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Abstract—In recent years, reversible data hiding in encrypted
domain (RDH-ED) has garnered considerable interest among
researchers, resulting in the development of high-performance
methods based on various carriers. However, the challenge of en-
hancing the data embedding capacity while ensuring reversibility
becomes increasingly pronounced when the carrier is a three-
dimensional (3D) model. In this paper, a high capacity RDH-ED
method based on dynamic prediction and virtual connection for
3D models is proposed. Unlike existing methods that partition the
vertices in the model into embeddable and prediction sets, where
each vertex can only serve one function, the proposed dynamic
prediction mechanism constructs a data embedding order set by
leveraging the connectivity relationships between vertices. This
allows each vertex within the set to both embed data and provide
predictions, significantly increasing the proportion of embeddable
vertices. Moreover, the proposed method is the first work to
consider independent vertices within the model and integrates a
novel virtual connection approach with the dynamic prediction
process, enabling all independent vertices to participate in data
embedding and prediction, thereby further enhancing the data
embedding capacity. Experimental results demonstrated that the
proposed method significantly outperforms other state-of-the-art
methods in terms of data embedding capacity while ensuring
reversibility.

Index Terms—Reversible data hiding, encrypted domain,
three-dimensional model, dynamic prediction, virtual connection.

I. INTRODUCTION

REVERSIBLE data hiding (RDH) is a technology that
conceals private information within multimedia carriers,

enabling both error-free data extraction and lossless carrier
restoration. Due to distinctive features, it is frequently applied
in crucial domains such as copyright protection [1], medical
image processing [2], military intelligence transmission [3],
etc. RDH methods can be primarily categorized into four types
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according to their implementation techniques, i.e., histogram
shifting (HS) [4, 5], lossless compression [6, 7], prediction
error (PE) expansion [8, 9], and multi-histogram modification
(MHM) [10–13]. The pursuit of RDH methods that simultane-
ously achieve high data embedding capacity and low distortion
of recovered image has always been a goal for numerous
researchers.

With the rapid development of cloud technology in recent
years, the transmission of images in a cloud environment may
pose privacy leakage risks. When content owners send images
to recipients, the transmitted images pass through third-party
cloud servers for storage and forwarding, making the image
content vulnerable to potential leaks. To address this issue,
reversible data hiding in encrypted images (RDHEI) which
requires image owners to encrypt images before transmission
has been proposed. The third-party cloud servers cannot dis-
cern the original content of the images and can also embed
necessary data, such as timestamps, user information, etc.,
into the encrypted images. Upon receiving encrypted images
containing data, the recipients can execute data extraction or
image recovery operations based on respective permissions.
Based on the way of allocating embedding room, most ex-
isting RDHEI methods can be classified into two categories,
i.e., reserving room before encryption (RRBE) [14–19] and
vacating room after encryption (VRAE) [20–23]. For RRBE,
researchers typically leverage strong correlations between im-
age pixels to allocate sufficient embedding space. However,
because the pixel values in encrypted images are uncertain,
the data embedding capacity achievable by VRAE may be
constrained compared to what RRBE can achieve.

As the demand for higher visual fidelity in images continues
to rise, three-dimensional (3D) models have emerged to play
a significant role in virtual reality, engineering applications,
education, training, etc. RDH on encrypted 3D models in a
cloud environment offers an effective means to secure content
and embed essential data such as copyrights, thereby garnering
increasing attention from researchers. Jiang et al. [24] were
the first to propose an RDH method for encrypted 3D models,
embedding data in the least significant bit (LSB) of vertex
coordinate values. However, this approach has limited data
embedding capacity and cannot guarantee error-free data ex-
traction. Subsequently, Shah et al. [25] utilized homomorphic
encryption technology to achieve higher embedding capacity,
but this resulted in data expansion and significant compu-
tational cost. To address the data expansion issue observed
in [25], a new RDH method [26] based on Paillier encryption
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for 3D models was proposed. The length of the encrypted
bits corresponding to the vertex coordinates is reasonably
controlled, but the recovered model is not entirely accurate. In
[27], a separable RDH approach based on spatial subdivision
and space encoding was designed to yield larger embedding
capacity, and proper selection of multiple thresholds is re-
quired to avoid errors during data extraction phase. Unlike
Jiang et al.’s method [24], which used the LSB for data
embedding, Xu et al. [28] and Yin et al. [29] attempted
to explore the relationship between the most significant bit
(MSB) of original coordinate values and their predictive val-
ues, resulting in improved vertex utilization and higher data
embedding capacity compared to [24]. Furthermore, Lyu et
al. [30] and Tang et al. [31] employed an odd-even strategy
to divide vertices into embeddable and prediction sets, gener-
ating the redundant room for each embeddable vertex based
on comparisons of multi-MSB. Recent studies [32–35] have
increasingly complicated the partitioning strategy to enhance
vertex utilization, Tsai et al. [32] used a strategy of random
sampling to reduce the number of reference vertices; A new
approach that adaptively partitions a 3D model into multiple
sub-blocks and uses the most central vertex in each sub-block
to predict other vertices was proposed in [33] and [35]; Gao
et al. [34] introduced a vertex grouping method in which each
group contains a single predictive vertex, and the encryption
of 3D models is based on secret sharing over Galois field.

Many of the methods mentioned above aim to minimize the
number of reference vertices without significantly affecting
prediction accuracy, thereby increasing embedding capacity.
While Hou et al.’s method [33] has already achieved a high
level of vertex utilization, there is still room for improve-
ment. In this paper, we introduce a dynamic prediction-based
method where vertices can serve for both data embedding and
predicting adjacent vertices. Additionally, to utilize vertices
not situated on the face, we establish virtual connections
between them and other vertices. Finally, the original vertex
coordinate values are compared with corresponding predictive
values through multi-MSB prediction, and the resulting labels
are further reduced in length through entropy encoding. In
the proposed method, the proportion of embeddable vertices
approaches nearly 100%. Experimental results demonstrate
that the data embedding capacity of our scheme significantly
outperforms existing state-of-the-art methods.

The main contributions of this paper are the following:
1) A dynamic prediction mechanism has been proposed to

construct a sequential set of embeddable vertices within a
model. The vertices of this collection serve a dual purpose:
they are utilized not only for embedding data but also for
providing predictions for other vertices. The proportion of
embeddable vertices approaches nearly 100%.

2) In order to endow the independent vertices within the
model with capabilities for data embedding and prediction, a
novel approach called virtual connection has been integrated
into the dynamic prediction process, thereby enhancing the
utilization of embeddable vertices.

3) The multi-MSB prediction strategy is employed at each
embeddable vertex and new vertex which is generated by inte-
grating the average features of all vertices in the corresponding

prediction set.
4) We adaptively apply arithmetic coding or different

Huffman indicators based on the occurrence frequency of
embedding labels so as to further reduce the length of auxiliary
information.

The rest of this paper is organized as follows. Section II
introduces three related works [30, 32, 33] based on vertices
division and multi-MSB prediction. The proposed method
using dynamic prediction and virtual connection is described
in Section III. Then, the experimental results including settings
analysis and embedding performance comparison are given in
Section IV. Finally, Section V concludes this paper.

