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Abstract—In 3D skeleton-based action recognition, the lim-
ited availability of supervised data has driven interest in self-
supervised learning methods. The reconstruction paradigm using
masked auto-encoder (MAE) is an effective and mainstream self-
supervised learning approach. However, recent studies indicate
that MAE models tend to focus on features within a certain
frequency range, which may result in the loss of important
information. To address this issue, we propose a frequency
decoupled MAE. Specifically, by incorporating a scale-specific
frequency feature reconstruction module, we delve into lever-
aging frequency information as a direct and explicit target for
reconstruction, which augments the MAE’s capability to discern
and accurately reproduce diverse frequency attributes within
the data. Moreover, in order to address the issue of unstable
gradient updates caused by more complex optimization objectives
with frequency reconstruction, we introduce a dual-path network
combined with an exponential moving average (EMA) parameter
updating strategy to guide the model in stabilizing the training
process. We have conducted extensive experiments which have
demonstrated the effectiveness of the proposed method.

Index Terms—Skeleton-based action recognition, Masked auto-
encoder, Self-supervised learning, Frequency domain.

I. INTRODUCTION

UMAN action recognition is vital for applications like

surveillance, human-robot interaction, and virtual reality.
The development of depth sensors and pose estimation algo-
rithms has made skeleton data easily accessible. Skeleton data
exhibits computational efficiency and a robust spatio-temporal
correlation, thereby emerging as an indispensable data source
for action recognition [1], [2].

In the early stages of research, foundational models tai-
lored for capturing spatio-temporal features and trained using
supervised learning were predominantly employed for action
recognition tasks, such as H-RNN [3], ST-LSTM [4] and some
CNN-based methods [5], [6]. In 2018, Yan et al. [7] proposed
ST-GCN which introduced graph convolution network (GCN)
for dynamic skeleton modeling. Since then, GCNs have been
extensively applied and remain the mainstream approach to
this day [8]-[12]. Recently, several studies [13]-[15] have
leveraged the strong contextual modeling capabilities of Trans-
formers. In addition to these advances, hybrid models [16],
[17] have also shown promising results.
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Due to the high cost and effort required to obtain labeled
data for supervised learning, researchers have also been explor-
ing self-supervised learning methods for skeleton-based action
recognition, which mainly involves two phases: pre-training
and fine-tuning. In the unsupervised pre-training phase, the
model learns features from skeleton sequences in pretext tasks.
In the fine-tuning phase, the pre-trained model with learned
representations is used for feature extraction, and a classifica-
tion head is trained with labeled data. Pretext tasks are mainly
categorized into two types: contrastive learning based and
reconstruction based. Contrastive learning harnesses the power
of learning discriminative features by comparing different
augmentations of the same data against augmentations from
different data. Previous studies, such as HiCLR [18], HiCo
[19], and ActCLR [20], have demonstrated the effectiveness
of contrastive learning as a pretext task for self-supervised
skeleton-based action recognition. Unlike contrastive learning,
the reconstruction based methods learn to restore the original
signal from altered versions, such as those that have been
masked or noised. Among them, masked auto-encoder (MAE)
[21] learns visual representations by randomly masking a large
portion of input images and training an encoder-decoder archi-
tecture to reconstruct the original images from the remaining
visible parts. MAE has also been introduced in skeleton-
based action recognition, for example, SkeletonMAE [22],
[23], MAMP [24], which achieved impressive performance.

However, recent studies [25], [26] suggest that recon-
struction based methods tend to focus on and utilize the
high-frequency information in the input signal. While high-
frequency components excel at capturing detailed motion,
low-frequency components contribute to identifying broader
motion trends and directions, which is also crucial for action
recognition.

