.

[10] D. Wu, R. Ullah, P. Harvey, P. Kilpatrick, I. Spence, and B. Varghese,
“Fedadapt: Adaptive offloading for iot devices in federated learning,”
IEEE Internet of Things Journal, vol. 9, no. 21, pp. 20 889–20 901,
2022.

[11] A. Sabety, “The value of relationships in healthcare,” Journal of Public
Economics, vol. 225, p. 104927, 2023.

[12] M. M. Li, K. Huang, and M. Zitnik, “Graph representation learning
in biomedicine and healthcare,” Nature Biomedical Engineering, vol. 6,
no. 12, pp. 1353–1369, 2022.

[13] X. Xu, H. Li, Z. Li, and X. Zhou, “Safe: Synergic data filtering for
federated learning in cloud-edge computing,” IEEE Transactions on
Industrial Informatics, vol. 19, no. 2, pp. 1655–1665, 2022.

[14] F. Hanzely and P. Richtárik, “Federated learning of a mixture of global
and local models,” arXiv preprint arXiv:2002.05516, 2020.

[15] D. A. E. Acar, Y. Zhao, R. Zhu, R. Matas, M. Mattina, P. Whatmough,
and V. Saligrama, “Debiasing model updates for improving personalized
federated training,” in International conference on machine learning.
PMLR, 2021, pp. 21–31.

[16] C. Li, X. Zeng, M. Zhang, and Z. Cao, “Pyramidfl: A fine-grained client
selection framework for efficient federated learning,” in Proceedings of
the 28th Annual International Conference on Mobile Computing And
Networking, 2022, pp. 158–171.

[17] H. Yan, X. Xu, M. Bilal, X. Xia, W. Dou, and H. Wang, “Customer
centric service caching for intelligent cyber–physical transportation
systems with cloud–edge computing leveraging digital twins,” IEEE
Transactions on Consumer Electronics, vol. 70, no. 1, pp. 1787–1797,
2024.

[18] Z. Ming, M. Zhou, L. Cui, and S. Yang, “Faith: A fast blockchain-
assisted edge computing platform for healthcare applications,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 12, pp. 9217–9226,
2022.

[19] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-
latency tradeoff for dynamic computation offloading in vehicular fog
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12,
pp. 14 198–14 211, 2020.

[20] J. Das, S. Ghosh, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Rescue:
enabling green healthcare services using integrated iot-edge-fog-cloud
computing environments,” Software: Practice and Experience, vol. 52,
no. 7, pp. 1615–1642, 2022.

[21] K. Peng, P. Liu, M. Bilal, X. Xu, and E. Prezioso, “Mobility and
privacy-aware offloading of ar applications for healthcare cyber-physical
systems in edge computing,” IEEE Transactions on Network Science and
Engineering, vol. 10, no. 5, pp. 2662–2673, 2023.

[22] L. Tawalbeh, F. Muheidat, M. Tawalbeh, M. Quwaider, and A. A.
Abd El-Latif, “Edge enabled iot system model for secure healthcare,”
Measurement, vol. 191, p. 110792, 2022.

[23] X. Zhou, W. Huang, W. Liang, Z. Yan, J. Ma, Y. Pan, I. Kevin, and
K. Wang, “Federated distillation and blockchain empowered secure
knowledge sharing for internet of medical things,” Information Sciences,
vol. 662, p. 120217, 2024.

[24] R. Yadav, W. Zhang, I. A. Elgendy, G. Dong, M. Shafiq, A. A. Laghari,
and S. Prakash, “Smart healthcare: Rl-based task offloading scheme for
edge-enable sensor networks,” IEEE Sensors Journal, vol. 21, no. 22,
pp. 24 910–24 918, 2021.

[25] Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan, and K. B. Letaief, “Delay-
sensitive task offloading in vehicular fog computing-assisted platoons,”
IEEE Transactions on Network and Service Management, pp. 1–1, 2023.

[26] Z. Aghapour, S. Sharifian, and H. Taheri, “Task offloading and resource
allocation algorithm based on deep reinforcement learning for distributed
ai execution tasks in iot edge computing environments,” Computer
Networks, vol. 223, p. 109577, 2023.

[27] C. Ling, W. Zhang, H. He, R. Yadav, J. Wang, and D. Wang, “Qos
and fairness oriented dynamic computation offloading in the internet
of vehicles based on estimate time of arrival,” IEEE Transactions on
Vehicular Technology, 2024.

[28] H. Yan, M. Bilal, X. Xu, and S. Vimal, “Edge server deployment for
health monitoring with reinforcement learning in internet of medical
things,” IEEE Transactions on Computational Social Systems, 2022.

[29] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995–
2003.

[30] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation
in heterogeneous cellular networks,” IEEE Transactions on Wireless
Communications, p. 5141–5152, Nov 2019.

[31] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[32] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computation
offloading for edge-assisted federated learning,” IEEE Transactions on
Vehicular Technology, p. 9330–9344, Sep 2021.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

胡惠英
高亮

胡惠英
高亮

胡惠英
高亮

胡惠英
高亮

12

[33] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

[34] H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task offloading
and resource allocation for energy-constrained mobile edge computing,”
IEEE Transactions on Mobile Computing, 2022.

[35] N. Chen, S. Zhang, Z. Qian, J. Wu, and S. Lu, “When learning
joins edge: Real-time proportional computation offloading via deep
reinforcement learning,” in 2019 IEEE 25th International Conference
on Parallel and Distributed Systems (ICPADS). IEEE, 2019, pp. 414–
421.

[36] X. Xu, H. Tian, X. Zhang, L. Qi, Q. He, and W. Dou, “Discov:
Distributed covid-19 detection on x-ray images with edge-cloud col-
laboration,” IEEE Transactions on Services Computing, vol. 15, no. 3,
pp. 1206–1219, 2022.

[37] J. Zhang, Y. Liu, Y. Hua, H. Wang, T. Song, Z. Xue, R. Ma, and J. Cao,
“Pfllib: Personalized federated learning algorithm library,” arXiv preprint
arXiv:2312.04992, 2023.

[38] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE journal on selected areas in communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[39] J. Zhang, Y. Hua, H. Wang, T. Song, Z. Xue, R. Ma, and H. Guan,
“Fedcp: Separating feature information for personalized federated learn-
ing via conditional policy,” in Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023, pp. 3249–
3261.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