II. RELATED WORK

In this section, seven related studies, categorized into MSB
prediction-based [28–31] and partition strategy-based [32–34]
methods, are introduced in detail. All these methods begin by
partitioning all vertices in the 3D model into embeddable and
prediction sets based on different rules. The MSB prediction-
based methods employ simple vertex partitioning strategies,
with capacity performance improvements primarily relying
on MSB comparison. To further enhance vertex utilization,
increasingly complex partitioning strategy-based methods have
emerged and we will only focus on introducing vertex parti-
tioning rules across various methods.

A. MSB Prediction-based Methods

A 3D model M is composed of two fundamental sets,
with the vertices set denoted as V = {vi}pi=1, and the face
set denoted as F = {fc}qc=1. Here, p and q represent the
number of vertices and faces, respectively. Each vertex vi
consists of three coordinate values, namely vi,x, vi,y , and
vi,z . Additionally, each face fc is composed of three vertices.
Since the original vertex coordinate values vi,x, vi,y , and vi,z
are all in decimal format, they should be initially converted
into integers for ease of processing. In MSB prediction-based
methods [28–31], the decimal point of the original vertex
coordinate values is shifted to the right by u positions, and the
remaining decimal part is truncated. Assuming that the integer
coordinate value ṽi,x is derived from the decimal value vi,x,
it can be represented using the following equation:

ṽi,x =
⌊
vi,x × 10u

⌋
(1)

where ⌊.⌋ represents the floor function. When performing a
reversible operation, the recovered coordinate value v̂i,x is
given by:

v̂i,x = ṽi,x/10
u (2)

In comparison to vi,x, v̂i,x experiences a reduction in preci-
sion. Thus, the aforementioned conversion is inherently lossy,
with the extent of precision loss being contingent upon the
parameter u. The value of u also dictates the bits length l
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required for the computer to represent the integer coordinate
value ṽi,x:

l =


8, 1 ≤ u ≤ 2

16, 3 ≤ u ≤ 4

32, 5 ≤ u ≤ 9

64, 10 ≤ u ≤ 33

(3)

All methods first initialize an empty embedding set Se and
an empty prediction set Sp. In [28] and [29], the face set
F is traversed in ascending order and for each face fc, if
none of the vertices in fc are in Se or Sp, the first vertex
of fc is added to Se, and the remaining two vertices are
added to Sp. Then the coordinate values of all vertices are
converted into signed binary sequences of length l. For each
vertex vi in the Se set, assuming the vertex has an integer
coordinate value ṽi,x along the x-axis, its transformed binary
sequence is {ṽti,x}lt=1. [28] uses the MSBs of the binary x-
axis coordinates of all vertices connected to vi in Sp for
comparison and prediction of ṽ1i,x. The index i of embeddable
vertex vi will be recorded as auxiliary information. However,
the comparison of single MSB significantly limits the payload
capacity of 3D mesh models. Thus [29] compares {ṽti,x}lt=1

and multi-MSB of binary predictive vertices coordinates along
x-axis. If the predicted results for the current bit differ, stop the
comparisons and the predicted length r1 along the x-axis can
be determined. Following the same procedure, compare the y-
and z-axis coordinate values to obtain corresponding predicted
lengths r2 and r3. Finally, the minimum value of r1, r2 and
r3 is taken as the label rm which indicates the current vertex
vi can embed 3× rm bits of data and needs to be embedded
into the 3D model as auxiliary information to ensure accurate
data extraction and reversible model recovery. Although multi-
MSB prediction can enhance vertex embedding capacity, the
limited number of embeddable vertices restricts the algo-
rithm’s performance. Lyu et al. [30] improved method [29]
by simply classifying vertices with odd (even) indices into the
embedding set Se and vertices with even (odd) indices into the
prediction set Sp. This approach allowed half of the vertices
in the 3D mesh model to be used for data embedding based
on multi-MSB prediction, significantly improving embedding
performance. Building on [30], Tang et al. [31] added some
vertices from Sp that were not suitable for prediction into
Se, enabling multi-MSB prediction to be applied to more
embeddable vertices. Since then, researchers have increasingly
focused on improving the proportion of embeddable vertices
without compromising the effectiveness of multi-MSB predic-
tion. More complex vertex partitioning strategies have been
proposed, showing more promise and advantages in enhancing
embedding compared to MSB prediction-based methods.

B. Partition Strategy-based Methods

In previous MSB prediction-based scheme [28–31], vertices
with negative coordinate values cannot be effectively used
for data embedding. To address this issue, Tsai et al. [32]
proposed a coordinate transformation process. Firstly, calculate

the minimum value of each axis coordinate among all vertices
using the following equation:xm

ym
zm

 =

mini∈{1,2,...,p}(vi,x)
mini∈{1,2,...,p}(vi,y)
mini∈{1,2,...,p}(vi,z)

 (4)

Then, to ensure that the coordinate values of each vertex fall
within the range of 0 to 1, a coordinate transformation process
is given by: vi,xvi,y

vi,z

 =

(vi,x − xm)/10b

(vi,y − ym)/10b

(vi,z − zm)/10b

 (5)

where b is the longest integer digit of all the shifted vertex
coordinate values. Finally, all non-negative coordinate values
are converted to integers using parameter u and the Eq. (1).
Tsai et al. further utilized selection key Ks and random
sampling to select ⌊Ts × NVk

⌋ neighboring vertices for each
embeddable vertex Vk as references, where Ts is a selection
threshold and NVk

represents the number of neighboring
vertices around vertex Vk. The embeddable length was then
constructed by using multi-MSB prediction between the em-
beddable vertex and its corresponding reference vertices. The
proposed random sampling strategy eliminates the need for
specific partitioning rules, thereby increasing the number of
embeddable vertices that meet the conditions. However, the
proportion of predictive vertices remains relatively large and
requires further optimization.

Hou et al. [33] employed the same coordinate transforma-
tion process as described in [32] to convert the decimal form
of vertex coordinate values into integers. Subsequently, octree
spatial subdivision was proposed to divide a 3D model M into
n sub-blocks from top to bottom. The result of the partitioning
can be described as follows:

M =

{
sb1, sb2, · · · , sba, · · · , sbn|Depth(sba) ≤

MaxD or Size(sba) ≤MaxS

}
(6)

where sba represents the ath sub-block, Depth(sba) ≤
MaxD indicates that the tree depth cannot exceed the bound-
ary volume MaxD and Size(sba) ≤ MaxS signifies the
maximum number of vertices in each sub-block should be
MaxS. For a sub-block, if the embedding room vacated by the
vertices is less than the embedding threshold TD, the sub-block
will be considered as a non-embeddable block. All embeddable
sub-blocks will be sorted in descending order according to
the number of vertices, while the ordinal index of vertices
will be updated after reordering. In an embeddable sub-block,
one vertex is arbitrarily selected as a reference and compared
with other vertices using multi-MSB prediction for vacating
room. The octree spatial subdivision allows the proportion of
embeddable vertices to reach up to 95%, leaving relatively few
predictive vertices. However, it is still regrettable that these
few vertices are overlooked and not used for data embedding.