To overcome this limitation, we introduce an innovative
frequency decoupled masked auto-encoder (MAE) architec-
ture, the key of which is a pivotal scale-specific frequency
reconstruction module subsequent to the decoder stage. This
module endeavors to reconstruct distinct frequency charac-
teristics with tailored temporal resolutions: enhancing high-
frequency features at a heightened temporal precision while
preserving low-frequency details with a more subdued tempo-
ral granularity. By explicitly disentangling and targeting these
two in frequency domains within the reconstruction objectives,
the module fosters a dual-pronged approach within MAE: it
not only prompts the model to intensify its focus on low-
frequency information but also harnesses its innate sensitivity
to high-frequency nuances, ultimately yielding a more holistic
and comprehensive feature representation. Since a more com-
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Fig. 1. Pipeline of our method (pre-training phase): Frequency Decoupled MAE. The lower part of the diagram represents the online network, which is
updated using gradients. The upper part of the diagram represents the target network, which is updated through guidance from the online network and the
exponential moving average (EMA) strategy. Decoupled frequency reconstruction is performed in both the online network and the target network.

plex reconstruction objective is introduced, instability may be
induced in the training process, we thus employ a dual-path
structure strategy to assist the model in stable and efficient
training. In summary, the main contributions of this letter are:
o To focus on diverse frequency attributes in skeleton
data, we propose a scale-specific frequency reconstruction
module, enabling the MAE model to comprehensively
learn the frequency representation of skeleton sequence.
e We introduce a dual-path MAE network structure and
set distinct input for two sub-networks, which improves
the model’s training stability while training with more
complex loss with frequency reconstruction.
+ We conducted extensive experiments to validate the ef-
fectiveness of the proposed method.

II. METHOD
A. Overview

The proposed method’s overall pipeline is illustrated in
Fig. 1. We first preprocess the original 3D skeleton sequence
dividing it into two subsequences with equal length which
serve as inputs to the dual-path network: Sy, of odd frames
to the target network and S,, of even frames to the online
network. Subsequently, S;,, and S,, are masked and em-
bedded, yielding masked token sequences FEi,,, Eon, Which
remove semantically rich parts to force the model to learn
high-level semantic features. Then these masked tokens are
encoded and decoded to reconstruct the original inputs at
two temporal scales. In this process, a novel scale-specific
frequency reconstruction module is incorporated. Afterward,
a tailored frequency reconstruction loss is incorporated into
the loss function to supervise and enhance the reconstruction
process.

B. Multi-tube Masking and Tokenization

Tube Masking, originally proposed for video MAE [27],
masks parts of frame pixels of the same locations across the

temporal dimension to avoid information leakage. For skeleton
sequence data, a similar masking strategy is employed. Given
a skeleton sequence of size 7' x V' x C, we firstly temporally
divide it into N equal-length tubes of size % x V x C. For
each tube, K joints out of V' are randomly picked for masking,
which means the indices of masked joints are shared across
the % frames in each tube.

Following previous work [24], the masked motion se-
quences are then pachified as masked token sequences FEyg,
and FE,,, which are fed to an encoder-decoder stage that
consists of a series of Transformer blocks. And the decoded
data are unpatchified as Sj,,. and S’ to recover spatial and
temporal structure.

C. Scale-specific Frequency Reconstruction

As a further decoding stage, we introduce a scale-specific
frequency reconstruction module (SSFRM), which takes S;,,.
and S/, as inputs and functions to reconstruct high-frequency
data at a larger time scale while simultaneously reconstructing
low-frequency data at a smaller time scale. SSFRM consists of
three sub-modules: scale-up module, feature mapping module,
and feature reconstruction module, the details of these sub-
modules are shown in Fig. 2.

Scale-up Module: This module is responsible for increasing
the temporal resolution of the decoded embeddings. It consists
of two parts: the first includes two transposed convolution
and GELU layers that upscale the decoded embeddings in
the temporal dimension by 2x, resulting in a low-temporal
resolution output. The second comprises a transposed convo-
lution and a GELU layer that upscale the embeddings by 4 x,
producing a high-temporal resolution output.

Feature Mapping Module: The feature mapping module
includes a grouped convolution layer and a point-wise convo-
lution layer, designed to further map the decoded embeddings
into representations that are more closely aligned with fre-
quency characteristics.
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Feature Reconstruction Module: The feature reconstruc-
tion module also utilizes grouped and point-wise convolution
layers, along with transposed convolution layers, aiming to
restore the frequency feature sequence as the final output.