The adaptive vertex grouping strategy was proposed in
[34]. It begins by sorting the faces F in ascending order
of vertex indices both row wise and column wise to form
F ′. Subsequently, all independent triangular faces in F ′ are
collected to form the initial group set G = {g1, g2, . . . , gt}.
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Fig. 1. The framework of the proposed method.

For vertices not included in any group, connected vertices
that are already in G are identified in F ′ in sequential order,
and the ungrouped vertices are added to the groups of their
connected vertices. After grouping the vertices, the first vertex
in each group serves as a reference for the other remaining
vertices and is not used for data embedding. The number of
groups determines the number of predictive vertices, so this
partitioning mechanism still presents a bottleneck in enhancing
the embedding capacity of 3D models.

Based on the above analysis, existing vertex partitioning
strategies can still be further optimized to ultimately achieve
a nearly 100% utilization rate of embeddable vertices. The
more embeddable vertices there are, the greater the embedding
capacity of the model, provided that the effectiveness of multi-
MSB prediction is not compromised. To address this consider-
ation, dynamic prediction and virtual connection mechanisms
have been proposed to increase the payload upper bound of
the RDHED method.

III. PROPOSED METHOD

In this paper, we propose a high capacity reversible data
hiding method that combines dynamic prediction and virtual
connection applied to encrypted 3D models. The framework
of our proposed method is illustrated in Fig. 1, consisting of
three main parts: 1) The content owner frees up redundant
space through coordinate transformation, dynamic prediction,
virtual connection, and Multi-MSB prediction. Subsequently,
the encrypted model is embedded with auxiliary information
which is constructed by entropy encoding and sent to the data
hider. During the dynamic prediction process, a vertex serves
as the starting point and gradually spreads to the surrounding
vertices. The transition of red vertices indicates the order of
dynamic prediction. Besides, the virtual connection is applied
between the independent vertex and the nearest vertex in space,
allowing the independent vertex to participate in dynamic pre-
diction for data embedding and prediction. 2) Upon receiving
the encrypted model, the data hider performs pre-encrypted
data embedding and transfers the resulting model to recipients
with different access privileges. 3) Different keys determine
whether the recipient can successfully execute data extraction
or model recovery processes. Modules of the same color in
the diagram represent reversible processes.

A. Coordinate Transformation Process

To facilitate subsequent data processing, the coordinate
transformation process involves converting the decimal-format
coordinate values of vertices in a 3D model M into integers.
Following the approach similar to Tsai et al.’s method [32],
the minimum boundary values xm, ym, and zm of each axis
are firstly derived through Eq. (4). Subsequently, the original
coordinate values are constrained within the 0 to 1 range using
the edge values in accordance with the transformation process
defined by Eq. (5), resulting in vi,x, vi,y , and vi,z . Eventually,
these decimal coordinate values are converted into integers by
Eq. (1) for different values of the parameter u.

Assuming that the value of (xm,ym,zm) is
(−0.37,−0.58,−0.52) after the calculation of Eq. (4),
and the maximum values of vi,x, vi,y and vi,z are 0.77,
0.61 and 0.66 respectively, then b is obtained to be 1 by
Eq. (5). When the parameter u is 3, a vertex with the original
coordinate value of (0.72, 0,−0.11) is transformed into
fractional and integer coordinates of (0.109, 0.058, 0.041)
and (109, 58, 41), respectively.

B. Dynamic Prediction

Under typical circumstances, the content owner needs to
divide the vertices in a 3D model into two distinct sets:
the embeddable set Se and the prediction set Sp. Vertices
within the set Se are utilized for data embedding, whereas
those in the set Sp are employed to predict the surrounding
embeddable vertices. To ensure reversibility, the coordinate
values of the predictive vertices remain unaltered and thus
do not participate in data embedding. Numerous previous
methods have aimed to minimize the number of predictive
vertices as much as possible without significantly affecting
prediction accuracy. This reduction has facilitated an increase
in the number of embeddable vertices, thereby improving the
data embedding capacity of the entire model. However, to
maintain the accuracy of predictions, the number of predicted
vertices cannot be reduced indefinitely, so it becomes increas-
ingly difficult to augment the model’s embedding capacity. To
address this issue, this paper proposes a dynamic prediction
method wherein the number of predictive vertices surrounding
a given vertex changes dynamically. The vertices in the model
can be used for both prediction and data embedding. The
specific steps will be described in the following:
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Fig. 2. An example of dynamic prediction in a simple model.

(1) Sort vertices: Through the face set F = {fc}qc=1, the
number of connected vertices around each vertex vi in the
model can be calculated sequentially. Then all p vertices are
sorted in descending order based on the counts. The top n
vertices are selected to form the set Vo, while the remaining
vertices constitute the set Ve. Here, n is a threshold with a
minimum value of 1 and all vertices in Ve will be used for
data embedding.

(2) Initialize the vertices in Vo and Ve: For each vertex
vi in the model, initialize a set Ci containing all the neigh-
boring vertices connected to vi. Additionally, assuming that
the vertices in sets Vo and Ve are represented by vj and vk
respectively, create a corresponding set Pk for each vertex vk.
The set Pk is intended to include other vertices that will be
used to predict vk, and it is initially an empty set.

(3) Update set Pk: Iterate over each vertex vj in the set Vo

to get its corresponding set Cj . For every vertex denoted as
vj′ in the set Cj , if it belongs to the set Ve, then add the vertex
vj to the corresponding set Pj′ of vertex vj′ . As a result, some
vertices vk in Ve will have non-empty corresponding sets Pk.

(4) Construct embedding vertex sequences: First an
empty set E is created for representing the embedding order
of all vertices in the set Ve. Second, each vertex in Ve are
sorted according to the number of vertices in corresponding
set Pk from largest to smallest, and the first vertex vk in the
sorted set Ve is deleted as well as added to the set E. Then
iterate over each vertex denoted as vk′ in the set Ck, and if
the current vertex belongs to the set Ve, the vertex vk is added
to the corresponding set Pk′ of vertex vk′ . Finally, the revised
set Ve is sorted again and the subsequent processes described
above are repeated until there is no more vertex in the set Ve.
The final generated set E not only contains all the vertices
in the original set Ve, but also further represents the order in
which vertices are embedded into the data. Besides, all the
vertices in the set Pk are used for predicting the vertex in E.

In order to better understand the steps described above,

Fig. 2 shows the complete processes of dynamic prediction
using a simple model as an example. As shown in Fig. 2(a), the
model consists of 5 vertices and 3 faces. When the threshold
value n is set to 1, it can be observed that the vertex v3 has
the maximum number of neighboring vertices connected to it.
Therefore, the resulting set Vo is equal to {v3}, and the set
Ve contains the remaining vertices. Subsequently, the vertices
are initialized, where C1 ∼ C5 respectively represent the sets
of vertices connected to v1 ∼ v5. Each vertex vk in the set Ve

corresponds to an initially empty prediction set Pk. As shown
in Fig. 2(d), the unique vertex v3 in the set Vo is traversed,
highlighted in red. Based on the set C3, it can be inferred
that the vertices v1, v2, v4, and v5 connected to vertex v3
belong to set Ve, with the connecting edges marked in red, thus
the prediction sets P1 P2, P4, and P5 for the four connected
vertices all include vertex v3. Then the vertices in the set Ve

are sorted in descending order based on the number of vertices
in the set Pk. Since P1, P2, P4, and P5 have the same number
of vertices, vertex v1 is selected first. As shown in Fig. 2(e),
vertices v2 and v4 connected to v1 belong to set Ve, therefore
vertex v1 is added to the sets P2 and P4, and it is removed
from the set Ve while being added to the set E. Ve is further
sorted, and since both P2 and P4 have the maximum of 2
vertices, vertex v2 is selected next in order. Vertices v1 and
v3 connected to v2 do not belong to set Ve, so vertex v2 only
needs to be removed from the set Ve and added to the set
E, the resulting configuration is recorded in Fig. 2(f). Next
taking vertex v4 as the observation object in Fig. 2(g), vertex
v5 is connected to vertex v4 in set Ve. Therefore, vertex v4 is
added to the sets P5 and E, and the set Ve is left with only
vertex v5 after deleting v4. Finally, the sole vertex v5 is added
to the set E, and the set Ve becomes empty. The final result is
shown in Fig. 2(h), where the arrangement of vertices in set
E represents the order of embedded data, and P1, P2, P4, and
P5 are the corresponding prediction sets for these embedding
vertices.
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Fig. 3. The number distribution of the connected vertices and predictive vertices for each embeddable vertex in five test models (n = 3) : (a) Bunny; (b)
Armadillo; (c) Dragon; (d) Horse; (e) Casting.

Fig. 4. Illustration of using virtual connection combined with dynamic prediction in a model.

The mechanism of dynamic prediction relies on providing
predictions for the connected vertices based on an initial set
Vo of n vertices, then these embeddable vertices are further
utilized to predict adjacent vertices. The priority of vertex vk
being added to the embedding sequence set E increases as
the number of predictive vertices around it grows dynami-
cally. Taking five test models, ‘Bunny’, ‘Armadillo’, ‘Dragon’,
‘Horse’, and ‘Casting’ as examples, Fig. 3 shows the number
distribution of the connected vertices and used predictive
vertices for each embeddable vertex when the threshold n is set
to 3. From the five subplots, it can be seen that the majority of
embeddable vertices have 5, 6, or 7 connected vertices, with 3
usable predictive vertices. The distribution trend indicates that
despite the differences in scale and number of vertices for
each model, nearly half of the connected vertices around the
embeddable vertices can be utilized as predictive vertices. This
demonstrates that the dynamic prediction method can ensure
an ample number of predictive vertices for each embeddable
vertex, without compromising prediction accuracy as the pro-
portion of embeddable vertices increases.

C. Virtual Connection

Considering that some models may contain independent
vertices that are not connected to any other vertices, the

original dynamic prediction method would result in empty
prediction sets for these independent vertices, as there are
no vertices to provide predictions. In order to utilize all
independent vertices and increase the vertex utilization rate to
maximize the embedding capacity of the model, we propose
a virtual connection method based on dynamic prediction.
Assuming a 3D model contains independent vertices, the
dynamic prediction will only detect these vertices in the final
stage within the set Ve while constructing the embeddable
vertex sequence. Subsequently, all independent vertices will
be added to the end of sequence E. In step 4 of dynamic
prediction, when the set Ck corresponding to the traversed
vertex vk is empty, the current vertex is identified as an
independent vertex. At this point, we calculate the squared
distance value D2 between the current independent vertex vk
and each vertex vd within set Vo ∪ E in 3D space using the
following equation:

D2 = (v(k,x)−v(d,x))
2+(v(k,y)−v(d,y))

2+(v(k,z)−v(d,z))
2

(7)
The vertex vd with the smallest distance D2 will be added
to set Pk as the predictive vertex for vertex vk, thereby
establishing a virtual connection between the two vertices.
The reason for selecting vertex from the set Vo ∪ E is that
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Fig. 5. An example of multi-MSB prediction for vertex v3 in Fig. 4.

the coordinates of all vertices within this set are already
known before predicting vk. Additionally, a new set Co is
created to record all the vertices that are virtually connected
to independent vertices in order to maintain reversibility. Each
independent vertex in the model has only one corresponding
virtual connection object, making the number of elements in
the set Co determinable.

Fig. 4 illustrates an example where the virtual connection
method is applied in the model, with the vertex v5 highlighted
in blue being an independent vertex. Figs. 4(b)-(g) represent
the processes of direct dynamic prediction, which do not
specifically involve the vertex v5, and therefore will not be
further elaborated. As depicted in Fig. 4(h), the squared
distances between the vertex v5 and the four vertices v1, v2, v3,
and v4 in the set Vo∪E are computed using Eq. (7). Assuming
that vertex v3 is the closest to vertex v5, a virtual connection is
then established between v3 and v5, resulting in v3 being added
to sets P5 and Co. Finally, v5 is removed from the set Ve and
included in the set E. The entire process combining dynamic
prediction and virtual connection is outlined in Alg. 1.

D. Multi-MSB Prediction

For each embeddable vertex vk in the set E, the correspond-
ing embeddable bit length can be determined through multi-
MSB prediction with all predictive vertices in set Pk. First,
we obtain all vertices in set Pk and calculate their average
coordinate values on the x-axis, y-axis, and z-axis to obtain
a new vertex pk. Using the coordinate transformation process
mentioned in Section III-A, the original coordinate values of
vertices vk and pk are transformed into non-negative integers,
and the modified vertices are denoted as ṽk and p̃k. Then
convert the integer coordinate values ṽk,x, ṽk,y , and ṽk,z into
l-bit binary sequences {ṽtk,x}lt=1, {ṽtk,y}lt=1, and {ṽtk,z}lt=1 by
the following formula:

ṽtk,s =

⌊
ṽk,s mod 2l+1−t

2l−t

⌋
, s = x, y, z (8)

The same conversion is applied to vertex p̃k. Furthermore, the
binary sequences {ṽtk,x}lt=1 and {p̃tk,x}lt=1 are compared in

Algorithm 1 Dynamic prediction and virtual connection.