The final outputs of the SSFRM are Shig h, Slow for target
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Fig. 2. The three sub-modules of the scale-specific frequency reconstruction
module.

D. Dual-path Network Architecture

Since a more complex reconstruction target is introduced,
the training process may become unstable. To address this
problem, inspired by BYOL [28], we design a two-branch
architecture: an online branch with parameters updating with
gradients, and a target branch that updates its parameters using
the EMA strategy. We aim to use the online network to guide
the target network while exploiting the characteristics of EMA
to alleviate the adverse effects of unstable gradients. The EMA
update strategy can be written as follows:

e;ar = 'Yetar + (1 - 7)9;71’ (1)
where 0,

Lar 18 the updated target network parameters and -y
is a hyperparameter controlling the influence of the online
network’s parameters on the target network.

E. Loss Function

The loss consists of three parts: motion reconstruction loss
L,,, motion consistency loss L,,., and motion frequency
feature reconstruction loss L., . Instead of reconstructing the
original skeleton sequence, we set one of the reconstruction
targets as the motion sequence, which is a more challenging
task and compels the model to learn the dynamic properties
of skeleton data. The motion reconstruction loss is written as
follows:

L’"l = MSE(SQ(QO( éar))’ d(StaT)) + MSE(QD(S(/)”), d(SOU)))
2

where ¢(.) is a linear layer that adjusts the number of feature
channels. d(.) is the differential operator that computes the
motion of skeletons, and sg(z) refers to the operation of
stopping the gradient update of x.

L, is added to enforce the consistency between the two
branches:

Line = MSE(59(¢(Star)), ©(Son)), €)
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L, is added to supervise the frequency reconstruction pro-
cess. We apply discrete cosine transform (DCT) and truncation
operation to the motion sequence to obtain high/low motion
frequency coefficients, then apply inverse DCT to the high/low
coefficients to obtain ground truth:

Fl9" = iDCT (1" (DOT(d(Star))))s 4)
FloY = iDCT (rH(DCT(d(Star)))), (5)

where 71 and 7 are a pair of truncation operations, which
set the elements in a tensor to zeros if they are less/greater
than a certain threshold value. F9" Flov can be computed
similarly. The frequency feature reconstruction loss can be

written as:

Lung =lsg(S1a2")-Flut" +1S50"- Fls +

tar tar
. . (6)
MSE(sg(Sio), FioY) + MSE(Sy" Faot),
The final loss function is:
L:Lm+nl*me+n2*me; (7)

where 11 and 7y are hyperparameters used to tune the intensity
of the motion consistency loss and the motion frequency
feature reconstruction loss.

III. EXPERIMENT
A. Dataset

NTU-RGB+D 60: The NTU-60 dataset [29] developed by
NTU ROSE Lab includes 60 human action categories with
56,880 samples. It has two evaluation protocols: cross-subject
(X-sub) and cross-view (X-view). X-sub divides 40 subjects
into training and testing sets (20 each). X-view uses samples
from cameras 2 and 3 for training and camera 1 for testing.

NTU-RGB+D 120: The NTU-120 dataset [30] extends
NTU-60 by adding 57,600 samples for a total of 114,480
samples. It covers 120 action categories and includes X-sub
and cross-setup (X-set) evaluations. X-set uses samples with
even setup IDs for training and odd setup IDs for testing.

TABLE 1
PERFORMANCE COMPARISON ON THE NTU-60 DATASET UNDER THE
LINEAR EVALUATION. UNDERLINED DATA INDICATES THE SECOND-BEST

RESULT.
Method NTU-60

X-sub X-view
SkeletonMAE [22] 74.8 71.7
HiCLR-GCN [18] 80.4 85.5
HiCo-LSTM [19] 814 88.8
ActCLR [20] 84.3 88.8
MAMP [24] 84.9 89.1
FD-MAE (Ours) 86.4 90.4

B. Comparison With Previous Methods

Linear Evaluation: Linear evaluation primarily involves
freezing the model parameters obtained during the pre-training
phase and adding a linear classifier head to the output of the
pre-trained model’s encoder. Only this linear head undergoes



Page 7 of 6

oNOYTULT D WN =

IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 8, AUGUST 2015

TABLE II
PERFORMANCE COMPARISON ON THE NTU-120 DATASET UNDER THE
LINEAR EVALUATION.