Input: Vertices V , Faces F , Threshold n.
Output: Prediction set Pk, Embedding sequence set E, Vir-

tual connection set Co.
1: Construct the set of connected vertices Ci corresponding

to each vertex vi from F ;
2: Vo ← the top n vertices with the highest number of

elements in Ci;
3: Ve ← the remaining p− n vertices;
4: Pk, E, Co ← ∅;
5: for all Vo do
6: for all Cj ∩ Ve do
7: Pj′ ← Pj′ ∪ {vj};
8: end for
9: end for

10: while Ve ̸= ∅ do
11: vk ← the first vertex with the highest number of

elements in Pk;
12: Ve ← Ve − {vk}; E ← E ∪ {vk};
13: if Ck = ∅ then
14: vd ← the closest vertex to vk in set Vo ∪E −{vk};
15: Pk ← {vd}; Co ← Co ∪ {vd};
16: Continue;
17: end if
18: for all Ck ∩ Ve do
19: Pk′ ← Pk′ ∪ {vk};
20: end for
21: end while
22: Return Pk, E, Co.

the order of MSB to LSB. If the current compared bits are
not equal, the comparison stops and the number of previous
identical bits is recorded as h(k,1). The same process is
repeated for the y-axis and z-axis binary coordinate values
to obtain corresponding identical bit lengths h(k,2) and h(k,3).
The minimum value among h(k,1), h(k,2), and h(k,3), denoted
as hk, is selected as the embedding label for vertex vk.
This signifies that the coordinate values of current vertex can
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TABLE I
NUMBER AND HUFFMAN INDICATOR OF EACH POSSIBLE VALUE OF hk

FOR BUNNY MODEL.

Bunny
hk

1 2 3 4 5 6 7 8

Number 0 1 15 1104 970 1609 3070 29177
Indicators 11110 00001 1110 110 0001 001 10 01

provide a redundant space of 3× hk bits for data embedding.
Fig. 5 illustrates the process of calculating the embedding

label of vertex v3 in Fig. 4 using the multi-MSB prediction.
Set P3 contains two vertices, v1 and v2, used for predicting
the vertex v3. First, v1, v2, and v3 are transformed into v1,
v2, and v3 respectively through coordinate conversion. The
coordinate values of v1, v2, and v3 range from 0 to 1, with
specific values given in the figure. Next, the average coordinate
values of v1 and v2 on different axes are calculated to form
p3, which is used directly for multi-MSB prediction on v3. For
the comparison on the x-axis, v(3,x) and p(3,x) are converted
into integers using Eq. (1) with u set to 4, and the generated
integers are further transformed into two binary sequences of
length 16 using Eq. (3) and Eq. (8). The two binary sequences
are compared from the MSB to LSB, and when the 11th bit
is reached, the two highlighted differing bits in the figure
indicate an inconsistency. Therefore the comparison is stopped
at this point, and the embeddable length h(3,1) for the x-axis
coordinate value is determined to be 10. The same process
is applied to the y-axis and z-axis comparisons, resulting
in h(3,2) = 10 and h(3,3) = 9 respectively. Finally h3 is
determined to be 9 by taking the minimum value of h(3,1),
h(3,2), and h(3,3), which implies that the current embeddable
vertex v3 can accommodate an additional 27 bits of data.

E. Model Encryption

After completing coordinate conversion, dynamic predic-
tion, virtual connection, and multi-MSB prediction, the content
owner needs to convert the integer representation ṽi of all
vertices in the original model M into binary sequences of
length l, denoted as {ṽt1,x}lt=1, . . . , {ṽti,s}lt=1, . . . , {ṽtp,z}lt=1

respectively, according to Eq. (8). Subsequently, a binary
sequence rb of length 3×p×l is randomly generated using the
encryption key Ke. Then, rb is evenly divided into 3×p binary
sequences of length l, labeled as {rt1,x}lt=1, . . . , {rti,s}lt=1, . . . ,
{rtp,z}lt=1. Each {rti,s}lt=1 is used to encrypt the corresponding
{ṽti,s}lt=1 by performing a bitwise XOR operation:

eti,s = ṽti,s ⊕ rti,s (9)

where t = 1, 2, . . . , l, i = 1, 2, . . . , p, s = x, y, z. {eti,s}lt=1

represents the generated encrypted sequence and can be used
to calculate the encrypted integer coordinate values denoted
as ṽ′(i,s) using the following formula:

ṽ′(i,s) =

l∑
t=1

eti,s · 2l−t (10)

Based on the generated ṽ′(i,s), a new encrypted 3D model Me

can be fully constructed.

F. Entropy Coding and Auxiliary Information

To ensure the complete recovery of the original model, some
certain auxiliary information needs to be embedded into the
encrypted model in advance. After obtaining the label hk for
each embeddable vertex vk in the set E through multi-MSB
prediction, these labels need to be converted into a binary
sequence and included as part of the auxiliary information.
When the parameters u and n are both set to 2, the dis-
tribution of hk for the test model ‘Bunny’ is presented in
Table I. Since a mere 7-bit binary sequence can represent
every integer coordinate value, the minimum value of hk is 1.
The table reveals an uneven frequency distribution of each
possible value of hk. In an effort to minimize the length
of the auxiliary information, thus allocating more space for
data embedding, we use common lossless entropy coding
techniques including arithmetic coding and Huffman coding to
compress all hk. Here, taking Huffman coding as an example,
shorter Huffman indicators are applied to values of hk that are
more prevalent. In this manner, each value of hk in the table
corresponds to a specific encoding, and the Huffman encod-
ing rule H =‘1111000001111011000010011001’, formed by
these indicators, are also included as auxiliary information for
recovering the encoded hk. In the model recovery stage, the
rule H will be first extracted and then split into 8 Huffman
codes, each corresponding to different hk, facilitating the
decoding of all hk. Since arithmetic coding typically achieves
better compression rates than Huffman coding, the choice of
entropy coding method should depend on the final size of the
auxiliary information to maximize the embedding space. For
simplicity, the remainder of this section will assume the use
of Huffman coding.

To obtain the objects of independent vertices in the virtual
connection process, the auxiliary information should also
include all vertices in set Co. The index of each vertex
is converted into a binary sequence of length ⌈log2 p⌉ and
arranged in order after the Huffman coding rules H and all
encoded hk. Subsequently, all auxiliary information needs to
be embedded in specific positions within the encrypted model
Me. As discussed in Section III-E, the vertices of the encrypted
model can sequentially be converted into 3 × p encrypted
binary sequences denoted as {et1,x}lt=1, . . . , {eti,s}lt=1, . . . ,
{etp,z}lt=1. For ease of subsequent embedding operations, the
first hi(hk) embeddable bits of each {eti,s}lt=1 are combined
to form sequence L1, while the last l − hi bits are combined
to form sequence L2. All auxiliary information will be used
to replace some bits in L1 sequentially. The modified L1 is
then concatenated with L2 and converted back into vertex
coordinate values in order. As illustrated in steps a, b, and
c of Fig. 6, the encrypted vertex coordinate values are trans-
formed into binary sequences according to different axes. The
embeddable bits and the remaining bits are combined to form
a long sequence L1 + L2 of length 3 × p × l. Finally all
auxiliary information is embedded into the sequence starting
from the first bit, and the changed sequence is recursively
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Fig. 6. Steps a, b, and c are the room distribution of auxiliary information embedding; Steps d, e, and f are the room distribution of data embedding.

decomposed into {e′t1,x}lt=1, . . . , {e′ti,s}lt=1, . . . , {e′tp,z}lt=1

to form a final encrypted model Mf containing the auxiliary
information, which is sent by the content owner to the data
hider.

G. Data Hiding

Upon receiving the model Mf sent by the content owner,
the data hider first determines the number of independent
vertices, denoted as n̂, based on the face F . Then, all vertex
coordinate values in the model are converted into binary form
and recombined into a sequence of length 3× p× l. Starting
from the first bit of the obtained sequence, the data hider
extracts the Huffman coding rule H and decodes p−n labels
hk of the embeddable vertices. Following this, the remaining
part of the auxiliary information is extracted, which consists of
n̂× ⌈log2 p⌉ bits representing the indexes of n̂ vertices in the
set Co. Additionally, the remaining bits in sequence L1 that
are not replaced by the auxiliary information, as discussed in
Section III-F, can be identified and used to embed additional
data. As shown in steps d, e, and f of Fig. 6, the remaining
embeddable bits in the sequence are replaced with the data
encrypted by a data hiding key Kd, and the changed sequence
is recursively decomposed into {e′′t1,x}lt=1, . . . , {e′′ti,s}lt=1,
. . . , {e′′tp,z}lt=1 to form a marked model Mm containing the
data, which is then sent to the recipient.

H. Data Extraction and Model Recovery

After receiving the model containing data, the recipient can
extract all auxiliary information and encrypted data following
the same procedures as the data hider. The possession of dif-
ferent keys determines whether the recipient can successfully
extract the data or recover the model.

If the recipient only has the data hiding key Kd, the
extracted encrypted data is directly decrypted to obtain the
original data.

When only the encryption key Ke is available, the recipient
first uses the face F for dynamic prediction to obtain the sets
Vo, Ve, and E. Then, each vertex in set E corresponds with
the tag value hk, allowing the 3 × p × l-length sequence to
be decomposed into each l-length binary sequence combining
embeddable bits and non-embeddable bits, decrypt each l-
length binary sequence in order through {rti,s}lt=1 generated
by the encryption key Ke. Subsequently, by traversing each

current coordinate value of the vertices vk in set E and
using hk, the original vertex vk can be restored according
to all vertices in set Pk. If the current traversed vertex is an
independent vertex, the only vertex virtually connected in set
Pk can be obtained from the extracted auxiliary information.
Finally, the coordinate values of all vertices are restored one
by one, resulting in the final recovery of the original model.

If the recipient possesses both the data hiding key Kd and
the encryption key Ke, not only the data, but the original
model can be obtained correctly. Through the processes de-
scribed above, it is evident that the proposed method is fully
separable, allowing the recipient, upon obtaining the necessary
authorization, to perform data extraction and model recovery
in an arbitrary order.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to demonstrate the performance of the proposed
method, this section conducts an analysis of multiple perfor-
mance parameters of the model, including security, separa-
bility, reversibility, and embedding capacity. In addition, we
also compare the present method with state-of-the-art methods
to fully demonstrate the superiority. All experiments were
conducted using the Matlab R2021a software on the Windows
11 operating system. The test models used are displayed
in Fig. 7, including Bunny, Armadillo, Dragon, Horse, and
Casting. Furthermore, the Princeton Segmentation Benchmark
(PSB) dataset [36] with 380 models will be utilized to further
validate the universality of the performance. Two metrics,
signal-to-noise ratio (SNR) and Hausdorff distance (HD), are
used to measure the difference between the restored model and
original model. Here, SNR primarily evaluates the geometric
distortion and a higher SNR value indicates smaller geometric
deformation of the 3D model. It can be calculated using the
following formula:

SNR =

10× lg

∑p
i=1[(vi,x − vx)

2 + (vi,y − vy)
2 + (vi,z − vz)

2]∑p
i=1[(v

′
i,x − vi,x)2 + (v′i,y − vi,y)2 + (v′i,z − vi,z)2]

(11)
where vx, vy, vz are the mean values of the original co-
ordinates vi,x, vi,y, vi,z , and v′i,x, v

′
i,y, v

′
i,z are the modified

coordinates of the restored model. HD describes the similarity
between the vertices sets of two models; the smaller the HD
is, the more similar the two sets of vertices are. Assuming
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Fig. 7. The original models, final encrypted models, marked models, and restored models, arranged from top to bottom. (a) Bunny; (b) Armadillo; (c) Dragon;
(d) Horse; (e) Casting.

the vertices sets of the two models being compared are
A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , bp}, HD is defined
as follows:

HD(A,B) = max(ed(A,B), ed(B,A)),

ed(A,B) = max
aϵA

min
bϵB
∥a− b∥,

ed(B,A) = max
bϵB

min
aϵA
∥b− a∥

(12)

where ∥.∥ calculates the Euclidean distance of the two sets
of vertices. The embedding performance of our method is
measured by the vertex embedding rate (ER), which indicates
the average number of bits embedded per vertex. The unit is
denoted as bits per vertex (bpv).

A. Security Discussion

In the entire process of the proposed method, the original
model M is transformed by the content owner through va-
cating room and encryption to generate the final encrypted
model Mf containing auxiliary information. After embedding
data by the data-hider, the final encrypted model is further
transformed into the marked model Mm. Both of these newly
generated models replace the original model for transmission
over the network, emphasizing the critical significance of their
security. Fig. 7 shows the final encrypted and marked models
generated by five test models. Visually, these models all ex-
hibit good imperceptibility, meaning that attackers intercepting
these models in the network would not be able to discern the

Fig. 8. Illustration of undetectability of the Bunny model in three stages: (a)
is the distribution of integer coordinate values ṽ(i,x), ṽ(i,y), and ṽ(i,z) in
the original model; (b) is the distribution of integer coordinate values ṽ′

(i,x)
,

ṽ′
(i,y)

, and ṽ′
(i,z)

in the final encrypted model; (c) is the distribution of integer
coordinate values ṽ′′

(i,x)
, ṽ′′

(i,y)
, and ṽ′′

(i,z)
in the marked model.

original content. Furthermore, using Bunny as the test model,
Fig. 8 illustrates the distribution of vertex coordinates for the
models at the three aforementioned stages, where ṽ(i,s), ṽ′(i,s),
and ṽ′′(i,s) represent the integer coordinate values of the original
model M , the final encrypted model Mf , and the marked
model Mm, respectively. In Fig. 8(a), the histograms display
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Fig. 9. The results using different u of the five test models: (a) HD; (b) SNR; (c) ER.

TABLE II
THE COMPARISON RESULTS UNDER DIFFERENT STATISTICAL ANALYSIS

COEFFICIENTS USING THE TEST MODELS.