Method NTU-120

X-sub X-set
SkeletonMAE [22] 72.5 73.5
HiCLR-GCN [18] 70.0 70.4
HiCo-LSTM [19] 73.7 74.5
ActCLR [20] 74.3 75.7
MAMP [24] 78.6 791
FD-MAE (Ours) 78.9 79.9

supervised training. Tables I and Table II compare the perfor-
mance of our method with previous self-supervised methods,
our method shows significant improvements over the previous
works.

Semi-supervised Evaluation: Semi-supervised evaluation
refers to fine-tuning all parameters of the pre-trained model’s
encoder and the newly added linear head, using only a portion
of the training set for supervised training while employing
the full test set for evaluation. The experimental results are
presented in Table III.

TABLE III
PERFORMANCE COMPARISON ON THE NTU-60 DATASET
UNDER THE SEMI-SUPERVISED EVALUATION.

NTU-60

Method X-sub X-view
(1%) (10%) (1%) (10%)
SkeletonMAE [22] 54.4 80.6 54.6 83.5
HiCo-Transformer [19] 54.4 73.0 54.8 78.3
HiCLR-Transformer [18]  54.7 82.1 53.7 84.8
HiCLR-GCN [18] 58.5 79.6 58.3 84.0
MAMP [24] 66.0 88.0 68.7 91.5
FD-MAE (Ours) 70.5 88.4 74.4 92.9

TABLE IV TABLE V

ABLATION ON ABLATION ON

PROPOSED METHOD. MASK RATIO.

DP FR MTM NTU-60 Mask Ratio NTU-60
- - - 84.9 80% 85.1
v - - 854 88% 86.4
v v - 85.8 90% 86.0
v v v 86.4 95% 82.9

TABLE VI TABLE VII

ABLATION ON
DECODER DEPTH.

ABLATION ON
TUBE LENGTH.

Tube Length  NTU-60 Decoder Depth  NTU-60
2 85.9 1 84.7
3 86.4 2 85.4
5 86.2 3 86.4

C. Ablation Study

To assess the impact of each module, we conducted ablation
studies in which we incrementally added three key compo-
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Fig. 3. Training stability comparison between our dual-path MAE and the
classic MAE.
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Fig. 4. Comparison of relative log amplitude (the amplitude difference
between the highest and lowest frequencies of embedding [25], lower value
means smaller variation in frequency) across network layers (depth) with and
without the frequency reconstruction module.

nents: the dual-path network, the frequency reconstruction
module, and the multi-tube masking. The results are presented
in Table IV. All ablation experiments were conducted under
the NTU-60 X-sub linear evaluation. We also compared the
pre-training stability of dual-path MAE and classic MAE.
Benefiting from the EMA strategy, the pre-training motion re-
construction loss of the dual-path MAE is relatively smoother,
as shown in Fig. 3. Additionally, we examined the frequency
characteristic of the improved model. Results in Fig. 4 show
that the model with the frequency reconstruction module better
utilizes low-frequency signal. We also conducted ablation
experiments on some important hyperparameters, selecting the
optimal hyperparameters by considering both computational
efficiency and performance. The results are presented in Tables
V, VI, and VIL

IV. CONCLUSION

We propose an enhanced MAE model for self-supervised 3D
skeleton-based action recognition. The introduced frequency
reconstruction module is designed to address the imbalance
in attention between different frequency components of in-
put signal caused by MAE’s characteristics, while a dual-
path structure is applied to enhance training stabilization. To
prevent information leakage, we use multi-tube masking. Ex-
perimental results indicate that the proposed method achieves
performance improvements over previous methods.
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