Test SE↑ NPCR↑ HD↑ SNR↓
models (0 ∼ 9) (0% ∼ 100%) (0 ∼ +∞) (−∞ ∼ +∞)

Bunny
M 7.4914 - 0 +∞
Mf 8.9899 100% 72627.46 -116.42
Mm 8.9887 100% 73071.66 -116.39

Armadillo
M 7.0897 - 0 +∞
Mf 8.9981 100% 73859121 -117.55
Mm 8.9978 100% 73985040 -117.53

Dragon
M 7.6239 - 0 +∞
Mf 8.9992 100% 73859.34 -116.06
Mm 8.9991 100% 73684.25 -116.04

Horse
M 7.1454 - 0 +∞
Mf 8.9970 100% 738589.40 -118.36
Mm 8.9965 100% 733611.83 -118.35

Casting
M 7.7011 - 0 +∞
Mf 8.9225 100% 719006.99 -116.93
Mm 8.9237 100% 728376.77 -116.96

↑ denotes higher value is better, and vice versa.

the distributions of the integer coordinate values ṽ(i,x), ṽ(i,y),
and ṽ(i,z) in the original model, revealing uneven distributions
along the x-, y-, and z-axis. Hence, the original model M lacks
sufficient undetectability and its content is easily perceptible,
making it unsuitable for transmission over public channels. In
contrast, the histograms in Figs. 8(b)(c) exhibit more uniform
distributions, therefore the final encrypted model Mf and
the marked model Mm produced by the proposed method
both possess good imperceptibility, making them suitable for
transmission without the risk of content leakage.

We further evaluate the visual security level of the models
through statistical analysis coefficients, e.g., Shannon entropy
(SE), the number of changing vertex rate (NCVR), HD, and
SNR. In calculating SE, the number of discretization intervals
is fixed at 8, resulting in a maximum entropy value of 9.
NCVR represents the proportion of vertex coordinates in the
target model that have changed compared to the original
model. Table II presents a comparison of the original model
M , the final encrypted model Mf , and the marked model Mm

across different statistical coefficients, each with correspond-

ing boundary values. The results show that, compared to the
model M , the SE of models Mf and Mm is very close to the
maximum value of 9, highlighting that the vertex distribution
in these generated models is highly uniform and random,
without the discernible patterns or regularities present in the
original model. Each NPCR of 100% further underscores that
the vertex coordinate distributions in the final encrypted model
Mf and marked model Mm are completely distinct from
those in the original model. Additionally, the high HD and
negative SNR values reinforce that the two models generated
by the proposed method differ significantly from the original
model, making it challenging to infer M from Mf or Mm.
The table also reveals that models Mf and Mm have similar
values across the same metrics, as model Mm is generated by
embedding encrypted data into model Mf , where the original
ciphertext is replaced with new ciphertext. These statistical
analyses effectively demonstrate that the security of the models
is not compromised by data embedding, and both models Mf

and Mm exhibit excellent visual security.

B. Separability and Reversibility Analysis

The bottom of Fig. 7 illustrates the restored models cor-
responding to the five tested models, which, to the naked
eye, appear indistinguishable from the original models. A
receiver possessing only the encryption key Ke can decrypt
the marked models into the restored models. If the receiver
possesses both the data hiding key Kd and the encryption
key Ke, he or she can retrieve the original embedded data
from the marked models and also obtain the restored models
at the bottom of Fig. 7. The restored models in both cases
are identical, which proves the separability of the proposed
algorithm. Furthermore, in order to objectively evaluate the
discrepancies between the reconstructed models and the orig-
inal models during the restoration phase, we employed the
SNR and HD as metrics under varying values of u. SNR and
HD are computed based on comparisons between the original
and reconstructed models. An SNR approaching +∞ suggests
a high degree of similarity between the compared models,
whereas a HD approaching 0 conveys a similar implication.
Figs. 9(a)(b) present the variations in SNR and HD for five
test models as the value of u increases from 1 to 9. The
graphs reveal that, with the increment of u, the SNR for all
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TABLE III
THE ER OF THE FIVE TEST MODELS WHEN u = 5 AND n = 1 ∼ 20.

Model name
Threshold n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bunny 66.543 66.661 66.630 66.629 66.662 66.661 66.659 66.657 66.655 66.654 66.653 66.653 66.651 66.651 66.647 66.592 66.594 66.592 66.592 66.590
Armadillo 71.833 71.832 71.832 71.846 71.846 71.846 71.845 71.845 71.845 71.844 71.844 71.845 71.844 71.839 71.838 71.838 71.838 71.837 71.837 71.836
Dragon 72.283 72.323 72.352 72.417 72.416 72.415 72.415 72.414 72.414 72.412 72.411 72.410 72.410 72.409 72.409 72.408 72.407 72.407 72.406 72.405
Horse 71.443 71.535 71.533 71.533 71.528 71.529 71.527 71.526 71.526 71.525 71.525 71.523 71.413 71.412 71.411 71.411 71.410 71.410 71.410 71.408
Casting 63.179 63.177 63.120 63.118 63.109 63.106 63.093 63.084 63.072 63.062 63.049 63.036 63.026 63.016 62.996 62.987 62.981 62.968 62.956 62.948

TABLE IV
EMBEDDING CAPACITY AND AUXILIARY INFORMATION LENGTH FOR FIVE TEST MODELS (u = 5, n = 4).

Model name
Number of Total embedding Auxiliary information

ER (bpv)
Increased capacity (bit) using

Vertices Faces capacity (bit) length (bit) Virtual connection Entropy encoding

Bunny 35947 69451 2507451 112355 66.63 +43208 +85168
Armadillo 172974 345944 12887016 459573 71.85 - +405272
Dragon 437645 871414 32948688 1255830 72.42 - +931625
Horse 112642 225280 8354049 296148 71.53 - +267042
Casting 5096 10224 335199 13552 63.12 - +11908

five test models progressively ascends towards infinity and the
HD correspondingly descends towards zero. This indicates that
when the value of u is sufficiently large to encompass all
significant portions of the model’s vertex coordinate values,
the SNR will reach infinity and the HD will approach zero,
allowing for a complete and lossless reversible restoration of
the 3D model in our method.

C. Embedding Capacity Analysis

The data embedding capacity of the model is defined as the
total embeddable capacity minus the bit length of the auxiliary
information and subsequently represented by the embedding
rate (ER) in bits per vertex (bpv). As the parameter u varies
from 1 to 9, we recorded the average ER of different test
models with the threshold n set from 1 to 10, the results
are presented in Fig. 9(c). The patterns depicted in the figure
indicate that when u changes from 2 to 3 or from 4 to 5, there
is an increase in the model’s ER. This is due to the length l of
the binary coordinate values l changes from 8 to 16 and then
to 32, leading to an increase in the embeddable bit length for
each vertex. Conversely, when u increases from 1 to 2, from 3
to 4, or from 5 to 9, the ER of the model gradually decreases.
This is attributed to the fact that when the length l remains
fixed, an increasing number of bits are utilized to represent the
significant part of the coordinate values and to be predicted.

Table III presents the ER of five test models under the
parameter setting of u = 5 and threshold value n ranging from
1 to 20. The highlighted values indicate the highest ER for
the respective models. Statistical analysis reveals that for the
majority of models, an initial threshold value of n set between
1 to 6 can maximize the model’s embedding capacity. Then as
the value of n increases, the number of vertices available for
data embedding decreases, resulting in a diminishing trend in
the ER.

Table IV shows the fundamental data regarding the em-
bedding capacity and the length of auxiliary information for
five test models with u = 5 and n = 4. When the total

embedding capacity is fixed, a shorter length of auxiliary
information results in a higher data embedding capacity for
the model. The entropy coding employed in the proposed
method capitalizes on this principle. Thus, the table includes
the capacity enhancement using entropy encoding as opposed
to conventional binary encoding, demonstrating the efficacy of
arithmetic or Huffman encoding. Additionally, when the length
of auxiliary information is fixed, a greater total embeddable
capacity translates to a higher ER. The virtual connections
utilized in our method are based on this principle. Table IV
enumerates the increased capacity achieved by models with
independent vertices using virtual connections compared to
those without, effectively validating the advantageous impact
of our proposed method. Even though the proportion of models
with independent vertices is relatively small, the proposed
virtual connection technique effectively utilizes these often
overlooked vertices and incorporates them into the dynamic
prediction process, ensuring a vertex utilization rate close
to 100%. Additionally, with the rapid development of 3D
technology, more complex and high-precision 3D mesh models
with independent vertices will inevitably be used across vari-
ous industries. Virtual connections ensure that the embedding
performance of such models remains unaffected.

D. Performance Comparison

The performance of the proposed method was compared
with several state-of-the-art works [27, 29–34], with the ex-
periment setup uniformly setting the parameter u to 5. In
[27], Tsai et al. introduced a technique involving spatial
partitioning and space coding for data embedding, where the
achievable ER depends on the number of subdivided blocks
TP × TP × TP , reaching up to 7.68 bpv. Unlike [27], Yin et
al. [29] relied on the connection between embeddable vertices
and their surrounding vertices through multi-MSB to vacate
redundant space, requiring different embeddable lengths to
achieve the maximum ER for various models. In [30], half
of the vertices in the model were used to predict the other
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Fig. 10. Comparison of ER (bpv) among several compared methods for five test models.

half through multi-MSB prediction, and the embeddable length
for each vertex could be directly obtained. Building on [30],
Tang et al. [31] transformed some vertices from predictors
to data embedders. In [32], Tsai et al. employed a selection
threshold Ts and a selection key Ks to randomly select a
proportion Ts of vertices connected to the embeddable vertex
for prediction. Typically, when Ts is set to 0%, meaning one
embeddable vertex corresponds to one predictor, the model’s
ER can reach its maximum. Hou et al. [33] utilized an octree
to partition the model into multiple sub-blocks, with relevant
parameters set to MaxD = 6, MaxS = 40, and TD = 3.
The model encryption in [34] uses secret sharing. In the
current method, the threshold n typically ranges from 1 to 6
to maximize the model’s ER. The maximum ER achieved by
the aforementioned advanced methods and the current method
on five test models were compared and displayed in Fig. 10
using bar charts. It is evident from the figure that the proposed
method surpasses the others in ER across all test models,
particularly for models with a larger number of vertices, such
as Armadillo, Dragon, and Horse, where the proposed method
exceeds the best-performing scheme by more than 12 bpv. To
demonstrate the proposed method’s capability of high-capacity
data embedding across all models, the PSB database were
employed to calculate and compare the average ER of the
current and other methods, as illustrated in Fig. 11. The results
indicate that the proposed method consistently outperforms
the others, with the average ER of the models nearly 14 bpv
higher than the most advanced method. This signifies that our
method significantly enhances the data embedding capacity of
the models compared with other methods, and the achieved
effects are applicable to all models.

Table V presents the features comparison between the

Fig. 11. Comparison of average ER (bpv) among several compared methods
on PSB dataset.

proposed method and state-of-the-art methods. The utilization
rate of vertices indicates the proportion of embeddable vertices
to the total number of vertices, while the ER is calculated
based on models from the PSB database. In [27], although
nearly all vertices are available for data embedding, the ER
still depends on the number of partitioned sub-blocks TP .
However, incorrect TP can lead to errors in data extraction.
Yin et al.’s method [29] constructs the embeddable room using
multi-MSB between vertices, which improves the ER, but the
vertex utilization rate remains low. Lyu et al. [30] improved
upon Yin et al.’s method [29] by allocating odd- or even-
numbered vertices as embeddable, thus achieving a vertex
utilization rate of 50%. In [31], Tang et al. further refined
the vertex partitioning mechanism in Lyu et al.’s method
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TABLE V
FEATURES COMPARISON BETWEEN THE PROPOSED METHOD AND OTHER METHODS.

Method
Vertex utilization

Embedding rate
Independent vertices Computational

Separability
Extraction

rate embedding complexity errors

Tsai et al. [27] ≈100% log2(TP × TP × TP ) No Low Yes Yes
Yin et al. [29] 27.48% 1.78 ∼ 12.48 No Low Yes No
Lyu et al. [30] 50% 17.84 ∼ 25.65 No Low Yes No
Tang et al. [31] 73% 22.53 ∼ 38.95 No Low Yes No
Tsai et al. [32] 27.48% ∼ 62.74% 13.49 ∼ 27.36 No Low Yes No
Hou et al. [33] 95.49% 16.56 ∼ 55.02 No High Yes No
Gao et al. [34] 69.93% 33.55 ∼ 51.61 No Low Yes No
Proposed method ≈100% 62.21 ∼ 70.69 Yes Low Yes No

[30], allowing some vertices initially used for prediction to
embed data, thereby enhancing the ER. Tsai et al.’s method
[32] employs thresholds to randomly select prediction vertices
around embeddable vertices, with both the vertex utilization
rate and ER varying as the thresholds change. In [33], Hou
et al. utilized the octree and multiple thresholds to divide
the model into multiple embeddable sub-blocks, with only
one vertex per sub-block used for prediction, resulting in a
maximum vertex utilization rate of approximately 95.49%.
However, this method performs poorly in models with fewer
vertices, with a significant difference between the lowest
and highest ERs, and the method has a high computational
complexity. Gao et al.’s method [34] proposed a grouping rule
that allowed the vertex utilization to reach nearly 70%, the
ER of the model is not high, and significant disparities can
still occur. In stark contrast to the aforementioned works, the
proposed method in this paper uses dynamic prediction and
virtual connection to allow all vertices, apart from n initial
vertices, to be used for both data embedding and prediction.
As the threshold n is often a single-digit number when the
method performs optimally, the vertex utilization rate can
approach nearly 100%, ensuring a high ER within every
model. Moreover, our method is unique in its ability to embed
data using independent vertices. The algorithmic procedures
within this method are straightforward and separable, allowing
for the complete and accurate extraction of data.

V. CONCLUSION

In this work, we proposed a high capacity RDH method for
encrypted 3D mesh models based on dynamic prediction and
virtual connection. The dynamic prediction mechanism allows
vertices to embed data while also serving predictive functions.
Subsequently, virtual connection enables the further utilization
of independent vertices within the model. The synergy of two
ways nearly maximizes the vertex utilization rate. Experimen-
tal results demonstrated that the proposed method achieves a
higher embedding capacity on 3D models compared to the
existing state-of-the-art methods while ensuring reversibility.

In the future, we will explore novel methods aimed at
enhancing the precision of predictions between vertices and
reducing the length of auxiliary information, thereby fur-
ther improving the data embedding capacity of 3D models.
Additionally, we will focus on the security aspect of the

generated models within complex environments, investigating
their potential to withstand various forms of attacks.
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